1
|
Patel AA, Cardona A, Cox DN. Neural substrates of cold nociception in Drosophila larva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.31.551339. [PMID: 37577520 PMCID: PMC10418107 DOI: 10.1101/2023.07.31.551339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury- causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in Drosophila larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Recent advances in circuit bases of behavior have identified and functionally validated Drosophila larval somatosensory circuitry involved in innocuous (mechanical) and noxious (heat and mechanical) cues. However, central processing of cold nociceptive cues remained unexplored. We implicate multisensory integrators (Basins), premotor (Down-and-Back) and projection (A09e and TePns) neurons as neural substrates required for cold-evoked behavioral and calcium responses. Neural silencing of cell types downstream of CIII md neurons led to significant reductions in cold-evoked behaviors and neural co-activation of CIII md neurons plus additional cell types facilitated larval contraction (CT) responses. Further, we demonstrate that optogenetic activation of CIII md neurons evokes calcium increases in these neurons. Finally, we characterize the premotor to motor neuron network underlying cold-evoked CT and delineate the muscular basis of CT response. Collectively, we demonstrate how Drosophila larvae process cold stimuli through functionally diverse somatosensory circuitry responsible for generating stimulus-specific behaviors.
Collapse
|
2
|
Sitaula A, Huang Y, Zarin A. Application of a Dual Optogenetic Silencing-Activation Protocol to Map Motor Neurons Driving Rolling Escape Behavior in Drosophila Larvae. Bio Protoc 2024; 14:e5131. [PMID: 39711882 PMCID: PMC11659774 DOI: 10.21769/bioprotoc.5131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024] Open
Abstract
Drosophila larvae exhibit rolling motor behavior as an escape response to avoid predators and painful stimuli. We introduce an accessible method for applying optogenetics to study the motor circuits driving rolling behavior. For this, we simultaneously implement the Gal4-UAS and LexA-Aop binary systems to express two distinct optogenetic channels, GtACR and Chrimson, in motor neuron (MN) subsets and rolling command neurons (Goro), respectively. Upon exposure to white LED light, Chrimson permits the influx of positive ions into Goro neurons, leading to depolarization, whereas GtACR mediates chloride influx into MNs, resulting in hyperpolarization. This method allows researchers to selectively activate certain neurons while simultaneously inhibiting others within a circuit of interest, offering a unique advantage over current optogenetic approaches, which often utilize a single type of optogenetic actuator. Here, we provide a detailed protocol for the dual silencing-activation approach using GtACR and Chrimson optogenetic channels and present a robust methodological framework for investigating the neuromuscular basis of rolling in larvae. Our cost-effective and scalable approach utilizes readily accessible equipment and can be applied to study other locomotor behaviors in Drosophila larvae, thereby enhancing our understanding of the neural circuit mechanisms underlying sensorimotor transformation. Key features • Enables real-time manipulation of neural activity, providing insights into the immediate effects of neuronal activation and silencing on larval behavior. • The protocol is adaptable to different experimental setups, allowing researchers to extend its application to other sensory modalities or behavioral assays. • Offers a standardized approach to studying nociceptive behaviors.
Collapse
Affiliation(s)
- Ankura Sitaula
- Biology Graduate Program, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Yuhan Huang
- Biology Graduate Program, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Aref Zarin
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Hoagland A, Newman ZL, Cai Z, Isacoff EY. Circuit firing homeostasis following synaptic perturbation ensures robust behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609984. [PMID: 39253468 PMCID: PMC11383027 DOI: 10.1101/2024.08.27.609984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Homeostatic regulation of excitability and synaptic transmission ensures stable neural circuit output under changing conditions. We find that pre- or postsynaptic weakening of motor neuron (MN) to muscle glutamatergic transmission in Drosophila larva has little impact on locomotion, suggesting non-synaptic compensatory mechanisms. In vivo imaging of MN to muscle synaptic transmission and MN activity both show that synaptic weakening increases activity in tonic type Ib MNs, but not in the phasic type Is MN that innervate the same muscles. Additionally, an inhibitory class of pre-MNs that innervates type Ib-but not Is-MNs decreases activity. Our experiments suggest that weakening of MN evoked synaptic release onto the muscle is compensated for by an increase in MN firing due to a combined cell-autonomous increase in excitability and decreased inhibitory central drive. Selectivity for type Ib MNs may serve to restore tonic drive while absence of firing adjustment in the convergent Is MN can maintain the contraction wave dynamics needed for locomotion.
Collapse
|
4
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
5
|
Zhao Q, Li X, Wen J, He Y, Zheng N, Li W, Cardona A, Gong Z. A two-layer neural circuit controls fast forward locomotion in Drosophila. Curr Biol 2024; 34:3439-3453.e5. [PMID: 39053465 DOI: 10.1016/j.cub.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Fast forward locomotion is critical for animal hunting and escaping behaviors. However, how the underlying neural circuit is wired at synaptic resolution to decide locomotion direction and speed remains poorly understood. Here, we identified in the ventral nerve cord (VNC) a set of ascending cholinergic neurons (AcNs) to be command neurons capable of initiating fast forward peristaltic locomotion in Drosophila larvae. Targeted manipulations revealed that AcNs are necessary and sufficient for fast forward locomotion. AcNs can activate their postsynaptic partners, A01j and A02j; both are interneurons with locomotory rhythmicity. Activated A01j neurons form a posterior-anteriorly descendent gradient in output activity along the VNC to launch forward locomotion from the tail. Activated A02j neurons exhibit quicker intersegmental transmission in activity that enables fast propagation of motor waves. Our work revealed a global neural mechanism that coordinately controls the launch direction and propagation speed of Drosophila locomotion, furthering the understanding of the strategy for locomotion control.
Collapse
Affiliation(s)
- Qianhui Zhao
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Xinhang Li
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Jun Wen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Yinhui He
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Albert Cardona
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Zhefeng Gong
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
6
|
Jonaitis J, Hibbard KL, McCafferty Layte K, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR. STEERING FROM THE REAR: COORDINATION OF CENTRAL PATTERN GENERATORS UNDERLYING NAVIGATION BY ASCENDING INTERNEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598162. [PMID: 38948859 PMCID: PMC11212907 DOI: 10.1101/2024.06.17.598162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | | | - Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge UK
| | - James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Menzies JAC, Maia Chagas A, Baden T, Alonso CR. A microRNA that controls the emergence of embryonic movement. eLife 2024; 13:RP95209. [PMID: 38869942 PMCID: PMC11175612 DOI: 10.7554/elife.95209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.
Collapse
Affiliation(s)
- Jonathan AC Menzies
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - André Maia Chagas
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Tom Baden
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Claudio R Alonso
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| |
Collapse
|
8
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Hu J, Bi R, Luo Y, Wu K, Jin S, Liu Z, Jia Y, Mao CX. The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling. INSECT SCIENCE 2024. [PMID: 38643372 DOI: 10.1111/1744-7917.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.
Collapse
Affiliation(s)
- Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxuan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kaihong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shan Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yicong Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
10
|
Fishburn JLA, Larson HL, Nguyen A, Welch CJ, Moore T, Penn A, Newman J, Mangino A, Widman E, Ghobashy R, Witherspoon J, Lee W, Mulligan KA. Bisphenol F affects neurodevelopmental gene expression, mushroom body development, and behavior in Drosophila melanogaster. Neurotoxicol Teratol 2024; 102:107331. [PMID: 38301979 DOI: 10.1016/j.ntt.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Bisphenol F (BPF) is a potential neurotoxicant used as a replacement for bisphenol A (BPA) in polycarbonate plastics and epoxy resins. We investigated the neurodevelopmental impacts of BPF exposure using Drosophila melanogaster as a model. Our transcriptomic analysis indicated that developmental exposure to BPF caused the downregulation of neurodevelopmentally relevant genes, including those associated with synapse formation and neuronal projection. To investigate the functional outcome of BPF exposure, we evaluated neurodevelopmental impacts across two genetic strains of Drosophila- w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We found that BPF exposure in w1118 Drosophila caused hypoactive larval locomotor activity, decreased time spent grooming by adults, reduced courtship activity, and increased the severity but not frequency of β-lobe midline crossing defects by axons in the mushroom body. In contrast, although BPF reduced peristaltic contractions in FXS larvae, it had no impact on other larval locomotor phenotypes, grooming activity, or courtship activity. Strikingly, BPF exposure reduced both the severity and frequency of β-lobe midline crossing defects in the mushroom body of FXS flies, a phenotype previously observed in FXS flies exposed to BPA. This data indicates that BPF can affect neurodevelopment and its impacts vary depending on genetic background. Further, BPF may elicit a gene-environment interaction with Drosophila fragile X messenger ribonucleoprotein 1 (dFmr1)-the ortholog of human FMR1, which causes fragile X syndrome and is the most common monogenetic cause of intellectual disability and autism spectrum disorder.
Collapse
Affiliation(s)
- Judith L A Fishburn
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Heather L Larson
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - An Nguyen
- Department of Computer Science, College of Natural Sciences and Mathematics, San José State University, 6000 J Street, San José, CA 95819, United States
| | - Chloe J Welch
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Taylor Moore
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Aliyah Penn
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Johnathan Newman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Anthony Mangino
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Erin Widman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Rana Ghobashy
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Jocelyn Witherspoon
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States
| | - Wendy Lee
- Department of Computer Science, College of Natural Sciences and Mathematics, San José State University, 6000 J Street, San José, CA 95819, United States
| | - Kimberly A Mulligan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University, 6000 J Street, Sacramento, CA 95819, United States.
| |
Collapse
|
11
|
Lin J, Mele S, Piper MDW, Johnson TK. A Simple Method for Quantifying Larval Locomotion in Drosophila melanogaster. Methods Mol Biol 2024; 2746:101-108. [PMID: 38070083 DOI: 10.1007/978-1-0716-3585-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The fruit fly Drosophila melanogaster is a powerful genetic model that has been used for many decades to study nervous system function, development, and behavior. There are a large number of developmental and behavioral traits that can be measured to provide a broad readout of neurological function. These include patterned motor behaviors, such as larval locomotion, which can be used to assess whether genetic or environmental factors affect nervous system function to provide an entry point for deeper mechanistic studies. Here, we describe a protocol for quantifying larval locomotion using a simple camera setup and a freely available image analysis software. This protocol can be readily applied to human disease models or in toxicology studies, for example, to broadly assess the impact of treatments on neurological function.
Collapse
Affiliation(s)
- Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Chemistry, and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
12
|
Chakravorty A, Sheeba V, Manjithaya R. Drosophila melanogaster Neuromuscular Junction as a Model to Study Synaptopathies and Neuronal Autophagy. Methods Mol Biol 2024; 2761:97-120. [PMID: 38427233 DOI: 10.1007/978-1-0716-3662-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Neuronal synapse dysfunction is a key characteristic of several neurodegenerative disorders, such as Alzheimer's disease, spinocerebellar ataxias, and Huntington's disease. Modeling these disorders to study synaptic dysfunction requires a robust and reproducible method for assaying the subtle changes associated with synaptopathies in terms of structure and function of the synapses. Drosophila melanogaster neuromuscular junctions (NMJs) serve as good models to study such alterations. Further, modifications in the microenvironment of synapses can sometimes reflect in the behavior of the animal, which can also be assayed in a high-throughput manner. The methods outlined in this chapter highlight assays to study the behavioral changes associated with synaptic dysfunction in a spinocerebellar ataxia type 3 (SCA3) model. Further, molecular assessment of alterations in NMJ structure and function is also summarized, followed by effects of autophagy pathway upregulation in providing neuroprotection. These methods can be further extended and modified to study the therapeutic effects of drugs or small molecules in providing neuroprotection for any synaptopathy models.
Collapse
Affiliation(s)
- Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Bangalore, India.
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Bangalore, India.
| |
Collapse
|
13
|
Olson CS, Ragsdale CW. Toward an Understanding of Octopus Arm Motor Control. Integr Comp Biol 2023; 63:1277-1284. [PMID: 37327080 PMCID: PMC10755184 DOI: 10.1093/icb/icad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Octopuses have the extraordinary ability to control eight prehensile arms with hundreds of suckers. With these highly flexible limbs, they engage in a wide variety of tasks, including hunting, grooming, and exploring their environment. The neural circuitry generating these movements engages every division of the octopus nervous system, from the nerve cords of the arms to the supraesophegeal brain. In this review, the current knowledge on the neural control of octopus arm movements is discussed, highlighting open questions and areas for further study.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago 60637, USA
| | | |
Collapse
|
14
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
15
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk GS. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci 2023; 24:14638. [PMID: 37834085 PMCID: PMC10572325 DOI: 10.3390/ijms241914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. Drosophila larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
16
|
Cooney PC, Huang Y, Li W, Perera DM, Hormigo R, Tabachnik T, Godage I, Hillman EMC, Grueber WB, Zarin AA. Neuromuscular Basis of Drosophila larval rolling escape behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526733. [PMID: 36778508 PMCID: PMC9915593 DOI: 10.1101/2023.02.01.526733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally-Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, the muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larval circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression lead to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior, and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.
Collapse
|
17
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
18
|
Greaney MR, Wreden CC, Heckscher ES. Distinctive features of the central synaptic organization of Drosophila larval proprioceptors. Front Neural Circuits 2023; 17:1223334. [PMID: 37564629 PMCID: PMC10410283 DOI: 10.3389/fncir.2023.1223334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Proprioceptive feedback is critically needed for locomotor control, but how this information is incorporated into central proprioceptive processing circuits remains poorly understood. Circuit organization emerges from the spatial distribution of synaptic connections between neurons. This distribution is difficult to discern in model systems where only a few cells can be probed simultaneously. Therefore, we turned to a relatively simple and accessible nervous system to ask: how are proprioceptors' input and output synapses organized in space, and what principles underlie this organization? Using the Drosophila larval connectome, we generated a map of the input and output synapses of 34 proprioceptors in several adjacent body segments (5-6 left-right pairs per segment). We characterized the spatial organization of these synapses, and compared this organization to that of other somatosensory neurons' synapses. We found three distinguishing features of larval proprioceptor synapses: (1) Generally, individual proprioceptor types display segmental somatotopy. (2) Proprioceptor output synapses both converge and diverge in space; they are organized into six spatial domains, each containing a unique set of one or more proprioceptors. Proprioceptors form output synapses along the proximal axonal entry pathway into the neuropil. (3) Proprioceptors receive few inhibitory input synapses. Further, we find that these three features do not apply to other larval somatosensory neurons. Thus, we have generated the most comprehensive map to date of how proprioceptor synapses are centrally organized. This map documents previously undescribed features of proprioceptors, raises questions about underlying developmental mechanisms, and has implications for downstream proprioceptive processing circuits.
Collapse
Affiliation(s)
- Marie R. Greaney
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Chris C. Wreden
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ellie S. Heckscher
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
- Institute for Neuroscience, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
20
|
Thane M, Paisios E, Stöter T, Krüger AR, Gläß S, Dahse AK, Scholz N, Gerber B, Lehmann DJ, Schleyer M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol 2023; 13:220308. [PMID: 37072034 PMCID: PMC10113034 DOI: 10.1098/rsob.220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.
Collapse
Affiliation(s)
- Michael Thane
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
| | - Emmanouil Paisios
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Torsten Stöter
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna-Rosa Krüger
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Sebastian Gläß
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Kristin Dahse
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dirk J. Lehmann
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
- Department for Information Engineering, Faculty of Computer Science, Ostfalia University of Applied Science, Brunswick-Wolfenbuettel, Germany
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
21
|
Wang HY, Yu K, Yang Z, Zhang G, Guo SQ, Wang T, Liu DD, Jia RN, Zheng YT, Su YN, Lou Y, Weiss KR, Zhou HB, Liu F, Cropper EC, Yu Q, Jing J. A Single Central Pattern Generator for the Control of a Locomotor Rolling Wave in Mollusc Aplysia. RESEARCH (WASHINGTON, D.C.) 2023; 6:0060. [PMID: 36930762 PMCID: PMC10013812 DOI: 10.34133/research.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Locomotion in mollusc Aplysia is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in Drosophila larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact Aplysia, bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that Aplysia pedal waves are generated by a single CPG.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dan-Dan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruo-Nan Jia
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Tong Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Nan Su
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi Lou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Quan Yu
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Peng Cheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
22
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524447. [PMID: 36711745 PMCID: PMC9882338 DOI: 10.1101/2023.01.17.524447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features is poorly understood. To identify molecular pathways that contribute to synaptic diversity, single neuron PatchSeq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated synaptic active zones in phasic motoneurons are more compact and display enhanced Ca 2+ influx compared to their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications and intracellular Ca 2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
24
|
Giachello CNG, Hunter I, Pettini T, Coulson B, Knüfer A, Cachero S, Winding M, Arzan Zarin A, Kohsaka H, Fan YN, Nose A, Landgraf M, Baines RA. Electrophysiological Validation of Monosynaptic Connectivity between Premotor Interneurons and the aCC Motoneuron in the Drosophila Larval CNS. J Neurosci 2022; 42:6724-6738. [PMID: 35868863 PMCID: PMC9435966 DOI: 10.1523/jneurosci.2463-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The Drosophila connectome project aims to map the synaptic connectivity of entire larval and adult fly neural networks, which is essential for understanding nervous system development and function. So far, the project has produced an impressive amount of electron microscopy data that has facilitated reconstructions of specific synapses, including many in the larval locomotor circuit. While this breakthrough represents a technical tour de force, the data remain underutilized, partly because of a lack of functional validation of reconstructions. Attempts to validate connectivity posited by the connectome project, have mostly relied on behavioral assays and/or GFP reconstitution across synaptic partners (GRASP) or GCaMP imaging. While these techniques are useful, they have limited spatial or temporal resolution. Electrophysiological assays of synaptic connectivity overcome these limitations. Here, we combine patch-clamp recordings with optogenetic stimulation in male and female larvae, to test synaptic connectivity proposed by connectome reconstructions. Specifically, we use multiple driver lines to confirm that several connections between premotor interneurons and the anterior corner cell motoneuron are, as the connectome project suggests, monosynaptic. In contrast, our results also show that conclusions based on GRASP imaging may provide false-positive results regarding connectivity between cells. We also present a novel imaging tool, based on the same technology as our electrophysiology, as a favorable alternative to GRASP imaging. Finally, of eight Gal4 lines tested, five are reliably expressed in the premotor interneurons they are targeted to. Thus, our work highlights the need to confirm functional synaptic connectivity, driver line specificity, and use of appropriate genetic tools to support connectome projects.SIGNIFICANCE STATEMENT The Drosophila connectome project aims to provide a complete description of connectivity between neurons in an organism that presents experimental advantages over other models. It has reconstructed hundreds of thousands of synaptic connections of the fly larva by manual identification of anatomic landmarks present in serial section transmission electron microscopy (ssTEM) volumes of the larval CNS. We use a highly reliable electrophysiological approach to verify these connections, providing useful insight into the accuracy of work based on ssTEM. We also present a novel imaging tool for validating excitatory monosynaptic connections between cells and show that several genetic driver lines designed to target neurons of the larval connectome exhibit nonspecific and/or unreliable expression.
Collapse
Affiliation(s)
- Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Iain Hunter
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Tom Pettini
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Athene Knüfer
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael Winding
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yuen Ngan Fan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| |
Collapse
|
25
|
Han Y, Chien C, Goel P, He K, Pinales C, Buser C, Dickman D. Botulinum neurotoxin accurately separates tonic vs. phasic transmission and reveals heterosynaptic plasticity rules in Drosophila. eLife 2022; 11:e77924. [PMID: 35993544 PMCID: PMC9439677 DOI: 10.7554/elife.77924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Chun Chien
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Pragya Goel
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | - Kaikai He
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| | | | | | - Dion Dickman
- Department of Neurobiology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
26
|
Grice SJ, Liu JL. Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis. PLoS Genet 2022; 18:e1010325. [PMID: 35877682 PMCID: PMC9352204 DOI: 10.1371/journal.pgen.1010325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans. Notwithstanding, how developmental defects contribute to the subversion of postnatal and adult motor function remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neuron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to express specifically in the neuronal progenitor cell types that have not formed synapses, and thus a time that precedes neuromuscular junction formation and maturation. By restoring SMN levels in these distinct neuronal population, we partially rescue the larval locomotor defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study is the first to directly rescue the motor defects of an SMA model by expressing Smn in an identifiable population of Drosophila neuroblasts and developing neurons, highlighting that neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell maturation. Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality and leads to the degeneration of the nerves that control muscle function. Loss-of-function mutations in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA, but how low levels of SMN protein cause the neuronal dysfunction is not known. Although SMA is a disease of nerve degeneration, SMN function during nerve cell development may be important, particularly in severe forms of SMA. Nevertheless, how the defects during development and throughout early life contribute to the disease is not well understood. We have previously demonstrated that SMN protein becomes enriched in neuroblasts, which are the cells that divide to produce neurons. In the present study, motor defects observed in our fly model for SMA could be rescued by restoring SMN in neuroblasts alone. In addition, we show that knocking down SMN in healthy flies within the same cell type causes impaired motor function. The present study shows that the manipulation of SMN in a developmentally important cell type can cause motor defects, indicating that a period of abnormal neurodevelopment may contribute to SMA.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (SJG); , (J-LL)
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Science and Technology, Shanghai, Tech University, Shanghai, China
- * E-mail: (SJG); , (J-LL)
| |
Collapse
|
27
|
Sun X, Liu Y, Liu C, Mayumi K, Ito K, Nose A, Kohsaka H. A neuromechanical model for Drosophila larval crawling based on physical measurements. BMC Biol 2022; 20:130. [PMID: 35701821 PMCID: PMC9199175 DOI: 10.1186/s12915-022-01336-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal locomotion requires dynamic interactions between neural circuits, the body (typically muscles), and surrounding environments. While the neural circuitry of movement has been intensively studied, how these outputs are integrated with body mechanics (neuromechanics) is less clear, in part due to the lack of understanding of the biomechanical properties of animal bodies. Here, we propose an integrated neuromechanical model of movement based on physical measurements by taking Drosophila larvae as a model of soft-bodied animals. RESULTS We first characterized the kinematics of forward crawling in Drosophila larvae at a segmental and whole-body level. We then characterized the biomechanical parameters of fly larvae, namely the contraction forces generated by neural activity, and passive elastic and viscosity of the larval body using a stress-relaxation test. We established a mathematical neuromechanical model based on the physical measurements described above, obtaining seven kinematic values characterizing crawling locomotion. By optimizing the parameters in the neural circuit, our neuromechanical model succeeded in quantitatively reproducing the kinematics of larval locomotion that were obtained experimentally. This model could reproduce the observation of optogenetic studies reported previously. The model predicted that peristaltic locomotion could be exhibited in a low-friction condition. Analysis of floating larvae provided results consistent with this prediction. Furthermore, the model predicted a significant contribution of intersegmental connections in the central nervous system, which contrasts with a previous study. This hypothesis allowed us to make a testable prediction for the variability in intersegmental connection in sister species of the genus Drosophila. CONCLUSIONS We generated a neurochemical model based on physical measurement to provide a new foundation to study locomotion in soft-bodied animals and soft robot engineering.
Collapse
Affiliation(s)
- Xiyang Sun
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yingtao Liu
- Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Chang Liu
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Division of General Education, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
28
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
30
|
Agrawal S, Tuthill JC. The two-body problem: Proprioception and motor control across the metamorphic divide. Curr Opin Neurobiol 2022; 74:102546. [PMID: 35512562 DOI: 10.1016/j.conb.2022.102546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
Like a rocket being propelled into space, evolution has engineered flies to launch into adulthood via multiple stages. Flies develop and deploy two distinct bodies, linked by the transformative process of metamorphosis. The fly larva is a soft hydraulic tube that can crawl to find food and avoid predators. The adult fly has a stiff exoskeleton with articulated limbs that enable long-distance navigation and rich social interactions. Because the larval and adult forms are so distinct in structure, they require distinct strategies for sensing and moving the body. The metamorphic divide thus presents an opportunity for comparative analysis of neural circuits. Here, we review recent progress toward understanding the neural mechanisms of proprioception and motor control in larval and adult Drosophila. We highlight commonalities that point toward general principles of sensorimotor control and differences that may reflect unique constraints imposed by biomechanics. Finally, we discuss emerging opportunities for comparative analysis of neural circuit architecture in the fly and other animal species.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
The Role of Even-Skipped in Drosophila Larval Somatosensory Circuit Assembly. eNeuro 2022; 9:ENEURO.0403-21.2021. [PMID: 35031555 PMCID: PMC8856706 DOI: 10.1523/eneuro.0403-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
Proper somatosensory circuit assembly is critical for processing somatosensory stimuli and for responding accordingly. In comparison to other sensory circuits (e.g., olfactory and visual), somatosensory circuits have unique anatomy and function. However, understanding of somatosensory circuit development lags far behind that of other sensory systems. For example, there are few identified transcription factors required for integration of interneurons into functional somatosensory circuits. Here, as a model, we examine one type of somatosensory interneuron, Even-skipped (Eve) expressing laterally placed interneurons (ELs) of the Drosophila larval nerve cord. Eve is a highly conserved, homeodomain transcription factor known to play a role in cell fate specification and neuronal axon guidance. Because marker genes are often functionally important in the cell types they define, we deleted eve expression specifically from EL interneurons. On the cell biological level, using single neuron labeling, we find eve plays several previously undescribed roles in refinement of neuron morphogenesis. Eve suppresses aberrant neurite branching, promotes axon elongation, and regulates dorsal-ventral dendrite position. On the circuit level, using optogenetics, calcium imaging, and behavioral analysis, we find eve expression is required in EL interneurons for the normal encoding of somatosensory stimuli and for normal mapping of outputs to behavior. We conclude that the eve gene product coordinately regulates multiple aspects of EL interneuron morphogenesis and is critically required to properly integrate EL interneurons into somatosensory circuits. Our data shed light on the genetic regulation of somatosensory circuit assembly.
Collapse
|
32
|
Banzai K, Shen P, Kamiyama D. A Genetic Toolkit for Simultaneous Generation of LexA- and QF-Expressing Clones in Selected Cell Types in Drosophila. Neurosci Insights 2022; 17:26331055211069939. [PMID: 35098129 PMCID: PMC8796102 DOI: 10.1177/26331055211069939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
Visualization and manipulation of defined motoneurons have provided significant insights into how motor circuits are assembled in Drosophila. A conventional approach for molecular and cellular analyses of subsets of motoneurons involves the expression of a wide range of UAS transgenes using available GAL4 drivers (eg, eve promoter-fused GAL4). However, a more powerful toolkit could be one that enables a single-cell characterization of interactions between neurites from neurons of interest. Here we show the development of a UAS > LexA > QF expression system to generate randomly selected neurons expressing one of the 2 binary expression systems. As a demonstration, we apply it to visualize dendrite-dendrite interactions by genetically labeling eve+ neurons with distinct fluorescent reporters.
Collapse
Affiliation(s)
- Kota Banzai
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Ping Shen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Ormerod KG, Scibelli AE, Littleton JT. Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction. J Physiol 2022; 600:349-372. [PMID: 34788476 PMCID: PMC9044916 DOI: 10.1113/jp282092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioural output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50 Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures. Pharmacological and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the molecular and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. KEY POINTS: Larval muscle contraction force increases with stimulation frequency and duration, revealing substantial plasticity between 5 and 40 Hz. Fictive contraction recordings demonstrate endogenous motoneuron burst frequencies consistent with the neuromuscular system operating within the range of greatest plasticity. Genetic and pharmacological manipulations of critical components of pre- and postsynaptic Ca2+ regulation significantly affect the strength and time course of muscle contractions. A screen for modulators of the excitation-contraction machinery identified a FMRFa peptide, TPAEDFMRFa and its associated signalling pathway, that dramatically increases muscle performance. Drosophila serves as an excellent model for dissecting components of the excitation-contraction coupling machinery.
Collapse
Affiliation(s)
- Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Matsuo Y, Nose A, Kohsaka H. Interspecies variation of larval locomotion kinematics in the genus Drosophila and its relation to habitat temperature. BMC Biol 2021; 19:176. [PMID: 34470643 PMCID: PMC8411537 DOI: 10.1186/s12915-021-01110-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speed and trajectory of locomotion are the characteristic traits of individual species. Locomotion kinematics may have been shaped during evolution towards increased survival in the habitats of each species. Although kinematics of locomotion is thought to be influenced by habitats, the quantitative relation between the kinematics and environmental factors has not been fully revealed. Here, we performed comparative analyses of larval locomotion in 11 Drosophila species. RESULTS We found that larval locomotion kinematics are divergent among the species. The diversity is not correlated to the body length but is correlated instead to the habitat temperature of the species. Phylogenetic analyses using Bayesian inference suggest that the evolutionary rate of the kinematics is diverse among phylogenetic tree branches. CONCLUSIONS The results of this study imply that the kinematics of larval locomotion has diverged in the evolutionary history of the genus Drosophila and evolved under the effects of the ambient temperature of habitats.
Collapse
Affiliation(s)
- Yuji Matsuo
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
- School of Informatics and Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan.
| |
Collapse
|
35
|
Galbraith A, Leone S, Stuart K, Emery J, Renkemeyer MK, Pritchett N, Galbraith L, Stuckmeyer H, Berke B. Reducing the expression of the Numb adaptor protein in neurons increases the searching behavior of Drosophila larvae. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000426. [PMID: 34327314 PMCID: PMC8314082 DOI: 10.17912/micropub.biology.000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
Drosophila larval crawling is easily-observable and relatively stereotyped. Crawling consists of linear locomotion interrupted by periods when the larvae pause, swing their heads, and change direction (a 'search'). Here we identify Numb, a peripheral membrane adaptor protein, as an important regulator of searching behavior. When Numb RNAi transgenes were expressed in all neurons, searching frequency increased while linear movement appeared normal. Numb's role in suppressing searching behavior was verified by rescuing this phenotype with a Numb homologue from mice. Such behavioral specificity suggests that further analysis of searching might help identify additional, evolutionarily-conserved interactors of the Numb protein.
Collapse
Affiliation(s)
- Andrew Galbraith
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Samuel Leone
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Katherine Stuart
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Josie Emery
- Department of Biology, Truman State University, Kirksville, MO USA
| | | | | | - Lauren Galbraith
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Haley Stuckmeyer
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Brett Berke
- Department of Biology, Truman State University, Kirksville, MO USA,
Correspondence to: Brett Berke ()
| |
Collapse
|
36
|
Inal MA, Bui KC, Marar A, Li S, Kner P, Kamiyama D. Imaging of In Vitro and In Vivo Neurons in Drosophila Using Stochastic Optical Reconstruction Microscopy. Curr Protoc 2021; 1:e203. [PMID: 34289261 DOI: 10.1002/cpz1.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila melanogaster brain comprises different neuronal cell types that interconnect with precise patterns of synaptic connections. These patterns are essential for the normal function of the brain. To understand the connectivity patterns requires characterizing them at single-cell resolution, for which a fluorescence microscope becomes an indispensable tool. Additionally, because the neurons connect at the nanoscale, the investigation often demands super-resolution microscopy. Here, we adopt one super-resolution microscopy technique, called stochastic optical reconstruction microscopy (STORM), improving the lateral and axial resolution to ∼20 nm. This article extensively describes our methods along with considerations for sample preparation of neurons in vitro and in vivo, conjugation of dyes to antibodies, immunofluorescence labeling, and acquisition and processing of STORM data. With these tools and techniques, we open up the potential to investigate cell-cell interactions using STORM in the Drosophila nervous system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of Drosophila primary neuronal culture and embryonic fillets Basic Protocol 2: Immunofluorescence labeling of samples Basic Protocol 3: Single-molecule fluorescence imaging Basic Protocol 4: Localization and visualization of single-molecule data Supporting Protocol: Conjugation of antibodies with STORM-compatible dyes.
Collapse
Affiliation(s)
- Melissa Ana Inal
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Kathy Clara Bui
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Abhijit Marar
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
37
|
Elliott AD, Berndt A, Houpert M, Roy S, Scott RL, Chow CC, Shroff H, White BH. Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila. eLife 2021; 10:68656. [PMID: 34236312 PMCID: PMC8331185 DOI: 10.7554/elife.68656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single-cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution. How do we find out how the brain works? One way is to use imaging techniques to visualise an animal’s brain in action as it performs simple behaviours: as the animal moves, parts of its brain light up under the microscope. For laboratory animals like fruit flies, which have relatively small brains, this lets us observe their brain activity right down to the level of individual brain cells. The brain directs movements via collective activity of the body’s muscles. Our ability to track the activity of individual muscles is, however, more limited than our ability to observe single brain cells: even modern imaging technology still cannot monitor the activity of all the muscle cells in an animal’s body as it moves about. Yet this is precisely the information that scientists need to fully understand how the brain generates behaviour. Fruit flies perform specific behaviours at certain stages of their life cycle. When the fly pupa begins to metamorphose into an adult insect, it performs a fixed sequence of movements involving a set number of muscles, which is called the pupal ecdysis sequence. This initial movement sequence and the rest of metamorphosis both occur within the confines of the pupal case, which is a small, hardened shell surrounding the whole animal. Elliott et al. set out to determine if the fruit fly pupa’s ecdysis sequence could be used as a kind of model, to describe a simple behaviour at the level of individual muscles. Imaging experiments used fly pupae that were genetically engineered to produce an activity-dependent fluorescent protein in their muscle cells. Pupal cases were treated with a chemical to make them transparent, allowing easy observation of their visually ‘labelled’ muscles. This yielded a near-complete record of muscle activity during metamorphosis. Initially, individual muscles became active in small groups. The groups then synchronised with each other over the different regions of the pupa’s body to form distinct movements, much as syllables join to form words. This synchronisation was key to progression through metamorphosis and was co-ordinated at each step by specialised nerve cells that produce or respond to specific hormones. These results reveal how the brain might direct muscle activity to produce movement patterns. In the future, Elliott et al. hope to compare data on muscle activity with comprehensive records of brain cell activity, to shed new light on how the brain, muscles, and other factors work together to control behaviour.
Collapse
Affiliation(s)
- Amicia D Elliott
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Adama Berndt
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Matthew Houpert
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Snehashis Roy
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Robert L Scott
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Carson C Chow
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Benjamin H White
- National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
38
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, Pulver SR, Nose A. Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit. Nat Commun 2021; 12:2943. [PMID: 34011945 PMCID: PMC8134441 DOI: 10.1038/s41467-021-23273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Typical patterned movements in animals are achieved through combinations of contraction and delayed relaxation of groups of muscles. However, how intersegmentally coordinated patterns of muscular relaxation are regulated by the neural circuits remains poorly understood. Here, we identify Canon, a class of higher-order premotor interneurons, that regulates muscular relaxation during backward locomotion of Drosophila larvae. Canon neurons are cholinergic interneurons present in each abdominal neuromere and show wave-like activity during fictive backward locomotion. Optogenetic activation of Canon neurons induces relaxation of body wall muscles, whereas inhibition of these neurons disrupts timely muscle relaxation. Canon neurons provide excitatory outputs to inhibitory premotor interneurons. Canon neurons also connect with each other to form an intersegmental circuit and regulate their own wave-like activities. Thus, our results demonstrate how coordinated muscle relaxation can be realized by an intersegmental circuit that regulates its own patterned activity and sequentially terminates motor activities along the anterior-posterior axis.
Collapse
Affiliation(s)
- Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
Mongeau JM, Schweikert LE, Davis AL, Reichert MS, Kanwal JK. Multimodal integration across spatiotemporal scales to guide invertebrate locomotion. Integr Comp Biol 2021; 61:842-853. [PMID: 34009312 DOI: 10.1093/icb/icab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Locomotion is a hallmark of organisms that has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard, therefore sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g. gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181. University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, NC, U.S.A
| | | | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
41
|
Gowda SBM, Salim S, Mohammad F. Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Drosophila Larva. BIOLOGY 2021; 10:90. [PMID: 33504061 PMCID: PMC7910854 DOI: 10.3390/biology10020090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.
Collapse
Affiliation(s)
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; (S.B.M.G.); (S.S.)
| |
Collapse
|
42
|
Kratschmer P, Lowe SA, Buhl E, Chen KF, Kullmann DM, Pittman A, Hodge JJL, Jepson JEC. Impaired Pre-Motor Circuit Activity and Movement in a Drosophila Model of KCNMA1-Linked Dyskinesia. Mov Disord 2021; 36:1158-1169. [PMID: 33449381 PMCID: PMC8248399 DOI: 10.1002/mds.28479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre‐motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain‐of‐function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. Objectives We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre‐motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. Methods We generated a knock‐in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium‐imaging to assess AP shape, neurotransmission, and the activity of the larval pre‐motor central pattern generator (CPG). We used video‐tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. Results Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium‐dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia‐like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. Conclusion Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ko-Fan Chen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Genetics Research Centre, St George's, University of London, London, United Kingdom
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
43
|
Development of motor circuits: From neuronal stem cells and neuronal diversity to motor circuit assembly. Curr Top Dev Biol 2020; 142:409-442. [PMID: 33706923 DOI: 10.1016/bs.ctdb.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we discuss motor circuit assembly starting from neuronal stem cells. Until recently, studies of neuronal stem cells focused on how a relatively small pool of stem cells could give rise to a large diversity of different neuronal identities. Historically, neuronal identity has been assayed in embryos by gene expression, gross anatomical features, neurotransmitter expression, and physiological properties. However, these definitions of identity are largely unlinked to mature functional neuronal features relevant to motor circuits. Such mature neuronal features include presynaptic and postsynaptic partnerships, dendrite morphologies, as well as neuronal firing patterns and roles in behavior. This review focuses on recent work that links the specification of neuronal molecular identity in neuronal stem cells to mature, circuit-relevant identity specification. Specifically, these studies begin to address the question: to what extent are the decisions that occur during motor circuit assembly controlled by the same genetic information that generates diverse embryonic neuronal diversity? Much of the research addressing this question has been conducted using the Drosophila larval motor system. Here, we focus largely on Drosophila motor circuits and we point out parallels to other systems. And we highlight outstanding questions in the field. The main concepts addressed in this review are: (1) the description of temporal cohorts-novel units of developmental organization that link neuronal stem cell lineages to motor circuit configuration and (2) the discovery that temporal transcription factors expressed in neuronal stem cells control aspects of circuit assembly by controlling the size of temporal cohorts and influencing synaptic partner choice.
Collapse
|
44
|
Aponte-Santiago NA, Littleton JT. Synaptic Properties and Plasticity Mechanisms of Invertebrate Tonic and Phasic Neurons. Front Physiol 2020; 11:611982. [PMID: 33391026 PMCID: PMC7772194 DOI: 10.3389/fphys.2020.611982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Defining neuronal cell types and their associated biophysical and synaptic diversity has become an important goal in neuroscience as a mechanism to create comprehensive brain cell atlases in the post-genomic age. Beyond broad classification such as neurotransmitter expression, interneuron vs. pyramidal, sensory or motor, the field is still in the early stages of understanding closely related cell types. In both vertebrate and invertebrate nervous systems, one well-described distinction related to firing characteristics and synaptic release properties are tonic and phasic neuronal subtypes. In vertebrates, these classes were defined based on sustained firing responses during stimulation (tonic) vs. transient responses that rapidly adapt (phasic). In crustaceans, the distinction expanded to include synaptic release properties, with tonic motoneurons displaying sustained firing and weaker synapses that undergo short-term facilitation to maintain muscle contraction and posture. In contrast, phasic motoneurons with stronger synapses showed rapid depression and were recruited for short bursts during fast locomotion. Tonic and phasic motoneurons with similarities to those in crustaceans have been characterized in Drosophila, allowing the genetic toolkit associated with this model to be used for dissecting the unique properties and plasticity mechanisms for these neuronal subtypes. This review outlines general properties of invertebrate tonic and phasic motoneurons and highlights recent advances that characterize distinct synaptic and plasticity pathways associated with two closely related glutamatergic neuronal cell types that drive invertebrate locomotion.
Collapse
Affiliation(s)
- Nicole A. Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
45
|
Nguyen U, Tinsley B, Sen Y, Stein J, Palacios Y, Ceballos A, Welch C, Nzenkue K, Penn A, Murphy L, Leodones K, Casiquin J, Ivory I, Ghenta K, Danziger K, Widman E, Newman J, Triplehorn M, Hindi Z, Mulligan K. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2020; 82:146-157. [PMID: 33309840 DOI: 10.1016/j.neuro.2020.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental chemical that has been linked to behavioral differences in children and shown to impact critical neurodevelopmental processes in animal models. Though data is emerging, we still have an incomplete picture of how BPA disrupts neurodevelopment; in particular, how its impacts may vary across different genetic backgrounds. Given the genetic tractability of Drosophila melanogaster, they present a valuable model to address this question. Fruit flies are increasingly being used for assessment of neurotoxicants because of their relatively simple brain structure and variety of measurable behaviors. Here we investigated the neurodevelopmental impacts of BPA across two genetic strains of Drosophila-w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We show that BPA induces hyperactivity in larvae, increases repetitive grooming behavior in adults, reduces courtship behavior, impairs axon guidance in the mushroom body, and disrupts neural stem cell development in the w1118 genetic strain. Remarkably, for every behavioral and neuronal phenotype examined, the impact of BPA in FXS flies was either insignificant or contrasted with the phenotypes observed in the w1118 strain. This data indicates that the neurodevelopmental impacts of BPA can vary widely depending on genetic background and suggests BPA may elicit a gene-environment interaction with Drosophila fragile X mental retardation 1 (dFmr1)-the ortholog of human FMR1, which causes Fragile X Syndrome and is associated with autism spectrum disorder.
Collapse
Affiliation(s)
- U Nguyen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - B Tinsley
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Sen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Stein
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Palacios
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Ceballos
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - C Welch
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Nzenkue
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Penn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - L Murphy
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Leodones
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Casiquin
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - I Ivory
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Ghenta
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Danziger
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - E Widman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Newman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - M Triplehorn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Z Hindi
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States.
| |
Collapse
|
46
|
Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in Drosophila. J Neurosci 2020; 40:8025-8041. [PMID: 32928887 DOI: 10.1523/jneurosci.0349-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.
Collapse
|
47
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
48
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
49
|
Aponte-Santiago NA, Ormerod KG, Akbergenova Y, Littleton JT. Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. J Neurosci 2020; 40:6270-6288. [PMID: 32631939 PMCID: PMC7424871 DOI: 10.1523/jneurosci.0925-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Structural and functional plasticity induced by neuronal competition is a common feature of developing nervous systems. However, the rules governing how postsynaptic cells differentiate between presynaptic inputs are unclear. In this study, we characterized synaptic interactions following manipulations of tonic Ib or phasic Is glutamatergic motoneurons that coinnervate postsynaptic muscles of male or female Drosophila melanogaster larvae. After identifying drivers for each neuronal subtype, we performed ablation or genetic manipulations to alter neuronal activity and examined the effects on synaptic innervation and function at neuromuscular junctions. Ablation of either Ib or Is resulted in decreased muscle response, with some functional compensation occurring in the Ib input when Is was missing. In contrast, the Is terminal failed to show functional or structural changes following loss of the coinnervating Ib input. Decreasing the activity of the Ib or Is neuron with tetanus toxin light chain resulted in structural changes in muscle innervation. Decreased Ib activity resulted in reduced active zone (AZ) number and decreased postsynaptic subsynaptic reticulum volume, with the emergence of filopodial-like protrusions from synaptic boutons of the Ib input. Decreased Is activity did not induce structural changes at its own synapses, but the coinnervating Ib motoneuron increased the number of synaptic boutons and AZs it formed. These findings indicate that tonic Ib and phasic Is motoneurons respond independently to changes in activity, with either functional or structural alterations in the Ib neuron occurring following ablation or reduced activity of the coinnervating Is input, respectively.SIGNIFICANCE STATEMENT Both invertebrate and vertebrate nervous systems display synaptic plasticity in response to behavioral experiences, indicating that underlying mechanisms emerged early in evolution. How specific neuronal classes innervating the same postsynaptic target display distinct types of plasticity is unclear. Here, we examined whether Drosophila tonic Ib and phasic Is motoneurons display competitive or cooperative interactions during innervation of the same muscle, or compensatory changes when the output of one motoneuron is altered. We established a system to differentially manipulate the motoneurons and examined the effects of cell type-specific changes to one of the inputs. Our findings indicate Ib and Is motoneurons respond differently to activity mismatch or loss of the coinnervating input, with the Ib subclass responding robustly compared with Is motoneurons.
Collapse
Affiliation(s)
- Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
50
|
Metallo C, Mukherjee R, Trimmer BA. Stepping pattern changes in the caterpillar Manduca sexta: the effects of orientation and substrate. J Exp Biol 2020; 223:jeb220319. [PMID: 32527957 DOI: 10.1242/jeb.220319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
Most animals can successfully travel across cluttered, uneven environments and cope with enormous changes in surface friction, deformability and stability. However, the mechanisms used to achieve such remarkable adaptability and robustness are not fully understood. Even more limited is the understanding of how soft, deformable animals such as tobacco hornworm Manduca sexta (caterpillars) can control their movements as they navigate surfaces that have varying stiffness and are oriented at different angles. To fill this gap, we analyzed the stepping patterns of caterpillars crawling on two different types of substrate (stiff and soft) and in three different orientations (horizontal and upward/downward vertical). Our results show that caterpillars adopt different stepping patterns (i.e. different sequences of transition between the swing and stance phases of prolegs in different body segments) based on substrate stiffness and orientation. These changes in stepping pattern occur more frequently in the upward vertical orientation. The results of this study suggest that caterpillars can detect differences in the material properties of the substrate on which they crawl and adjust their behavior to match those properties.
Collapse
Affiliation(s)
- Cinzia Metallo
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| | - Ritwika Mukherjee
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| | - Barry A Trimmer
- Tufts University, Biology Department, 200 Boston Avenue, room 2613, Medford, MA 02155, USA
| |
Collapse
|