1
|
Allen A, Porter S, McCleery D, Ranasinghe PD, Devaney R, Ardis T, Lyons M, Whiteside D, Corrigan C, McCormick C, Presho E, Holmes C, McCarthy J, Decena D, Doyle M, Montgomery J, Redpath S, Thompson S, Wright L, Jones K, Ferguson I, Johnston P, Ford T, O'Brien D, Salvador L, Skuce R. Assessing the potential role of deer in the dissemination of Mycobacterium bovis infection to cattle in Northern Ireland. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105721. [PMID: 39884519 DOI: 10.1016/j.meegid.2025.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Mycobacterium bovis, the causative agent of animal tuberculosis, exhibits a broad host range - infecting, inducing pathology and transmitting from both bovine and wildlife hosts. Considerable effort has been extended to understanding the role wildlife may play in persistence and spread of infection. Infected cervids can spread infection to conspecifics and sympatric livestock as observed in the white-tailed deer (Odocoileus virginanus) population of Michigan, USA. However, in other territories, there is debate about whether cervids act as maintenance or spillover hosts, with ecological contexts such as deer density and proximity to livestock likely to be key determinants. In Ireland, sika deer (Cervus nippon) populations in County Wicklow have been proposed to act as maintenance hosts, an observation at odds with the view that elsewhere on the island they are primarily spillover hosts. In Northern Ireland, policy makers sought to understand the role cervids may be playing in the epidemiology of animal TB. A province wide cull of 522 deer, undertaken from 2019 to 2023, yielded 13 culture confirmed M. bovis isolates (animal prevalence 2.5 %). These were subjected to whole genome sequencing, alongside a further four archived isolates from deer and 190 from cattle to undertake a genome epidemiology study. Bayesian phylogenetic methods of birth death skyline and structured coalescent analyses were applied to track epidemic progression and estimate raw counts and rates of M. bovis transmission withing and between cattle and deer. Findings were consistent with the main driver of disease transmission detected being infected cattle, with deer playing a smaller role.
Collapse
Affiliation(s)
- Adrian Allen
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK.
| | | | - David McCleery
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | | | - Ryan Devaney
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Tara Ardis
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Maggie Lyons
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK; Queen's University Belfast, School of Biological Sciences, Belfast, UK
| | - Donald Whiteside
- Department of Agriculture, Environment and Rural Affairs, Forest Service, Belfast, UK
| | - Christopher Corrigan
- Department of Agriculture, Environment and Rural Affairs, Veterinary Service, Belfast, UK
| | - Carl McCormick
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Eleanor Presho
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Clare Holmes
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Jim McCarthy
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Dale Decena
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Michael Doyle
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Josh Montgomery
- Queen's University Belfast, School of Medicine, Dentistry and Biomedical Sciences, UK
| | - Sophie Redpath
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Suzan Thompson
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Lorraine Wright
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Kerri Jones
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Ian Ferguson
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Philip Johnston
- Department of Agriculture, Environment and Rural Affairs, Veterinary Service, Belfast, UK
| | - Tom Ford
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| | - Dan O'Brien
- Michigan State University, United States of America
| | - Liliana Salvador
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America; BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| | - Robin Skuce
- Agri-Food and Biosciences Institute, AFBI Stormont, Veterinary Sciences Division, Belfast, UK
| |
Collapse
|
2
|
Jehanne Q, Bénéjat L, Ducournau A, Aptel J, Pivard M, Gillet L, Jauvain M, Lehours P. Increasing rates of erm(B) and erm(N) in human Campylobacter coli and Campylobacter jejuni erythromycin-resistant isolates between 2018 and 2023 in France. Antimicrob Agents Chemother 2025; 69:e0166824. [PMID: 39745413 PMCID: PMC11823653 DOI: 10.1128/aac.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 02/14/2025] Open
Abstract
Macrolides are the first-line compounds used for the treatment of campylobacteriosis. Macrolide resistance remains low in France, with mutations in 23S rDNA being the main associated resistance mechanism. However, two erythromycin methyltransferases have also been identified: erm(B), which is mainly described in animal reservoirs, and erm(N), which is strictly described in humans. In France, between 2018 and 2023, erythromycin-resistant Campylobacter species strains were systematically sequenced and analyzed via an in-house bioinformatics pipeline, leading to the identification of the resistomes, MLST and cgMLST, as well as the characterization of the source of contamination. In this study, the genomes of 280 erythromycin-resistant strains were sequenced over a 6-year period. The identification of erythromycin-associated resistance markers revealed a predominance of 23S rDNA mutations, in 90% of cases, but also erm-type methyltransferases in 10% of cases: 75% for erm(N) and 25% for erm(B). Over this period, an important increase in the rate of erm-positive isolates was observed: 2% in 2018 compared with 13% in 2023, with 10% for erm(N) and 3% for erm(B). erm(N) has been found exclusively within a CRISPR-Cas9 operon, whereas erm(B) has been found within diverse types of resistance genomic islands. Each erm(N)- or erm(B)-positive isolate had at least two other resistance markers (mostly ciprofloxacin, tetracycline, or ampicillin) and often carried aminoglycoside-associated resistance genes. The majority of the erm-positive isolates were obtained from chicken. The increasing rates of erm-positive and multiresistant isolates make the monitoring of erythromycin-resistant Campylobacter strains, specifically within the chicken meat production, a topic of serious importance.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Astrid Ducournau
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marie Pivard
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Léo Gillet
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, Nouvelle-Aquitaine, France
| |
Collapse
|
3
|
Panzer JJ, McGinnis N, Blom J, Winters AD, Sobel JD, Theis KR. Draft genomes of three Sneathia vaginalis isolates from a patient with bacterial vaginosis. Microbiol Resour Announc 2025:e0094124. [PMID: 39936913 DOI: 10.1128/mra.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Sneathia vaginalis, a fastidious pathogen of the female reproductive tract, is implicated in obstetric and gynecologic pathologies, including spontaneous preterm birth and bacterial vaginosis. Here, we report the successful cultivation and genomic sequencing of three Sneathia vaginalis isolates collected via a vaginal swab from a patient with bacterial vaginosis.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Natalie McGinnis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andrew D Winters
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, Michigan, USA
| | - Jack D Sobel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
4
|
Zhai W, Lu M, Zhao L, Du P, Cui S, Liu Y, Tan D, Zeng X, Yang B, Li R, Fanning S, Liu D, Li L, Zhang X, Wang Y, Bai L. Tracing the evolution: the rise of Salmonella Thompson co-resistant to clinically important antibiotics in China, 1997-2020. mSystems 2025:e0101824. [PMID: 39936938 DOI: 10.1128/msystems.01018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
As clinical Salmonella enterica serovar Thompson (S. Thompson) emerged among the top ten prevalent serovars in China, understanding the distribution and origin of its multidrug-resistant (MDR) strains becomes imperative. This study employed antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatics analysis to investigate the prevalence and genomic profiles of clinically important S. Thompson ST26 across China from 1997 to 2020. Upon analyzing 141 isolates from various sources, we identified 29 isolates, derived from 25 diarrhea patients and four animal-derived foods, displayed co-resistance to ciprofloxacin, cefotaxime, and azithromycin (CIPRCTXRAZIR), all of which are considered the front-line and critically-important antimicrobial agents for treating Salmonella infections in humans. The IncC plasmid was the predominant mobile vector identified among the CIPRCTXRAZIR isolates, harboring four crucial resistance genes qnrS1, qepA4, blaCMY-2, and mph(A) that confer resistance to three critically important antimicrobials. However, the closely related and clustered IncC-harboring CIPRCTXRAZIR isolates (0-23 single nucleotide polymorphisms [SNPs]) indicated the clonal spreading of these clinically important isolates in different provinces of China. Notably, the CIPRCTXRAZIR isolates appeared in aquatic products of animal-derived food, highlighting the possibility of aquaculture practices in the emergence and transmission of important antimicrobial resistance. Our findings emphasize the critical public health implications of IncC-carrying clinically important S. Thompson ST26. The study calls for enhanced surveillance of the clinically important S. Thompson ST26 clone in clinical and aquaculture and implementation of targeted interventions to mitigate its spread, thereby protecting food safety and public health.IMPORTANCEWe highlighted the critical veterinary public health issue of clinically important Salmonella enterica serovar Thompson (S. Thompson) prevalence in animal-derived foods, particularly aquatic products, calling for urgent action. The ability of S. Thompson to resist critically important antimicrobials across diverse environments highlights the transmission and survival of resistant strains within the livestock and poultry industry, aquaculture, and food production chains. This study underscores the importance of continuous surveillance of clinically important S. Thompson, especially in aquaculture settings, and considers the global trade of aquatic products as a potential vector for international dissemination. Further investigation on the factors contributing to the clone spread of clinically important Salmonella strain and the development of intervention strategies to mitigate its public health impact.
Collapse
Affiliation(s)
- Weishuai Zhai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mi Lu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lanxin Zhao
- Research Unit of Food Safety, Chinese Academy of Medical Sciences, NHC Key Lab of Food, Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Yang Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Dongmei Tan
- Institute of Microbe Testing, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianying Zeng
- Institute of Microbe Testing, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Séamus Fanning
- Research Unit of Food Safety, Chinese Academy of Medical Sciences, NHC Key Lab of Food, Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lanqi Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences, NHC Key Lab of Food, Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaoman Zhang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Bai
- Research Unit of Food Safety, Chinese Academy of Medical Sciences, NHC Key Lab of Food, Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
5
|
Wandji S, Jehanne Q, Bénéjat L, Ducournau A, Aptel J, Levast M, Jauvain M, Lehours P. The first two human infections with Helicobacter zhangjianzhongii, a new Helicobacter closely related to Helicobacter canis. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-025-05045-4. [PMID: 39934478 DOI: 10.1007/s10096-025-05045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE In 2023, Helicobacter zhangjianzhongii was proposed as a new species in the Helicobacter genus. We here describe two human cases of H. zhangjianzhongii bacteremia. METHODS Four clinical strains from the Helicobacter genus isolated from blood culture between 2017 and 2023 were studied. They were initially identified as H. canis by MALDI-TOF and 16S rDNA sequencing. The strains were biochemically characterized and tested at different temperatures and atmospheres. Two databases were used to characterize the isolates: the Bruker® MBT compass Version 4.1.1 database and a in-house spectrum-enriched database. After bacterial DNA extraction the genomes were sequenced on NovaSeq 6000 (Illumina) and analyzed using an in-house pipeline. RESULTS Case 1 involved a 58-year-old woman who was hospitalized in a thoracic oncology unit because her general condition deteriorated in a setting of small-cell carcinoma. She presented with abdominal pain associated with significant hepatomegaly. Case 2 involved a 78-year-old woman on rituximab who was hospitalized to treat chest pain, anemia, and inflammatory syndrome. Both strains exhibited very similar microbiological and genomic characteristics, thus growth in a microaerobic atmosphere at 37°C and 42°C, oxidase-positivity, and urease- and catalase-negativity. Both were formally identified by whole-genome sequencing as H. zhangjianzhongii (ANI > 99% and DDH > 94%). CONCLUSION This proposed species is associated with bacteremia in humans. It is thus likely to be a novel human pathogen. Dogs may have been the source of infection.
Collapse
Affiliation(s)
- Sahel Wandji
- Laboratoire de Bactériologie, CHU de Bordeaux, Hôpital Pellegrin, 33076, Bordeaux, France
| | - Quentin Jehanne
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Astrid Ducournau
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Marion Levast
- Laboratoire de Biologie, Centre Hospitalier de Chambéry, Chambéry, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, BoRdeaux Institute of onCology, Inserm, UMR 1312, BRIC146 Rue Léo Saignat, 33076, Bordeaux, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France.
- University of Bordeaux, BoRdeaux Institute of onCology, Inserm, UMR 1312, BRIC146 Rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
6
|
Shiekh Suliman N, Talaei-Hassanloui R, Abachi H, Zarei S, Osdaghi E. Taxonomic refinement of Bacillus thuringiensis. Front Microbiol 2025; 16:1518307. [PMID: 39990150 PMCID: PMC11843730 DOI: 10.3389/fmicb.2025.1518307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Bacillus thuringiensis is the most important biological control agent against various agricultural pests. The bacterium taxonomically belongs to the Bacillus cereus group, which also contains human pathogenic species, e.g., Bacillus anthracis. Thus, precise identification and taxonomic delineation of candidate strains for agricultural usage is of high importance in terms of both public health and biosecurity. By October 2023, whole genome sequences (WGS) of 885 bacterial strains were labeled as B. thuringiensis in the NCBI GenBank database. This study investigates the taxonomic authenticity of those strains using DNA similarity indexes, i.e., average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). All strains were compared with the type strain of B. thuringiensis ATCC 10972T. WGS-based phylotaxonomic investigations showed that out of 885 strains 803 strains authentically belonged to B. thuringiensis while 82 strains were mislabeled as B. thuringiensis having dDDH and ANI values less than the acceptable threshold of 70 and 95% respectively, for prokaryotic species definition in comparison with the B. thuringiensis type strain. Among these 82 mislabeled strains, 39 strains need to be reclassified within the B. cereus group in the species B. anthracis (33 strains), Bacillus toyonensis (five strains), and Bacillus mycoides (one strain). Furthermore, four strains were identified as Bacillus tropicus while one strain belonged to each of the species Bacillus licheniformis, Bacillus paranthracis, and Bacillus weidmannii. The remaining 36 strains did not match with any known Bacillus species nor the species of other bacterial genera, thus they could be assigned to hypothetical new species. Results of the present study, on the one hand, pave the way of comprehensive taxonomic refinements within B. thuringiensis species. On the other hand, highlight the role of taxonomic investigations in targeting authentic B. thuringiensis strains for biological control purposes.
Collapse
Affiliation(s)
- Nagham Shiekh Suliman
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
7
|
Weigl S, Dabernig-Heinz J, Granitz F, Lipp M, Ostermann L, Harmsen D, Trinh TT, Steinmetz I, Wagner GE, Lichtenegger S. Improving Nanopore sequencing-based core genome MLST for global infection control: a strategy for GC-rich pathogens like Burkholderia pseudomallei. J Clin Microbiol 2025:e0156924. [PMID: 39912668 DOI: 10.1128/jcm.01569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/11/2025] [Indexed: 02/07/2025] Open
Abstract
Genomic surveillance of pathogens is essential to trace infections and analyze resistance markers. Core genome multilocus sequence typing (cgMLST) facilitates genomic surveillance by simplified analysis and standardization. However, its application is limited by the poor cost-efficiency of short-read (SR) sequencing. Oxford Nanopore long-read sequencing (ONT-LR), which allows fast on-site analysis with comparatively low costs, could provide an alternative. Despite ONT-LR raw read accuracy improvement, evidence for methylation-based errors accumulates. PCR-based library preparation, suggested as a solution, presumably poses difficulties for GC-rich bacteria. We challenged ONT-LR-based cgMLST using the highly GC-rich pathogen Burkholderia pseudomallei to develop a clinically applicable workflow. Our B. pseudomallei cgMLST scheme was applied to ONT-LR data, and the results were validated against SR data. Native, rapid, and PCR-based library preparation was performed and combined with different basecalling models (SUP@bacterial-methylation, SUP@v4.2, SUP@v4.3, and SUP@v5.0) and polishing strategies (medaka_consensus, medaka_variant, r103_min_high_g360). To ensure reliability across genotypes, we included 14 sequence types and 27 genotypes. The recommended ONT-LR workflow at study initiation (SUP@v4.2, medaka_consensus) showed nearly 200 allele differences compared with the reference for specific strains. PCR-based library preparation resulted in missing targets and typing errors of up to 21 alleles. Native barcoding with SUP@v5.0 basecalling and r103_min_high_g360 polishing outperformed the PCR-based approach in all parameters reducing the error rate to a maximum of two allele differences. The optimized ONT-LR-based cgMLST workflow for B. pseudomallei integrates high resolution and ease of implementation with enhanced cost-efficiency for rapid diagnostics. The developed protocol might serve as a guideline for other GC-rich pathogens. IMPORTANCE This study highlights a significant advancement in genomic surveillance of bacterial pathogens, specifically addressing the challenges posed by the GC-rich species Burkholderia pseudomallei. Core genome multilocus sequence typing (cgMLST) is widely used for bacterial typing as it combines high resolution with simple implementation and standardization. To improve cost efficiency and thus accessibility, we changed the sequencing approach from Illumina short-read (SR) to Oxford Nanopore long-read sequencing (ONT-LR). ONT-LR-based cgMLST showed a very high error rate compared with SR-based cgMLST, most likely due to methylation-associated errors. PCR-based library preparation, which is proposed to correct these errors, did not achieve the required accuracy. In contrast, native barcoding with advanced basecalling and polishing strategies massively reduces allelic differences. This optimized ONT-LR cgMLST workflow provides a transformative solution for cost-efficient, high-resolution typing of B. pseudomallei. Furthermore, this study can serve as a guide for similarly challenging bacteria.
Collapse
Affiliation(s)
- Sarah Weigl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Johanna Dabernig-Heinz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Fabian Granitz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Michaela Lipp
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Laura Ostermann
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | - Thanh Trung Trinh
- VNU Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Gabriel E Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Sabine Lichtenegger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Tian J, Gao Z, Li M, Bao E, Zhao J. Accurate assembly of full-length consensus for viral quasispecies. BMC Bioinformatics 2025; 26:36. [PMID: 39893441 PMCID: PMC11787740 DOI: 10.1186/s12859-025-06045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Viruses can inhabit their hosts in the form of an ensemble of various mutant strains. Reconstructing a robust consensus representation for these diverse mutant strains is essential for recognizing the genetic variations among strains and delving into aspects like virulence, pathogenesis, and selecting therapies. Virus genomes are typically small, often composed of only a few thousand to several hundred thousand nucleotides. While constructing a high-quality consensus of virus strains might seem feasible, most current assemblers only generated fragmented contigs. It's important to emphasize the significance of assembling a single full-length consensus contig, as it's vital for identifying genetic diversity and estimating strain abundance accurately. RESULTS In this paper, we developed FC-Virus, a de novo genome assembly strategy specifically targeting highly diverse viral populations. FC-Virus first identifies the k-mers that are common across most viral strains, and then uses these k-mers as a backbone to build a full-length consensus sequence covering the entire genome. We benchmark FC-Virus against state-of-the-art genome assemblers. CONCLUSION Experimental results confirm that FC-Virus can construct a single, accurate full-length consensus, whereas other assemblers only manage to produce fragmented contigs. FC-Virus is freely available at https://github.com/qdu-bioinfo/FC-Virus.git .
Collapse
Affiliation(s)
- Jia Tian
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Ziyu Gao
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Minghao Li
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Ergude Bao
- School of Software Engineering, Beijing Jiaotong University, Beijing, China
| | - Jin Zhao
- College of Computer Science and Technology, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Nooij S, Plomp N, Sanders IMJG, Schout L, van der Meulen AE, Terveer EM, Norman JM, Karcher N, Larralde MF, Vossen RHAM, Kloet SL, Faber KN, Harmsen HJM, Zeller GF, Kuijper EJ, Smits WK, Ducarmon QR. Metagenomic global survey and in-depth genomic analyses of Ruminococcus gnavus reveal differences across host lifestyle and health status. Nat Commun 2025; 16:1182. [PMID: 39885121 PMCID: PMC11782615 DOI: 10.1038/s41467-025-56449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Ruminococcus gnavus is a gut bacterium found in > 90% of healthy individuals, but its increased abundance is also associated with chronic inflammatory diseases, particularly Crohn's disease. Nevertheless, its global distribution and intraspecies genomic variation remain understudied. By surveying 12,791 gut metagenomes, we recapitulated known associations with metabolic diseases and inflammatory bowel disease. We uncovered a higher prevalence and abundance of R. gnavus in Westernized populations and observed bacterial relative abundances up to 83% in newborns. Next, we built a resource of R. gnavus isolates (N = 45) from healthy individuals and Crohn's disease patients and generated complete R. gnavus genomes using PacBio circular consensus sequencing. Analysis of these genomes and publicly available high-quality draft genomes (N = 333 genomes) revealed multiple clades which separated Crohn's-derived isolates from healthy-derived isolates. Presumed R. gnavus virulence factors could not explain this separation. Bacterial genome-wide association study revealed that Crohn's-derived isolates were enriched in genes related to mobile elements and mucin foraging. Together, we present a large R. gnavus resource that will be available to the scientific community and provide novel biological insights into the global distribution and genomic variation of R. gnavus.
Collapse
Affiliation(s)
- S Nooij
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Donor Feces Bank (NDFB), Leiden University Medical Center, Leiden, the Netherlands
| | - N Plomp
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I M J G Sanders
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - L Schout
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - A E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - E M Terveer
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Donor Feces Bank (NDFB), Leiden University Medical Center, Leiden, the Netherlands
| | - J M Norman
- Vedanta Biosciences, Inc., Cambridge, Massachusetts, USA
| | - N Karcher
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - M F Larralde
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - S L Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - K N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G F Zeller
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - E J Kuijper
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - W K Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Q R Ducarmon
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
10
|
Hassan J, Utsho KS, Karmakar S, Ali MW, Awasthi SP, Uyama C, Hatanaka N, Yamasaki S, Hinenoya A. Occurrence and cross contamination of Escherichia albertii in retail chicken outlets in Bangladesh. Int J Food Microbiol 2025; 431:111081. [PMID: 39854957 DOI: 10.1016/j.ijfoodmicro.2025.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Escherichia albertii is an emerging zoonotic pathogen linked to human gastrointestinal illnesses, with poultry meats being considered as a key source of human infections. However, there is little information regarding the distribution and characteristics of this bacterium in Bangladesh. This study investigated the occurrence, antimicrobial resistance, and virulence of E. albertii in chicken meats from retail outlets in Bangladesh. We collected samples from 61 dressed chickens across 17 retail shops from 4 upazilas, along with swabs from cloaca, processing utensils, and worker hands. Detection of E. albertii by species-specific PCR revealed substantial occurrence of E. albertii in retail chicken meat (63.9 %), cloaca (71.4 %), human hand (45.5 %), bleeding cone (13.3 %) and blade (10 %). Almost all the E. albertii isolates (94.4 %) exhibited resistance to at least one of the tested antimicrobials, among which 50 % were multidrug resistant, including resistance to clinically relevant antimicrobials such as tetracycline, ampicillin, gentamicin, kanamycin, nalidixic acid and ciprofloxacin. Whole genome sequencing analysis identified the presence of corresponding antimicrobial resistance genes and critical virulence genes (eae, Eacdt). Notably, although wgSNP-based phylogenetic analysis showed the genomic diversity of the isolates, some of the isolates from the same shop displayed clonal relationships among meats, cloacal swabs, and human hand swabs, indicating contamination during processing. These findings highlight the public health risk posed by E. albertii in retail poultry, underlining the poultry's role as a potential vector for zoonotic transmission and the need for improved biosecurity and antimicrobial management practices in poultry production.
Collapse
Affiliation(s)
- Jayedul Hassan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Kishor Sosmith Utsho
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susmita Karmakar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Wohab Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sharda Prasad Awasthi
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan; Asian Health Science Institute, Osaka Metropolitan University, Osaka, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Chiharu Uyama
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan; Asian Health Science Institute, Osaka Metropolitan University, Osaka, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan; School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shinji Yamasaki
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan; Asian Health Science Institute, Osaka Metropolitan University, Osaka, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan; School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan; Asian Health Science Institute, Osaka Metropolitan University, Osaka, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan; School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.
| |
Collapse
|
11
|
Michel C, Echahidi F, De Muylder G, Sewell M, Boostrom I, Denis O, Spiller OB, Pierard D. Occurrence of macrolides resistance in Legionella pneumophila ST188: Results of the Belgian epidemiology and resistome investigation of clinical isolates. Int J Infect Dis 2025; 153:107786. [PMID: 39842688 DOI: 10.1016/j.ijid.2025.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVES The incidence of Legionnaires' disease steadily increases worldwide. Although Legionella pneumophila is known as pathogenic, systematic investigations into antibiotic resistance are scarce, and reports of resistance in isolates are recently emerging. METHODS Clinical cases and metadata reported to the Belgian National Reference Centre between 2011 and 2022 were retrospectively analyzed. A total of 283 clinical isolates were typed by core genome multi-locus sequence typing (cgMLST). Acquired genes or mutations triggering resistance were extracted from all of them. RESULTS The number of Legionnaires' disease cases has increased in Belgium. Urinary antigen testing remains the main used test, but polymerase chain reaction and serology allow the diagnostic in 14.8% and 2.4% of cases, respectively. cgMLST showed a good discrimination between sequence typing (ST) and minimal variation for ST47 isolates, whereas ST1s were more diverse. Genotypic screening identified a 23S ribosomal RNA mutation linked to a high-level macrolide resistance in one isolate of ST188, which is genetically closed to resistant isolates from France. CONCLUSION The increase in incidence is of concern and likely an under-estimate due to the reliance on urine antigen testing. Routine typing by cgMLST allows good discrimination and the first clinical isolate reported as resistant for macrolides was cultured, underscoring the need to define resistance breakpoints and incorporate antimicrobial susceptibility testing as routine clinical investigation practice.
Collapse
Affiliation(s)
- Charlotte Michel
- National reference centre for Legionella pneumophila, Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Fedoua Echahidi
- National reference centre for Legionella pneumophila, Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Geraldine De Muylder
- Department of Epidemiology and Public Health, Sciensano, Rue Juliette Wytsman 14, 1050 Brussels, Belgium
| | - Max Sewell
- Department of Medical Microbiology, Cardiff University School of Medicine, 6th floor University Hospital of Wales, Cardiff, Wales, CF14 4XN, UK
| | - Ian Boostrom
- Department of Medical Microbiology, Cardiff University School of Medicine, 6th floor University Hospital of Wales, Cardiff, Wales, CF14 4XN, UK
| | - Olivier Denis
- National reference centre for Legionella pneumophila, Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Owen B Spiller
- Department of Medical Microbiology, Cardiff University School of Medicine, 6th floor University Hospital of Wales, Cardiff, Wales, CF14 4XN, UK
| | - Denis Pierard
- National reference centre for Legionella pneumophila, Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
12
|
Paz LN, de Moraes L, Santos LA, Hamond C, Pinna MH. Insights into host-pathogen interaction based on the comparison of genomes of leptospira interrogans isolated from dogs, humans, and a rodent in the same epidemiological context: A one health approach. Heliyon 2025; 11:e41531. [PMID: 39834437 PMCID: PMC11742847 DOI: 10.1016/j.heliyon.2024.e41531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Leptospirosis is a zoonotic infectious disease that significantly impacts animal and public health. Comparative genomics can aid in understanding poorly understood aspects of leptospirosis pathogenesis, including infection mechanisms, antimicrobial resistance, and host interactions across different epidemiological scenarios. This study aimed to compare the genomes of Leptospira interrogans serogroup Icterohaemorrhagiae strains isolated from three host species in a single epidemiological scenario. Four strains of L. interrogans serogroup Icterohaemorrhagiae from naturally infected and clinically symptomatic dogs (C20, C29, C51, and C82) were processed for whole genome sequencing (WGS). These results were compared against WGS data from two other rodent and human strains. Phylogenetic and genomic similarity analyses demonstrated high identity and synteny between the strains isolated from humans, canines, and rodents. Small regions of divergence were observed, especially in the genome obtained from a rodent sample. The presence of 23 genes potentially associated with biofilm formation was notable, with the identification of missense mutations in eight genes. Considering the need to better understand the molecular basis involved in biofilm formation, it is of fundamental importance to elucidate the effect of mutations on the expression of the phenotype (biofilm) among different strains. The present findings highlight the necessity of One Health-based collaborative interventions to address the complex dynamics of leptospirosis transmission, involving both common hosts such as rodents and dogs, as well as less-recognized hosts.
Collapse
Affiliation(s)
- Lucas Nogueira Paz
- Bacterial Disease Laboratory, Postgraduate Program in Animal Science in Tropics – Federal University of Bahia, Salvador, Bahia, Brazil
| | - Laise de Moraes
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Luciane Amorim Santos
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Camila Hamond
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, IA, USA
- Laboratório de Zoonoses Bacterianas, Centro de Referência Nacional para Leptospirose, WHO/PAHO Centro Colaborador para Leptospirose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Melissa Hanzen Pinna
- Bacterial Disease Laboratory, Postgraduate Program in Animal Science in Tropics – Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
13
|
Banerjee S, Flint A, Brosseau MB, Weedmark K, Shutinoski B. Evaluation of MALDI-TOF for identification of Vibrio cholerae and Vibrio parahaemolyticus from growth on agar media. Appl Microbiol Biotechnol 2025; 109:5. [PMID: 39776185 PMCID: PMC11711576 DOI: 10.1007/s00253-024-13385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Two methods were compared for their ability to accurately identify Vibrio species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry-based identification method was evaluated for its ability to accurately identify isolates of Vibrio cholerae and Vibrio parahaemolyticus. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS). The MALDI-TOF MS system had excellent performance for identification of V. cholerae and V. parahaemolyticus isolates grown on a non-selective solid agar media. Unlike the biochemical characterization performed by API20E. In this study, 161 isolates (V. cholerae, n = 33; V. parahaemolyticus, n = 102; V. spp., n = 23; other enteropathogens, Salmonella and E. coli, n = 3) were used to assess accuracy. The MALDI-TOF MS system was able to accurately identify 100% (33/33) of the V. cholerae isolates and 99.9% (101/102) of V. parahaemolyticus isolates, with 100% for both sensitivity and specificity for V. cholerae and 99% sensitivity and 98% specificity for V. parahaemolyticus. Thus, mass spectrometry for bacterial identification is comparable to the WGS. Furthermore, in comparison to a biochemical characterization, the use of MALDI-TOF MS system shortens the analysis time from over 72 h to less than 24 h. KEY POINTS: • V. cholerae and V. parahaemolyticus were successfully ID-ed by MALDI-TOF • MALDI-TOF sensitivity and specificity parallels the WGS method of identification • MALDI-TOF is several days faster than the battery of culture-dependent methods.
Collapse
Affiliation(s)
- Swapan Banerjee
- Vibrio Reference Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Annika Flint
- Genomics Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Madeleine B Brosseau
- Genomics Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Kelly Weedmark
- Genomics Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Bojan Shutinoski
- Vibrio Reference Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Gray HA, Biggs PJ, Midwinter AC, Rogers LE, Fayaz A, Akhter RN, Burgess SA. Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand. Microb Genom 2025; 11:001341. [PMID: 39791259 PMCID: PMC11718517 DOI: 10.1099/mgen.0.001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Holly A. Gray
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Lynn E. Rogers
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ahmed Fayaz
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rukhshana N. Akhter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
15
|
Moazzami M, Bergenkvist E, Boqvist S, Frosth S, Langsrud S, Møretrø T, Vågsholm I, Hansson I. Occurrence of Campylobacter, Listeria monocytogenes, and extended-spectrum beta-lactamase Escherichia coli in slaughterhouses before and after cleaning and disinfection. Food Microbiol 2025; 125:104639. [PMID: 39448150 DOI: 10.1016/j.fm.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
To prevent foodborne illness, adequate cleaning and disinfection (C&D) is essential to remove pathogenic bacteria from the slaughter environment. The aim of this study was to determine the presence of Campylobacter spp., Listeria monocytogenes, and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL E. coli) before and after C&D in slaughterhouses. Samples from food- and non-food contact surfaces taken before and after C&D in one red meat and one poultry slaughterhouse were analyzed for the target bacteria. Whole-genome sequencing and antimicrobial susceptibility testing were performed. In total, 484 samples were analyzed. Campylobacter spp. were isolated from 13.0% to 15.5% of samples before C&D in the red meat and poultry slaughterhouse, respectively. Listeria monocytogenes was isolated before C&D in 12.5% and 5.2% of samples in the red meat and poultry slaughterhouse, respectively. It was noted that C. jejuni was detected on multiple surfaces and that L. monocytogenes showed potential persistence in one slaughterhouse. After C&D, L. monocytogenes was found in one sample. ESBL E. coli was not detected either before or after C&D. These findings show the possibility to remove pathogenic bacteria from slaughter and meat processing facilities, but also indicate that deficiencies in slaughter hygiene pose a risk of cross-contamination of meat.
Collapse
Affiliation(s)
- Madeleine Moazzami
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Emma Bergenkvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sofia Boqvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sara Frosth
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Solveig Langsrud
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Trond Møretrø
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Ivar Vågsholm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
16
|
Kieffer N, Böhm ME, Berglund F, Marathe NP, Gillings MR, Larsson DGJ. Identification of novel FosX family determinants from diverse environmental samples. J Glob Antimicrob Resist 2024; 41:8-14. [PMID: 39725324 DOI: 10.1016/j.jgar.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts. METHODS Metagenomic DNA was extracted from wastewater and sediment samples collected from sites in India, Sweden, and Antarctica. Class 1 integron gene cassette libraries were prepared, and resistant clones were selected on fosfomycin-supplemented media. Long-read sequencing was performed followed by bioinformatics analysis to identify novel fosfomycin resistance genes. The genes were cloned and functionally characterized in E. coli, and the impact of phosphonoformate on the enzymes was assessed. RESULTS Four novel fosfomycin resistance genes were identified. Phylogenetic analysis placed these genes within the FosX family, a group of metalloenzymes that hydrolyse fosfomycin without thiol conjugation. The genes were subsequently renamed fosE2, fosI2, fosI3, and fosP. Functional assays confirmed that these genes conferred resistance to fosfomycin in E. coli, with MIC ranging from 32 μg/ml to 256 μg/ml. Unlike FosA/B enzymes, these FosX-like proteins were resistant to phosphonoformate inhibitory action. A fosI3 homolog was identified in Pseudomonas aeruginosa, highlighting potential clinical relevance. CONCLUSIONS This study expands the understanding of fosfomycin resistance by identifying new FosX family members across diverse environments. The lack of phosphonoformate inhibition underscores the clinical importance of these poorly studied enzymes, which warrant further investigation, particularly in pathogenic contexts.
Collapse
Affiliation(s)
- Nicolas Kieffer
- Molecular Basis of Adaptation Laboratory, Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, España; Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia; Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Mwamburi SM, Islam SI, Dinh-Hung N, Dangsawat O, Sowanpreecha R, Khang LTP, Montha N, Therdtatha P, Dwinanti SH, Permpoonpattana P, Linh NV. Genomic Characterization of Bacillus sp. THPS1: A Hot Spring-Derived Species with Functional Features and Biotechnological Potential. Microorganisms 2024; 12:2476. [PMID: 39770679 PMCID: PMC11727782 DOI: 10.3390/microorganisms12122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Bacillus sp. THPS1 is a novel strain isolated from a high-temperature hot spring in Thailand, exhibiting distinctive genomic features that enable adaptation to an extreme environment. This study aimed to characterize the genomic and functional attributes of Bacillus sp. THPS1 to understand its adaptation strategies and evaluate its potential for biotechnological applications. The draft genome is 5.38 Mbp with a GC content of 35.67%, encoding 5606 genes, including those linked to stress response and sporulation, which are essential for survival in high-temperature conditions. Phylogenetic analysis and average nucleotide identity (ANI) values confirmed its classification as a distinct species within the Bacillus genus. Pangenome analysis involving 19 others closely related thermophilic Bacillus species identified 1888 singleton genes associated with heat resistance, sporulation, and specialized metabolism, suggesting adaptation to nutrient-deficient, high-temperature environments. Genomic analysis revealed 12 biosynthetic gene clusters (BGCs), including those for polyketides and non-ribosomal peptides, highlighting its potential for synthesizing secondary metabolites that may facilitate its adaptation. Additionally, the presence of three Siphoviridae phage regions and 96 mobile genetic elements (MGEs) suggests significant genomic plasticity, whereas the existence of five CRISPR arrays implies an advanced defense mechanism against phage infections, contributing to genomic stability. The distinctive genomic features and functional capacities of Bacillus sp. THPS1 make it a promising candidate for biotechnological applications, particularly in the production of heat-stable enzymes and the development of resilient bioformulations.
Collapse
Affiliation(s)
| | - Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Orathai Dangsawat
- Scientific Laboratory and Equipment Center, Office of Surat Thani Campus, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Rapeewan Sowanpreecha
- Department of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Luu Tang Phuc Khang
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| | - Phatthanaphong Therdtatha
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sefti Heza Dwinanti
- Department of Aquaculture, Faculty of Agriculture, Sriwijaya University, Inderalaya 30662, Indonesia;
| | - Patima Permpoonpattana
- Department of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| |
Collapse
|
18
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
19
|
Straub C, Taylor W, French NP, Murdoch DR, Priest P, Anderson T, Scott P. Zoonotic transmission of asymptomatic carriage Staphylococcus aureus on dairy farms in Canterbury, New Zealand. Microb Genom 2024; 10:001318. [PMID: 39630492 PMCID: PMC11616781 DOI: 10.1099/mgen.0.001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Zoonotic pathogen transmission is of growing concern globally, with agricultural intensification facilitating interactions between humans, livestock and wild animals. Staphylococcus aureus is a major human pathogen, but it also causes mastitis in dairy cattle, leading to an economic burden on the dairy industry. Here, we investigated transmission within and between cattle and humans, including potential zoonotic transmission of S. aureus isolated from cattle and humans from three dairy farms and an associated primary school in New Zealand. Nasal swabs (N=170) were taken from healthy humans. Inguinal and combined nasal/inguinal swabs were taken from healthy cattle (N=1163). Whole-genome sequencing was performed for 96 S. aureus isolates (44 human and 52 cattle). Multilocus sequence typing and assessments of antimicrobial resistance and virulence were carried out. Potential within- and across-species transmission events were determined based on single nucleotide polymorphisms (SNPs). Thirteen potential transmission clusters were detected, with 12 clusters restricted to within-species and one potential zoonotic transmission cluster (ST5). Potential transmission among cattle was mostly limited to single age groups, likely because different age groups are managed separately on farms. While the prevalence of antimicrobial resistance (AMR) was low among both bovine and human isolates, the discovery of an extended-spectrum beta-lactamase gene (bla TEM-116) in a bovine isolate was concerning. This study provides evidence around frequency and patterns of potential transmission of S. aureus on dairy farms and highlights the AMR and virulence profile of asymptomatic carriage S. aureus isolates.
Collapse
Affiliation(s)
- Christina Straub
- The Institute of Environmental Science and Research, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - William Taylor
- The Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Nigel P. French
- Tāwharau Ora, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David R. Murdoch
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Patricia Priest
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Trevor Anderson
- Microbiology Department, Canterbury Health Laboratories, Te Whatu Ora – Health New Zealand Waitaha, Christchurch, New Zealand
| | - Pippa Scott
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
20
|
Al-Mustapha AI, Tiwari A, Johansson V, Heljanko V, Kirsi-Maarit L, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Characterization of methicillin resistant Staphylococcus Aureus in municipal wastewater in Finland. One Health 2024; 19:100881. [PMID: 39263321 PMCID: PMC11388770 DOI: 10.1016/j.onehlt.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Wastewater-based surveillance (WBS) of multidrug-resistant bacteria could complement clinical data, serving as a population-level early warning tool. This study evaluated WBS as a pandemic preparedness tool, by selectively isolating and culturing methicillin-resistant Staphylococcus aureus (MRSA) with CHROMagar MRSA. Some 24-h composite wastewater samples (n = 80) were collected from ten treatment plants across Finland between February 2021 and January 2022. MRSA prevalence in wastewater samples was 27.5% (n = 22/80), showing seasonal and temporal variations. Phenotypic antimicrobial susceptibility testing (AST) with microdilution showed that over 80% of isolates were drug-resistant to clindamycin, sulfamethoxazole/trimethoprim, tetracycline, fusidic acid, and erythromycin. Four isolates (18.2%) were vancomycin-resistant. WGS revealed that 31.8% (n = 7) of the isolates belonged to the ST8-t008 and ST6-t304 spa types, respectively. In addition, two spa types (t011 and t034) belong to the CC398 complex. The mecA gene was found in all isolates (n = 22) and three tetracycline resistance determinants (tet38, tetK, and tetM) were detected with tet38 being the most abundant (81.8%, n = 18/22). Three isolates harboured the plasmid-mediated sat4 gene that confers resistance to Streptothricin. In addition, resistance determinants to macrolide antibiotics (mph (C)/msr (A) and fosfomycin (fosB) were detected in the seven isolates that belonged to spa type t008. All isolates except one harboured the SCCmec_type_IVa(2B). Six ST8 isolates harboured the LukS/F-PV genes encoding the Panton-Valentine leukocidin (PVL) and were also positive for the Arginine Catabolic Mobile Element (ACME), suggesting they belong to the USA300 clone. The Inc18 plasmid was the most abundant as it was detected in 72.7% (n = 16/22) of the isolates. Other plasmid replicons detected were the rep_trans and repA_N which were detected in 45.4% (n = 10/22) and 40.9% (n = 9/22) of the isolates respectively. Ten isolates harboured at least three plasmid replicons and no plasmid replicons were detected in four isolates (ST6/t304). The cgMLST revealed that some isolates aggregated into two genomically indistinguishable clusters: ST6/t304 belonging to cluster type CT12405 (≤20 allelic differences) and ST8/t008 belonging to cluster type CT1925 (<8 allelic differences). Overall, we found a high genotypic concordance with the national clinical bacterial resistance data. Our study demonstrates the sensitivity of culture-based wastewater surveillance for MRSA using clinical media following pre-enrichment, reliably predicting pathogen occurrence at the population level.
Collapse
Affiliation(s)
- Ahmad Ibrahim Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Kuopio, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Lehto Kirsi-Maarit
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Kuopio, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
- Finnish Food Authority, Ruokavirasto, Seinäjoki, Finland
| |
Collapse
|
21
|
Knudsen MJS, Barker Jensen C, Jørgensen RL, Petersen AM, Qvist Kristiansen G, Lisby JG, Worning P, Westh H, Pinholt M. Development of a PCR assay for rapid and accurate detection of an emerging vanB Enterococcus faecium clone in the Capital Region of Denmark. JAC Antimicrob Resist 2024; 6:dlae180. [PMID: 39512360 PMCID: PMC11540918 DOI: 10.1093/jacamr/dlae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives To develop and validate a real-time PCR assay detecting the sequence bridging Tn1549 and the Enterococcus faecium chromosome in the emerging vanB vancomycin-resistant E. faecium (VREfm) clone (ST80/CT2406). Methods The Tn1549 insertion site was determined on routinely sequenced VREfm isolates. The outer boundaries of Tn1549 and adjoining host bacterial sequences were determined using a BLAST search in the silent information regulator gene sir2. Next, the primers and probe were developed, targeting the sequence bridging Tn1549 and the E. faecium chromosome. Finally, the PCR assay was validated on well-characterized strains and prospectively performed on rectal screening samples submitted to our laboratory. Results and conclusions The PCR assay proved to be accurate and provide rapid diagnosis of the emerging vanB VREfm in rectal screening samples.
Collapse
Affiliation(s)
| | - Christel Barker Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Rikke Lind Jørgensen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Andreas Munk Petersen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Qvist Kristiansen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
22
|
Balakrishnan B, Johnson S, Luckey D, Marietta E, Murray J, Taneja V. Small intestinal derived Prevotella histicola simulates biologic as a therapeutic agent. Sci Rep 2024; 14:29217. [PMID: 39587228 PMCID: PMC11589831 DOI: 10.1038/s41598-024-80635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
A role of gut microbiome in pathogenesis as well as response to treatment is documented in rheumatoid arthritis. Using a novel duodenal derived Prevotella histicola strain MCI 001, we have shown that it suppresses disease progression in a collagen-induced arthritis (CIA), a model for rheumatoid arthritis (RA) using humanized mice expressing HLA-DQ8 gene in the absence of endogenous class II genes. Here we compared efficacy of P. histicola MCI 001 with tumor necrosis factor inhibitor (TNFi) for treating arthritis. DQ8 arthritic mice treated with P. histicola by oral gavage or TNFi, were compared for disease onset, incidence and severity. We demonstrate that oral treatment with P. histicola mimics treatment with TNFi in arthritic DQ8 mice. A pangenome comparison of our P. histicola MCI 001 with its closest available neighbors depicted it as a novel strain with unique gene sequences that may contribute to immune modulatory effects. Notably, it possesses a unique sequence of an outer membrane protein, BtuB, which is involved in vitamin B12 transport. Our data indicate that P. histicola MC001 is an attractive candidate to prevent the progression of disease in RA patients with ongoing disease.
Collapse
Affiliation(s)
- Baskar Balakrishnan
- Department of Immunology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Chobani LLC, North Brunswick, NJ, USA
| | | | - David Luckey
- Department of Immunology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eric Marietta
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Joseph Murray
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
IMAI S, KISHIMOTO M, HORIE M. Identification of a novel ephemerovirus in a water buffalo (Bubalus bubalis [Linnaeus, 1758]). J Vet Med Sci 2024; 86:1205-1211. [PMID: 39384377 PMCID: PMC11569870 DOI: 10.1292/jvms.24-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/21/2024] [Indexed: 10/11/2024] Open
Abstract
Ephemeroviruses, belonging to the genus Ephemerovirus within the family Rhabdoviridae of the Mononegavirales, are non-segmented, negative-strand RNA viruses that infect artiodactyls and blood-sucking arthropods. Although recent advances in sequencing technology have facilitated the identification of novel ephemeroviruses, thereby expanding our understanding of this viral genus, their diversity remains elusive, as evidenced by phylogenetic gaps between currently known ephemeroviruses. In this study, we analyzed publicly available RNA-seq data and identified a novel ephemerovirus, tentatively named Punjab virus (PBV), in a water buffalo (Bubalus bubalis [Linnaeus, 1758]). We obtained two separate PBV contigs from the RNA-seq data; the first contig covers the N, P, and M genes, while the second contig covers the G, α, β, γ, and L genes. Together, these PBV contigs represent 99% of the estimated complete viral genome. Mapping analysis revealed a typical transcriptional gradient pattern commonly observed in mononegaviruses, suggesting that the water buffalo is the authentic host for PBV. Sequence comparisons with its closest relatives indicate that the newly identified virus meets the ICTV species demarcation criteria for sequence divergence. Thus, this study contributes to a deeper understanding of the diversity of ephemeroviruses.
Collapse
Affiliation(s)
- Sakiho IMAI
- School of Veterinary Science, College of Life, Environment, and Advanced Science, Osaka Prefecture University, Osaka, Japan
| | - Mai KISHIMOTO
- School of Veterinary Science, College of Life, Environment, and Advanced Science, Osaka Prefecture University, Osaka, Japan
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Osaka International Infectious Diseases Research Center, Osaka Metropolitan University, Osaka, Japan
| | - Masayuki HORIE
- School of Veterinary Science, College of Life, Environment, and Advanced Science, Osaka Prefecture University, Osaka, Japan
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Osaka International Infectious Diseases Research Center, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
24
|
Lee S, Brown P, Tham W, Danielsson-Tham ML, Lopez-Valladares G, Ward T, Elhanafi D, Chen Y, Kathariou S. Draft genome sequences of Listeria monocytogenes strains from human listeriosis in Sweden harboring premature stop codons in the virulence determinant inlA. Microbiol Resour Announc 2024; 13:e0046424. [PMID: 39431868 PMCID: PMC11555985 DOI: 10.1128/mra.00464-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 10/22/2024] Open
Abstract
Premature stop codons in the internalin virulence determinant inlA are common in serotype 1/2a Listeria monocytogenes from food/food processing environments but rare among human clinical isolates. Here, we report the genome sequences of serotype 1/2a (STs 121 and 3258) human listeriosis isolates from Sweden harboring such mutations in inlA.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Phillip Brown
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Wilhelm Tham
- School of Hospitality, Culinary Arts and Meal Science, Örebro University, Örebro, Sweden
| | | | | | - Todd Ward
- U.S. Department of Agriculture, Agricultural Research Service, Peoria, Illinois, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Yi Chen
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
25
|
Mathole M, Carroll L, Khabo-Mmekoa C, Mabogoane N, Matle I. Annotated genome sequences of Salmonella Haifa, Salmonella Bangkok, and Salmonella Reading, isolated from chicken meat in South Africa. Microbiol Resour Announc 2024; 13:e0028424. [PMID: 39382302 PMCID: PMC11556139 DOI: 10.1128/mra.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
This paper presents the annotated genomes of Salmonella Haifa, Salmonella Bangkok, and Salmonella Reading, which are uncommonly isolated from meat in South Africa. Despite their rarity in South Africa, these serotypes have been linked to several high-profile outbreaks in other parts of the world.
Collapse
Affiliation(s)
- Masenyabu Mathole
- Bacteriology Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Laura Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Collette Khabo-Mmekoa
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Nomsa Mabogoane
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
26
|
Lawal OU, Bryan N, Parreira VR, Anderson R, Chen Y, Precious M, Goodridge L. Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Microbiol Spectr 2024; 12:e0117124. [PMID: 39513706 PMCID: PMC11619367 DOI: 10.1128/spectrum.01171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health.
Collapse
Affiliation(s)
- Opeyemi U. Lawal
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Noah Bryan
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
- Bayview Secondary School, Richmond Hill, Ontario, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Rebecca Anderson
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Yanhong Chen
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Melinda Precious
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
27
|
Jehanne Q, Bénéjat L, Azzi Martin L, Korolik V, Ducournau A, Aptel J, Ménard A, Jauvain M, Aguilera C, Doreille A, Mesnard L, Eckert C, Lehours P. First isolation of Campylobacter vicugnae sp. nov. in humans suffering from gastroenteritis. Microbiol Spectr 2024; 12:e0152324. [PMID: 39365090 PMCID: PMC11537083 DOI: 10.1128/spectrum.01523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
The present study describes the first isolation of a recently described Campylobacter species, Campylobacter vicugnae, in humans. The isolates were recovered by two independent French laboratories in 2020 and 2022 from a man and a woman suffering from gastroenteritis. Biochemical and growth characteristics, and electron microscopy for these two strains indicated that they belong to Campylobacter genus. 16S rDNA and GyrA-based phylogeny, as well as average nucleotide identity and in silico DNA-DNA Hybridization analyses revealed that both strains belong to the Campylobacter vicugnae species. Both isolates possess a complete cytolethal distending toxin (CDT) locus with cdtA, cdtB, and cdtC, and features of CDT activity were demonstrated in vitro with Caco-2 intestinal epithelial cells. Our data suggest that these two isolates of C. vicugnae were associated with gastroenteritis in humans and induced major cytopathogenic effects in vitro. C. vicugnae is likely to be a novel human pathogen, with a source of foodborne infection that needs to be determined.IMPORTANCECampylobacter species that display toxicity features are a worldwide public health issue. In clinical contexts, it is crucial to identify which isolate could be an urgent threat to a patient. Actual and widely used laboratory methods such as mass spectrometry or PCR may be flawed in the field of species identification. In contrast, the present study shows that next-generation sequencing allows to precisely identify isolates to species level that may have been omitted otherwise. Moreover, it helps to identify emerging species before they become a threat to human health. Recovery of a new Campylobacter species in human sample, such as the new species "Campylobacter vicugnae," is an important step for the identification of emerging pathogens posing threat to global health.
Collapse
Affiliation(s)
- Quentin Jehanne
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Lamia Azzi Martin
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Astrid Ducournau
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Johanna Aptel
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
| | - Armelle Ménard
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | - Marine Jauvain
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| | | | - Alice Doreille
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Laurent Mesnard
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- AP-HP, Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Paris, France
| | - Catherine Eckert
- Sorbonne Université, Inserm, U1135, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- Département de Bactériologie, AP-HP, Sorbonne-Université, Hôpital Saint-Antoine, Paris, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters and Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, Bordeaux Institute of Oncology (BRIC), Bordeaux, France
| |
Collapse
|
28
|
Kojima K, Wakabayashi Y, Nishijima S, Sakata J, Sekiya S, Iwamoto S, Tanaka K. Characterisation of glucose-induced protein fragments among the order Enterobacterales using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Biochem Biophys Res Commun 2024; 732:150407. [PMID: 39033555 DOI: 10.1016/j.bbrc.2024.150407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
To characterise the glucose-induced protein fragments by MALDI-TOF MS analysis, we compared data for samples from Escherichia coli cultured in media with or without glucose. Characteristic peaks were observed in the presence of glucose, and MS/MS revealed Asr-specific fragments. The amino acid sequences of the fragments suggested sequence-specific proteolysis. Blast-analysis revealed that numerous Enterobacterales harbored genes encoding Asr as well as E. coli. Here, we analysed 32 strains from 20 genera and 25 species of seven Enterobacterales families. We did not detect changes in the mass spectra of four strains of Morganellaceae lacking asr, whereas peaks of Asr-specific fragments were detected in the other 28 strains. We therefore concluded that the induction of Asr production in the presence of glucose is common among the Enterobacterales, except for certain Morganellaceae species. In members of family Budviciaceae, unfragmented Asr was detected. Molecular genetic information suggested that the amino acid sequences of Asr homologs are diverse, with fragments varying in number and size, indicating that Asr may serve as a discriminative biomarker for identifying Enterobacterales species.
Collapse
Affiliation(s)
- Koichi Kojima
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan.
| | - Yuki Wakabayashi
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Shunya Nishijima
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Junko Sakata
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
29
|
Jenkins E, Cripe J, Whitney BM, Greenlee T, Schneider B, Nguyen TA, Pightling A, Manetas J, Abraham A, Fox T, Mickelsen N, Priddy C, McMullen S, Crosby A, Viazis S. An Outbreak Investigation of Salmonella Weltevreden Illnesses in the United States Linked to Frozen Precooked Shrimp Imported from India - 2021. J Food Prot 2024; 87:100360. [PMID: 39284384 DOI: 10.1016/j.jfp.2024.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
In 2021, the U.S. Food and Drug Administration (FDA), Centers for Disease Control and Prevention (CDC), and state partners investigated a multistate sample-initiated retrospective outbreak investigation (SIROI) consisting of a cluster of nine Salmonella Weltevreden illnesses associated with frozen, precooked shrimp imported from India. Import surveillance testing identified Salmonella Weltevreden recovered from a cooked shrimp sample from Supplier B. In total, nine patients with clinical isolates highly related via whole genome sequencing were reported in four states with illness onset dates between February 26 and July 17, 2021. Epidemiologic data were gathered by state partners for seven patients, who all reported exposure to shrimp. Five patients reported consuming shrimp cocktail from the same retailer. A traceback investigation for five of the six patients converged on Supplier B. This evidence demonstrated that the outbreak of Salmonella Weltevreden illnesses was caused by the consumption of cooked, ready-to-eat shrimp manufactured by Supplier B. At the time of the investigation, outbreak and recall information was shared with Indian competent authorities. In March 2022, a follow-up inspection of Supplier B's facility in India was conducted, and insanitary conditions and practices were observed. This outbreak investigation highlighted the importance of multidisciplinary national and international public health partnerships. The lessons learned from this investigation should continue to inform investigational activities and food safety guidance for the industry.
Collapse
Affiliation(s)
- Erin Jenkins
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA.
| | - Jennifer Cripe
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Brooke M Whitney
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Tiffany Greenlee
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | | | - Thai-An Nguyen
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Julia Manetas
- Office of Regulatory Science, Immediate Office, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ashley Abraham
- Office of Import Operations, Division of Import Operations, Food and Drug Administration, Silver Spring, MD, USA
| | - Teresa Fox
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Natalie Mickelsen
- Office of Global Policy and Strategy, Food and Drug Administration, New Delhi, India
| | - Christopher Priddy
- Office of Global Policy and Strategy, Food and Drug Administration, New Delhi, India
| | - Sarah McMullen
- Office of Global Policy and Strategy, Food and Drug Administration, New Delhi, India
| | - Alvin Crosby
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Stelios Viazis
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
30
|
Yilmaz G, Chan M, Lau CHF, Capitani S, Kang M, Charron P, Hoover E, Topp E, Guan J. How Gut Microbiome Perturbation Caused by Antibiotic Pre-Treatments Affected the Conjugative Transfer of Antimicrobial Resistance Genes. Microorganisms 2024; 12:2148. [PMID: 39597538 PMCID: PMC11596856 DOI: 10.3390/microorganisms12112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs. To address this, mice were pre-treated with streptomycin, ampicillin, or sulfamethazine, and then orally inoculated with Salmonella enterica serovar Typhimurium and S. Heidelberg carrying a multi-drug resistance IncA/C plasmid. The streptomycin pre-treatment caused severe microbiome perturbation, promoting the high-density colonization of S. Heidelberg and S. Typhimurium, and enabling an IncA/C transfer from S. Heidelberg to S. Typhimurium and a commensal Escherichia coli. The ampicillin pre-treatment induced moderate microbiome perturbation, supporting only S. Heidelberg colonization and the IncA/C transfer to commensal E. coli. The sulfamethazine pre-treatment led to mild microbiome perturbation, favoring neither Salmonella spp. colonization nor a conjugative plasmid transfer. The degree of gut dysbiosis also influenced the enrichment or depletion of the ARGs associated with mobile plasmids or core commensal bacteria, respectively. These findings underscore the significance of pre-existing gut dysbiosis induced by various antibiotic treatments on ARG dissemination and may inform prudent antibiotic use practices.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Maria Chan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Sabrina Capitani
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Philippe Charron
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Emily Hoover
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Edward Topp
- Agroecology Research Unit, INRAE, University of Burgundy, 21065 Dijon, France;
| | - Jiewen Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| |
Collapse
|
31
|
Kim DH, Seo H, Jung S, Kim BJ. Global prevalence of Mycobacterium massiliense strains with recombinant rpoB genes (Rec-Mas) horizontally transferred from Mycobacterium abscessus: two major types, dominant circulating clone 7 and MLST ST46 sequence type. Microbiol Spectr 2024; 12:e0193524. [PMID: 39431893 PMCID: PMC11619318 DOI: 10.1128/spectrum.01935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium abscessus is a group of emerging antimicrobial-resistant nontuberculous mycobacteria that causes severe lung disease in infected patients globally. Recently, molecular epidemiology studies have indicated that horizontal gene transfer (HGT) events in the rpoB gene are prevalent between M. abscessus subspecies. To determine the global prevalence of M. abscessus strains subjected to rpoB HGT, we performed phylogenetic inference using a 711-bp rpoB sequence extracted from 1,786 M. abscessus isolates for which the whole-genome sequence was publicly available. Our data showed that a total of 74 isolates (4.1%) from 1,786 strains are subject to rpoB HGT, which is more prevalent than strains with hsp65 HGT (19 isolates from 1,786, 1.1%). Most of these (69 isolates) belong to two major groups of Mycobacterium massiliense, of which the rpoB gene is horizontally transferred from M. abscessus (Rec-mas), dominant circulating clone 7 (DCC7) (44 isolates) and ST46 type by multilocus sequence typing (25 isolates). The Rec-mas strains of the two groups have distinct geographical patient distributions, of which the former is mainly distributed in the United States, while the latter is prevalent in Asia. Our further genome-based analysis indicated that the ST46 type is a novel DCC candidate of M. massiliense that is responsible for dissemination between noncystic fibrosis patients in Asia. In conclusion, our global phylogenetic analysis revealed two major Rec-mas clones with distinct geographical distributions, namely, DCC7 and ST46. This study provides insights into the genetic clustering and person-to-person transmission of globally dominant and area-specific strains harboring the HGT rpoB gene. IMPORTANCE Horizontal gene transfer (HGT) events play a pivotal role in the evolution of Mycobacterium abscessus into dominant circulating clones (DCCs), which is capable of causing patient-to-patient transmission. In particular, HGT of the rpoB gene between strains of different subspecies of M. abscessus could also compromise differentiation between strains of M. abscessus. Here, for the first time, using 1,786 M. abscessus genome sequences, we evaluated the global prevalence of M. abscessus strains subjected to rpoB HGT. We found a greater prevalence of M. abscessus subjected to rpoB HGT than to those subjected to hsp65 HGT, which is mainly due to two Rec-mas clones, dominant circulating clone 7 and ST46, which are responsible for dissemination between non-CF patients in Asia. Our data highlight the importance of rpoB HGT in the evolution of M. abscessus, particularly Mycobacterium massiliense, into virulent DCC clones.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Sangkwon Jung
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Chen R, Yang L, Pajor MS, Wiedmann M, Orsi RH. Salmonella associated with agricultural animals exhibit diverse evolutionary rates and show evidence of recent clonal expansion. mBio 2024; 15:e0191324. [PMID: 39287448 PMCID: PMC11492988 DOI: 10.1128/mbio.01913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Most foodborne salmonellosis outbreaks are linked to agricultural animal products with a few serovars accounting for most Salmonella isolated from specific animal products, suggesting an adaptation to the corresponding animal hosts and their respective environments. Here, we utilized whole-genome sequence (WGS) data to analyze the evolution and population genetics of seven serovars frequently isolated from ground beef (Montevideo, Cerro, and Dublin), chicken (Kentucky, Infantis, and Enteritidis), and turkey (Reading) in the United States. In addition, publicly available metadata were used to characterize major clades within each serovar with regard to public health significance. Except for Dublin, all serovars were polyphyletic, comprising 2-6 phylogenetic groups. Further partitioning of the phylogenies identified 25 major clades, including 12 associated with animal or environmental niches. These 12 clades differed in evolutionary parameters (e.g., substitution rates) as well as public health relevant characteristics (e.g., association with human illness, antimicrobial resistance). Overall, our results highlight several critical trends: (i) the Salmonella generation time appears to be more dependent on source than serovar and (ii) all serovars contain clades and sub-clades that are estimated to have emerged after the year 1940 and that are enriched for isolates associated with humans, agricultural animals, antimicrobial resistance (AMR), and/or specific geographical regions. These findings suggest that serotyping alone does not provide enough resolution to differentiate isolates that may have evolved independently, present distinct geographic distribution and host association, and possibly have distinct public health significance. IMPORTANCE Non-typhoidal Salmonella are major foodborne bacterial pathogens estimated to cause more than one million illnesses, thousands of hospitalizations, and hundreds of deaths annually in the United States. More than 70% of Salmonella outbreaks in the United States have been associated with agricultural animals. Certain serovars include persistent strains that have repeatedly contaminated beef, chicken, and turkey, causing outbreaks and sporadic cases over many years. These persistent strains represent a particular challenge to public health, as they are genetically clonal and widespread, making it difficult to differentiate distinct outbreak and contamination events using whole-genome sequence (WGS)-based subtyping methods (e.g., core genome allelic typing). Our results indicate that a phylogenetic approach is needed to investigate persistent strains and suggest that the association between a Salmonella serovar and an agricultural animal is driven by the expansion of clonal subtypes that likely became adapted to specific animals and associated environments.
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Linghuan Yang
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | | | - Martin Wiedmann
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| |
Collapse
|
33
|
Clarke J, Kosanovic D, Kavanagh K, Grogan H, Fitzpatrick DA. Draft genome sequence of the fungal biocontrol agent, Bacillus velezensis Kos. Microbiol Resour Announc 2024; 13:e0057524. [PMID: 39189725 PMCID: PMC11465862 DOI: 10.1128/mra.00575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Here, we report the draft genome sequence of Bacillus velezensis strain Kos, isolated from casing soil used during Agaricus bisporus cultivation in Dublin, Ireland. B. velezensis Kos exhibits a suppressive ability toward Cladobotryum mycophilum, Trichoderma aggressivum, and Lecanicillium fungicola, which are common threats to A. bisporus production, cultivation, and quality.
Collapse
Affiliation(s)
- Joy Clarke
- Department of Biology, Maynooth University, Maynooth, Ireland
- Horticulture Development Department, Teagasc, Dublin, Ireland
| | | | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Helen Grogan
- Horticulture Development Department, Teagasc, Dublin, Ireland
| | | |
Collapse
|
34
|
Abraham CA, Bradley KM, Scully SM, Orlygsson J, Dube D, Benner SA. Draft genome of Thermoanaerobacter thermohydrosulfuricus strain AK152, a novel thermophilic and anaerobic bacterium isolated from a hot spring in Iceland. Microbiol Resour Announc 2024; 13:e0117523. [PMID: 39194266 PMCID: PMC11465804 DOI: 10.1128/mra.01175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
We present the draft genome of the bacterium Thermoanaerobacter thermohydrosulfuricus strain AK152, a thermophilic, endospore-spore-forming, anaerobe isolated from a hot spring in Grensdalur, in Southwestern Iceland. This assembled genome will lay the foundation for identifying the carboxylic and amino acid fermentation pathways, suggesting biotechnological applications for this strain.
Collapse
Affiliation(s)
- Clay A. Abraham
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Department of Biology, University of Saint Joseph, West Hartford, Connecticut, USA
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Sean Michael Scully
- Department of Natural Resource Science, University of Akureyri, Akureyri, Iceland
| | - Johann Orlygsson
- Department of Natural Resource Science, University of Akureyri, Akureyri, Iceland
| | - Derek Dube
- Department of Biology, University of Saint Joseph, West Hartford, Connecticut, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| |
Collapse
|
35
|
Patil S, Wong CW, Zhang R, Zhang A, Zhou X, Zhang W. Draft genome sequence of Bacillus cereus sequence type 2255 isolated from powdered infant formula. Microbiol Resour Announc 2024; 13:e0070224. [PMID: 39287409 PMCID: PMC11465743 DOI: 10.1128/mra.00702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The draft genome sequence of a Bacillus cereus strain, DFPST-SP1, isolated from powdered infant formula in the United States is reported. The 5,216,828-bp draft genome comprises 46 contigs with 66.4× coverage and 36% GC content and was typed as sequence type 2255.
Collapse
Affiliation(s)
- Sonali Patil
- Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Catherine W.Y. Wong
- Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Richard Zhang
- Hinsdale Central High School, Hinsdale, Illinois, USA
| | - Annika Zhang
- Hinsdale Central High School, Hinsdale, Illinois, USA
| | - Xinyi Zhou
- Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| |
Collapse
|
36
|
Haverkamp THA, Spilsberg B, Johannessen GS, Torp M, Sekse C. Detection and characterization of Campylobacter in air samples from poultry houses using shot-gun metagenomics - a pilot study. BMC Microbiol 2024; 24:399. [PMID: 39385092 PMCID: PMC11462905 DOI: 10.1186/s12866-024-03563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Foodborne pathogens such as Campylobacter jejuni are responsible for a large proportion of the gastrointestinal infections worldwide associated with poultry meat. Campylobacter spp. can be found in the chicken fecal microbiome and can contaminate poultry meat during the slaughter process. Commonly used sampling methods to detect Campylobacter spp. at poultry farms use fecal droppings or boot swabs in combination with conventional culture techniques or PCR. In this pilot study, we have used air filtering and filters spiked with mock communities in combination with shotgun metagenomics to detect Campylobacter and test the applicability of this approach for the detection and characterization of foodborne pathogens. To the best of our knowledge is this the first study that combines air filtering with shotgun metagenomic sequencing for detection and characterization of Campylobacter. RESULTS Analysis of air filters spiked with different levels of Campylobacter, into a background of mock or poultry house communities, indicated that we could detect as little as 200 colony forming units (CFU) Campylobacter per sample using our protocols. The results indicate that even with limited sequencing effort we could detect Campylobacter in the samples analysed in this study. We observed significant amounts of Campylobacter in real-life samples from poultry houses using both real-time PCR as well as shotgun metagenomics, suggesting that the flocks in both houses were infected with Campylobacter spp. Interestingly, in both houses we find diverse microbial communities present in the indoor air which reflect the fecal microbiome of poultry. Some of the identified genera such as Staphylococcus, Escherichia and Pseudomonas are known to contain opportunistic pathogenic species. CONCLUSIONS These results show that air sampling of poultry houses in combination with shotgun metagenomics can detect and identify Campylobacter spp. present at low levels. This is important since early detection of Campylobacter enables measures to be put in place to ensure the safety of broiler products, animal health and public health. This approach has the potential to detect any pathogen present in poultry house air.
Collapse
Affiliation(s)
| | | | | | - Mona Torp
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|
37
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
38
|
Dinh-Hung N, Mwamburi SM, Dong HT, Rodkhum C, Meemetta W, Linh NV, Mai HN, Dhar AK, Hirono I, Senapin S, Chatchaiphan S. Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish ( Betta splendens). Animals (Basel) 2024; 14:2833. [PMID: 39409782 PMCID: PMC11476334 DOI: 10.3390/ani14192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
This study aims to genomically elucidate six isolates of rapidly growing non-tuberculous mycobacteria (RGM) derived from Siamese fighting fish (Betta splendens). These isolates had previously undergone phenotypic and biochemical characterization, antibiotic susceptibility testing, and in vivo virulence assessment. Initial DNA barcoding using the 16S rRNA sequence assigned these six isolates to five different species, namely Mycobacterium chelonae (BN1983), M. cosmeticum (BN1984 and N041), M. farcinogenes (SNSK5), M. mucogenicum (BN1956), and M. senegalense (BN1985). However, the identification relied solely on the highest percent identity of the 16S rRNA gene, raising concerns about the taxonomic ambiguity of these species. Comprehensive whole genome sequencing (WGS) and extended genomic comparisons using multilocus sequence typing (MLST), average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) led to the reclassification of BN1985 and SNSK5 as M. conceptionense while confirming BN1983 as M. chelonae and BN1984 and N041 as M. cosmeticum. Notably, the analysis of the BN1956 isolate revealed a potential new species that is proposed here as M. mucogenicum subsp. phocaicum sp. nov. Common genes encoding "mycobacterial" virulence proteins, such as PE and PPE family proteins, MCE, and YrbE proteins, were detected in all six isolates. Two species, namely M. chelonae and M. cosmeticum, appear to have horizontally acquired T6SS-II (clpB), catalase (katA), GroEL (groel), and capsule (rmlb) from distantly related environmental bacteria such as Klebsiella sp., Neisseria sp., Clostridium sp., and Streptococcus sp. This study provides the first draft genome sequence of RGM isolates currently circulating in B. splendens and underscores the necessity of WGS for the identification and classification of mycobacterial species.
Collapse
Affiliation(s)
- Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Samuel Mwakisha Mwamburi
- Kenya Marine and Fisheries Research Institute, Mombasa 80100, Kenya;
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management (AARM), School of Environment, Resources and Development, Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand;
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Watcharachai Meemetta
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Hung N. Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
39
|
Westerström P, Gabrielsen Ås C, Bak Dragsted U. Characterising virulence in a nontoxigenic non-O1/non-O139 Vibrio cholerae isolate imported from Vietnam. Heliyon 2024; 10:e37205. [PMID: 39309771 PMCID: PMC11416250 DOI: 10.1016/j.heliyon.2024.e37205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Vibrio cholerae is a major human pathogen that can cause life-threatening acute diarrhea. V. cholerae are classified according to O-antigen polysaccharide outer membrane properties, where the serotypes O1 and O139 are strains that cause pandemics and epidemics while non-O1/non-O139 usually cause mild disease. The dynamic evolution of V. cholerae involves acquisition of new virulence factors through horizontal gene transfer and formerly nontoxigenic serogroups are increasingly being reported to cause severe forms of human disease. In this study we have serotyped one isolate (ST588-CPH) of imported V. cholerae from Vietnam to Denmark and performed whole genome sequencing to identify known virulence genes and furthermore studied the pattern of virulence in closely related pathogenic strains of V. cholerae. ST558-CPH was found to be a non-O1/non-O139 strain. Initial analysis from the whole genome sequencing gave a 96,6 % match to the O139-specific wbfZ gene, but in a second analysis with a higher identification threshold, the wbfZ gene was absent. We suggest a "de novo" display of a database misannotation, which explains the conflicting results. The MLST analysis revealed that the isolate belongs to the nontoxigenic non-O1/non-O139 sequence type ST558. ST558 has recently been reported as a sequence type forming a cluster of ST's that should be monitored, as it has shown to have virulence causing moderate to severe illness. Our analysis of virulence genes identified MakA, a recently discovered toxin, which seems to be generally present in both toxigenic and nontoxigenic strains.
Collapse
Affiliation(s)
- Pontus Westerström
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Christina Gabrielsen Ås
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Ulrik Bak Dragsted
- Department for Multimorbidity, North Zealand Hospital, Hilleroed, Denmark
| |
Collapse
|
40
|
Eskola K, Aimo-Koivisto E, Heikinheimo A, Mykkänen A, Hautajärvi T, Grönthal T. Prevalence, risk factors, and characterisation of extended-spectrum β-lactamase -producing Enterobacterales (ESBL-E) in horses entering an equine hospital and description of longitudinal excretion. BMC Vet Res 2024; 20:412. [PMID: 39272173 PMCID: PMC11396584 DOI: 10.1186/s12917-024-04260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Extended-spectrum β-lactamase -producing Enterobacterales (ESBL-E) are important zoonotic pathogens that can cause serious clinical infections, also in horses. Preventing the spread of ESBL-E, especially in the equine hospital environment, is key to reducing the number of difficult-to-treat infections. Estimating the local prevalence of ESBL-E in horses is crucial to establish targeted infection control programs at equine hospitals. We conducted a prevalence and risk factor study in equine patients on admission to an equine teaching hospital in Finland through a rectal ESBL-E screening specimen of the horse and a questionnaire. RESULTS The prevalence of ESBL-E in admitted horses was 3% (5/161, 95% CI 1-7%); none of the tested factors remained statistically significant in multivariate analysis, although antimicrobial treatment within three months was borderline significant (p = 0.052). Extended-spectrum β-lactamase -producing Klebsiella pneumoniae ST6179:CTX-M-15 was detected in three horses using whole-genome sequencing, which in combination with patient records suggested nosocomial transmission. Escherichia coli isolates were ST1250:CTX-M-1 (n = 1), ST1079:CTX-M-1 (n = 1), and ST1245:CTX-M-14 (n = 1). Multiple virulence genes were detected in the ESBL-E isolates. In the ESBL-E positive horses enrolled in a one-year follow-up study, ESBL-E were unlikely to be isolated in rectal screening specimens after the initial positive specimen. CONCLUSIONS The prevalence of ESBL-E in horses visiting a veterinary teaching hospital in Finland is low, indicating an overall low prevalence estimate in the country's equine population. No statistically significant risk factors were identified, likely due to the low number of cases. The duration of ESBL-E carriage is likely to be very short in horses.
Collapse
Affiliation(s)
- Katarina Eskola
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Elina Aimo-Koivisto
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Food and Feed Microbiology Unit, Finnish Food Authority, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Thomas Grönthal
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Animal Health Diagnostics Unit, Finnish Food Authority, Helsinki, Finland.
| |
Collapse
|
41
|
Dabernig-Heinz J, Lohde M, Hölzer M, Cabal A, Conzemius R, Brandt C, Kohl M, Halbedel S, Hyden P, Fischer MA, Pietzka A, Daza B, Idelevich EA, Stöger A, Becker K, Fuchs S, Ruppitsch W, Steinmetz I, Kohler C, Wagner GE. A multicenter study on accuracy and reproducibility of nanopore sequencing-based genotyping of bacterial pathogens. J Clin Microbiol 2024; 62:e0062824. [PMID: 39158309 PMCID: PMC11389150 DOI: 10.1128/jcm.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Nanopore sequencing has shown the potential to democratize genomic pathogen surveillance due to its ease of use and low entry cost. However, recent genotyping studies showed discrepant results compared to gold-standard short-read sequencing. Furthermore, although essential for widespread application, the reproducibility of nanopore-only genotyping remains largely unresolved. In our multicenter performance study involving five laboratories, four public health-relevant bacterial species were sequenced with the latest R10.4.1 flow cells and V14 chemistry. Core genome MLST analysis of over 500 data sets revealed highly strain-specific typing errors in all species in each laboratory. Investigation of the methylation-related errors revealed consistent DNA motifs at error-prone sites across participants at read level. Depending on the frequency of incorrect target reads, this either leads to correct or incorrect typing, whereby only minimal frequency deviations can randomly determine the final result. PCR preamplification, recent basecalling model updates and an optimized polishing strategy notably diminished the non-reproducible typing. Our study highlights the potential for new errors to appear with each newly sequenced strain and lays the foundation for computational approaches to reduce such typing errors. In conclusion, our multicenter study shows the necessity for a new validation concept for nanopore sequencing-based, standardized bacterial typing, where single nucleotide accuracy is critical.
Collapse
Affiliation(s)
- Johanna Dabernig-Heinz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Mara Lohde
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Matthias Kohl
- Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen, Germany
| | - Sven Halbedel
- Nosocomial Pathogens and Antibiotic Resistances (FG13), Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Hyden
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Martin A. Fischer
- Enteropathogenic bacteria and Legionella (FG11), Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Beatriz Daza
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Evgeny A. Idelevich
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Anna Stöger
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Karsten Becker
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Stephan Fuchs
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | | | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute for Medical Microbiology, F.-Sauerbruch-Str., Greifswald, Germany
| | - Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
42
|
Karama M, Lawal OU, Parreira VR, Soni M, Chen Y, Cenci-Goga BT, Grispoldi L, Greyling J, Goodridge L. Draft genome sequences of three poultry Salmonella Shamba isolates from South Africa. Microbiol Resour Announc 2024; 13:e0030024. [PMID: 39083698 PMCID: PMC11385439 DOI: 10.1128/mra.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Nontyphoidal Salmonella enterica serovars are foodborne pathogens commonly transmitted through poultry products. Draft genome sequences of three Salmonella enterica subsp. enterica serovar Shamba isolates which were obtained from poultry house dust in South Africa are reported herein.
Collapse
Affiliation(s)
- Musafiri Karama
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Opeyemi U Lawal
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mitra Soni
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yanhong Chen
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Beniamino T Cenci-Goga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Veterinary Medicine, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, Italy
| | - Luca Grispoldi
- Department of Veterinary Medicine, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, Italy
| | - Janita Greyling
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
43
|
Miller H, Howard J, Elvy J, Campbell P, Anderson T, Bakker S, Eustace A, Perez H, Winter D, Dyet K. Genomic epidemiology of mecC-carrying Staphylococcus aureus isolates from human clinical cases in New Zealand. Access Microbiol 2024; 6:000849.v2. [PMID: 39239568 PMCID: PMC11376224 DOI: 10.1099/acmi.0.000849.v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
In 2011, a novel methicillin resistance gene, mecC, was described in human and bovine Staphylococcus aureus isolates. mecC-positive S. aureus is most commonly associated with livestock and wildlife populations across Europe and is particularly prevalent in hedgehogs, but only occasionally causes human infections. In this study, we characterize and investigate the origin of two human S. aureus isolates containing mecC genes from New Zealand. The two isolates were identified from patients with severe invasion infections as part of an S. aureus bacteraemia study. Whole-genome sequencing was used to characterize staphylococcal cassette chromosome mec (SCCmec) elements and perform phylogenetic comparisons with publicly available strains from mecC-associated clonal complexes, including isolates from hedgehogs from New Zealand and Europe/United Kingdom (UK), and livestock, wildlife and human isolates from Europe/UK. The two isolates from our study have almost identical SCCmec type XI elements containing a mecC gene. However, this gene contains a premature stop codon, consistent with the methicillin-susceptible phenotype observed for these isolates. Core genome SNP analyses showed that the two isolates are 234 SNPs apart and are most closely related to an isolate obtained from a New Zealand hedgehog. However, there are considerable differences in the mecC mobile element between the human and hedgehog isolates, indicating the presence of an as-yet-unknown reservoir of mecC S. aureus in the New Zealand environment.
Collapse
Affiliation(s)
- Hilary Miller
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Julia Howard
- Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Juliet Elvy
- Institute of Environmental Science and Research, Wellington, New Zealand
- Department of Microbiology, Awanui Labs, Dunedin, New Zealand
| | - Patrick Campbell
- Infection Management Service, Christchurch Hospital, Christchurch, New Zealand
| | - Trevor Anderson
- Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Sarah Bakker
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Alexandra Eustace
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Hermes Perez
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - David Winter
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
44
|
Yamane K, Tanizawa Y, Kobayashi H, Kamizono T, Kojima Y, Takagi H, Tohno M. Proposal of Lactobacillus amylovorus subsp. animalis subsp. nov. and an emended description of Lactobacillus amylovorus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39264830 DOI: 10.1099/ijsem.0.006517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Seven novel lactic acid bacterial strains (BF125T, BF186, TKL145, YK3, YK6, YK10 and NSK) were isolated from the fresh faeces of Japanese black beef cattle and weanling piglets, spent mushroom substrates, or steeping water of a corn starch production plant. These strains are rod-shaped, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, cytochrome oxidase-negative, facultatively anaerobic, and homofermentative. Strain BF125T did not produce any gas from glucose; both d- and l-lactate were produced as end-products of glucose (D/L, 40 : 60). Growth occurred at 30-45 °C (optimum, 37 °C), pH 5.0-8.0 (optimum, pH 6.0), and with NaCl concentration of 1.0-3.0% (w/v). The G+C content of genomic DNA of strain BF125T was 37.8 mol% (whole-genome analysis). The major fatty acids were C16 : 0, C18 : 1 ω9c, C19 cyclopropane 9, 10, and summed feature 10. The 16S rRNA gene in strain BF125T showed high similarity to that of the type strain of Lactobacillus amylovorus (99.93%), and the other isolates were also identified as L. amylovorus based on these similarities. A phylogenetic tree based on the core genomes of L. amylovorus strains (n=54), including the seven isolates, showed that they could be divided into two clusters. Strains YK3, YK6, YK10, and NSK were in the first cluster, along with the type strain DSM 20531T, while the second cluster included isolates BF125T, BF186, TKL145, and other strains isolated from various animal origins. Phenotypic differences in fermentability were observed for lactose, salicin, and gentiobiose between these two groups. The intergroup digital DNA-DNA hybridization values (72.9-78.6%) and intergroup average nucleotide identity values (95.64-96.92%) were comparable to values calculated using datasets of other valid subspecies of the genus (ex-) Lactobacillus. In light of the physiological, genotypic, and phylogenetic evidence, we propose a novel subspecies of L. amylovorus, named Lactobacillus amylovorus subsp. animalis subsp. nov. (type strain BF125T=MAFF 212522T=DSM 115528T). Our findings also led to the automatic creation of Lactobacillus amylovorus subsp. amylovorus subsp. nov. and an emended description of the species L. amylovorus.
Collapse
Affiliation(s)
- Kenji Yamane
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Tomomi Kamizono
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yoichiro Kojima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroki Takagi
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Masanori Tohno
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
45
|
Kotzamanidis C, Malousi A, Paraskeva A, Vafeas G, Giantzi V, Hatzigiannakis E, Dalampakis P, Kinigopoulou V, Vrouhakis I, Zouboulis A, Yiangou M, Zdragas A. River waters in Greece: A reservoir for clinically relevant extended-spectrum-β-lactamases-producing Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173554. [PMID: 38823724 DOI: 10.1016/j.scitotenv.2024.173554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
In the current study, the genotypic characteristics such as antimicrobial resistance and virulence genes, and plasmid replicons and phenotypic characteristics such as biofilm formation and antimicrobial resistance of 87 extended-spectrum beta-lactamase (ESBL)-producing E. coli (ESBL-Ec) isolated from 7 water bodies in northern Greece were investigated. Our data show a high prevalence (60.0 %) of ESBL-Ec in surface waters that exhibit high genetic diversity, suggesting multiple sources of their transmission into the aquatic environment. When evaluating the antimicrobial resistance of isolates, wide variation in their resistance profiles has been detected, with all isolates being multi-drug resistant (MDR). Regarding biofilm formation capacity and phylogenetic groups, the majority (54.0 %, 47/87) of ESBL-Ec were classified as no biofilm producers mainly assigned to phylogroup A (35.6 %; 31/87), followed by B2 (26.5 %; 23/87). PCR screening showed that a high proportion of the isolates tested positive for the blaCTX-M-1 group genes (69 %, 60/87), followed by blaTEM (55.2 %, 48/87), blaOXA (25.3 %, 22/87) and blaCTX-M-9 (17.2 %, 15/87). A subset of 28 ESBL-Ec strains was further investigated by applying whole genome sequencing (WGS), and among them, certain clinically significant sequence types were identified, such as ST131 and ST10. The corresponding in silico analysis predicted all these isolates as human pathogens, while a significant proportion of WGS-ESBL-Ec were assigned to extraintestinal pathogenic E. coli (ExPEC; 32.1 %), and urinary pathogenic E. coli (UPEC; 28.6 %) pathotypes. Comparative phylogenetic analysis, showed that the genomes of the ST131-O25:H4-H30 isolates are genetically linked to the human clinical strains. Here, we report for the first time the detection of a plasmid-mediated mobile colistin resistance gene in ESBL-Ec in Greece isolated from an environmental source. Overall, this study underlines the role of surface waters as a reservoir for antibiotic resistance genes and for presumptive pathogenic ESBL-Ec.
Collapse
Affiliation(s)
- Charalampos Kotzamanidis
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece.
| | - Andigoni Malousi
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Genomics and Epigenomics Translational Research Group, Center for Interdisciplinary Research and Innovation, Thessaloniki 57001, Greece
| | - Anastasia Paraskeva
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vafeas
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| | - Virginia Giantzi
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| | - Evaggelos Hatzigiannakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Paschalis Dalampakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Vasiliki Kinigopoulou
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Ioannis Vrouhakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Anastasios Zouboulis
- Department of Chemistry, Division of Chemical & Industrial Technology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zdragas
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| |
Collapse
|
46
|
Graham H, van der Most M, Kampfraath AA, Visser V, Dinkla A, Harders F, Ruuls R, van Essen-Zandbergen A, van den Esker MH, van der Heide R, van Keulen L, Koets A. Transmission of Brucella canis in a canine kennel following introduction of an infected dog. Vet Microbiol 2024; 296:110183. [PMID: 38991314 DOI: 10.1016/j.vetmic.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Brucella canis is a zoonotic pathogen and the main causative agent of canine brucellosis. In the Netherlands, B. canis had previously only been detected in individual cases of imported dogs. However, an outbreak of B. canis occurred for the first time in a cohort of autochthonous dogs in a breeding kennel in 2019. The outbreak began with a positive serological test result of an imported intact male dog showing clinical symptoms of brucellosis. Consequently, urine and blood samples were collected and tested positive for B. canis by culture, matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF MS) and whole-genome-sequencing (WGS). Screening of the contact dogs in the kennel where the index case was kept, revealed that antibodies against B. canis could be detected in 23 out of 69 dogs (34 %) by serum agglutination test (SAT). Of the 23 seropositive dogs, B. canis could be cultured from the urine and/or heparin samples of 19 dogs (83 %). This outbreak represents the first documented case of transmission of B. canis to autochthonous contact dogs in the Netherlands. WGS revealed all B. canis isolates belonged to the same cluster, which means the transmission of B. canis in the breeding kennel was most likely caused by the introduction of one infected dog. Comparing this cluster with data from other B. canis isolates, it also appears that characteristic clusters of B. canis are present in several endemic countries. These clusters seem to remain stable over time and may help in locating the origin of new isolates found. This outbreak showed that the international movement of dogs from endemic countries poses a threat to the canine population, while serological screening and WGS proved to be valuable tools for respectively screening and the epidemiological investigation.
Collapse
Affiliation(s)
- Heather Graham
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands.
| | | | | | - Vanessa Visser
- Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Annemieke Dinkla
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands
| | - Robin Ruuls
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands
| | | | | | | | - Lucien van Keulen
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands
| | - Ad Koets
- Wageningen Bioveterinary Research, Wageningen UR, Lelystad, the Netherlands
| |
Collapse
|
47
|
Nagar DN, Mani K, Braganca JM. Genomic insights on carotenoid synthesis by extremely halophilic archaea Haloarcula rubripromontorii BS2, Haloferax lucentense BBK2 and Halogeometricum borinquense E3 isolated from the solar salterns of India. Sci Rep 2024; 14:20214. [PMID: 39215047 PMCID: PMC11364659 DOI: 10.1038/s41598-024-70149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Haloarchaeal cultures were isolated from solar salterns of Goa and Tamil Nadu and designated as BS2, BBK2 and E3. These isolates grew with a characteristic bright orange to pink pigmentation and were capable of growing in media containing upto 25% (w/vol) NaCl. Whole genome sequencing (WGS) of the three haloarchaeal strains BS2, BBK2 and E3 indicated an assembled genomic size of 4.1 Mb, 3.8 Mb and 4 Mb with G + C content of 61.8, 65.6 and 59.8% respectively. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the archaeal isolates belong to Haloarcula, Haloferax and Halogeometricum genera. Haloarcula rubripromontorii BS2 was predicted to have 4292 genes with 4242 CDS regions, 46 tRNAs, 6 rRNAs and 3 misc_RNAs. In case of Haloferax lucentense BBK2,, 3840 genes with 3780 CDS regions were detected along with 52 tRNAs, 5 rRNAs and 3 misc_RNAs. Halogeometricum borinquense E3 contained 4101 genes, 4043 CDS regions, 52 tRNAs, 4 rRNAs, and 2 misc_RNAs. The functional annotation and curation of the haloarchaeal genome, revealed C50 carotenoid biosynthetic genes like phytoene desaturase/carotenoid 3' -4' desaturase (crtI), lycopene elongase (ubiA/lyeJ) and carotenoid biosynthesis membrane protein (cruF) in the three isolates. Whereas crtD (C-3',4' desaturase), crtY (lycopene cyclase) and brp/blh (β-carotene dioxygenase) genes were identified only in BS2.
Collapse
Affiliation(s)
- Devika N Nagar
- Dept of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH 17B Zuarinagar, Goa, 403 726, India
| | - Kabilan Mani
- Center for Molecular Medicine & Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Judith M Braganca
- Dept of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH 17B Zuarinagar, Goa, 403 726, India.
| |
Collapse
|
48
|
Onyeka LO, Adesiyun AA, Ismail A, Allam M, Keddy KH, Thompson PN. Evidence for Horizontal Transmission and Recirculation of Shiga Toxin-Producing Escherichia coli in the Beef Production Chain in South Africa Using Whole Genome Sequencing. Pathogens 2024; 13:732. [PMID: 39338923 PMCID: PMC11434950 DOI: 10.3390/pathogens13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We used whole genome sequencing (WGS) as an epidemiologic surveillance tool to elucidate the transmission dynamics of Shiga toxin-producing Escherichia coli (STEC) strains along the beef production chain in South Africa. Isolates were obtained from a cattle farm, abattoirs and retail outlets. Isolates were analysed using WGS on a MiSeq platform (Illumina, San Diego, CA, USA) and phylogenetic analysis was carried out. Of the 85 isolates, 39% (33) carried the stx gene and 61% (52) had lost the stx gene. The prevalence of stx subtypes was as follows; stx1a 55% (18/33), stx1b 52% (17/33), stx2a 55% (18/33), stx2b 27% (9/33), stx2dB 30% (10/33) and stx2d1A 15% (5/33). Thirty-five different serogenotypes were detected, of which 65% (56) were flagellar H-antigens and 34% (29) were both O-antigens and flagellar H-antigens. We identified 50 different sequence types (STs), and only nine of the isolates were assigned to three different clonal complexes. Core genome phylogenetic analysis revealed genetic relatedness, and isolates clustered mainly according to their STs and serogenotypes regardless of stx subtypes. This study provides evidence of horizontal transmission and recirculation of STEC strains in Gauteng province and demonstrates that every stage of the beef production chain plays a significant role in STEC entry into the food chain.
Collapse
Affiliation(s)
- Libby Obumneke Onyeka
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike 440101, Abia State, Nigeria
| | - Abiodun A. Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (A.I.); (M.A.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (A.I.); (M.A.)
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Karen H. Keddy
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Peter N. Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| |
Collapse
|
49
|
Ceres K, Zehr JD, Murrell C, Millet JK, Sun Q, McQueary HC, Horton A, Cazer C, Sams K, Reboul G, Andreopoulos WB, Mitchell PK, Anderson R, Franklin-Guild R, Cronk BD, Stanhope BJ, Burbick CR, Wolking R, Peak L, Zhang Y, McDowall R, Krishnamurthy A, Slavic D, Sekhon PK, Tyson GH, Ceric O, Stanhope MJ, Goodman LB. Evolutionary genomic analyses of canine E. coli infections identify a relic capsular locus associated with resistance to multiple classes of antimicrobials. Appl Environ Microbiol 2024; 90:e0035424. [PMID: 39012166 PMCID: PMC11337803 DOI: 10.1128/aem.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/17/2024] Open
Abstract
Infections caused by antimicrobial-resistant Escherichia coli are the leading cause of death attributed to antimicrobial resistance (AMR) worldwide, and the known AMR mechanisms involve a range of functional proteins. Here, we employed a pan-genome wide association study (GWAS) approach on over 1,000 E. coli isolates from sick dogs collected across the US and Canada and identified a strong statistical association (empirical P < 0.01) of AMR, involving a range of antibiotics to a group 1 capsular (CPS) gene cluster. This cluster included genes under relaxed selection pressure, had several loci missing, and had pseudogenes for other key loci. Furthermore, this cluster is widespread in E. coli and Klebsiella clinical isolates across multiple host species. Earlier studies demonstrated that the octameric CPS polysaccharide export protein Wza can transmit macrolide antibiotics into the E. coli periplasm. We suggest that the CPS in question, and its highly divergent Wza, functions as an antibiotic trap, preventing antimicrobial penetration. We also highlight the high diversity of lineages circulating in dogs across all regions studied, the overlap with human lineages, and regional prevalence of resistance to multiple antimicrobial classes. IMPORTANCE Much of the human genomic epidemiology data available for E. coli mechanism discovery studies has been heavily biased toward shiga-toxin producing strains from humans and livestock. E. coli occupies many niches and produces a wide variety of other significant pathotypes, including some implicated in chronic disease. We hypothesized that since dogs tend to share similar strains with their owners and are treated with similar antibiotics, their pathogenic isolates will harbor unexplored AMR mechanisms of importance to humans as well as animals. By comparing over 1,000 genomes with in vitro antimicrobial susceptibility data from sick dogs across the US and Canada, we identified a strong multidrug resistance association with an operon that appears to have once conferred a type 1 capsule production system.
Collapse
Affiliation(s)
| | | | | | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, Paris, France
| | - Qi Sun
- Cornell University, Ithaca, New York, USA
| | | | | | | | - Kelly Sams
- Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | - Claire R. Burbick
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Rebecca Wolking
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yan Zhang
- Ohio Department of Agriculture Animal Disease Diagnostic Laboratory, Reynoldsburg, Ohio, USA
| | - Rebeccah McDowall
- University of Guelph, Animal Health Laboratory, Guelph, Ontario, Canada
| | | | - Durda Slavic
- University of Guelph, Animal Health Laboratory, Guelph, Ontario, Canada
| | | | - Gregory H. Tyson
- US Food and Drug Administration, Veterinary Laboratory Investigation and Response Network, Laurel, Maryland, USA
| | - Olgica Ceric
- US Food and Drug Administration, Veterinary Laboratory Investigation and Response Network, Laurel, Maryland, USA
| | | | | |
Collapse
|
50
|
Admasie A, Wei X, Johnson B, Burns L, Pawar P, Aurand-Cravens A, Voloshchuk O, Dudley EG, Sisay Tessema T, Zewdu A, Kovac J. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolated from the Ethiopian dairy supply chain. PLoS One 2024; 19:e0305581. [PMID: 39159178 PMCID: PMC11332940 DOI: 10.1371/journal.pone.0305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried β-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.
Collapse
Affiliation(s)
- Abera Admasie
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Logan Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Preeti Pawar
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Ashagrie Zewdu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|