1
|
Cheng Y, Zhou L, Wang D, Li X, Lin R, Chen J, Tu F, Lin Y, Wu W, Liu M, Zhang H, Qiu H. Inhaled alone versus inhaled plus intravenous polymyxin B for the treatment of pneumonia due to carbapenem-resistant gram-negative bacteria: A prospective randomized controlled trial. Int J Antimicrob Agents 2025; 65:107483. [PMID: 40023452 DOI: 10.1016/j.ijantimicag.2025.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Infections due to carbapenem-resistant Gram-negative bacteria (CR-GNB) are associated with considerable morbidity and mortality. Polymyxin B (PMB) is a first-line agent for CR-GNB-associated pneumonia, but limited data exist on the clinical use of inhaled (IH) PMB. METHODS A single-center, prospective randomized controlled trial was conducted in China to compare IH PMB alone with IH plus intravenous (IV) PMB between February 2022 and February 2024. The primary outcome was the clinical cure rate. RESULTS Twenty-two evaluable patients were assigned to the IH group, and 56 patients were included in the IH+IV group. Baseline characteristics were comparable between the two groups. No significant differences were observed in clinical cure rates, favorable clinical outcomes, microbiological outcomes, all-cause mortality, or pneumonia-related mortality. However, IH PMB alone was associated with a lower incidence of nephrotoxicity (P = 0.030). IH PMB demonstrated significantly higher drug concentrations in the epithelial lining fluid (ELF) compared to systemic administration. Patients with immunosuppressive therapy (OR, 0.066; 95% CI, 0.010-0.433; P = 0.005), malignancies (OR, 0.112; 95% CI, 0.016-0.797; P = 0.029), and higher SOFA scores (OR, 0.693; 95% CI, 0.518-0.929; P = 0.014) were less likely to achieve favorable clinical outcomes. Conversely, higher PMB ELF 1-hour concentrations (OR, 1.085; 95% CI, 1.026-1.148; P = 0.004) were associated with more favorable clinical outcomes. The combination of these four indicators demonstrated excellent diagnostic performance (AUC = 0.882). Plasma 1-hour PMB concentrations showed acceptable predictive performance for nephrotoxicity (AUC = 0.766). CONCLUSIONS The potential benefits of IH PMB outweigh the risks, making it an effective treatment for CR-GNB-associated pneumonia in combination with other empirical antimicrobial agents.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lili Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Danjie Wang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xueyong Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Rongqi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, Shanghang County Hospital, Shanghang, China
| | - Junnian Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuquan Tu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiqin Lin
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwei Wu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Munita JM, Tamma PD. Fighting resistance with redundancy: a path forward for treating antimicrobial-resistant infections? Antimicrob Agents Chemother 2025; 69:e0012125. [PMID: 40084882 PMCID: PMC11963597 DOI: 10.1128/aac.00121-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) remains a major threat, with high mortality and limited effective treatments. Sulbactam-durlobactam has emerged as a promising therapy against CRAB. Sulbactam-durlobactam was combined with imipenem-cilastatin in a clinical trial that led to its United States Food and Drug Administration approval. However, the additive benefit of imipenem remains uncertain. In a recent study (Antimicrob Agents Chemother 69:e01627-24, 2025, https://doi.org/10.1128/aac.01627-24), Veeraraghavan and colleagues provide convincing mechanistic evidence that adding imipenem to sulbactam-durlobactam enhances bacterial killing, likely through complementary inhibition of penicillin binding proteins, leveraging the concept of target redundancy.
Collapse
Affiliation(s)
- Jose M. Munita
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Pranita D. Tamma
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Spernovasilis N, Ishak A, Tsioutis C, Alon-Ellenbogen D, Agouridis AP, Mazonakis N. Sulbactam for carbapenem-resistant Acinetobacter baumannii infections: a literature review. JAC Antimicrob Resist 2025; 7:dlaf055. [PMID: 40224360 PMCID: PMC11992565 DOI: 10.1093/jacamr/dlaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is characterized as a critical priority pathogen with restricted therapeutic options. To date, the most effective antimicrobial treatment against this difficult-to-treat bacterial strain has not been established. Sulbactam is a β-lactamase inhibitor with intrinsic activity against this pathogen, however, as a β-lactam, it can be hydrolysed by β-lactamases produced by A. baumannii. High-dose, extended-infusion treatment with sulbactam can overcome this hydrolysis by β-lactamases and is considered an effective therapeutic strategy against CRAB. The aim of this review is to analyse primary and secondary research studies that compare sulbactam-based with other regimens, such as polymyxin-containing regimens, tigecycline-containing regimens and other antimicrobial combinations against CRAB infections, especially ventilator-associated pneumonia (VAP), hospital-acquired pneumonia (HAP) and bacteraemia. Our findings suggest that results are conflicting, mostly because of high heterogeneity among studies. However, in most studies, sulbactam-based regimens have demonstrated comparable, and in several studies more favourable results in contrast to other antimicrobial treatments with respect to clinical cure and mortality in CRAB-associated pneumonia, yet without reaching statistical significance in most cases. The auspicious novel β-lactam/β-lactamase inhibitor combination sulbactam/durlobactam is also discussed, although real-world clinical data regarding its efficacy in CRAB infections are still scarce. More randomized controlled trials comparing sulbactam-based with other regimens are warranted to determine the most effective antimicrobial combination against CRAB infections. Nevertheless, current data suggest that sulbactam could play a major role in this combination treatment.
Collapse
Affiliation(s)
| | - Angela Ishak
- Department of Internal Medicine, Henry Ford Hospital, 48202 Detroit, MI, USA
| | | | - Danny Alon-Ellenbogen
- Department of Basic and Clinical Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Internal Medicine, German Medical Institute, 4108 Limassol, Cyprus
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, 11527 Athens, Greece
| |
Collapse
|
4
|
Liu X, Li B, Li S, Wang X, Kong X, Chen Y, Zhang Q, Duan J, Chen W, Li P. Simultaneous determination of three β-Lactam/β-lactamase inhibitor combinations in critically ill patients by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124431. [PMID: 39724828 DOI: 10.1016/j.jchromb.2024.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
β-Lactam/β-lactamase inhibitors (BL/BLIs) are widely used in critically ill patients. Recent research has shown the importance of therapeutic drug monitoring (TDM) of BLs, but few studies have highlighted the importance of detecting BLIs in critically ill patients. In our laboratory, we have developed and validated a simple and robust method for the determination of ceftazidime, cefoperazone, piperacillin, avibactam, sulbactam and tazobactam in human plasma by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Sample preparation was by protein precipitation of 100 µL of sample, followed by chromatographic separation on an ACQUITY UPLC® BEH C18 column (2.1 × 50 mm, 1.7 µm) and mass spectrometric detection using a SHIMADZU 8050CL in multiple reaction monitoring (MRM) mode. The method was fully validated for selectivity, carry-over, linearity, lower limit of quantification, matrix effect, extraction recovery, stability and dilution integrity. The results of the TDM could provide feedback to clinicians and allow timely adjustment of dosing regimens in critically ill patients. The method is suitable for routine TDM and has been successfully applied to the clinical determination of 81 plasma concentrations in 44 patients.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China; Department of Pharmacy Administration and Clinical Pharmacy School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xudong Kong
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yue Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Duan
- Department Intensive Care Unit, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
5
|
Iovleva A, Fowler VG, Doi Y. Treatment Approaches for Carbapenem-Resistant Acinetobacter baumannii Infections. Drugs 2025; 85:21-40. [PMID: 39607595 PMCID: PMC11950131 DOI: 10.1007/s40265-024-02104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 11/29/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been associated with over three hundred thousand annual deaths globally. It is resistant to most available antibiotics and associated with high morbidity and mortality. No global consensus currently exists for treatment strategies that balance safety and efficacy because of heterogeneity of treatment regimens in current clinical practice and scarcity of large-scale controlled studies arising from difficulties in establishing robust clinical outcomes. This review outlines the epidemiology and resistance mechanisms of carbapenem-resistant A. baumannii, then summarizes available clinical data on each approved agent with activity against this pathogen. Emerging treatment options such as cefiderocol and sulbactam-durlobactam show promise, but their success hinges on comprehensive clinical validation and access in regions most impacted by this pathogen. New therapeutic modalities that are in various stages of clinical development are also discussed.
Collapse
Affiliation(s)
- Alina Iovleva
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vance G Fowler
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
6
|
Richards GA, Perovic O, Brink AJ. The challenges of difficult-to-treat Acinetobacter infections. Clin Microbiol Rev 2024; 37:e0009324. [PMID: 39555919 PMCID: PMC11629631 DOI: 10.1128/cmr.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
SUMMARYInfections due to Acinetobacter spp. are among the most difficult to treat. Most are resistant to standard antibiotics, and there is difficulty in distinguishing colonizers from pathogens. This mini-review examines the available antibiotics that exhibit activity against these organisms and provides guidance as to which cultures are relevant and how to treat active infections. Antibiograms describing resistance mechanisms and the minimum inhibitory concentration (MIC) are essential to determine which agent or combination of agents should be used after confirmation of infection, utilizing clinical parameters and biomarkers such as procalcitonin. Directed therapy should be prompt as despite its reputation as a colonizer, the attributable mortality is high. However, although combination therapy is advised, no specific combination has definite evidence of superiority.
Collapse
Affiliation(s)
- Guy A. Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- AMR Division at WITS Health Consortium, Pathologist Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), at the National Institute for Communicable Diseases, a division of NHLS and the University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian J. Brink
- Division of Medical Microbiology, Faculty of Health Sciences, National Health Laboratory Services, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Goncharova AR, Gostev VV, Goncharov NE, Kalinogorskaya OS, Gladyshev NS. Antibacterial Therapy Options for Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. ANTIBIOT KHIMIOTER = ANTIBIOTICS AND CHEMOTHERAPY 2024; 69:53-66. [DOI: 10.37489/0235-2990-2024-69-7-8-53-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The review presents current treatment regimens for infections associated with carbapenem-resistant Acinetobacter baumannii, which are leading nosocomial pathogens exhibiting multidrug resistance to available antibacterial drugs. To date, widely used beta-lactam antibiotics, including carbapenems, have lost their effectiveness in combating acinetobacter infections, while new antibiotics remain poorly available to patients. Therefore, the only measure to combat the antibiotic resistance of carbapenem-resistant A. baumannii is to evaluate the efficiency of combination therapy in vitro and in vivo, which is of particular interest to Russian and foreign researchers.
Collapse
Affiliation(s)
- A. R. Goncharova
- Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; North-Western State Medical University named after I. I. Mechnikov; Saint-Petersburg Pasteur Institute
| | - V. V. Gostev
- Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; North-Western State Medical University named after I. I. Mechnikov
| | - N. E. Goncharov
- North-Western State Medical University named after I. I. Mechnikov
| | | | - N. S. Gladyshev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery»
| |
Collapse
|
8
|
Manesh A, George MM, Palanikumar P, Nagaraj V, Bhanuprasad K, Krishnan R, Nivetha G, Lal B, Triveni KR, Gautam P, George B, Kulkarni U, Mathews V, Subramani K, Rao S, Chacko B, Zachariah A, Sathyendra S, Hansdak SG, Abraham OC, Iyadurai R, Karthik R, Peter JV, Mo Y, Veeraraghavan B, Varghese GM, Paterson DL. Combination Versus Monotherapy for Carbapenem-Resistant Acinetobacter Species Serious Infections: A Prospective IPTW Adjusted Cohort Study. Infect Dis Ther 2024; 13:2351-2362. [PMID: 39322920 PMCID: PMC11499560 DOI: 10.1007/s40121-024-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION International guidelines recommend definitive combination antibiotic therapy for the management of serious infections involving carbapenem-resistant Acinetobacter (CRAB) species. The commonly available combination options include high-dose sulbactam, polymyxins, tetracyclines, and cefiderocol. Scanty prospective data exist to support this approach. METHODS Patients with CRAB bacteraemia, ventilator-associated pneumonia (VAP), or both were categorized based on whether they received combination therapy or monotherapy. The 30-day mortality was compared between the two groups. Inverse probability treatment weighting (IPTW) was done using propensity score (PS) for a balanced comparison between groups. RESULTS Between January 2021 and May 2023, of the 161 patients with CRAB bacteraemia (n = 55, 34.2%), VAP (n = 46, 28.6%), or both (n = 60, 37.3%) who received appropriate intravenous antibiotic therapy, 70% (112/161) received monotherapy, and the rest received combination therapy. The overall 30-day mortality was 62% (99/161) and not different (p = 0.76) between the combination therapy (31/49, 63.3%) and monotherapy (68/112, 60.7%) groups. The propensity score matching using IPTW did not show a statistical difference (p = 0.47) in 30-day mortality for receiving combination therapy with an adjusted odds ratio (OR) P of 1.29 (0.64, 2.58). CONCLUSION Combination therapy for CRAB infections needs further study in a randomised controlled trial, as this observational study showed no difference in 30-day mortality between monotherapy and combination therapy.
Collapse
Affiliation(s)
- Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India.
| | - Mithun Mohan George
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | | | - V Nagaraj
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Kundakarla Bhanuprasad
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Ramya Krishnan
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - G Nivetha
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Binesh Lal
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - K Rajitha Triveni
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Priyanka Gautam
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Biju George
- Department of Heamatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Uday Kulkarni
- Department of Heamatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vikram Mathews
- Department of Heamatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - K Subramani
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shoma Rao
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - Binila Chacko
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anand Zachariah
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sowmya Sathyendra
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | - Ramya Iyadurai
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajiv Karthik
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - John Victor Peter
- Department of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - Yin Mo
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - David Leslie Paterson
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Tamma PD, Immel S, Karaba SM, Soto CL, Conzemius R, Gisriel E, Tekle T, Stambaugh H, Johnson E, Tornheim JA, Simner PJ. Successful Treatment of Carbapenem-Resistant Acinetobacter baumannii Meningitis With Sulbactam-Durlobactam. Clin Infect Dis 2024; 79:819-825. [PMID: 38630890 PMCID: PMC11478584 DOI: 10.1093/cid/ciae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of carbapenem-resistant Acinetobacter baumannii/calcoaceticus complex (CRAB) presents significant treatment challenges. METHODS We report the case of a 42-year-old woman with CRAB meningitis who experienced persistently positive cerebrospinal fluid (CSF) cultures for 13 days despite treatment with high-dose ampicillin-sulbactam and cefiderocol. On day 13, she was transitioned to sulbactam-durlobactam and meropenem; 4 subsequent CSF cultures remained negative. After 14 days of sulbactam-durlobactam, she was cured of infection. Whole genome sequencing investigations identified putative mechanisms that contributed to the reduced cefiderocol susceptibility observed during cefiderocol therapy. Blood and CSF samples were collected pre-dose and 3-hours post initiation of a sulbactam-durlobactam infusion. RESULTS The CRAB isolate belonged to sequence type 2. An acquired blaOXA-23 and an intrinsic blaOXA-51-like (ie, blaOXA-66) carbapenemase gene were identified. The paradoxical effect (ie, no growth at lower cefiderocol dilutions but growth at higher dilutions) was observed by broth microdilution after 8 days of cefiderocol exposure but not by disk diffusion. Potential markers of resistance to cefiderocol included mutations in the start codon of piuA and piuC iron transport genes and an A515V substitution in PBP3, the primary target of cefiderocol. Sulbactam and durlobactam were detected in CSF at both timepoints, indicating CSF penetration. CONCLUSIONS This case describes successful treatment of refractory CRAB meningitis with the administration of sulbactam-durlobactam and meropenem and highlights the need to be cognizant of the paradoxical effect that can be observed with broth microdilution testing of CRAB isolates with cefiderocol.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanan Immel
- Department of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara M Karaba
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
| | - Caitlin L Soto
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Emily Gisriel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsigereda Tekle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haley Stambaugh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Johnson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Tornheim
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
| | - Patricia J Simner
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Viasus D, Gudiol C, Carratalà J. Treatment of multidrug-resistant Gram-negative bloodstream infections in critically ill patients: an update. Curr Opin Crit Care 2024; 30:448-455. [PMID: 39150047 DOI: 10.1097/mcc.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review describes the latest information in the management of bloodstream infections caused by multidrug-resistant Gram-negative bacilli (MDRGNB) in critically ill patients. RECENT FINDINGS The prevalence of bloodstream infections due to MDRGNB is high, and they pose a significant risk in critically ill patients. Recently, novel antimicrobial agents, including new β-lactam/β-lactamase inhibitor combinations and cefiderocol, have been introduced for treating these infections. Concurrently, updated guidelines have been issued to aid in treatment decisions. Prompt diagnosis and identification of resistance patterns are crucial for initiating effective antibiotic therapy. Current studies, especially with observational design, and with limited sample sizes and patients with bacteremia, suggest that the use of these new antibiotics is associated with improved outcomes in critically ill patients with MDRGNB bloodstream infections. SUMMARY For critically ill patients with bloodstream infections caused by MDRGNB, the use of newly developed antibiotics is recommended based on limited observational evidence. Further randomized clinical trials are necessary to determine the most effective antimicrobial therapies among the available options.
Collapse
Affiliation(s)
- Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla, Colombia
| | - Carlota Gudiol
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
- Institut Català d'Oncologia, IDIBELL, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid
| |
Collapse
|
11
|
Huang C, Lin L, Kuo S. Comparing the Outcomes of Cefoperazone/Sulbactam-Based and Non-Cefoperazone/Sulbactam-Based Therapeutic Regimens in Patients with Multiresistant Acinetobacter baumannii Infections-A Meta-Analysis. Antibiotics (Basel) 2024; 13:907. [PMID: 39335080 PMCID: PMC11428705 DOI: 10.3390/antibiotics13090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The addition of sulbactam restores the complete range of cefoperazone activity against bacteria and extends its spectrum of action to include the Acinetobacter species. The effectiveness of cefoperazone/sulbactam against multiresistant Acinetobacter baumannii has not been investigated. The purpose of the current meta-analysis was to compare the efficacy of cefoperazone/sulbactam-based therapeutic regimens and non-cefoperazone/sulbactam-based therapeutic regimens in the treatment of multiresistant Acinetobacter baumannii infections. The current meta-analysis of 10 retrospective studies provides evidence that cefoperazone/sulbactam-based therapeutic regimens are superior to non-cefoperazone/sulbactam-based therapeutic regimens in terms of 30-day mortality and clinical improvement in patients with multiresistant Acinetobacter baumannii infections. The risk of mortality was reduced by 38% among multiresistant Acinetobacter baumannii infections in patients who received cefoperazone/sulbactam-based therapeutic regimens. The cefoperazone/sulbactam-based combination therapy was superior to the cefoperazone/sulbactam monotherapy in terms of 30-day mortality when both therapeutic regimens were compared to the tigecycline monotherapy in patients with multiresistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Lichen Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Sufang Kuo
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
12
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
13
|
Travi G, Peracchi F, Merli M, Lo Re N, Matarazzo E, Tartaglione L, Bielli A, Casalicchio G, Crippa F, Vismara CS, Puoti M. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics (Basel) 2024; 13:770. [PMID: 39200070 PMCID: PMC11350908 DOI: 10.3390/antibiotics13080770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Variable outcomes have been reported with cefiderocol in infections due to carbapenem-resistant Acinetobacter baumannii (CRAB). Nonetheless, it may be the only option for metallo-beta-lactamase-producing strains. We describe an outbreak of NDM-CRAB infections treated with cefiderocol. Thirty-eight patients were colonized and/or infected. Thirteen patients developed a systemic infection. A clinical cure was achieved in 10 (83%) patients, one VAP and 9 BSIs, at day 7. In vitro, the activity of cefiderocol does not appear to match in vivo effectiveness using currently available commercial tests. Despite high clinical cures, overall mortality remains high in severely ill patients. Cefiderocol may be considered in this specific setting, though the implementation of susceptibility tests and infection control measures is mandatory.
Collapse
Affiliation(s)
- Giovanna Travi
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (G.T.); (M.M.); (F.C.); (M.P.)
| | - Francesco Peracchi
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (G.T.); (M.M.); (F.C.); (M.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Marco Merli
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (G.T.); (M.M.); (F.C.); (M.P.)
| | - Noemi Lo Re
- Clinical Microbiology Department, University Sacro Cuore, 00168 Rome, Italy;
| | - Elisa Matarazzo
- Division of Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.M.); (L.T.); (A.B.); (G.C.); (C.S.V.)
| | - Livia Tartaglione
- Division of Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.M.); (L.T.); (A.B.); (G.C.); (C.S.V.)
| | - Alessandra Bielli
- Division of Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.M.); (L.T.); (A.B.); (G.C.); (C.S.V.)
| | - Giorgia Casalicchio
- Division of Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.M.); (L.T.); (A.B.); (G.C.); (C.S.V.)
| | - Fulvio Crippa
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (G.T.); (M.M.); (F.C.); (M.P.)
| | - Chiara S. Vismara
- Division of Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (E.M.); (L.T.); (A.B.); (G.C.); (C.S.V.)
| | - Massimo Puoti
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (G.T.); (M.M.); (F.C.); (M.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| |
Collapse
|
14
|
Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1395260. [PMID: 39081869 PMCID: PMC11287075 DOI: 10.3389/fcimb.2024.1395260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with severe carbapenem-resistant Acinetobacter baumannii (CRAB) infections currently face significant treatment challenges. When patients display signs of infection and the clinical suspicion of CRAB infections is high, appropriate treatment should be immediately provided. However, current treatment plans and clinical data for CRAB are limited. Inherent and acquired resistance mechanisms, as well as host factors, significantly restrict options for empirical medication. Moreover, inappropriate drug coverage can have detrimental effects on patients. Most existing studies have limitations, such as a restricted sample size, and are predominantly observational or non-randomized, which report significant variability in patient infection severity and comorbidities. Therefore, a gold-standard therapy remains lacking. Current and future treatment options of infections due to CRAB were described in this review. The dose and considerable side effects restrict treatment options for polymyxins, and high doses of ampicillin-sulbactam or tigecycline appear to be the best option at the time of initial treatment. Moreover, new drugs such as durlobactam and cefiderocol have substantial therapeutic capabilities and may be effective salvage treatments. Bacteriophages and antimicrobial peptides may serve as alternative treatment options in the near future. The advantages of a combination antimicrobial regimen appear to predominate those of a single regimen. Despite its significant nephrotoxicity, colistin is considered a primary treatment and is often used in combination with antimicrobials, such as tigecycline, ampicillin-sulbactam, meropenem, or fosfomycin. The Infectious Diseases Society of America (IDSA) has deemed high-dose ampicillin-sulbactam, which is typically combined with high-dose tigecycline, polymyxin, and other antibacterial agents, the best option for treating serious CRAB infections. A rational combination of drug use and the exploration of new therapeutic drugs can alleviate or prevent the effects of CRAB infections, shorten hospital stays, and reduce patient mortality.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First People’s Hospital, Tongxiang, Zhejiang, China
| | - Yan Qi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qian
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
15
|
Choi SJ, Kim ES. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect Chemother 2024; 56:171-187. [PMID: 38960737 PMCID: PMC11224036 DOI: 10.3947/ic.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
16
|
Upmanyu K, Kumar R, Rizwanul Haque QM, Singh R. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling. Arch Microbiol 2024; 206:267. [PMID: 38762620 DOI: 10.1007/s00203-024-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakesh Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
17
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
18
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Li Z, Sheng Y, Huang D. Hemorrhagic bronchitis caused by carbapenem-resistant Acinetobacter baumannii infection: A case report. Respir Med Case Rep 2024; 48:102010. [PMID: 38524834 PMCID: PMC10957400 DOI: 10.1016/j.rmcr.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/20/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CR-AB) is rarely found in community respiratory infections, and there are currently no reports of hemorrhagic bronchitis caused by its infection. This work presents a case of bronchial bleeding in a diabetic patient who acquired a community-acquired infection of CR-AB. Treatment with levofloxacin was unsuccessful, as the patient's hemoptysis symptoms recur. The patient was treated with minocycline based on the drug sensitivity test, resulting in the disappearance of hemoptysis symptoms. The patient was subjected to follow-up by phone for three months and did not experience any further hemoptysis symptoms. This case highlights that CR-AB infection causes hemorrhagic bronchitis, and the antimicrobial treatment should be based on drug sensitivity results.
Collapse
Affiliation(s)
- Zifang Li
- Department of Rehabilitation Medicine, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu City, 322000, Zhejiang, China
| | - Yu Sheng
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Avenue Mall Road, Yiwu, 322000, Zhejiang, China
| | - Dongdong Huang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Avenue Mall Road, Yiwu, 322000, Zhejiang, China
| |
Collapse
|
20
|
Ahmed MU, Li J, Zhou Q(T. Tobramycin Reduces Pulmonary Toxicity of Polymyxin B via Inhibiting the Megalin-Mediated Drug Uptake in the Human Lung Epithelial Cells. Pharmaceutics 2024; 16:389. [PMID: 38543283 PMCID: PMC10975719 DOI: 10.3390/pharmaceutics16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Accumulation of polymyxins in the lung epithelial cells can lead to increased mitochondrial oxidative stress and pulmonary toxicity. Aminoglycosides and polymyxins are used, via intravenous and pulmonary delivery, against multidrug-resistant Gram-negative pathogens. Our recent in vitro and animal studies demonstrated that the co-administration of polymyxins with aminoglycosides decreases polymyxin-induced pulmonary toxicity. The aim of this study was to investigate the in vitro transport and uptake of polymyxin B and tobramycin in human lung epithelial Calu-3 cells and the mechanism of reduced pulmonary toxicity resulting from this combination. Transport, intracellular localization, and accumulation of polymyxin B and tobramycin were investigated using doses of 30 mg/L polymyxin B, 70 mg/L tobramycin, and the combination of both. Adding tobramycin significantly (p < 0.05) decreased the polymyxin B-induced cytotoxicity in Calu-3 cells. The combination treatment significantly reduced the transport and uptake of polymyxin B and tobramycin in Calu-3 cells, compared to each drug alone, which supported the reduced pulmonary toxicity. We hypothesized that cellular uptake of polymyxin B and tobramycin shared a common transporter, megalin. We further investigated the megalin expression of Calu-3 cells using confocal microscopy and evaluated megalin activity using a megalin substrate, FITC-BSA, and a megalin inhibitor, sodium maleate. Both polymyxin B and tobramycin significantly inhibited FITC-BSA uptake by Calu-3 cells in a concentration-dependent manner. Sodium maleate substantially inhibited polymyxin B and tobramycin transport and cellular accumulation in the Calu-3 cell monolayer. Our study demonstrated that the significantly reduced uptake of polymyxin B and tobramycin in Calu-3 cells is attributed to the mechanism of action that determines that polymyxin B and tobramycin share a common transporter, megalin.
Collapse
Affiliation(s)
- Maizbha Uddin Ahmed
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Qi (Tony) Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
Dutta S, Ghosh A. Case Study-Based Approaches of Systems Biology in Addressing Infectious Diseases. SYSTEMS BIOLOGY APPROACHES: PREVENTION, DIAGNOSIS, AND UNDERSTANDING MECHANISMS OF COMPLEX DISEASES 2024:115-143. [DOI: 10.1007/978-981-99-9462-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Bouza E, Muñoz P, Burillo A. How to treat severe Acinetobacter baumannii infections. Curr Opin Infect Dis 2023; 36:596-608. [PMID: 37930071 DOI: 10.1097/qco.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW To update the management of severe Acinetobacter baumannii infections (ABI), particularly those caused by multi-resistant isolates. RECENT FINDINGS The in vitro activity of the various antimicrobial agents potentially helpful in treating ABI is highly variable and has progressively decreased for many of them, limiting current therapeutic options. The combination of more than one drug is still advisable in most circumstances. Ideally, two active first-line drugs should be used. Alternatively, a first-line and a second-line drug and, if this is not possible, two or more second-line drugs in combination. The emergence of new agents such as Cefiderocol, the combination of Sulbactam and Durlobactam, and the new Tetracyclines offer therapeutic options that need to be supported by clinical evidence. SUMMARY The apparent limitations in treating infections caused by this bacterium, the rapid development of resistance, and the serious underlying situation in most cases invite the search for alternatives to antibiotic treatment, the most promising of which seems to be bacteriophage therapy.
Collapse
Affiliation(s)
- Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
| |
Collapse
|
23
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
24
|
Russo A, Bruni A, Gullì S, Borrazzo C, Quirino A, Lionello R, Serapide F, Garofalo E, Serraino R, Romeo F, Marascio N, Matera G, Longhini F, Trecarichi EM, Torti C. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int J Antimicrob Agents 2023; 62:106825. [PMID: 37088438 PMCID: PMC10121149 DOI: 10.1016/j.ijantimicag.2023.106825] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) in patients hospitalized in intensive care units (ICUs) is an important and challenging complication, including in patients with coronavirus disease 2019 (COVID-19). Considering the poor lung penetration of most antibiotics, including intravenous colistin due to the poor pharmacokinetics/pharmacodynamics at the infection site, the choice of the best antibiotic regimen is still being debated. METHODS This single-centre, observational study was conducted from March 2020 to August 2022, and included all patients hospitalized consecutively with VAP and concomitant bloodstream infection due to CRAB in the COVID-ICU. The main goal of the study was to evaluate risk factors associated with survival or death at 30 days from VAP onset. A propensity score for receiving therapy was added to the model. RESULTS During the study period, 73 patients who developed VAP and concomitant positive blood cultures caused by CRAB were enrolled in the COVID-ICU. Of these patients, 67 (91.7%) developed septic shock, 42 (57.5%) had died at 14 days and 59 (80.8%) had died at 30 days. Overall, 54 (74%) patients were treated with a colistin-containing regimen and 19 (26%) were treated with a cefiderocol-containing regimen. Cox regression analysis showed that chronic obstructive pulmonary disease and age were independently associated with 30-day mortality. Conversely, cefiderocol-containing regimens and cefiderocol + fosfomycin in combination were independently associated with 30-day survival, as confirmed by propensity score analysis. CONCLUSIONS This real-life study in patients with bacteraemic VAP caused by CRAB provides useful suggestions for clinicians, showing a possible benefit of cefiderocol and its association with fosfomycin.
Collapse
Affiliation(s)
- A Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
| | - A Bruni
- Anaesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - S Gullì
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - C Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - A Quirino
- Clinical Microbiology Unit, Department of Health Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - R Lionello
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - F Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - E Garofalo
- Anaesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - R Serraino
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - F Romeo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - N Marascio
- Clinical Microbiology Unit, Department of Health Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - G Matera
- Clinical Microbiology Unit, Department of Health Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - F Longhini
- Anaesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - E M Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - C Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
26
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Kogilathota Jagirdhar GS, Rama K, Reddy ST, Pattnaik H, Qasba RK, Elmati PR, Kashyap R, Schito M, Gupta N. Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature. Antibiotics (Basel) 2023; 12:antibiotics12030582. [PMID: 36978449 PMCID: PMC10044834 DOI: 10.3390/antibiotics12030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Acinetobacter baumannii (AB) is a multidrug-resistant pathogen commonly associated with nosocomial infections. The resistance profile and ability to produce biofilm make it a complicated organism to treat effectively. Cefoperazone sulbactam (CS) is commonly used to treat AB, but the associated data are scarce. Methods: We conducted a systematic review of articles downloaded from Cochrane, Embase, PubMed, Scopus, and Web of Science (through June 2022) to study the efficacy of CS in treating AB infections. Our review evaluated patients treated with CS alone and CS in combination with other antibiotics separately. The following outcomes were studied: clinical cure, microbiological cure, and mortality from any cause. Results: We included 16 studies where CS was used for the treatment of AB infections. This included 11 studies where CS was used alone and 10 studies where CS was used in combination. The outcomes were similar in both groups. We found that the pooled clinical cure, microbiological cure, and mortality with CS alone for AB were 70%, 44%, and 20%, respectively. The pooled clinical cure, microbiological cure, and mortality when CS was used in combination with other antibiotics were 72%, 43%, and 21%, respectively. Conclusions: CS alone or in combination needs to be further explored for the treatment of AB infections. There is a need for randomized controlled trials with comparator drugs to evaluate the drug’s effectiveness.
Collapse
Affiliation(s)
| | - Kaanthi Rama
- Gandhi Medical College and Hospital, Secunderabad 500003, Telangana, India
| | - Shiva Teja Reddy
- Gandhi Medical College and Hospital, Secunderabad 500003, Telangana, India
| | | | | | - Praveen Reddy Elmati
- Interventional Pain Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Rahul Kashyap
- Critical Care Medicine, Department of Anesthesiology, Mayo Clinic, Rochester, MN 55092, USA
| | - Marco Schito
- CURE Drug Repurposing Collaboratory (CDRC), Critical Path Institute, 1730 E River Rd, Tucson, AZ 85718, USA
| | - Nitin Gupta
- Department of Infectious Disease, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
- Correspondence:
| |
Collapse
|
28
|
Yu Z, Wu T, Liu X, Chen H, Ren C, Zhu L. Resveratrol-Loaded Dipalmitoylphosphatidylcholine Liposomal Large Porous Microparticle Inhalations for the Treatment of Bacterial Pneumonia Caused by Acinetobacter baumannii. J Aerosol Med Pulm Drug Deliv 2023; 36:2-11. [PMID: 36695669 DOI: 10.1089/jamp.2021.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Acinetobacter baumannii-mediated bacterial pneumonia is a common disease that is harmful to human health. Dipalmitoylphosphatidylcholine (DPPC) is the major lipid component of the pulmonary surfactant (PS) found in the alveolar space; the PS helps to keep surface tension low, which allows for improved oxygen delivery. Resveratrol (RE) is a phytoalexin found in plants that is released in response to injury or infection. The therapeutic effect of Re is limited due to its low solubility and bioavailability. In this study, we report pulmonary delivery of Re-loaded DPPC liposomal large porous microparticles (RDLPMs) for treatment of A. baumannii-induced pneumonia. Methods: Novel RDLPMs were prepared by rotary evaporation and a freeze-drying method in this study. RDLPMs were evaluated by the particle size, electric potential, in vitro release, and particle size distribution. A rat model of A. baumannii-mediated pneumonia was established and used for pharmacodynamic evaluations. Results: The Re-loaded DPPC liposomes (RDLs) consisted of Re/DPPC (1:3, mol/mol) and DPPC/cholesterol (3:1, w/w), with a hydration time of 15 minutes. The RDLs had a high encapsulation efficiency of 69.8% ± 1.6%, a mean size of 191.5 ± 4.5 nm, and a high zeta potential of 12.4 ± 1.5 mV. The RDLPMs were composed of mannitol/large porous microparticles/RDLs (1:4:2, w/w/w) and had a loading efficiency of 2.20% ± 0.24%. The RDLPMs had an aerodynamic diameter (2.73 ± 0.65 μm), a good fluidity (28.30° ± 6.13°), and demonstrated high lung deposition (fine particle fraction = 43.33%). Surprisingly, while penicillin showed better microbial inhibition than the RDLPMs and Re groups in vitro, the RDLPMs were more effective in vivo. Conclusion: The RDLPMs showed good powder properties for pulmonary delivery. The RDLPMs may inhibit the nuclear factor kappa-B pathway and downregulate the expression of cytokines downstream of tumor necrosis factor-α and interleukin-1β. As well as, RDLPMs demonstrated some antibacterial properties against A. baumannii bacteria. Re, when delivered in RDLPMs as a dry powder inhaler, is a promising substitute for antibiotics in the treatment of A. baumannii pneumonia.
Collapse
Affiliation(s)
- Zicheng Yu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Wu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Liu
- Department of Pharmacy, Shanghai United Family Pudong Hospital, Shanghai, China
| | - Hongjun Chen
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Ren
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lifei Zhu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Multidrug-resistant Gram-negative bacilli recovered from respiratory and blood specimens from adults: the ATLAS surveillance program in European hospitals, 2018-2020. Int J Antimicrob Agents 2023; 61:106724. [PMID: 36642231 DOI: 10.1016/j.ijantimicag.2023.106724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
The population of people ≥65 years of age is increasing in Europe. Pneumonia is a prominent cause of infection in this age group. These patients may be at heightened risk of infection caused by multidrug-resistant (MDR) organisms owing to their frequent and prolonged contact with healthcare facilities as well as frequent exposure to antimicrobials and medical devices. However, ATLAS surveillance data did not demonstrate any difference in the incidence of MDR Gram-negative pathogens among patients ≥65 years of age and those aged <65 years. Higher rates of carbapenem-resistant Enterobacterales (CRE) and MDR Pseudomonas aeruginosa were observed in patients aged 18-64 years (10.7% and 32.3%, respectively) than in patients aged ≥65 years (5.0% and 25.4%, respectively). Significant therapeutic gaps were identified for CRE, carbapenem-resistant Acinetobacter baumannii (65.9% of isolates tested) and MDR P. aeruginosa, which continue to be prevalent in European hospitals. Among the antimicrobials evaluated, only colistin provided >75% in vitro coverage for these pathogens.
Collapse
|
30
|
Reina R, León-Moya C, Garnacho-Montero J. Treatment of Acinetobacter baumannii severe infections. Med Intensiva 2022; 46:700-710. [PMID: 36272902 DOI: 10.1016/j.medine.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Acinetobacter baumannii is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections, especially ventilator-associated pneumonia, bacteremia, and skin wound infections, among others. The most common risk factors for the acquisition of MDR A. baumannii are previous antibiotic use, mechanical ventilation, length of ICU and hospital stay, severity of illness, and use of medical devices. Current efforts are focused on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme.
Collapse
Affiliation(s)
- R Reina
- Cátedra Terapia Intensiva, Facultad de Medicina, Universidad Nacional de La Plata, Argentina, Sociedad Argentina de Terapia Intensiva (SATI), La Plata, Provincia de Buenos Aires, Argentina.
| | - C León-Moya
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
31
|
Clancy CJ, Nguyen MH. Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel Antibiotics. Infect Dis Clin North Am 2022; 36:791-823. [DOI: 10.1016/j.idc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Pinchera B, Buonomo AR, Schiano Moriello N, Scotto R, Villari R, Gentile I. Update on the Management of Surgical Site Infections. Antibiotics (Basel) 2022; 11:1608. [PMID: 36421250 PMCID: PMC9686970 DOI: 10.3390/antibiotics11111608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
Surgical site infections are an increasingly important issue in nosocomial infections. The progressive increase in antibiotic resistance, the ever-increasing number of interventions and the ever-increasing complexity of patients due to their comorbidities amplify this problem. In this perspective, it is necessary to consider all the risk factors and all the current preventive and prophylactic measures which are available. At the same time, given multiresistant microorganisms, it is essential to consider all the possible current therapeutic interventions. Therefore, our review aims to evaluate all the current aspects regarding the management of surgical site infections.
Collapse
Affiliation(s)
- Biagio Pinchera
- Department of Clinical Medicine and Surgery—Section of Infectious Diseases, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Tratamiento de infecciones graves por Acinetobacter baumannii. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
35
|
Adjuvant antimicrobial activity and resensitization efficacy of geraniol in combination with antibiotics on Acinetobacter baumannii clinical isolates. PLoS One 2022; 17:e0271516. [PMID: 35862390 PMCID: PMC9302793 DOI: 10.1371/journal.pone.0271516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/02/2022] [Indexed: 11/19/2022] Open
Abstract
Adjuvant use of geraniol, a plant essential oil component, is known to increase the efficacy of antibiotics by acting as a potent inhibitor of efflux mechanisms. In this study, we assessed the effect of a geraniol–antibiotic combination in 21 Acinetobacter baumannii clinical isolates consisting of high efflux (HE) and low efflux (LE) activity groups. We determined the MIC for geraniol and the four antibiotics and evaluated the adjuvant antimicrobial activity and resensitization efficacy of adjuvant geraniol. Geraniol–antibiotic combinations significantly reduced the MIC of all four antibiotics (P < 0.0001), and the fold change in MIC decreased by 4 to >256-fold for tigecycline, >16 to >4,096-fold for ceftazidime, 1 to >4,096-fold for cefepime, and >2 to >4096-fold for ciprofloxacin. Importantly, geraniol showed adjuvant antimicrobial activity and resensitization efficacy when used in combination with antibiotics in 21 A. baumannii clinical isolates. However, there was no statistically significant difference between the HE and LE groups. Low concentrations (0.125% and 0.0625%) of geraniol showed no cytotoxic or hemolytic activity. Our study shows that geraniol, acting as an antibiotic adjuvant, is a good candidate for in vivo studies of combination therapy for the treatment of MDR/XDR A. baumannii infections.
Collapse
|
36
|
Heydarlou MM, Durmaz G, Ibrahi M BMS. Evaluation of sulbactam and colistin/sulbactam efficacy against multiple resistant Acinetobacter baumannii blood isolates. Indian J Med Microbiol 2022; 40:567-571. [PMID: 35817630 DOI: 10.1016/j.ijmmb.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to compare the results of the BD Phoenix (TM) M50 ID/AST system and the gold standard broth microdilution method. We also evaluated the potential of a new therapeutic combination (colistin/sulbactam) for colistin resistance among Acinetobacter baumanni strains. METHODS Growth in blood samples was detected with the BACTEC (BD Becton Dickinson, ABD) continuous monitoring blood culture system. Strains were identified by Phoenix (BD Phoenix™ M50, ABD) automated bacterial identification system and antimicrobial susceptibility results were obtained. A total of 92 A. baumannii complex isolates showing resistance to at least three antibiotic classes were included in the study. Colistin susceptibility results (both susceptible and resistant strains) detected by the Phoenix device were confirmed by the reference method, the liquid microdilution method. The concentration index (FIC) was used to determine the efficacy of fractional inhibitor drug combinations, the efficacy of colistin/sulbactam combination against 50 multiresistant A. baumannii complex strains was investigated using the checkerboard method. RESULTS 10 (10.9%) of 92 isolates were resistant to colistin and 80 (86.9%) to sulbactam. With the automation system, only 2 of 10 isolates were found resistant to colistin, while 8 isolates were susceptible. For this reason, the very major error rate of the Phoenix M50 automatic system among resistant isolates was determined as 8/10. It was determined that 6 (12%) of the colistin/sulbactam combination had a synergistic effect and 44 (88%) had an additive interaction. No antagonistic interaction was detected with the colistin-sulbactam combination in this study. CONCLUSION A. baumannii strains should be confirmed by the broth microdilution method, which is the reference method, against the MIC results detected by automated systems. It was concluded that the use of colistin alone should be avoided in the treatment of A. baumannii infections.
Collapse
Affiliation(s)
- Mehdi Meskini Heydarlou
- Eskisehir Osmangazi University, Department of Microbiology, Faculty of Medicine, Eskisehir, Turkey.
| | - Gül Durmaz
- Eskisehir Osmangazi University, Department of Microbiology, Faculty of Medicine, Eskisehir, Turkey.
| | - Bashar M S Ibrahi M
- Suleyman Demirel University, Faculty of Pharmacy, Pharmaceutical Microbiology, Isparta, Turkey.
| |
Collapse
|
37
|
Adukauskiene D, Ciginskiene A, Adukauskaite A, Koulenti D, Rello J. Clinical Features and Outcomes of Monobacterial and Polybacterial Episodes of Ventilator-Associated Pneumonia Due to Multidrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11070892. [PMID: 35884146 PMCID: PMC9311643 DOI: 10.3390/antibiotics11070892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant A. baumannii (MDRAB) VAP has high morbidity and mortality, and the rates are constantly increasing globally. Mono- and polybacterial MDRAB VAP might differ, including outcomes. We conducted a single-center, retrospective (January 2014−December 2016) study in the four ICUs (12−18−24 beds each) of a reference Lithuanian university hospital, aiming to compare the clinical features and the 30-day mortality of monobacterial and polybacterial MDRAB VAP episodes. A total of 156 MDRAB VAP episodes were analyzed: 105 (67.5%) were monomicrobial. The 30-day mortality was higher (p < 0.05) in monobacterial episodes: overall (57.1 vs. 37.3%), subgroup with appropriate antibiotic therapy (50.7 vs. 23.5%), and subgroup of XDR A. baumannii (57.3 vs. 36.4%). Monobacterial MDRAB VAP was associated (p < 0.05) with Charlson comorbidity index ≥3 (67.6 vs. 47.1%), respiratory comorbidities (19.0 vs. 5.9%), obesity (27.6 vs. 9.8%), prior hospitalization (58.1 vs. 31.4%), prior antibiotic therapy (99.0 vs. 92.2%), sepsis (88.6 vs. 76.5%), septic shock (51.9 vs. 34.6%), severe hypoxemia (23.8 vs. 7.8%), higher leukocyte count on VAP onset (median [IQR] 11.6 [8.4−16.6] vs. 10.9 [7.3−13.4]), and RRT need during ICU stay (37.1 vs. 17.6%). Patients with polybacterial VAP had a higher frequency of decreased level of consciousness (p < 0.05) on ICU admission (29.4 vs. 14.3%) and on VAP onset (29.4 vs. 11.4%). We concluded that monobacterial MDRAB VAP had different demographic/clinical characteristics compared to polybacterial and carried worse outcomes. These important findings need to be validated in a larger, prospective study, and the management implications to be further investigated.
Collapse
Affiliation(s)
- Dalia Adukauskiene
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Ausra Ciginskiene
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Correspondence:
| | - Agne Adukauskaite
- Department of Cardiology and Angiology, University Hospital of Innsbruck, 6020 Innsbruck, Austria;
| | - Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, 12462 Athens, Greece;
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The Univesrity of Queensland, Brisbane 4029, Australia
| | - Jordi Rello
- Vall d‘Hebron Institute of Research, Vall d‘Hebron Campus Hospital, 08035 Barcelona, Spain;
- Clinical Research, CHU Nîmes, 30900 Nîmes, France
| |
Collapse
|
38
|
Casarotta E, Bottari E, Vannicola S, Giorgetti R, Domizi R, Carsetti A, Damiani E, Scorcella C, Gabbanelli V, Pantanetti S, Marini B, Donati A, Adrario E. Antibiotic Treatment of Acinetobacter baumannii Superinfection in Patients With SARS-CoV-2 Infection Admitted to Intensive Care Unit: An Observational Retrospective Study. Front Med (Lausanne) 2022; 9:910031. [PMID: 35721097 PMCID: PMC9203965 DOI: 10.3389/fmed.2022.910031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction In COVID-19 patients on mechanical ventilation, VAP from Acinetobacter baumannii remains a crucial risk factor for death. Antibiotic resistance represents an important problem in treating this infection. This study aims to describe the evolution of the superinfection from PDR Acinetobacter baumannii in patients with acute respiratory failure from SARS-CoV-2 infection admitted to ICU and compare the impact of two different antibiotic strategies on microbiological negativization. Methods Single-center observational retrospective study, including patients admitted to our ICU from March 2020 to May 2021 for acute respiratory failure from SARS-CoV-2 infection who developed PDR Acinetobacter baumannii superinfection. Clinical data at ICU admission were collected, as well as the timing of isolation of Acinetobacter baumannii, its resistance profile, the site of infection, and the antibiotic therapy. Results Of the 32 patients enrolled, 10 patients (31.2%) were treated with the combination of high-dose ampicillin/sulbactam, high-dose tigecycline, intravenous and inhaled colistin (Protocol), the other 22 (68.8%) were treated with the combination of two antibiotics (Control). Of the 10 patients in the Protocol group, 8 patients (80%) received also fosfomycin. All patients (100%) in the Protocol group had microbiological negativization, while in the Control group microbiological negativization was observed in 8 (36.4%) patients, p < 0.01. Conclusion Our report shows microbiological negativization in all patients treated with the combination therapy of nebulized and intravenous colistin, high-dose tigecycline, and high-dose ampicillin/sulbactam. This combination of antibiotics seems to be a useful alternative when other treatments are not available or fail.
Collapse
Affiliation(s)
- Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Bottari
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Vannicola
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Rachele Giorgetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Andrea Carsetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Elisa Damiani
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Vincenzo Gabbanelli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Simona Pantanetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Benedetto Marini
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Abele Donati
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - Erica Adrario
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| |
Collapse
|
39
|
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) can cause significant infections with limited treatment options available. Falcone et al. (https://doi.org/10.1128/aac.02142-21) describe a single-center retrospective study comparing clinical outcomes among patients with CRAB infections treated with cefiderocol-containing versus colistin-containing regimens. Patients who received cefiderocol-containing regimens had lower 30-day mortality, though there are several limitations raised here, which make interpretation and applicability difficult.
Collapse
Affiliation(s)
- Sara M. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth B. Hirsch
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Clinical outcome of nosocomial pneumonia caused by Carbapenem-resistant gram-negative bacteria in critically ill patients: a multicenter retrospective observational study. Sci Rep 2022; 12:7501. [PMID: 35525867 PMCID: PMC9079069 DOI: 10.1038/s41598-022-11061-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Nosocomial pneumonia caused by carbapenem-resistant gram-negative bacteria (CRGNB) is a growing threat due to the limited therapeutic choices and high mortality rate. The aim of this study was to evaluate the prognostic factors for mortality in patients with nosocomial pneumonia caused by CRGNB and the impact of colistin-based therapy on the outcomes of intensive care unit (ICU) patients. We conducted a retrospective study of the ICUs in five tertiary teaching hospitals in Taiwan. Patients with nosocomial pneumonia caused by CRGNB from January 2016 to December 2016 were included. Prognostic factors for mortality were analyzed using multivariate logistic regression. The influence of colistin-based therapy on mortality and clinical and microbiological outcomes were evaluated in subgroups using different severity stratification criteria. A total of 690 patients were enrolled in the study, with an in-hospital mortality of 46.1%. The most common CRGNB pathogens were Acinetobacter baumannii (78.7%) and Pseudomonas aeruginosa (13.0%). Significant predictors (odds ratio and 95% confidence interval) of mortality from multivariate analysis were a length of hospital stay (LOS) prior to pneumonia of longer than 9 days (2.18, 1.53-3.10), a sequential organ failure assessment (SOFA) score of more than 7 (2.36, 1.65-3.37), supportive care with vasopressor therapy (3.21, 2.26-4.56), and escalation of antimicrobial therapy (0.71, 0.50-0.99). There were no significant differences between the colistin-based therapy in the deceased and survival groups (42.1% vs. 42.7%, p = 0.873). In the subgroup analysis, patients with multiple organ involvement (> 2 organs) or higher SOFA score (> 7) receiving colistin-based therapy had better survival outcomes. Prolonged LOS prior to pneumonia onset, high SOFA score, vasopressor requirement, and timely escalation of antimicrobial therapy were predictors for mortality in critically ill patients with nosocomial CRGNB pneumonia. Colistin-based therapy was associated with better survival outcomes in subgroups of patients with a SOFA score of more than 7 and multiple organ involvement.
Collapse
|
41
|
Scott CJ, Zhu E, Jayakumar RA, Shan G, Viswesh V. Efficacy of Eravacycline Versus Best Previously Available Therapy for Adults With Pneumonia Due to Difficult-to-Treat Resistant (DTR) Acinetobacter baumannii. Ann Pharmacother 2022; 56:1299-1307. [PMID: 35511209 DOI: 10.1177/10600280221085551] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii remains challenging to treat. Although eravacycline has in vitro activity against this pathogen, there are no studies evaluating outcomes. OBJECTIVE To assess the efficacy of eravacycline compared with best previously available therapy in adults with difficult-to-treat resistant (DTR) A. baumannii pneumonia. METHODS This was a retrospective study of adults hospitalized for pneumonia with DTR A. baumannii. Patients receiving eravacycline were compared with those receiving best previously available therapy. The primary outcome was 30-day in-hospital mortality. Secondary outcomes included clinical cure at Day 14, hospital and intensive care unit (ICU) length of stay, microbiologic cure, and readmission within 90 days with a positive A. baumannii respiratory culture. RESULTS Ninety-three patients were included, with 27 receiving eravacycline. Eravacycline was associated with higher 30-day mortality (33% vs 15%; P = 0.048), lower microbiologic cure (17% vs 59%; P = 0.004), and longer durations of mechanical ventilation (10.5 vs 6.5 days; P = 0.016). At baseline, eravacycline patients had more A. baumannii bacteremia and coinfection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Among bacteremic patients, all 4 receiving eravacycline died by Day 30 and both patients receiving best previously available therapy survived. Upon exclusion of patients with bacteremia and SARS-CoV-2, there were no differences between the groups across any outcomes. CONCLUSIONS Eravacycline-based combination therapy had similar outcomes to best previously available combination therapy for adults with DTR A. baumannii pneumonia. However, eravacycline should be used with caution in the setting of bacteremia as outcomes were poor in this population.
Collapse
Affiliation(s)
- Courtney J Scott
- Department of Pharmacy, Valley Hospital Medical Center, Las Vegas, NV, USA
| | - Elizabeth Zhu
- Department of Pharmacy, Henderson Hospital, Henderson, NV, USA
| | | | - Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Velliyur Viswesh
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| |
Collapse
|
42
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
43
|
Sangthawan P, Geater AF, Naorungroj S, Nikomrat P, Nwabor OF, Chusri S. Characteristics, Influencing Factors, Predictive Scoring System, and Outcomes of the Patients with Nephrotoxicity Associated with Administration of Intravenous Colistin. Antibiotics (Basel) 2021; 11:antibiotics11010002. [PMID: 35052879 PMCID: PMC8772935 DOI: 10.3390/antibiotics11010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant Gram-negative infection is a major global public health threat. Currently, colistin is considered the last-resort treatment despite its nephrotoxicity. The purpose of this study was to estimate the incidence, characteristics, and influencing factors and to develop a prediction model for colistin-associated nephrotoxicity. A retrospective study was conducted in the university hospital in the South of Thailand from December 2015 to June 2019. A total of 381 patients (median age (IQR) of 64 (51–62) years) were analyzed. Overall, 282 (74%) had nephrotoxicity according to the Kidney Disease: Improving Global Outcomes (KDIGO) classification. In-hospital, 30-day mortality rates and cost of hospital admission were significantly higher among those with nephrotoxicity. Age > 60 years, comorbidities, serum albumin less than 3.5 g/dL, and concomitant nephrotoxic use were significantly associated with colistin-associated nephrotoxicity with adjusted OR (95% CI) 2.01 (1.23–2.45), 1.85 (1.18–3.6), 1.68 (1.09–2.99), and 1.77 (1.10–2.97), respectively. The prediction model for high-risk colistin-associated nephrotoxicity was identified with good overall performance (specificity of 79.6% (95% CI 70.3–87.1) and positive predictive value of 92.1% (95% CI 88.0–95.1)). In conclusion, the incidence of colistin-associated nephrotoxicity was high and incurred significant morbidity, mortality, and economic burden. Our predictive scoring system is relatively simple and useful for optimizing colistin therapy.
Collapse
Affiliation(s)
- Pornpen Sangthawan
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Alan Frederick Geater
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Surarit Naorungroj
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Piyarat Nikomrat
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Ozioma Forstinus Nwabor
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (S.N.); (P.N.); (O.F.N.)
- Correspondence:
| |
Collapse
|
44
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Wang SH, Yang KY, Sheu CC, Chen WC, Chan MC, Feng JY, Chen CM, Wu BR, Zheng ZR, Chou YC, Peng CK. Efficacies of Colistin-Carbapenem versus Colistin-Tigecycline in Critically Ill Patients with CR-GNB-Associated Pneumonia: A Multicenter Observational Study. Antibiotics (Basel) 2021; 10:antibiotics10091081. [PMID: 34572663 PMCID: PMC8467228 DOI: 10.3390/antibiotics10091081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Evaluating the options for antibiotic treatment for carbapenem-resistant Gram-negative bacteria (CR-GNB)-associated pneumonia remains crucial. We compared the therapeutic efficacy and nephrotoxicity of two combination therapies, namely, colistin + carbapenem (CC) versus colistin + tigecycline (CT), for treating CR-GNB-related nosocomial pneumonia in critically ill patients. Methods: In this multicenter, retrospective, and cohort study, we recruited patients admitted to intensive care units and diagnosed with CR-GNB-associated nosocomial pneumonia. We divided the enrolled patients into CC (n = 62) and CT (n = 59) groups. After propensity score matching (n = 39), we compared the therapeutic efficacy by mortality, favorable outcome, and microbiological eradication and compared nephrotoxicity by acute kidney injury between groups. Results: There was no significant difference between the CC and CT groups regarding demographic characteristics and disease severities as assessed using the Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, and other organ dysfunction variables. Therapeutic efficacy was non-significantly different between groups in all-cause mortality, favorable outcomes, and microbiological eradication at days 7, 14, and 28; as was the Kaplan-Meier analysis of 28-day survival. For nephrotoxicity, both groups had similar risks of developing acute kidney injury, evaluated using the Kidney Disease Improving Global Outcomes criteria (p = 1.000). Conclusions: Combination therapy with CC or CT had similar therapeutic efficacy and risk of developing acute kidney injury for treating CR-GNB-associated nosocomial pneumonia in critically ill patients.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (K.-Y.Y.); (J.-Y.F.)
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.S.); (C.-M.C.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Cheng Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan
| | - Ming-Cheng Chan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (K.-Y.Y.); (J.-Y.F.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.S.); (C.-M.C.)
| | - Biing-Ru Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Correspondence: or
| | | |
Collapse
|
46
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
47
|
Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother 2021; 75:271-282. [PMID: 31586417 DOI: 10.1093/jac/dkz401] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The literature on the epidemiology, mortality and treatment of pandrug-resistant (PDR) Gram-negative bacteria (GNB) is scarce, scattered and controversial. OBJECTIVES To consolidate the relevant literature and identify treatment options for PDR GNB infections. METHODS A systematic search in MEDLINE, Scopus and clinical trial registries was conducted. Studies reporting PDR clinical isolates were eligible for review if susceptibility testing for all major antimicrobials had been performed. Characteristics and findings of retrieved studies were qualitatively synthesized. RESULTS Of 81 studies reviewed, 47 (58%) were published in the last 5 years. The reports reflected a worldwide dissemination of PDR GNB in 25 countries in 5 continents. Of 526 PDR isolates reported, Pseudomonas aeruginosa (n=175), Acinetobacter baumannii (n=172) and Klebsiella pneumoniae (n=125) were most common. PDR GNB were typically isolated in ICUs, but several studies demonstrated wider outbreak potential, including dissemination to long-term care facilities and international spread. All-cause mortality was high (range 20%-71%), but appeared to be substantially reduced in studies reporting treatment regimens active in vitro. No controlled trial has been performed to date, but several case reports and series noted successful use of various regimens, predominantly synergistic combinations, and in selected patients increased exposure regimens and newer antibiotics. CONCLUSIONS PDR GNB are increasingly being reported worldwide and are associated with high mortality. Several treatment regimens have been successfully used, of which synergistic combinations appear to be most promising and often the only available option. More pharmacokinetic/pharmacodynamic and outcome studies are needed to guide the use of synergistic combinations.
Collapse
Affiliation(s)
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Epidemiology and Medical Statistics, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Achilleas Gikas
- Department of Internal Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
48
|
Hurley JC, Brownridge D. Could simulation methods solve the curse of sparse data within clinical studies of antibiotic resistance? JAC Antimicrob Resist 2021; 3:dlab016. [PMID: 34223093 PMCID: PMC8210330 DOI: 10.1093/jacamr/dlab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious disease (ID) physicians and ID pharmacists commonly confront therapeutic questions relating to antibiotic resistance. Randomized controlled trial data are few and meta-analytic-based approaches to develop the evidence-base from several small studies that might relate to an antibiotic resistance question are not simple. The overriding challenge is the sparsity of data which is problematic for traditional frequentist methods, being the paradigm underlying the derivation of ‘P value’ inferential statistics. In other sparse data contexts, simulation methods enable answers to key questions that are meaningful, quantitative and potentially relevant. How these simulation methods ‘work’ and how Bayesian-based methods, being not ‘P value based’, can facilitate simulation are reviewed. These methods are becoming increasingly accessible. This review highlights why sparse data is less of an issue within Bayesian versus frequentist paradigms. A fictional pharmacokinetic study with sparse data illustrates a simplistic application of Bayesian and simulation methods to antibiotic dosing. Whether within epidemiological projections or clinical studies, simulation methods are likely to play an increasing role in antimicrobial resistance research within both hospital and community studies of either rare infectious disease or infections within specific population groups.
Collapse
Affiliation(s)
- James C Hurley
- Department of Rural Health, Melbourne Medical School, University of Melbourne, Australia.,Division of Internal Medicine, Ballarat Health Services, Ballarat, Victoria, Australia
| | - David Brownridge
- Pharmacy, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
49
|
Russo A, Bassetti M, Bellelli V, Bianchi L, Marincola Cattaneo F, Mazzocchetti S, Paciacconi E, Cottini F, Schiattarella A, Tufaro G, Sabetta F, D'Avino A. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect Dis Ther 2021; 10:187-200. [PMID: 33068255 PMCID: PMC7568458 DOI: 10.1007/s40121-020-00357-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Severe pneumonia caused by multidrug-resistant Acinetobacter baumannii (MDR-AB) remains a difficult-to-treat infection. Considering the poor lung penetration of most antibiotics, the choice of the better antibiotic regimen is debated. METHODS We performed a prospective, observational, multicenter study conducted from January 2017 to June 2020. All consecutive hospitalized patients with severe pneumonia due to MDR-AB were included in the study. The primary endpoint of the study was to evaluate risk factors associated with survival or death at 30 days from pneumonia onset. A propensity score for receiving therapy with fosfomycin was added to the model. RESULTS During the study period, 180 cases of hospital-acquired pneumonia, including ventilator-associated pneumonia, caused by MDR-AB strains were observed. Cox regression analysis of factors associated with 30-day mortality, after propensity score, showed that septic shock, and secondary bacteremia were associated with death, while a fosfomycin-containing regimen was associated with 30-day survival. Antibiotic combinations with fosfomycin in definitive therapy for 44 patients were: fosfomycin + colistin in 11 (25%) patients followed by fosfomycin + carbapenem + tigecycline in 8 (18.2%), fosfomycin + colistin + tigecycline in 7 (15.9%), fosfomycin + rifampin in 7 (15.9%), fosfomycin + tigecycline in 6 (13.6%), fosfomycin + carbapenem in 3 (6.8%), and fosfomycin + aminoglycoside in 2 (4.5%). CONCLUSIONS This real-life clinical experience concerning the therapeutic approach to severe pneumonia caused by MDR-AB provides useful suggestions to clinicians, showing the use of different antibiotic regimens with a predominant role for fosfomycin. Further randomized clinical trials are necessary to confirm or exclude these observations.
Collapse
Affiliation(s)
- Alessandro Russo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Internal Medicine Unit, Policlinico Casilino, Rome, Italy.
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Luigi Bianchi
- Internal Medicine Unit, Policlinico Casilino, Rome, Italy
| | | | | | - Elena Paciacconi
- Department of Intensive Care Unit, Cristo Re Hospital, Rome, Italy
| | - Fabrizio Cottini
- Intensive Care Unit, San Carlo di Nancy Hospital-GVM Care and Research, Rome, Italy
| | | | | | | | - Alessandro D'Avino
- Department of Internal Medicine and Risk Management, Cristo Re Hospital, Rome, Italy
| |
Collapse
|
50
|
Elarabi MA. Answers to the authors of the "Letter to the Editor": A comparative study between non colistin based combinations for treatment of infections caused by extensive drug resistant Acinetobacter baumannii: comments. Int J Clin Pharm 2021; 43:1149-1151. [PMID: 33411179 DOI: 10.1007/s11096-020-01214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|