1
|
Jardine KJ, Som S, Gallo LB, Demus J, Domingues TF, Wistrom CM, Gu L, Tcherkez G, Niinemets Ü. Concurrent Measurement of O 2 Production and Isoprene Emission During Photosynthesis: Pros, Cons and Metabolic Implications of Responses to Light, CO 2 and Temperature. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248643 DOI: 10.1111/pce.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Traditional leaf gas exchange experiments have focused on net CO2 exchange (Anet). Here, using California poplar (Populus trichocarpa), we coupled measurements of net oxygen production (NOP), isoprene emissions and δ18O in O2 to traditional CO2/H2O gas exchange with chlorophyll fluorescence, and measured light, CO2 and temperature response curves. This allowed us to obtain a comprehensive picture of the photosynthetic redox budget including electron transport rate (ETR) and estimates of the mean assimilatory quotient (AQ = Anet/NOP). We found that Anet and NOP were linearly correlated across environmental gradients with similar observed AQ values during light (1.25 ± 0.05) and CO2 responses (1.23 ± 0.07). In contrast, AQ was suppressed during leaf temperature responses in the light (0.87 ± 0.28), potentially due to the acceleration of alternative ETR sinks like lipid synthesis. Anet and NOP had an optimum temperature (Topt) of 31°C, while ETR and δ18O in O2 (35°C) and isoprene emissions (39°C) had distinctly higher Topt. The results confirm a tight connection between water oxidation and ETR and support a view of light-dependent lipid synthesis primarily driven by photosynthetic ATP/NADPH not consumed by the Calvin-Benson cycle, as an important thermotolerance mechanism linked with high rates of (photo)respiration and CO2/O2 recycling.
Collapse
Affiliation(s)
- Kolby Jeremiah Jardine
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, California, USA
| | - Suman Som
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, California, USA
| | - Luiza Beraldi Gallo
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, California, USA
- FFCLRP, Departamento de Biologia, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Jilian Demus
- College of Natural Resources, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Lianhong Gu
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Recherche en Horticulture et Semences, INRAE, Université d'Angers, Beaucouzé, France
| | - Ülo Niinemets
- Chair of Plant Biology and Crop Science, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Fan Y, Tcherkez G, Scafaro AP, Taylor NL, Furbank RT, von Caemmerer S, Atkin OK. Variation in leaf dark respiration among C3 and C4 grasses is associated with use of different substrates. PLANT PHYSIOLOGY 2024; 195:1475-1490. [PMID: 38324704 PMCID: PMC11142371 DOI: 10.1093/plphys/kiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Measurements of respiratory properties have often been made at a single time point either during daytime using dark-adapted leaves or during nighttime. The influence of the day-night cycle on respiratory metabolism has received less attention but is crucial to understand photosynthesis and photorespiration. Here, we examined how CO2- and O2-based rates of leaf dark respiration (Rdark) differed between midday (after 30-min dark adaptation) and midnight in 8 C3 and C4 grasses. We used these data to calculate the respiratory quotient (RQ; ratio of CO2 release to O2 uptake), and assessed relationships between Rdark and leaf metabolome. Rdark was higher at midday than midnight, especially in C4 species. The day-night difference in Rdark was more evident when expressed on a CO2 than O2 basis, with the RQ being higher at midday than midnight in all species, except in rice (Oryza sativa). Metabolomic analyses showed little correlation of Rdark or RQ with leaf carbohydrates (sucrose, glucose, fructose, or starch) but strong multivariate relationships with other metabolites. The results suggest that rates of Rdark and differences in RQ were determined by several concurrent CO2-producing and O2-consuming metabolic pathways, not only the tricarboxylic acid cycle (organic acids utilization) but also the pentose phosphate pathway, galactose metabolism, and secondary metabolism. As such, Rdark was time-, type- (C3/C4) and species-dependent, due to the use of different substrates.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé 49100, France
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Li X, He D, White RG, Delhaize E, Ryan PR, Ingvordsen CH, Scafaro AP, Atkin OK, Wasson A, Richards R. Reduced tillering and dwarfing genes alter root traits and rhizo-economics in wheat. PHYSIOLOGIA PLANTARUM 2024; 176:e14336. [PMID: 38783514 DOI: 10.1111/ppl.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.
Collapse
Affiliation(s)
- Xiaoqing Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Di He
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | - Emmanuel Delhaize
- Australian Plant Phenomics Facility, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Andrew P Scafaro
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Anton Wasson
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | |
Collapse
|
4
|
Bruhn D, Noguchi K, Griffin KL, Tjoelker MG. Differential nighttime decreases in leaf respiratory CO 2 -efflux and O 2 -uptake. THE NEW PHYTOLOGIST 2024; 241:1387-1392. [PMID: 38152850 DOI: 10.1111/nph.19494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kevin L Griffin
- Department of Ecology, Evolution, & Environmental Biology, Columbia University, New York, NY, 10027, USA
- Department of Earth and Environmental Science, Columbia University, New York, NY, 10027, USA
- Division of Biology & Paleoenvironment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10027, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
5
|
Schmiege SC, Heskel M, Fan Y, Way DA. It's only natural: Plant respiration in unmanaged systems. PLANT PHYSIOLOGY 2023; 192:710-727. [PMID: 36943293 PMCID: PMC10231469 DOI: 10.1093/plphys/kiad167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Respiration plays a key role in the terrestrial carbon cycle and is a fundamental metabolic process in all plant tissues and cells. We review respiration from the perspective of plants that grow in their natural habitat and how it is influenced by wide-ranging elements at different scales, from metabolic substrate availability to shifts in climate. Decades of field-based measurements have honed our understanding of the biological and environmental controls on leaf, root, stem, and whole-organism respiration. Despite this effort, there remain gaps in our knowledge within and across species and ecosystems, especially in more challenging-to-measure tissues like roots. Recent databases of respiration rates and associated leaf traits from species representing diverse biomes, plant functional types, and regional climates have allowed for a wider-lens view at modeling this important CO2 flux. We also re-analyze published data sets to show that maximum leaf respiration rates (Rmax) in species from around the globe are related both to leaf economic traits and environmental variables (precipitation and air temperature), but that root respiration does not follow the same latitudinal trends previously published for leaf data. We encourage the ecophysiological community to continue to expand their study of plant respiration in tissues that are difficult to measure and at the whole plant and ecosystem levels to address outstanding questions in the field.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA 55105
| | - Yuzhen Fan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Danielle A Way
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
O’Leary BM, Scafaro AP, York LM. High-throughput, dynamic, multi-dimensional: an expanding repertoire of plant respiration measurements. PLANT PHYSIOLOGY 2023; 191:2070-2083. [PMID: 36638140 PMCID: PMC10069890 DOI: 10.1093/plphys/kiac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies. As a result, our understanding of the correlations of respiration with other biological and biochemical measurements is rapidly increasing. Difficult questions persist concerning the interpretation and utilization of respiration data; concepts such as allocation of respiration to growth versus maintenance, the unnecessary or inefficient use of carbon and energy by respiration, and predictions of future respiration rates in response to environmental change are all insufficiently grounded in empirical data. However, we emphasize that new experimental designs involving novel combinations of respiration rate data with other measurements will flesh-out our current theories of respiration. Furthermore, dynamic recordings of respiration rate, which have long been used at the scale of mitochondria, are increasingly being used at larger scales of size and time to reflect processes of cellular signal transduction and physiological response to the environment. We also highlight how respiratory methods are being better adapted to different plant tissues including roots and seeds, which have been somewhat neglected historically.
Collapse
Affiliation(s)
- Brendan M O’Leary
- Saskatoon Research and Development Centre, Agriculture and Agri-food Canada, Saskatoon S7N 0X2, Canada
| | - Andrew P Scafaro
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Larry M York
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
7
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
8
|
McDonald AE. Unique opportunities for future research on the alternative oxidase of plants. PLANT PHYSIOLOGY 2023; 191:2084-2092. [PMID: 36472529 PMCID: PMC10069896 DOI: 10.1093/plphys/kiac555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Alternative oxidase (AOX) is a terminal oxidase present in the electron transport system of all plants examined to date that plays an important role in the responses to abiotic and biotic stresses. Due to recent advances in cell and tissue culture, genetic engineering, and bioinformatic resources for nonmodel plants, it is now possible to study AOX in a broader diversity of species to investigate the full taxonomic distribution of AOX in plants. Additional functions of AOX should be investigated in thermogenic, carnivorous, and parasitic plants with atypical life histories. Recent methodological improvements in oxygen sensing, clustered regularly interspaced short palindromic repeats technology, and protein biochemistry will allow for considerable advancement on questions that have been long standing in the field due to experimental limitations. The role of AOX in secondary metabolism and mitochondrial metabolic pathways should also be examined due to recent discoveries in analogous systems in other organelles and fungi.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., N2L 3C5 Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
10
|
Garcia A, Gaju O, Bowerman AF, Buck SA, Evans JR, Furbank RT, Gilliham M, Millar AH, Pogson BJ, Reynolds MP, Ruan Y, Taylor NL, Tyerman SD, Atkin OK. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. THE NEW PHYTOLOGIST 2023; 237:60-77. [PMID: 36251512 PMCID: PMC10100352 DOI: 10.1111/nph.18545] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/06/2023]
Abstract
The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential (Y p ) of crops is vital to address these challenges. In this review, we explore a component ofY p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass (ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production (ε prod ) and efficiency of ATP use (ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential forε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improveε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.
Collapse
Affiliation(s)
- Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- College of Science, Lincoln Institute for Agri‐Food TechnologyUniversity of LincolnLincolnshireLN2 2LGUK
| | - Andrew F. Bowerman
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Sally A. Buck
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - John R. Evans
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert T. Furbank
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)Km. 45, Carretera Mexico, El BatanTexcoco56237Mexico
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
11
|
How does metabolic rate in plant shoot tips change after cryopreservation? Cryobiology 2022; 109:1-9. [PMID: 36356915 DOI: 10.1016/j.cryobiol.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Cryopreservation allows the long-term storage of plant germplasm, but can cause damage to plant tissues, which must be repaired for survival to occur. This repair process is fuelled by the metabolic function of mitochondria; however, little is known about how metabolic function is affected by the cryopreservation process in plants. We compared metabolic rates of shoot tips of two Australian native species, Androcalva perlaria and Anigozanthos viridis. Overall, cryopreservation resulted in a significant reduction in the metabolic rates of shoot tips from both species, even in tissues that regenerated after cryopreservation. Metabolic rate did not increase within 48 h after of thawing, even in shoot tips which later regenerated. When examined in isolation, both pre-treatment on desiccation medium and exposure to cryoprotective agents significantly decreased metabolic rates in regenerating shoot tips of A. viridis, however both caused a significant increase in shoot tips of A. perlaria, suggesting diversity of response to cryopreservation stresses across species. Measurements of shoot tip metabolic rate during cryopreservation will inform investigations into cellular energy production and provide critical information on the state of shoot health after exposure to different cryoprotective treatments, which could play a useful role in guiding protocol optimisation for threatened species to maximise post-cryopreservation regeneration.
Collapse
|
12
|
Ivanova A, O′Leary B, Signorelli S, Falconet D, Moyankova D, Whelan J, Djilianov D, Murcha MW. Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis. THE NEW PHYTOLOGIST 2022; 236:943-957. [PMID: 35872573 PMCID: PMC9804507 DOI: 10.1111/nph.18396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Brendan O′Leary
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKK1A 0C5Canada
| | - Santiago Signorelli
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Department of Plant Biology, School of AgricultureUniversidad de la RepúblicaE. Garzón 780, Sayago12900MontevideoUruguay
| | - Denis Falconet
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIGUniversité Grenoble Alpes38054GrenobleFrance
| | - Daniela Moyankova
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy BiologyLa Trobe UniversityBundoora3086VICAustralia
| | - Dimitar Djilianov
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Monika W. Murcha
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
| |
Collapse
|
13
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, Yang H, Bao Z, Ma F. H 2 S improves salt-stress recovery via organic acid turn-over in apple seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2923-2942. [PMID: 35906186 DOI: 10.1111/pce.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
14
|
The molecular basis of cereal grain proteostasis. Essays Biochem 2022; 66:243-253. [PMID: 35818971 PMCID: PMC9400069 DOI: 10.1042/ebc20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Storage proteins deposited in the endosperm of cereal grains are both a nitrogen reserve for seed germination and seedling growth and a primary protein source for human nutrition. Detailed surveys of the patterns of storage protein accumulation in cereal grains during grain development have been undertaken, but an in-depth understanding of the molecular mechanisms that regulate these patterns is still lacking. Accumulation of storage proteins in cereal grains involves a series of subcellular compartments, a set of energy-dependent events that compete with other cellular processes, and a balance of protein synthesis and protein degradation rates at different times during the developmental process. In this review, we focus on the importance of rates in cereal grain storage protein accumulation during grain development and outline the potential implications and applications of this information to accelerate modern agriculture breeding programmes and optimize energy use efficiency in proteostasis.
Collapse
|
15
|
Posch BC, Hammer J, Atkin OK, Bramley H, Ruan YL, Trethowan R, Coast O. Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:erac039. [PMID: 35604885 PMCID: PMC9127437 DOI: 10.1093/jxb/erac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 05/10/2023]
Abstract
Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fluorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in field and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecific patterns of global heat tolerance. In the field, wheat Tcrit varied diurnally-declining from noon through to sunrise-and increased with phenological development. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3-4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecific variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Julia Hammer
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, The University of Western Ontario, 1151 Richmond St, N6A 3K7, London, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
16
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
17
|
Whelehan LM, Funnekotter B, Bunn E, Mancera RL. Review: The case for studying mitochondrial function during plant cryopreservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111134. [PMID: 35067304 DOI: 10.1016/j.plantsci.2021.111134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Cryopreservation has several advantages over other ex situ conservation methods, and indeed is the only viable storage method for the long term conservation of most plant species. However, despite many advances in this field, it is increasingly clear that some species are ill-equipped to overcome the intense stress imposed by the cryopreservation process, making protocol development incredibly difficult using traditional trial and error methods. Cryobiotechnology approaches have been recently recognised as a strategic way forward, utilising intimate understanding of biological systems to inform development of more effective cryopreservation protocols. Mitochondrial function is a model candidate for a cryobiotechnological approach, as it underpins not only energy provision, but also several other key determinants of germplasm outcome, including stress response, reduction-oxidation status, and programmed cell death. Extensive research in animal cell and tissue cryopreservation has established a clear link between mitochondrial health and cryopreservation survival, but also indicates that mitochondria are routinely subject to damage from multiple aspects of the cryopreservation process. Evidence is already emerging that mitochondrial dysfunction may also occur in plant cryopreservation, and this research can be greatly expanded by using considered applications of innovative technologies. A range of mitochondria-targeted prophylactic and therapeutic interventions already exist with potential to improve cryopreservation outcomes through mitochondrial function.
Collapse
Affiliation(s)
- Lily M Whelehan
- Curtin Medical School, Curtin University, Perth, WA, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | - Bryn Funnekotter
- Curtin Medical School, Curtin University, Perth, WA, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | - Eric Bunn
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | | |
Collapse
|
18
|
Posch BC, Zhai D, Coast O, Scafaro AP, Bramley H, Reich P, Ruan YL, Trethowan R, Way DA, Atkin O. Wheat respiratory O2 consumption falls with night warming alongside greater respiratory CO2 loss and reduced biomass. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:915-926. [PMID: 34652413 DOI: 10.1093/jxb/erab454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Warming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments. We also examined the effect of night warming and a day heatwave on the capacity of the ATP-uncoupled alternative oxidase (AOX) pathway. Under warm nights, plant biomass fell, respiratory CO2 release measured at a common temperature was unchanged (indicating higher rates of CO2 release at prevailing growth temperature), respiratory O2 consumption at a common temperature declined, and AOX pathway capacity increased. The uncoupling of CO2 and O2 exchange and enhanced AOX pathway capacity suggest a reduction in plant energy demand under warm nights (lower O2 consumption), alongside higher rates of CO2 release under prevailing growth temperature (due to a lack of down-regulation of respiratory CO2 release). Less efficient ATP synthesis, teamed with sustained CO2 flux, could thus be driving observed biomass declines under warm nights.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Deping Zhai
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW 2390, Australia
| | - PeterB Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2753, Australia
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Trethowan
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW 2351, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, 1151 Richmond St., N6A 3K7, London, Canada
- Nicholas School of the Environment, Duke University, 9 Circuit Dr., 27710, Durham, NC, USA
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - OwenK Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
19
|
O'Leary BM, Oh GGK, Millar AH. High-Throughput Oxygen Consumption Measurements in Leaf Tissue Using Oxygen Sensitive Fluorophores. Methods Mol Biol 2022; 2363:63-75. [PMID: 34545486 DOI: 10.1007/978-1-0716-1653-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Respiratory rate measurements are crucial assays to understand mitochondrial biochemistry as well as metabolic regulation within tissues. Several technologies currently exist that can measure plant respiratory oxygen consumption or carbon dioxide evolution rates over short durations by either isolated mitochondria or plant tissues. Here we describe recently developed alternative methods for measuring tissue oxygen consumption rates (OCRs) using systems reliant on oxygen sensitive fluorophores. The methods described have distinct experimental advantages: they can allow high-throughput and long-duration measurements; and they are particularly suited to investigating the metabolic regulation of respiration by comparing OCRs among treatments or genotypes.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
| | - Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021; 232:98-112. [PMID: 33683730 PMCID: PMC8518983 DOI: 10.1111/nph.17329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Habtamu Ayalew
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | | | - Kundan Dhakal
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Marcus Griffiths
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xue‐Feng Ma
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Larry M. York
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| |
Collapse
|
21
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma XF, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021. [PMID: 33683730 DOI: 10.1101/2020.11.12.380238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Habtamu Ayalew
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Anand Seethepalli
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kundan Dhakal
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Marcus Griffiths
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Xue-Feng Ma
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Larry M York
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
22
|
Li X, Marquardt A, Wasson A. Carbon budgeting belowground. THE NEW PHYTOLOGIST 2021; 232:5-7. [PMID: 34216155 DOI: 10.1111/nph.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoqing Li
- CSIRO Agriculture & Food, Black Mountain, Canberra, ACT, 2601, Australia
| | | | - Anton Wasson
- CSIRO Agriculture & Food, St Lucia, Brisbane, QLD, 4067, Australia
| |
Collapse
|
23
|
Loogen J, Müller A, Balzer A, Weber S, Schmitz K, Krug R, Schaffrath U, Pietruszk J, Conrath U, Büchs J. An illuminated respiratory activity monitoring system identifies priming-active compounds in plant seedlings. BMC PLANT BIOLOGY 2021; 21:324. [PMID: 34225655 PMCID: PMC8256589 DOI: 10.1186/s12870-021-03100-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures. RESULTS In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedlings and records the respiratory activity in each well of a 48-well MTP. To validate the suitability of the setup for identifying novel PrimAC in Arabidopsis thaliana, seedlings were grown in MTP for seven days and treated with the known PrimAC salicylic acid (SA; positive control) and the PrimAC candidate methyl 1-(3,4-dihydroxyphenyl)-2-oxocyclopentane-1-carboxylate (Tyr020). Twenty-eight h after treatment, the seedlings were elicited with flg22, a 22-amino acid peptide of bacterial flagellin. Upon elicitation, the respiratory activity was monitored. The evaluation of the OTR course reveals Tyr020 as a likely PrimAC. The priming-inducing activity of Tyr020 was confirmed using molecular biological analyses in A. thaliana seedlings. CONCLUSION We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.
Collapse
Affiliation(s)
- Judith Loogen
- AVT.BioVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - André Müller
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Arne Balzer
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Sophie Weber
- Institute for Bio- and Geoscience, IBG-2: Plant Science, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kathrin Schmitz
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Roxanne Krug
- Institut Für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf Im Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Ulrich Schaffrath
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Jörg Pietruszk
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Institut Für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf Im Forschungszentrum Jülich, 52426 Jülich, Germany
- Institut Für Bio- Und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Uwe Conrath
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Jochen Büchs
- AVT.BioVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC), C/O Research Center Jülich, 52425 Jülich, Germany
| |
Collapse
|
24
|
Coast O, Posch BC, Bramley H, Gaju O, Richards RA, Lu M, Ruan YL, Trethowan R, Atkin OK. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. PLANT, CELL & ENVIRONMENT 2021; 44:2331-2346. [PMID: 33283881 DOI: 10.1111/pce.13971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e., acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as (a) decreased rates of net photosynthesis at 25°C (A25 ) coupled with lower maximum carboxylation capacity (Vcmax25 ), (b) reduced leaf dark respiration at 25°C (both in terms of O2 consumption Rdark _O225 and CO2 efflux Rdark _CO225 ) and (c) lower Rdark _CO225 to Vcmax25 ratio. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 -based traits (A25 , Rdark _CO225 and Vcmax25 ) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_ O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes and for predictions of crop performance in a future warmer world.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
- Agriculture, Health and Environment Department, Natural Resources Institute, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
- College of Science, Lincoln Institute of Agri-Food Technology, University of Lincoln, Lincolnshire, UK
| | | | - Meiqin Lu
- Australian Grain Technologies, Narrabri, New South Wales, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
25
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
26
|
Rashid FAA, Scafaro AP, Asao S, Fenske R, Dewar RC, Masle J, Taylor NL, Atkin OK. Diel- and temperature-driven variation of leaf dark respiration rates and metabolite levels in rice. THE NEW PHYTOLOGIST 2020; 228:56-69. [PMID: 32415853 DOI: 10.1111/nph.16661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Leaf respiration in the dark (Rdark ) is often measured at a single time during the day, with hot-acclimation lowering Rdark at a common measuring temperature. However, it is unclear whether the diel cycle influences the extent of thermal acclimation of Rdark , or how temperature and time of day interact to influence respiratory metabolites. To examine these issues, we grew rice under 25°C : 20°C, 30°C : 25°C and 40°C : 35°C day : night cycles, measuring Rdark and changes in metabolites at five time points spanning a single 24-h period. Rdark differed among the treatments and with time of day. However, there was no significant interaction between time and growth temperature, indicating that the diel cycle does not alter thermal acclimation of Rdark . Amino acids were highly responsive to the diel cycle and growth temperature, and many were negatively correlated with carbohydrates and with organic acids of the tricarboxylic acid (TCA) cycle. Organic TCA intermediates were significantly altered by the diel cycle irrespective of growth temperature, which we attributed to light-dependent regulatory control of TCA enzyme activities. Collectively, our study shows that environmental disruption of the balance between respiratory substrate supply and demand is corrected for by shifts in TCA-dependent metabolites.
Collapse
Affiliation(s)
- Fatimah Azzahra Ahmad Rashid
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjung Malim, Perak, Malaysia
| | - Andrew P Scafaro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ricarda Fenske
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Roderick C Dewar
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicolas L Taylor
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
27
|
Asao S, Hayes L, Aspinwall MJ, Rymer PD, Blackman C, Bryant CJ, Cullerne D, Egerton JJG, Fan Y, Innes P, Millar AH, Tucker J, Shah S, Wright IJ, Yvon-Durocher G, Tissue D, Atkin OK. Leaf trait variation is similar among genotypes of Eucalyptus camaldulensis from differing climates and arises in plastic responses to the seasons rather than water availability. THE NEW PHYTOLOGIST 2020; 227:780-793. [PMID: 32255508 DOI: 10.1111/nph.16579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
We used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment. Ten genotypes from different climates were grown in a common garden under watering treatments reproducing the wettest and driest edges of the subspecies' distribution. We measured functional traits reflecting leaf metabolism and associated with growth (respiration rate, nitrogen and phosphorus concentrations, and leaf mass per area) and performance proxies (aboveground biomass and growth rate) each season over a year. Genotypic variation contributed substantially to the variation in aboveground biomass but much less in growth rate and leaf traits. Phenotypic plasticity was a large source of the variation in leaf traits and performance proxies and was greater among sampling dates than between watering treatments. The variation in leaf traits was weakly correlated to performance proxies, and both were unrelated to the climate of genotype provenance. Intraspecific variation in leaf traits arises similarly among genotypes in response to seasonal environmental variation, instead of long-term water availability or climate of genotype provenance.
Collapse
Affiliation(s)
- Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Chris Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Callum J Bryant
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Darren Cullerne
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - John J G Egerton
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Yuzhen Fan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter Innes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Josephine Tucker
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shahen Shah
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- The University of Agriculture Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
28
|
Zhu A, Wang A, Zhang Y, Dennis ES, Peacock WJ, Greaves AIK. Early Establishment of Photosynthesis and Auxin Biosynthesis Plays a Key Role in Early Biomass Heterosis in Brassica napus (Canola) Hybrids. PLANT & CELL PHYSIOLOGY 2020; 61:1134-1143. [PMID: 32215572 DOI: 10.1093/pcp/pcaa038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/16/2020] [Indexed: 05/26/2023]
Abstract
Heterosis or hybrid vigor has been used widely for more than a decade in Canola (Brassica napus) production. Canola hybrids show heterosis in a variety of traits compared to parents, including increased biomass at the early stages of seedling establishment, which is a critical developmental step that impacts future plant growth and seed yield. In this study, we examined transcriptomes of two parental lines, Garnet (Gar) and NX0052 (0052), and their reciprocal hybrids, Gar/0052, at 4 and 8 days after sowing (DAS). In hybrids, early seedling biomass heterosis is correlated with earlier expression of genes in photosynthesis pathways relative to parents. The hybrids also showed early expression of genes in the auxin biosynthesis pathway, consistent with the higher auxin concentrations detected in hybrid seedlings at 4 DAS. Auxin is a key phytohormone that regulates plant development promoting cell expansion and cell proliferation. Consistent with the increased levels of auxin, hybrids have larger and more palisade cells than the parents at the same time point. We propose a possible mechanism of early biomass heterosis through the early establishment of photosynthesis and auxin biosynthesis, providing insights into how transcriptional changes in hybrids are translated into phenotypical heterosis. This finding could be utilized in future Canola breeding to identify hybrid combinations with the superior early seedling establishment and strong levels of hybrid vigor in later plant development.
Collapse
Affiliation(s)
- Anyu Zhu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| | - Aihua Wang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| | - You Zhang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Elizabeth S Dennis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - W James Peacock
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - And Ian K Greaves
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
29
|
O'Leary BM, Oh GGK, Lee CP, Millar AH. Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation. THE PLANT CELL 2020; 32:666-682. [PMID: 31888967 PMCID: PMC7054028 DOI: 10.1105/tpc.19.00157] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 05/03/2023]
Abstract
Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O2 consumption rate (RN) in mature leaves of Arabidopsis (Arabidopsis thaliana). Multi-hour RN measurements following leaf disc exposure to a wide array of primary carbon metabolites (carbohydrates, amino acids, and organic acids) identified phosphoenolpyruvate (PEP), Pro, and Ala as the most potent stimulators of plant leaf RN Using metabolite combinations, we discovered metabolite-metabolite regulatory interactions controlling RN Many amino acids, as well as Glc analogs, were found to potently inhibit the RN stimulation by Pro and Ala but not PEP. The inhibitory effects of amino acids on Pro- and Ala-stimulated RN were mitigated by inhibition of the Target of Rapamycin (TOR) kinase signaling pathway. Supporting the involvement of TOR, these inhibitory amino acids were also shown to be activators of TOR kinase. This work provides direct evidence that the TOR signaling pathway in plants responds to amino acid levels by eliciting regulatory effects on respiratory energy metabolism at night, uniting a hallmark mechanism of TOR regulation across eukaryotes.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| |
Collapse
|
30
|
Munns R, Day DA, Fricke W, Watt M, Arsova B, Barkla BJ, Bose J, Byrt CS, Chen ZH, Foster KJ, Gilliham M, Henderson SW, Jenkins CLD, Kronzucker HJ, Miklavcic SJ, Plett D, Roy SJ, Shabala S, Shelden MC, Soole KL, Taylor NL, Tester M, Wege S, Wegner LH, Tyerman SD. Energy costs of salt tolerance in crop plants. THE NEW PHYTOLOGIST 2020; 225:1072-1090. [PMID: 31004496 DOI: 10.1111/nph.15864] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Dublin, 4, Ireland
| | - Michelle Watt
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Borjana Arsova
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2481, Australia
| | - Jayakumar Bose
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Matthew Gilliham
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Sam W Henderson
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Urrbrae, SA, 5064, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Darren Plett
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stuart J Roy
- Australian Research Council (ARC) Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Nicolas L Taylor
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefanie Wege
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
31
|
Posch BC, Kariyawasam BC, Bramley H, Coast O, Richards RA, Reynolds MP, Trethowan R, Atkin OK. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5051-5069. [PMID: 31145793 DOI: 10.1093/jxb/erz257] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Buddhima C Kariyawasam
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Mohanapriya G, Bharadwaj R, Noceda C, Costa JH, Kumar SR, Sathishkumar R, Thiers KLL, Santos Macedo E, Silva S, Annicchiarico P, Groot SP, Kodde J, Kumari A, Gupta KJ, Arnholdt-Schmitt B. Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis-A Role Relevant for Seed Vigor Prediction and Plant Robustness. FRONTIERS IN PLANT SCIENCE 2019; 10:1134. [PMID: 31611888 PMCID: PMC6776121 DOI: 10.3389/fpls.2019.01134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.
Collapse
Affiliation(s)
- Gunasekaran Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Cell and Molecular Biology of Plants (BPOCEMP)/Industrial Biotechnology and Bioproducts, Department of Sciences of the Vidaydela Agriculture, University of the Armed Forces-ESPE, Milagro, Ecuador
- Faculty of Engineering, State University of Milagro (UNEMI), Milagro, Ecuador
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Sarma Rajeev Kumar
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Sofia Silva
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Steven P.C. Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Aprajita Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity (FunCROP), University of Évora, Évora, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- CERNAS-Research Center for Natural Resources, Environment and Society, Department of Environment, Escola Superior Agrária de Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Coast O, Shah S, Ivakov A, Gaju O, Wilson PB, Posch BC, Bryant CJ, Negrini ACA, Evans JR, Condon AG, Silva-Pérez V, Reynolds MP, Pogson BJ, Millar AH, Furbank RT, Atkin OK. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. PLANT, CELL & ENVIRONMENT 2019; 42:2133-2150. [PMID: 30835839 DOI: 10.1111/pce.13544] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 05/22/2023]
Abstract
Greater availability of leaf dark respiration (Rdark ) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of Rdark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non-destructive and high-throughput method of estimating Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark measured by a destructive high-throughput oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for Rdark . Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7- to 15-fold among individual plants, whereas traits known to scale with Rdark , leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark , N, and LMA with r2 values of 0.50-0.63, 0.91, and 0.75, respectively, and relative bias of 17-18% for Rdark and 7-12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are discussed.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Shahen Shah
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- The University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Alexander Ivakov
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Philippa B Wilson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Callum J Bryant
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Anna Clarissa A Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Anthony G Condon
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Agriculture, Canberra, Australian Capital Territory, 2601, Australia
| | - Viridiana Silva-Pérez
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Agriculture, Canberra, Australian Capital Territory, 2601, Australia
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT), México, 06600, Mexico
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Agriculture, Canberra, Australian Capital Territory, 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
34
|
O'Leary BM, Asao S, Millar AH, Atkin OK. Core principles which explain variation in respiration across biological scales. THE NEW PHYTOLOGIST 2019; 222:670-686. [PMID: 30394553 DOI: 10.1111/nph.15576] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 670 I. Introduction 671 II. Principle 1 - Plant respiration performs three distinct functions 673 III. Principle 2 - Metabolic pathway flexibility underlies plant respiratory performance 676 IV. Principle 3 - Supply and demand interact over time to set plant respiration rate 677 V. Principle 4 - Plant respiratory acclimation involves adjustments in enzyme capacities 679 VI. Principle 5 - Respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies 680 VII. Future directions 680 Acknowledgements 682 References 682 SUMMARY: Respiration is a core biological process that has important implications for the biochemistry, physiology, and ecology of plants. The study of plant respiration is thus conducted from several different perspectives by a range of scientific disciplines with dissimilar objectives, such as metabolic engineering, crop breeding, and climate-change modelling. One aspect in common among the different objectives is a need to understand and quantify the variation in respiration across scales of biological organization. The central tenet of this review is that different perspectives on respiration can complement each other when connected. To better accommodate interdisciplinary thinking, we identify distinct mechanisms which encompass the variation in respiratory rates and functions across biological scales. The relevance of these mechanisms towards variation in plant respiration are explained in the context of five core principles: (1) respiration performs three distinct functions; (2) metabolic pathway flexibility underlies respiratory performance; (3) supply and demand interact over time to set respiration rates; (4) acclimation involves adjustments in enzyme capacities; and (5) respiration is a complex trait that helps to define, and is impacted by, plant lifestyle strategies. We argue that each perspective on respiration rests on these principles to varying degrees and that broader appreciation of how respiratory variation occurs can unite research across scales.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
35
|
Wilson PB, Streich JC, Murray KD, Eichten SR, Cheng R, Aitken NC, Spokas K, Warthmann N, Gordon SP, Vogel JP, Borevitz JO. Global Diversity of the Brachypodium Species Complex as a Resource for Genome-Wide Association Studies Demonstrated for Agronomic Traits in Response to Climate. Genetics 2019; 211:317-331. [PMID: 30446522 PMCID: PMC6325704 DOI: 10.1534/genetics.118.301589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
The development of model systems requires a detailed assessment of standing genetic variation across natural populations. The Brachypodium species complex has been promoted as a plant model for grass genomics with translation to small grain and biomass crops. To capture the genetic diversity within this species complex, thousands of Brachypodium accessions from around the globe were collected and genotyped by sequencing. Overall, 1897 samples were classified into two diploid or allopolyploid species, and then further grouped into distinct inbred genotypes. A core set of diverse B. distachyon diploid lines was selected for whole genome sequencing and high resolution phenotyping. Genome-wide association studies across simulated seasonal environments was used to identify candidate genes and pathways tied to key life history and agronomic traits under current and future climatic conditions. A total of 8, 22, and 47 QTL were identified for flowering time, early vigor, and energy traits, respectively. The results highlight the genomic structure of the Brachypodium species complex, and the diploid lines provided a resource that allows complex trait dissection within this grass model species.
Collapse
Affiliation(s)
- Pip B Wilson
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Jared C Streich
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kevin D Murray
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Steve R Eichten
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Riyan Cheng
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Nicola C Aitken
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
- Ecogenomics and Bioinformatics Lab, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Kurt Spokas
- Soil and Water Management, Agricultural Research Service, United States Department of Agricutlture (USDA), St. Paul, Minnesota 55108
| | - Norman Warthmann
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| | - Sean P Gordon
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - John P Vogel
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Justin O Borevitz
- The ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 200, Australia
| |
Collapse
|
36
|
Tomlinson S, Dalziell EL, Withers PC, Lewandrowski W, Dixon KW, Merritt DJ. Measuring metabolic rates of small terrestrial organisms by fluorescence-based closed-system respirometry. ACTA ACUST UNITED AC 2018; 221:jeb.172874. [PMID: 29444841 DOI: 10.1242/jeb.172874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/01/2018] [Indexed: 11/20/2022]
Abstract
We explore a recent, innovative variation of closed-system respirometry for terrestrial organisms, whereby oxygen partial pressure (PO2 ) is repeatedly measured fluorometrically in a constant-volume chamber over multiple time points. We outline a protocol that aligns this technology with the broader literature on aerial respirometry, including the calculations required to accurately convert O2 depletion to metabolic rate (MR). We identify a series of assumptions, and sources of error associated with this technique, including thresholds where O2 depletion becomes limiting, that impart errors to the calculation and interpretation of MR. Using these adjusted calculations, we found that the resting MR of five species of angiosperm seeds ranged from 0.011 to 0.640 ml g-1 h-1, consistent with published seed MR values. This innovative methodology greatly expands the lower size limit of terrestrial organisms that can be measured, and offers the potential for measuring MR changes over time as a result of physiological processes of the organism.
Collapse
Affiliation(s)
- Sean Tomlinson
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Western Australia, Australia .,Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park 6005, Western Australia, Australia
| | - Emma L Dalziell
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Western Australia, Australia.,Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park 6005, Western Australia, Australia
| | - Philip C Withers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park 6005, Western Australia, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Kingsley W Dixon
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Western Australia, Australia
| | - David J Merritt
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park 6005, Western Australia, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
37
|
O'Leary BM, Lee CP, Atkin OK, Cheng R, Brown TB, Millar AH. Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply. PLANT PHYSIOLOGY 2017; 174:2261-2273. [PMID: 28615345 PMCID: PMC5543967 DOI: 10.1104/pp.17.00610] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/09/2017] [Indexed: 05/17/2023]
Abstract
Plant respiration can theoretically be fueled by and dependent upon an array of central metabolism components; however, which ones are responsible for the quantitative variation found in respiratory rates is unknown. Here, large-scale screens revealed 2-fold variation in nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana) natural accession collection grown under common favorable conditions. RN variation was mostly maintained in the absence of genetic variation, which emphasized the low heritability of RN and its plasticity toward relatively small environmental differences within the sampling regime. To pursue metabolic explanations for leaf RN variation, parallel metabolite level profiling and assays of total protein and starch were performed. Within an accession, RN correlated strongly with stored carbon substrates, including starch and dicarboxylic acids, as well as sucrose, major amino acids, shikimate, and salicylic acid. Among different accessions, metabolite-RN correlations were maintained with protein, sucrose, and major amino acids but not stored carbon substrates. A complementary screen of the effect of exogenous metabolites and effectors on leaf RN revealed that (1) RN is stimulated by the uncoupler FCCP and high levels of substrates, demonstrating that both adenylate turnover and substrate supply can limit leaf RN, and (2) inorganic nitrogen did not stimulate RN, consistent with limited nighttime nitrogen assimilation. Simultaneous measurements of RN and protein synthesis revealed that these processes were largely uncorrelated in mature leaves. These results indicate that differences in preceding daytime metabolic activities are the major source of variation in mature leaf RN under favorable controlled conditions.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Riyan Cheng
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Tim B Brown
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|