1
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Tong H, Guo X, Jacques M, Luo Q, Eynon N, Teschendorff AE. Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution. Aging (Albany NY) 2024; 16:13452-13504. [PMID: 39760516 DOI: 10.18632/aging.206184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution. Here we demonstrate that in blood and brain, approximately 39% and 12% of an epigenetic clock's accuracy is driven by underlying shifts in lymphocyte and neuronal subsets, respectively. Using brain and liver tissue as prototypes, we build and validate neuron and hepatocyte specific DNA methylation clocks, and demonstrate that these cell-type specific clocks yield improved estimates of chronological age in the corresponding cell and tissue-types. We find that neuron and glia specific clocks display biological age acceleration in Alzheimer's Disease with the effect being strongest for glia in the temporal lobe. Moreover, CpGs from these clocks display a small but significant overlap with the causal DamAge-clock, mapping to key genes implicated in neurodegeneration. The hepatocyte clock is found accelerated in liver under various pathological conditions. In contrast, non-cell-type specific clocks do not display biological age-acceleration, or only do so marginally. In summary, this work highlights the importance of dissecting epigenetic clocks and quantifying biological age at cell-type resolution.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Guo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Macsue Jacques
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nir Eynon
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Lande K, Williams AE. PCBS: an R package for fast and accurate analysis of bisulfite sequencing data. Bioinformatics 2024; 40:btae593. [PMID: 39365707 PMCID: PMC11471259 DOI: 10.1093/bioinformatics/btae593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024] Open
Abstract
MOTIVATION Whole-genome bisulfite sequencing is a powerful tool for analyzing chromatin methylation genome-wide, but analysis of whole-genome bisulfite data is slow, inflexible, and often inaccurate. RESULTS We developed PCBS (Principal Component BiSulfite), a computationally efficient R package for Whole Genome Bisulfite Sequencing analysis that demonstrates remarkable accuracy and flexibility compared to current tools. PCBS identifies differentially methylated loci, differentially methylated regions, and offers novel functionality that allows for more targeted methylation analyses. PCBS uses minimal computational resources; a complete pipeline in mouse can run on a local RStudio instance in a matter of minutes. AVAILABILITY AND IMPLEMENTATION PCBS is an R package available under a GNU GPLv3 license on GitHub: https://github.com/katlande/PCBS and CRAN: https://CRAN.R-project.org/package=PCBS. Instructions for use are available at: https://katlande.github.io/PCBS/.
Collapse
Affiliation(s)
- Kathryn Lande
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| | - April E Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| |
Collapse
|
4
|
Bonder MJ, Clark SJ, Krueger F, Luo S, Agostinho de Sousa J, Hashtroud AM, Stubbs TM, Stark AK, Rulands S, Stegle O, Reik W, von Meyenn F. scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood. Nat Commun 2024; 15:7567. [PMID: 39217176 PMCID: PMC11366017 DOI: 10.1038/s41467-024-51833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ageing is the accumulation of changes and decline of function of organisms over time. The concept and biomarkers of biological age have been established, notably DNA methylation-based clocks. The emergence of single-cell DNA methylation profiling methods opens the possibility of studying the biological age of individual cells. Here, we generate a large single-cell DNA methylation and transcriptome dataset from mouse peripheral blood samples, spanning a broad range of ages. The number of genes expressed increases with age, but gene-specific changes are small. We next develop scEpiAge, a single-cell DNA methylation age predictor, which can accurately predict age in (very sparse) publicly available datasets, and also in single cells. DNA methylation age distribution is wider than technically expected, indicating epigenetic age heterogeneity and functional differences. Our work provides a foundation for single-cell and sparse data epigenetic age predictors, validates their functionality and highlights epigenetic heterogeneity during ageing.
Collapse
Affiliation(s)
- Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Stephen J Clark
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | - Felix Krueger
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Siyuan Luo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Aida M Hashtroud
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Chronomics Limited, London, UK
| | | | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolf Reik
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
5
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lande K, Williams AE. PCBS: an R package for fast and accurate analysis of bisulfite sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595620. [PMID: 38854090 PMCID: PMC11160565 DOI: 10.1101/2024.05.23.595620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Motivation Whole-genome bisulfite sequencing is a powerful tool for analyzing chromatin methylation genome-wide, but analysis of whole-genome bisulfite data is hampered by slow, inaccurate, and inflexible pipelines. Results We developed PCBS, a computationally efficient R package for Whole Genome Bisulfite Sequencing analysis that demonstrates remarkable accuracy and flexibility compared to current tools. PCBS identifies differentially methylated loci and differentially methylated regions and offers novel functionality that allows for more targeted methylation analyses. PCBS uses minimal computational resources; a complete pipeline in mouse can run on a local RStudio instance in a matter of minutes. Availability and Implementation PCBS is an R package available under a GNU GPLv3 license at: https://github.com/katlande/PCBS and from CRAN: https://CRAN.R-project.org/package=PCBS. Instructions for use are available at: https://katlande.github.io/PCBS/.
Collapse
Affiliation(s)
- Kathryn Lande
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, 92037, United States
| | - April E. Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, 92037, United States
| |
Collapse
|
7
|
Wang T, Huang Y, Yang J. Statistical Models for High-Risk Intestinal Metaplasia with DNA Methylation Profiling. EPIGENOMES 2024; 8:19. [PMID: 38804368 PMCID: PMC11130831 DOI: 10.3390/epigenomes8020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
We consider the newly developed multinomial mixed-link models for a high-risk intestinal metaplasia (IM) study with DNA methylation data. Different from the traditional multinomial logistic models commonly used for categorical responses, the mixed-link models allow us to select the most appropriate link function for each category. We show that the selected multinomial mixed-link model (Model 1) using the total number of stem cell divisions (TNSC) based on DNA methylation data outperforms the traditional logistic models in terms of cross-entropy loss from ten-fold cross-validations with significant p-values 8.12×10-4 and 6.94×10-5. Based on our selected model, the significance of TNSC's effect in predicting the risk of IM is justified with a p-value less than 10-6. We also select the most appropriate mixed-link models (Models 2 and 3) when an additional covariate, the status of gastric atrophy, is available. When the status is negative, mild, or moderate, we recommend Model 2; otherwise, we prefer Model 3. Both Models 2 and 3 can predict the risk of IM significantly better than Model 1, which justifies that the status of gastric atrophy is informative in predicting the risk of IM.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA; (T.W.); (Y.H.)
| |
Collapse
|
8
|
Austad SN, Smith JR, Hoffman JM. Amino acid restriction, aging, and longevity: an update. FRONTIERS IN AGING 2024; 5:1393216. [PMID: 38757144 PMCID: PMC11096585 DOI: 10.3389/fragi.2024.1393216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Various so-called dietary restriction paradigms have shown promise for extending health and life. All such paradigms rely on ad libitum (hereafter ad lib) feeding, something virtually never employed in animals whose long-term health we value, either as a control or, except for food restriction itself, for both control and treatment arms of the experiment. Even though the mechanism(s) remain only vaguely understood, compared to ad lib-fed animals a host of dietary manipulations, including calorie restriction, low protein, methionine, branched-chain amino acids, and even low isoleucine have demonstrable health benefits in laboratory species in a standard laboratory environment. The remaining challenge is to determine whether these health benefits remain in more realistic environments and how they interact with other health enhancing treatments such as exercise or emerging geroprotective drugs. Here we review the current state of the field of amino acid restriction on longevity of animal models and evaluate its translational potential.
Collapse
Affiliation(s)
- S. N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. R. Smith
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. M. Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Zoller J, Horvath S. MammalMethylClock R package: software for DNA methylation-based epigenetic clocks in mammals. Bioinformatics 2024; 40:btae280. [PMID: 38656974 PMCID: PMC11091737 DOI: 10.1093/bioinformatics/btae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
MOTIVATION Epigenetic clocks are prediction methods based on DNA methylation levels in a given species or set of species. Defined as multivariate regression models, these DNA methylation-based biomarkers of age or mortality risk are useful in species conservation efforts and in preclinical studies. RESULTS We present an R package called MammalMethylClock for the construction, assessment, and application of epigenetic clocks in different mammalian species. The R package includes the utility for implementing pre-existing mammalian clocks from the Mammalian Methylation Consortium. AVAILABILITY AND IMPLEMENTATION The source code and documentation manual for MammalMethylClock, and clock coefficient .csv files that are included within this software package, can be found on Zenodo at https://doi.org/10.5281/zenodo.10971037.
Collapse
Affiliation(s)
- Joseph Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, United States
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
- Altos Labs, San Diego, CA, 92121, United States
| |
Collapse
|
10
|
Ankrah PK, Mensah ED, Dabie K, Mensah C, Akangbe B, Essuman J. Harnessing Genetics to Extend Lifespan and Healthspan: Current Progress and Future Directions. Cureus 2024; 16:e55495. [PMID: 38571872 PMCID: PMC10990068 DOI: 10.7759/cureus.55495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Aging is inevitable, but the lifespan (duration of life) and healthspan (healthy aging) vary greatly among individuals and across species. Unlocking the secrets behind these differences has captivated scientific curiosity for ages. This review presents relevant recent advances in genetics and cell biology that are shedding new light by untangling how subtle changes in conserved genes, pathways, and epigenetic factors influence organismal senescence and associated declines. Biogerontology is a complex and rapidly growing field aimed at elucidating genetic modifications that extend lifespan and healthspan. This review explores gerontogenes, genes influencing lifespan and healthspan across species. Though subtle differences exist, long-lived individuals such as centenarians demonstrate extended healthspans, and numerous studies confirm the heritability of longevity/healthspan genes. Importantly, genes and gerontogenes are directly and indirectly involved in DNA repair, insulin/IGF-1 and mTOR signaling pathways, long non-coding RNAs, sirtuins, and heat shock proteins. The complex interactions between genetics and epigenetics are teased apart. While more research into optimizing healthspan is needed, conserved gerontogenes offer synergistic potential to forestall aging and age-related diseases. Understanding complex longevity genetics brings closer the goal of extending not only lifespan but quality years of life. The primary aim of human Biogerontology is to enhance lifespan and healthspan, but the question remains: are current genetic modifications effectively promoting healthy aging? This article collates the advancements in gerontogenes that enhance lifespan and improve healthspan alongside their potential challenges.
Collapse
Affiliation(s)
| | - Enock D Mensah
- Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Kwabena Dabie
- Chemistry and Chemical Biology, University of New Mexico, Albuquerque, USA
| | - Caleb Mensah
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | | | - Jonathan Essuman
- School of Molecular Sciences, Arizona State University, Tempe, USA
| |
Collapse
|
11
|
Horvath S, Singh K, Raj K, Khairnar SI, Sanghavi A, Shrivastava A, Zoller JA, Li CZ, Herenu CB, Canatelli-Mallat M, Lehmann M, Habazin S, Novokmet M, Vučković F, Solberg Woods LC, Martinez AG, Wang T, Chiavellini P, Levine AJ, Chen H, Brooke RT, Gordevicius J, Lauc G, Goya RG, Katcher HL. Reversal of biological age in multiple rat organs by young porcine plasma fraction. GeroScience 2024; 46:367-394. [PMID: 37875652 PMCID: PMC10828479 DOI: 10.1007/s11357-023-00980-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
- Altos Labs, Cambridge, UK.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | - Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Claudia B Herenu
- Institute for Experimental Pharmacology of Cordoba (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | | | | | | - Leah C Solberg Woods
- Wake Forest University School of Medicine, Medical Center Drive, Winston Salem, NC, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | |
Collapse
|
12
|
Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Schöler HR, Sinclair DA, Sebastiano V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. NATURE AGING 2024; 4:14-26. [PMID: 38102454 PMCID: PMC11058000 DOI: 10.1038/s43587-023-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mahdi Moqri
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
14
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
15
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
16
|
Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, O'Brien JK, O'Tierney Ginn P, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pellegrini M, Peters KJ, Pedersen AB, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Seluanov A, Shafer ABA, Shanmuganayagam D, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmaohammadi E, Spangler ML, Spriggs MC, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Wallingford MC, Wang N, Wayne RK, Wilkinson GS, Williams CK, Williams RW, Yang XW, Yao M, Young BG, Zhang B, Zhang Z, Zhao P, Zhao Y, Zhou W, Zimmermann J, Ernst J, Raj K, Horvath S. Universal DNA methylation age across mammalian tissues. NATURE AGING 2023; 3:1144-1166. [PMID: 37563227 PMCID: PMC10501909 DOI: 10.1038/s43587-023-00462-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
Collapse
Affiliation(s)
- A T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Z Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, Riverside, CA, USA
| | - A Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - T R Robeck
- Zoological SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - J A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Lowe
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Q Yan
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - J Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - H Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - V A Acosta-Rodriguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D M Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - J Almunia
- Loro Parque Fundacion, Puerto de la Cruz, Spain
| | - A Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - R Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C S Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - G Banks
- School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, UK
| | - K Belov
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - P Black
- Busch Gardens Tampa, Tampa, FL, USA
| | - D T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - E K Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - C E Breeze
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - R T Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - G G Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - A Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - J M Cavin
- Gulf World, Dolphin Company, Panama City Beach, FL, USA
| | - L Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - H Chen
- Department of Pharmacology, Addiction Science and Toxicology, the University of Tennessee Health Science Center, Memphis, TN, USA
| | - K Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - P Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - O W Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S M Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - L N Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M L Cossette
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - J Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - J DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S DiRocco
- SeaWorld of Florida, Orlando, FL, USA
| | - C Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | | | - C K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - S Emmrich
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E Erbay
- Altos Labs, San Francisco, CA, USA
| | - C Erlacher-Reid
- SeaWorld of Florida, Orlando, FL, USA
- SeaWorld Orlando, Orlando, FL, USA
| | - C G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - S H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - J M Gaillard
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - E Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - L Gerber
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - V N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - R G Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - M J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - C B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - D W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - M Haulena
- Vancouver Aquarium, Vancouver, British Columbia, Canada
| | - K Herrick
- SeaWorld of California, San Diego, CA, USA
| | - A N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - C J Hogg
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - T A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - T Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Metabolism, Oishei Children's Hospital, Buffalo, NY, USA
| | | | - A J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - G Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - O Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - H Katcher
- Yuvan Research, Mountain View, CA, USA
| | | | - V Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M S Kobor
- Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kordowitzki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
- Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - W R Koski
- LGL Limited, King City, Ontario, Canada
| | - M Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - S B Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Larison
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Center for Tropical Research, Institute for the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - S G Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - J F Lemaitre
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - A J Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - X Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A R Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - D T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - T J Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - N Macoretta
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - D Maddox
- White Oak Conservation, Yulee, FL, USA
| | - C O Matkin
- North Gulf Oceanic Society, Homer, AK, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - J Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - J J Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - G A Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - K Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - J Munshi-South
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M Nagy
- Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - P Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - P W Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - N B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Niehrs
- Institute of Molecular Biology, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - J K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - P O'Tierney Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - D T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - S Osborn
- SeaWorld of Texas, San Antonio, TX, USA
| | - E A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K M Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - K C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - K J Peters
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A B Pedersen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - D W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - G M Pinho
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - J R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N A Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
| | - P Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - B Rey
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - B R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - J Robbins
- Center for Coastal Studies, Provincetown, MA, USA
| | | | - J Russell
- SeaWorld of California, San Diego, CA, USA
| | - E Rydkina
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - L L Sailer
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - A B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - K M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | - T Schmitt
- SeaWorld of California, San Diego, CA, USA
| | | | - L B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - K E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - A W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - A Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - A B A Shafer
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - D Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - K Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS University, Mumbai, India
| | - I Sinha
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R G Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - E Soltanmaohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - L Staggs
- SeaWorld of Florida, Orlando, FL, USA
| | | | - K J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - D T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - V J Sugrue
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - B Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - J S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Takasugi
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - M J Thompson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Van Bonn
- John G. Shedd Aquarium, Chicago, IL, USA
| | - S C Vernes
- School of Biology, the University of St Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - D Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - N Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R K Wayne
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | - C K Williams
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - X W Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Yao
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - B G Young
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - B Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Z Zhang
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - P Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Y Zhao
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - W Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Zimmermann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Koblenz, Germany
| | - J Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - K Raj
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Horvath S, Singh K, Raj K, Khairnar S, Sanghavi A, Shrivastava A, Zoller JA, Li CZ, Herenu CB, Canatelli-Mallat M, Lehmann M, Habazin S, Novokmet M, Vučković F, Woods LCS, Martinez AG, Wang T, Chiavellini P, Levine AJ, Chen H, Brooke RT, Gordevicius J, Lauc G, Goya RG, Katcher HL. Reversal of Biological Age in Multiple Rat Organs by Young Porcine Plasma Fraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552148. [PMID: 37609328 PMCID: PMC10441355 DOI: 10.1101/2023.08.06.552148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
- Altos Labs, Cambridge, UK
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS University, Mumbai, India
| | | | - Shraddha Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS University, Mumbai, India
| | | | | | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Claudia B. Herenu
- Institute for Experimental Pharmacology of Cordoba (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata – Histology B, Pathology B, School of Medicine, University of La Plata, La Plata CC 455 (zip 1900), Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata – Histology B, Pathology B, School of Medicine, University of La Plata, La Plata CC 455 (zip 1900), Argentina
| | | | | | | | - Leah C. Solberg Woods
- Wake Forest University School of Medicine, 1 Medical Center Drive, Winston Salem, NC 27157, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 3993, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 3993, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata – Histology B, Pathology B, School of Medicine, University of La Plata, La Plata CC 455 (zip 1900), Argentina
| | - Andrew J. Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, 90095, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 3993, USA
| | - Robert T Brooke
- Epigenetic Clock Development Foundation, Torrance, California, USA
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rodolfo G. Goya
- Biochemistry Research Institute of La Plata – Histology B, Pathology B, School of Medicine, University of La Plata, La Plata CC 455 (zip 1900), Argentina
| | | |
Collapse
|
18
|
Senapati P, Miyano M, Sayaman RW, Basam M, Leung A, LaBarge MA, Schones DE. Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Res 2023; 33:1229-1241. [PMID: 37463750 PMCID: PMC10547379 DOI: 10.1101/gr.277511.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.
Collapse
Affiliation(s)
- Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-0981, USA
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
- Center for Cancer Biomarker Research, University of Bergen, 5021 Bergen, Norway
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA;
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
19
|
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. Distinct longevity mechanisms across and within species and their association with aging. Cell 2023; 186:2929-2949.e20. [PMID: 37269831 PMCID: PMC11192172 DOI: 10.1016/j.cell.2023.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Tikhonov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Perinur Bozaykut
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Kaushik A, Chaudhary V, Longkumer I, Saraswathy KN, Jain S. Sex-specific variations in global DNA methylation levels with age: a population-based exploratory study from North India. Front Genet 2023; 14:1038529. [PMID: 37255712 PMCID: PMC10225692 DOI: 10.3389/fgene.2023.1038529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose: Aging is one of the most important risk factors for a number of human diseases. Epigenetic alterations, including changes in DNA methylation patterns, have been reported to be one of the hallmarks of aging. Being a malleable process, the role of site-specific DNA methylation in aging is being extensively investigated; however, much less attention has been given to alterations in global DNA methylation with aging at the population level. The present study aims to explore overall and sex-specific variations in global DNA methylation patterns with age. Methods: A total of 1,127 adult individuals (792 females) aged 30-75 years belonging to Haryana, North India, were recruited. Socio-demographic data was collected using a pretested interview schedule. Global DNA methylation analysis, of peripheral blood leucocyte (PBL) DNA, was performed using the ELISA-based colorimetric technique. Results: Though the overall correlation analysis revealed a weak inverse trend between global DNA methylation and age, the adjusted regression model showed no significant association between global DNA methylation and age. In age-stratified analysis, global DNA methylation levels were found to be fairly stable until 60 years of age, followed by a decline in the above-60 age group. Further, no significant difference in DNA patterns methylation pattern was observed between males and females. Conclusion: Overall, the study suggests a lack of association between global DNA methylation and age, especially until 60 years of age, and a similar DNA methylation pattern between males and females with respect to age.
Collapse
Affiliation(s)
- Anshika Kaushik
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Vineet Chaudhary
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Sonal Jain
- Laboratory of Molecular and Biochemical Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Liang S, Liu D, Xiao Z, Greenbaum J, Shen H, Xiao H, Deng H. Repurposing Approved Drugs for Sarcopenia Based on Transcriptomics Data in Humans. Pharmaceuticals (Basel) 2023; 16:ph16040607. [PMID: 37111364 PMCID: PMC10145476 DOI: 10.3390/ph16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia, characterized by age-related loss of muscle mass, strength, and decreased physical performance, is a growing public health challenge amid the rapidly ageing population. As there are no approved drugs that target sarcopenia, it has become increasingly urgent to identify promising pharmacological interventions. In this study, we conducted an integrative drug repurposing analysis utilizing three distinct approaches. Firstly, we analyzed skeletal muscle transcriptomic sequencing data in humans and mice using gene differential expression analysis, weighted gene co-expression analysis, and gene set enrichment analysis. Subsequently, we employed gene expression profile similarity assessment, hub gene expression reversal, and disease-related pathway enrichment to identify and repurpose candidate drugs, followed by the integration of findings with rank aggregation algorithms. Vorinostat, the top-ranking drug, was also validated in an in vitro study, which demonstrated its efficacy in promoting muscle fiber formation. Although still requiring further validation in animal models and human clinical trials, these results suggest a promising drug repurposing prospect in the treatment and prevention of sarcopenia.
Collapse
Affiliation(s)
- Shuang Liang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Danyang Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410013, China
| | - Zhengwu Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| |
Collapse
|
22
|
Wang J, Zhang W, Liu X, Kim M, Zhang K, Tsai RYL. Epigenome-wide analysis of aging effects on liver regeneration. BMC Biol 2023; 21:30. [PMID: 36782243 PMCID: PMC9926786 DOI: 10.1186/s12915-023-01533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Aging is known to exert an effect on liver regeneration, with the ability of liver to regenerate displaying a significant decline over time. Liver physiological parameters such as liver volume, blood flow, and metabolism, as well as the ability to regenerate after injury have all been shown to decrease at old age in humans and model systems, with a number of molecular mechanisms proposed to be involved, including DNA methylation-dependent genome remodeling. To address how changes in DNA methylation mediate the adverse aging effect on liver regeneration, we searched for differentially methylated genomic regions (DMRs) in mouse livers co-regulated by aging and regeneration and determined their associated genes and enriched pathways. RESULTS DMRs were identified using whole-genome bisulfite sequencing (WGBS). Pathway analysis of aging DMR-mapped genes revealed two distinct phases of aging, 2-to-8 and 8-to-16 months old (m/o). Regenerative DMR-mapped differentially expressed genes (DEGs) were enriched in pathways controlling cell proliferation and differentiation. Most DMRs shared by both aging and regeneration changed in the same methylation direction between 2 and 8 m/o but in the opposite direction between 8 and 16 m/o. Regenerative DMRs inversely affected by aging during 8-to-16 m/o were found in the promoter/gene regions of 12 genes. Four regenerative DEGs were synchronously regulated by early aging and inversely regulated by mid-to-late aging DMRs. Lead DMR-mapped genes were validated by their expression profiles in liver aging and regeneration. CONCLUSIONS Our study has uncovered new DMRs and gene targets inversely affected by liver aging and regeneration to explain the adverse aging effect on liver regeneration. These findings will be of fundamental importance to understand the epigenomic changes underlying the biology of aging on liver regeneration.
Collapse
Affiliation(s)
- Junying Wang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Wen Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Xiaoqin Liu
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Minjee Kim
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Ke Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Robert Y. L. Tsai
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
23
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
24
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Higham J, Kerr L, Zhang Q, Walker RM, Harris SE, Howard DM, Hawkins EL, Sandu AL, Steele JD, Waiter GD, Murray AD, Evans KL, McIntosh AM, Visscher PM, Deary IJ, Cox SR, Sproul D. Local CpG density affects the trajectory and variance of age-associated DNA methylation changes. Genome Biol 2022; 23:216. [PMID: 36253871 PMCID: PMC9575273 DOI: 10.1186/s13059-022-02787-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic mark associated with the repression of gene promoters. Its pattern in the genome is disrupted with age and these changes can be used to statistically predict age with epigenetic clocks. Altered rates of aging inferred from these clocks are observed in human disease. However, the molecular mechanisms underpinning age-associated DNA methylation changes remain unknown. Local DNA sequence can program steady-state DNA methylation levels, but how it influences age-associated methylation changes is unknown. RESULTS We analyze longitudinal human DNA methylation trajectories at 345,895 CpGs from 600 individuals aged between 67 and 80 to understand the factors responsible for age-associated epigenetic changes at individual CpGs. We show that changes in methylation with age occur at 182,760 loci largely independently of variation in cell type proportions. These changes are especially apparent at 8322 low CpG density loci. Using SNP data from the same individuals, we demonstrate that methylation trajectories are affected by local sequence polymorphisms at 1487 low CpG density loci. More generally, we find that low CpG density regions are particularly prone to change and do so variably between individuals in people aged over 65. This differs from the behavior of these regions in younger individuals where they predominantly lose methylation. CONCLUSIONS Our results, which we reproduce in two independent groups of individuals, demonstrate that local DNA sequence influences age-associated DNA methylation changes in humans in vivo. We suggest that this occurs because interactions between CpGs reinforce maintenance of methylation patterns in CpG dense regions.
Collapse
Affiliation(s)
- Jonathan Higham
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lyndsay Kerr
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Qian Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Present address: Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Present address: School of Psychology, University of Exeter, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
26
|
Pérez RF, Tejedor JR, Fernández AF, Fraga MF. Aging and cancer epigenetics: Where do the paths fork? Aging Cell 2022; 21:e13709. [PMID: 36103298 PMCID: PMC9577950 DOI: 10.1111/acel.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Aging and cancer are clearly associated processes, at both the epidemiological and molecular level. Epigenetic mechanisms are good candidates to explain the molecular links between the two phenomena, but recent reports have also revealed considerable differences, particularly regarding the loss of DNA methylation in the two processes. The large-scale generation and availability of genome-wide epigenetic data now permits systematic studies to be undertaken which may help clarify the similarities and differences between aging and cancer epigenetic alterations. In addition, the development of epigenetic clocks provides a new dimension in which to investigate diseases at the molecular level. Here, we examine current and future questions about the roles of DNA methylation mechanisms as causal factors in the processes of aging and cancer so that we may better understand if and how aging-associated epigenetic alterations lead to tumorigenesis. It seems certain that comprehending the molecular mechanisms underlying epigenetic clocks, especially with regard to somatic stem cell aging, combined with applying single-cell epigenetic-age profiling technologies to aging and cancer cohorts, and the integration of existing and upcoming epigenetic evidence within the genetic damage models of aging will prove to be crucial to improving understanding of these two interrelated phenomena.
Collapse
Affiliation(s)
- Raúl Fernández Pérez
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Agustín Fernández Fernández
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Mario Fernández Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| |
Collapse
|
27
|
Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians? Int J Mol Sci 2022; 23:ijms23126546. [PMID: 35742989 PMCID: PMC9223351 DOI: 10.3390/ijms23126546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Striving for longevity is neither a recent human desire nor a novel scientific field. The first article on this topic was published in 1838, when the average human life expectancy was approximately 40 years. Although nowadays people on average live almost as twice as long, we still (and perhaps more than ever) look for new ways to extend our lifespan. During this seemingly endless journey of discovering efficient methods to prolong life, humans were enthusiastic regarding several approaches, one of which is caloric restriction (CR). Where does CR, initially considered universally beneficial for extending both lifespan and health span, stand today? Does a lifelong decrease in food consumption represent one of the secrets of centenarians’ long and healthy life? Do we still believe that if we eat less, we will live longer? This review aims to summarize the current literature on CR as a potential life-prolonging intervention in humans and discusses metabolic pathways that underlie this effect.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul.D. Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
28
|
Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, Lim AR, Brooke RT, Raj K, Serres-Armero A, Dreger DL, Hogan AN, Plassais J, Ostrander EA. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A 2022; 119:e2120887119. [PMID: 35580182 PMCID: PMC9173771 DOI: 10.1073/pnas.2120887119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human–dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, United Kingdom
| | | | - Dayna L. Dreger
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Andrew N. Hogan
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Jocelyn Plassais
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
29
|
Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet 2022; 23:585-605. [PMID: 35501397 DOI: 10.1038/s41576-022-00477-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.
Collapse
Affiliation(s)
- Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Andrew Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,UCL Cancer Institute, University College London, London, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
31
|
Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes (Basel) 2022; 13:genes13040699. [PMID: 35456505 PMCID: PMC9030181 DOI: 10.3390/genes13040699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The fact that dietary restriction (DR) and long-term rapamycin treatment (RALL) can ameliorate the aging process has been reported by many researchers. As the interface between external and genetic factors, epigenetic modification such as DNA methylation may have latent effects on the aging rate at the molecular level. To understand the mechanism behind the impacts of dietary restriction and rapamycin on aging, DNA methylation and gene expression changes were measured in the hippocampi of different-aged mice. Examining the single-base resolution of DNA methylation, we discovered that both dietary restriction and rapamycin treatment can maintain DNA methylation in a younger state compared to normal-aged mice. Through functional enrichment analysis of genes in which DNA methylation or gene expression can be affected by DR/RALL, we found that DR/RALL may retard aging through a relationship in which DNA methylation and gene expression work together not only in the same gene but also in the same biological process. This study is instructive for understanding the maintenance of DNA methylation by DR/RALL in the aging process, as well as the role of DR and RALL in the amelioration of aging.
Collapse
|
32
|
Abstract
Biology of aging is an active and rapidly expanding area of biomedical research. Over the years, focus of work in this field has been gradually shifting from studying the effects and symptoms of aging to searching for mechanisms of the aging process. Progress of this work led to an additional shift from looking for "the mechanism" of aging and formulating the corresponding "theories of aging" to appreciation that aging represents a net result of multiple physiological changes and their intricate interactions. It was also shown that mechanisms of aging include nutrient-dependent signaling pathways which have been remarkably conserved in the course of the evolution. Another important development in this field is increased emphasis on searching for pharmacological and environmental interventions that can extend healthspan or influence other aspects of aging. Progress in understanding the key role of aging as a risk factor for chronic disease provides impetus for these studies. Data from the recent pandemic provided additional evidence for the impact of age on resilience. Progress of work in this area also was influenced by major analytical and technological advances, including greatly improved methods for the study of gene expression, protein, lipids, and metabolites profiles, enhanced ability to produce various genetic modifications and novel approaches to assessment of biological age. Progress in research on the biology of aging provides reasons for optimism about the chances that safe and widely applicable anti-aging interventions with significant benefits for both individual and public health will be developed in the not too distant future.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 N. Rutledge St., P. O. Box 19628, Springfield, IL, 62794-9628, USA.
| |
Collapse
|
33
|
Gems D. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 2022; 74:101557. [PMID: 34990845 PMCID: PMC7612201 DOI: 10.1016/j.arr.2021.101557] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
35
|
Horvath S, Haghani A, Peng S, Hales EN, Zoller JA, Raj K, Larison B, Robeck TR, Petersen JL, Bellone RR, Finno CJ. DNA methylation aging and transcriptomic studies in horses. Nat Commun 2022; 13:40. [PMID: 35013267 PMCID: PMC8748428 DOI: 10.1038/s41467-021-27754-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy's zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Erin N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, FL, USA
| | | | - Rebecca R Bellone
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
- Veterinary Genetics Laboratory, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
36
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
37
|
Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, Franceschi C, Iacoviello L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res Rev 2021; 72:101502. [PMID: 34700008 DOI: 10.1016/j.arr.2021.101502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Estimators of biological age (BA) - defined as the hypothetical underlying age of an organism - have attracted more and more attention in the last years, especially after the advent of new algorithms based on machine learning and genetic markers. While different aging clocks reportedly predict mortality in the general population, very little is known on their overlap. Here we review the evidence reported so far to support the existence of a partial overlap among different BA acceleration estimators, both from an epidemiological and a genetic perspective. On the epidemiological side, we review evidence supporting shared and independent influence on mortality risk of different aging clocks - including telomere length, brain, blood and epigenetic aging - and provide an overview of how an important exposure like diet may affect the different aging systems. On the genetic side, we apply linkage disequilibrium score regression analyses to support the existence of partly shared genomic overlap among these aging clocks. Through multivariate analysis of published genetic associations with these clocks, we also identified the most associated variants, genes, and pathways, which may affect common mechanisms underlying biological aging of different systems within the body. Based on our analyses, the most implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, suggesting them as potential molecular targets for future anti-aging interventions. Overall, this review is meant as a contribution to the knowledge on the overlap of aging clocks, trying to clarify their shared biological basis and epidemiological implications.
Collapse
Affiliation(s)
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
38
|
Kocabas Ş, Sanlier N. A comprehensive overview of the complex relationship between epigenetics, bioactive components, cancer, and aging. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34623201 DOI: 10.1080/10408398.2021.1986803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among age-related diseases, the incidence of cancer increases significantly due to the overlap of some molecular pathways between cancer and aging. While the genetic influence on the human lifespan is estimated to be about 20-25%, epigenetic changes play an important role in modulating individual health status, aging. Aging and age-related conditions are processes that can be modified by both genetic, environmental factors, including dietary habits. Epigenetics is a new discipline has significant potential to be applied for the prevention, management of certain carcinomas and diseases. Epigenetic modifications may play an important role in disease occurrence and pathogenesis. Some nutritional components can be significantly effective in the prevention of breast, skin, esophagus, colorectal, prostate, pancreatic, lung cancers. It contains minerals, vitamins, and some bioactive components (curcumin, indole 3 carbinol, di-indolylmethane, sulforaphane, epigallocatechin-3-gallate, genistein, resveratrol, pterostilbene, apigenin, etc.) regulatory processes. However, compelling evidence suggests that dietary habits can manipulate the aging process and/or its consequences, have health benefits. Aging processes become complex when combined with the relational role of bioactive nutritional components on gene expression. In this review, the relationship between epigenetic processes caused by DNA methylylation, histone modification, non-coding m-RNA, and telomerase activity, the risk of aging and cancer is discussed.
Collapse
Affiliation(s)
- Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
39
|
Horvath S, Zoller JA, Haghani A, Lu AT, Raj K, Jasinska AJ, Mattison JA, Salmon AB. DNA methylation age analysis of rapamycin in common marmosets. GeroScience 2021; 43:2413-2425. [PMID: 34482522 PMCID: PMC8599537 DOI: 10.1007/s11357-021-00438-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Dickerson, MD USA
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX USA
| |
Collapse
|
40
|
Horvath S, Zoller JA, Haghani A, Jasinska AJ, Raj K, Breeze CE, Ernst J, Vaughan KL, Mattison JA. Epigenetic clock and methylation studies in the rhesus macaque. GeroScience 2021; 43:2441-2453. [PMID: 34487267 PMCID: PMC8599607 DOI: 10.1007/s11357-021-00429-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA Los Angeles, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, , Didcot, UK
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| |
Collapse
|
41
|
Raj K, Szladovits B, Haghani A, Zoller JA, Li CZ, Black P, Maddox D, Robeck TR, Horvath S. Epigenetic clock and methylation studies in cats. GeroScience 2021; 43:2363-2378. [PMID: 34463900 PMCID: PMC8599556 DOI: 10.1007/s11357-021-00445-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Human DNA methylation profiles have been used successfully to develop highly accurate biomarkers of aging ("epigenetic clocks"). Although these human epigenetic clocks are not immediately applicable to all species of the animal kingdom, the principles underpinning them appear to be conserved even in animals that are evolutionarily far removed from humans. This is exemplified by recent development of epigenetic clocks for mice and other mammalian species. Here, we describe epigenetic clocks for the domestic cat (Felis catus), based on methylation profiles of CpGs with flanking DNA sequences that are highly conserved between multiple mammalian species. Methylation levels of these CpGs are measured using a custom-designed Infinium array (HorvathMammalMethylChip40). From these, we present 3 epigenetic clocks for cats; of which, one applies only to blood samples from cats, while the remaining two dual-species human-cat clocks apply both to cats and humans. We demonstrate that these domestic cat clocks also lead to high age correlations in cheetahs, tigers, and lions. It is expected that these epigenetic clocks for cats possess the potential to be further developed for monitoring feline health as well as being used for identifying and validating anti-aging interventions.
Collapse
Affiliation(s)
- Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Balazs Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, 695 Charles E. Young Drive South, Los Angeles, CA 90095 USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Gonda Building, Los Angeles, CA 90095 USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Gonda Building, Los Angeles, CA 90095 USA
| | | | | | - Todd R. Robeck
- Corporate Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, 695 Charles E. Young Drive South, Los Angeles, CA 90095 USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Gonda Building, Los Angeles, CA 90095 USA
| |
Collapse
|
42
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
43
|
Age-related demethylation of the TDP-43 autoregulatory region in the human motor cortex. Commun Biol 2021; 4:1107. [PMID: 34548609 PMCID: PMC8455575 DOI: 10.1038/s42003-021-02621-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), TAR DNA-binding protein 43 (TDP-43), which is encoded by TARDBP, forms aggregates in the motor cortex. This aggregate formation may be triggered by an increase in the TDP-43 level with aging. However, the amount of TDP-43 is autoregulated by alternative splicing of the TARDBP 3′UTR, and how this autoregulation is affected by aging remains to be elucidated. We found that DNA demethylation in the autoregulatory region in the TARDBP 3′UTR reduced alternative splicing and increased TARDBP mRNA expression. Furthermore, in the human motor cortex, we found that this region was demethylated with aging, resulting in increased expression of TARDBP mRNA. The acceleration of DNA demethylation in the motor cortex was associated with the age of ALS onset. In summary, the dysregulation of TDP-43 autoregulation by age-related DNA demethylation in the motor cortex may explain the contribution of aging and motor system selectivity in ALS. In order to assess the effects of aging on the autoregulation of TAR DNA-binding protein 43 (TDP-43) and the potential effects of this on the role of TDP-43 in Amyotrophic Lateral Sclerosis (ALS), Koike et al examined post-mortem motor cortex tissue from ALS patients. They found that DNA demethylation in the autoregulatory region of the TARDBP 3′UTR, which encodes TDP-43, increased with age and was associated with the onset age of ALS and thus could be indicative of a role for dysregulation of TDP-43 autoregulation in ALS pathology.
Collapse
|
44
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
45
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
46
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
47
|
Robeck TR, Fei Z, Lu AT, Haghani A, Jourdain E, Zoller JA, Li CZ, Steinman KJ, DiRocco S, Schmitt T, Osborn S, Van Bonn B, Katsumata E, Mergl J, Almunia J, Rodriguez M, Haulena M, Dold C, Horvath S. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun Biol 2021; 4:642. [PMID: 34059764 PMCID: PMC8167141 DOI: 10.1038/s42003-021-02179-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.
Collapse
Affiliation(s)
- Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA.
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | | | | | | | | | | | - June Mergl
- Marineland of Canada, Niagara Falls, ON, Canada
| | - Javier Almunia
- Loro Parque Fundación, SA, Avenida Loro Parque, Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | | | | | - Christopher Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
49
|
Pérez RF, Tejedor JR, Santamarina-Ojeda P, Martínez VL, Urdinguio RG, Villamañán L, Candiota AP, Sarró NMV, Barradas M, Fernandez-Marcos PJ, Serrano M, Fernández AF, Fraga MF. Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse. Mol Biol Evol 2021; 38:3415-3435. [PMID: 33871658 PMCID: PMC8321527 DOI: 10.1093/molbev/msab112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Virginia López Martínez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Lucía Villamañán
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - N Mí Vidal Sarró
- Servicio Anatomía Patológica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo Jose Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Agusín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
50
|
Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 2021; 33:737-745. [PMID: 31811572 PMCID: PMC8084772 DOI: 10.1007/s40520-019-01430-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Aging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.
Collapse
|