1
|
Wang X, Mafukidze D, Zheng Y. Microalgae aggregation induced by thermoresponsive polymers. BIORESOURCE TECHNOLOGY 2024; 415:131650. [PMID: 39419406 DOI: 10.1016/j.biortech.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Algal biomass harvesting is one of key technical hurdles impeding the commercialization of algae-based biorefinery. The goal of this work is to develop an innovative technology for algae cell harvesting. Thermoresponsive polymers (TRPs) such as poly(N-isopropylacrylamide) (PNIPAM) and its derivatives were studied on their properties and potential applications for microalgae harvesting. Various PNIPAM was synthesized, and the effects of charge, molecular weight (MW), amine content, and polymer concentration on the polymer phase transition temperature, the degree of phase separation, and the harvesting of microalgae (Chlorella vulgaris) were investigated. The lower critical solution temperature (LCST) of PNIPAM decreased with the increase of polymer concentration, while the decline rate reduced under high MW. The amine content didn't significantly affect the LCST of TRPs. Approx. 92 % of algae cells were harvested by PNIPAM-300 kDa. Modified TRPs showed few benefits in enhancing algae harvesting. TRPs are a promising class of polymers for microalgae harvesting.
Collapse
Affiliation(s)
- Xuexue Wang
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Donovan Mafukidze
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Yu KL, Ong HC, Zaman HB. Integrated energy informatics technology on microalgae-based wastewater treatment to bioenergy production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122085. [PMID: 39142099 DOI: 10.1016/j.jenvman.2024.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
The production of renewable biofuel through microalgae and green technology can be a promising solution to meet future energy demands whilst reducing greenhouse gases (GHG) emissions and recovering energy for a carbon-neutral bio-economy and environmental sustainability. Recently, the integration of Energy Informatics (EI) technology as an emerging approach has ensured the feasibility and enhancement of microalgal biotechnology and bioenergy applications. Integrating EI technology such as artificial intelligence (AI), predictive modelling systems and life cycle analysis (LCA) in microalgae field applications can improve cost, efficiency, productivity and sustainability. With the approach of EI technology, data-driven insights and decision-making, resource optimization and a better understanding of the environmental impact of microalgae cultivation could be achieved, making it a crucial step in advancing this field and its applications. This review presents the conventional technologies in the microalgae-based system for wastewater treatment and bioenergy production. Furthermore, the recent integration of EI in microalgal technology from the AI application to the modelling and optimization using predictive control systems has been discussed. The LCA and techno-economic assessment (TEA) in the environmental sustainability and economic point of view are also presented. Future challenges and perspectives in the microalgae-based wastewater treatment to bioenergy production integrated with the EI approach, are also discussed in relation to the development of microalgae as the future energy source.
Collapse
Affiliation(s)
- Kai Ling Yu
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Halimah Badioze Zaman
- Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
5
|
Sheikh ZUD, Bajar S, Devi A, Rose PK, Suhag M, Yadav A, Yadav DK, Deswal T, Kaur J, Kothari R, Pathania D, Rani N, Singh A. Nanotechnology based technological development in biofuel production: Current status and future prospects. Enzyme Microb Technol 2023; 171:110304. [PMID: 37639935 DOI: 10.1016/j.enzmictec.2023.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Depleting fossil fuels and net carbon emissions associated with their burning have driven the need to find alternative energy sources. Biofuels are near-perfect candidates for alternative energy sources as they are renewable and account for no net CO2 emissions. However, biofuel production must overcome various challenges to compete with conventional fuels. Conventional methods for bioconversion of biomass to biofuel include chemical, thermochemical, and biological processes. Substrate selection and processing, low yield, and total cost of production are some of the main issues associated with biofuel generation. Recently, the uses of nanotechnology and nanoparticles have been explored to improve the biofuel production processes because of their high adsorption, high reactivity, and catalytic properties. The role of these nanoscale particles and nanocatalysts in biomass conversion and their effect on biofuel production processes and yield are discussed in the present article. The applicability of nanotechnology in production processes of biobutanol, bioethanol, biodiesel, biohydrogen, and biogas under biorefinery approach are presented. Different types of nanoparticles, and their function in the bioprocess, such as electron transfer, pretreatment, hydrolysis, microalgae cultivation, lipid extraction, dark and photo fermentation, immobilization, and suppression of inhibitory compounds, are also highlighted. Finally, the current and potential applications of nanotechnology in biorefineries are also discussed.
Collapse
Affiliation(s)
- Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Somvir Bajar
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Arti Devi
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, India
| | - Arti Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Deepak Kumar Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Tanuj Deswal
- Department of Nano Science and Materials, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Japleen Kaur
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Neeta Rani
- Department of National Security Studies, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 12331, Haryana, India.
| |
Collapse
|
6
|
Zheng M, Li H, Guo X, Chen B, Wang M. A semi-continuous efficient strategy for removing phosphorus and nitrogen from eel aquaculture wastewater using the self-flocculating microalga Desmodesmus sp. PW1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118970. [PMID: 37716168 DOI: 10.1016/j.jenvman.2023.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The phosphorus content in eel aquaculture wastewater exceeds the discharge standard, and the amount of wastewater discharged is substantial. Therefore, there is an urgent need to explore an economical and efficient method of treating aquaculture wastewater. This study explored the use of Desmodesmus sp. PW1, a type of microalgae, to treat eel aquaculture wastewater. By optimizing the conditions, Desmodesmus sp. PW1 achieved a total phosphorus (TP) removal efficiency of 92.3%, as well as total nitrogen (TN) and ammonia nitrogen (NH4+-N) removal efficiency of 99%, using a photoperiod of 24:0, a temperature of 25 °C, and an inoculation amount of 15%. Furthermore, Desmodesmus sp. PW1 demonstrated a high self-flocculating efficiency (>90%) within 100 min of settling, which facilitated biomass recovery. Subsequently, a semi-continuous treatment process mode was established with a sewage renewal rate of 90%. The results showed that after four rounds of sewage renewal operations, the microalgae biomass in the sewage treatment system could be maintained between 160.0 and 220.0 mg/L, and the average removal rate of TP was 0.13 mg/(L * h). The lipid content of algae cells collected in the semi-continuous treatment system for eel aquaculture wastewater was as high as 36.5%, and the biodiesel properties met the biodiesel standards authorized by Europe and the United States. Overall, this study provides an economical and effective strategy for converting wastewater into high-value microalgae products.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Huixian Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xu Guo
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China.
| |
Collapse
|
7
|
Jha P, Ghosh S, Panja A, Kumar V, Singh AK, Prasad R. Microalgae and biogas: a boon to energy sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29135-y. [PMID: 37608163 DOI: 10.1007/s11356-023-29135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The global energy generation market immensely depends on fossil fuels which balances our survival on this planet. Energy can be called as the "master element" for our daily needs, starting from household power supply, agricultural purpose, automobile and transportation, industrial workload to economic and research domains. Fuel switching initiatives are being adapted by environmentalist and scientists to bring a novel sustainable source of energy. An environment and renewable alternative to fossil fuels are a must. Over the years, the world has shifted toward generating green fuels immensely. One such potential alternative to fossil fuels are biogases. Being versatile and renewable in nature, it has drawn immense attention globally. Despite having such potentials there exist some major drawbacks which mainly deal with the starting material. One such source for biogases can be microalgae. Microalgae based biogas production can produce huge amount of energy and that has been implemented by many foreign countries and their companies. Despite being in use in many countries, there are issues which needs to be addressed which will overall improve the biogas potential from microalgae even more. This review mainly focuses on generation of biogas from microalgae as a feedstock which are very economical and sustainable in its nature, presenting improvement strategies which can be impended to boost the over biogas sector globally.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Snigdha Ghosh
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India.
| |
Collapse
|
8
|
Chalermthai B, Charoensuppanimit P, Nootong K, Olsen BD, Assabumrungrat S. Techno-economic assessment of co-production of edible bioplastic and food supplements from Spirulina. Sci Rep 2023; 13:10190. [PMID: 37349407 PMCID: PMC10287645 DOI: 10.1038/s41598-023-37156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Large amount of plastic wastes harming the environment have raised concerns worldwide on finding alternatives to non-biodegradable plastics. Microalgae has been found as a potential source for bioplastic production, besides its more common application in the pharmaceutical and nutraceutical industry. In this study, the objective was to techno-economically evaluate the large-scale co-production of Spirulina powder as food supplements and edible bioplastic for food packaging. The scale of production was large enough to satisfy 1% of local (Thailand) plastic demand (i.e., approx. 1200 MT y-1), and 1% of the global Spirulina demand (approx. 1000 MT y-1) as food supplements. Results showed that the co-production of the Spirulina powder and bioplastic revealed an attractive venture with a payback time (PBT) as low as 2.6 y and ROI as high as 38.5%. This was because the revenues generated were as high as US$ 55.6 million y-1, despite high capital (US$ 55.7 million) and operating (US$ 34.9 million y-1) costs. Sensitivity analysis showed differences in the profitability based on variations of major parameters in the study, where the split ratio of biomass used for food supplement versus bioplastic production and the bioplastic's selling price were found to be the most sensitive.
Collapse
Affiliation(s)
- Bushra Chalermthai
- Bio-Circular-Green-economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Control and Systems Engineering Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongtorn Charoensuppanimit
- Bio-Circular-Green-economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Control and Systems Engineering Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kasidit Nootong
- Bio-Circular-Green-economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suttichai Assabumrungrat
- Bio-Circular-Green-economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Hamouda RA, Alhumairi AM, Saddiq AA. Simultaneous bioremediation of petroleum hydrocarbons and production of biofuels by the micro-green alga, cyanobacteria, and its consortium. Heliyon 2023; 9:e16656. [PMID: 37332941 PMCID: PMC10272320 DOI: 10.1016/j.heliyon.2023.e16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
There are two major problems in the world, fuel deficiency and environmental pollution by fossil fuels. Microalgae are regarded as one of the most feasible feedstocks for the manufacturing of biofuels and are used in the degradation of fossil fuel spills. The present study was possessed to investigate the ability of green alga Chlorella vulgaris, blue-green alga Synechococcus sp, and its consortium to grow and degrade hydrocarbon such as kerosene (k) with different concentrations (0, 0.5, 1, and 1,5%), and also using algal biomasses to produce biofuel. The algal growth was estimated by optical density (O.D) at 600 nm, pigment contents such as Chlorophyll a,b carotenoid, and dry weight. The kerosene degradation was estimated by FT-IR analysis after and before the cultivation of algae and its consortium. The components of the methanol extract were determined by GC-MS spectroscopy. The results denote the best growth was determined by O.D, algae consortium with 1.5% Kerosene after ten days, meanwhile, the highest dry weight was with C. vulgaris after ten days of cultivation. The FT-IR demonstrated the algae and consortium possessed high efficacy to degrade kerosene. After 15 days of algae cultivation with 1% K, C.vulgaris produced the maximum amount of lipids (32%). The GC-MS profile of methanol extract of two algae and consortium demonstrated that Undecane was presented in high amounts, C.vulgaris (19.9%), Synechococcussp (82.16%), algae consortium (79.51%), and also were presented moderate amounts of fatty acid methyl ester in Synechococcus sp. Overall, our results indicate that a consortium of algae can absorb and remove kerosene from water, and at the same time produce biofuels like biodiesel and petroleum-based fuels.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Abrar M. Alhumairi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Amna A. Saddiq
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Sahoo S, Khuswaha GS, Misra N, Suar M. Exploiting AGPase genes and encoded proteins to prioritize development of optimum engineered strains in microalgae towards sustainable biofuel production. World J Microbiol Biotechnol 2023; 39:209. [PMID: 37237168 DOI: 10.1007/s11274-023-03654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Although ADP glucose pyrophosphorylase (AGPase), with two large subunits (ls) and two small subunits (ss), is a promising knockout target for increasing the neutral lipid content, the details regarding the sequence-structure features and their distribution within metabolic system in microalgae is rather limited. Against this backdrop, a comprehensive genome-wide comparative analysis on 14 sequenced microalgal genomes was performed. For the first time the heterotetrameric structure of the enzyme and the interaction of the catalytic unit with the substrate was also studied. Novel findings of the present study includes: (i) at the DNA level, the genes controlling the ss are more conserved than those controlling the ls; the variation in both the gene groups is mainly due to exon number, exon length and exon phase distribution; (ii) at protein level, the ss genes are more conserved relative to those for ls; (III) three putative key consensus sequences 'LGGGAGTRLYPLTKNRAKPAV', 'WFQGTADAV' and 'ASMGIYVFRKD' were ubiquitously conserved in all the AGPases; (iv) molecular dynamics investigations revealed that the modeled AGPase heterotetrameric structure, from oleaginous algae Chlamydomonas reinharditii, was completely stable in real time environment; (v) The binding interfaces of catalytic unit, ssAGPase, from C. reinharditii with α-D-glucose 1-phosphate (αGP) was also analyzed. The results of the present study have provided system-based insights into the structure-function of the genes and encoded proteins, which provided clues for exploitation of variability in these genes that, could be further utilized to design site-specific mutagenic experiments for engineering of microalgal strains towards sustainable development of biofuel.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Khuswaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Satpati GG, Dikshit PK, Mal N, Pal R, Sherpa KC, Rajak RC, Rather SU, Raghunathan S, Davoodbasha M. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161828. [PMID: 36707000 DOI: 10.1016/j.scitotenv.2023.161828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The microalgae have a great potential as the fourth generation biofuel feedstock to deal with energy crisis, but the cost of production and biomass harvest are the major hurdles in terms of large scale production and applications. Using filamentous fungi to culture targeted alga for biomass accumulation and eventually harvesting is a sustainable way to mitigate environmental impacts. Microalgal co-culture method could be an alternative to overcome limitations and increase biomass yield and lipid accumulation. It was found to be the high feasibility for the production of biofuels from fungi and microalgae using wastewater. This article aimed to state the synergistic approaches, their culture protocols, harvesting procedure and their potential biotechnological applications. Additionally, algal-fungal consortia could digest cellulosic biomass, potentially reducing operating costs as part of industrial need. As a result of co-cultivation, biofuel production could be economically feasible owing to its excellent ability to treat wastewater and be eco-friendly. The implications of the innovative co-cultivation technology have demonstrated the potential for further development based on the policies that have been supported and implemented.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal, India.
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, Andhra Pradesh, India
| | - Navonil Mal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Ruma Pal
- Phycology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Knawang Chhunji Sherpa
- Microbial Process and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi, Jharkhand, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box, 80204, Jeddah 21589, Saudi Arabia
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India.
| |
Collapse
|
12
|
Chebotaryova SP, Zakharova OV, Gusev AA, Baranchikov PA, Kolesnikov EA, Yakusheva AS, Skripnikova EV, Lobakova ES, Xu J, Alam MA, Solovchenko AE. Assessment of the Tolerance of a Chlorophyte Desmodesmus to CuO-NP for Evaluation of the Nanopollution Bioremediation Potential of This Microalga. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:737. [PMID: 36839106 PMCID: PMC9959455 DOI: 10.3390/nano13040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Broad application of CuO nanoparticles (CuO-NP) for industrial and household purposes leads to a continuous increase in their discharge to, and, hence, ever-increasing environmental hazards for aquatic ecosystems. Microalgae-based technologies hold promise for bioremediation of diverse hazardous micropollutants (HMP), including NP, from wastewater. In this study, we tested the ability of the green microalga Desmodesmus sp. to accumulate CuO-NP or their components. We also assessed the tolerance of this microalga to the environmentally relevant concentrations of CuO-NP. Using scanning electron microscopy, we demonstrated that the average size of CuO-NP was 50-100 nm, and their purity was confirmed with elemental composition analysis. Tests of the colloidal suspensions of CuO-NP showed that the hydrodynamic diameter of CuO-NP and their aggregates was below 100 nm. Flow cytometry analysis showed that CuO-NP at a concentration of 100 µg L-1 slightly inhibited the viability of microalgae cells and led to an increase in their oxidative stress. The assessment of the condition of photosystem II showed that CuO-NP exert a multifaceted effect on the photosynthetic apparatus of Desmodesmus sp., depending on the concentration of and the exposure to the CuO-NP. Desmodesmus sp. turned to be relatively tolerant to CuO-NP. In addition, the ICP-MS method revealed increased bioaccumulation of copper by microalgae cells in the experimental groups. The outcomes of this study indicate that the Desmodesmus sp. has a significant potential for bioremoval of the copper-based nanostructured HMP from an aquatic environment.
Collapse
Affiliation(s)
- Svetlana P. Chebotaryova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Olga V. Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Alexander A. Gusev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Petr A. Baranchikov
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Evgenii A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Anastasia S. Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Elena V. Skripnikova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Elena S. Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450046, China
| | - Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450046, China
| | - Alexei E. Solovchenko
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
13
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Thiviyanathan VA, Ker PJ, Amin EPP, Tang SGH, Yee W, Jamaludin MZ. Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules 2023; 28:molecules28031318. [PMID: 36770982 PMCID: PMC9921349 DOI: 10.3390/molecules28031318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Microalgae have become a popular area of research over the past few decades due to their enormous benefits to various sectors, such as pharmaceuticals, biofuels, and food and feed. Nevertheless, the benefits of microalgae cannot be fully exploited without the optimization of their upstream production. The growth of microalgae is commonly measured based on the optical density of the sample. However, the presence of debris in the culture and the optical absorption of the intercellular components affect the accuracy of this measurement. As a solution, this paper introduces the direct optical detection of glucose molecules at 940-960 nm to accurately measure the growth of microalgae. In addition, this paper also discusses the effects of the presence of glucose on the absorption of free water molecules in the culture. The potential of the optical detection of glucose as a complement to the commonly used optical density measurement at 680 nm is discussed in this paper. Lastly, a few recommendations for future works are presented to further verify the credibility of glucose detection for the accurate determination of microalgae's growth.
Collapse
Affiliation(s)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
- Correspondence: (P.J.K.); (S.G.H.T.)
| | - Eric P. P. Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (P.J.K.); (S.G.H.T.)
| | - Willy Yee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - M. Z. Jamaludin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
15
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
16
|
Life and death of Pseudokirchneriella subcapitata: physiological changes during chronological aging. Appl Microbiol Biotechnol 2022; 106:8245-8258. [PMID: 36385567 DOI: 10.1007/s00253-022-12267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The green alga Pseudokirchneriella subcapitata is widely used in ecotoxicity assays and has great biotechnological potential as feedstock. This work aims to characterize the physiology of this alga associated with the aging resulting from the incubation of cells for 21 days, in the OECD medium, with continuous agitation and light exposure, in a batch mode. After inoculation, cells grow exponentially during 3 days, and the culture presents a typical green color. In this phase, "young" algal cells present, predominantly, a lunate morphology with the chloroplast occupying a large part of the cell, maximum photosynthetic activity and pigments concentration, and produce starch as a reserve material. Between the 5th and the 12th days of incubation, cells are in the stationary phase. The culture becomes less green, and the cells stop dividing (≥ 99% have one nucleus) and start to age. "Old" algal cells present chloroplast shrinkage, an abrupt decline of chlorophylls content, and photosynthetic capacity (Fv/Fm and ɸPSII), accompanied by a degradation of starch and an increase of neutral lipids content. The onset of the death phase occurs after the 12th day and is characterized by the loss of cell membrane integrity of some algae (cell death). The culture stays, progressively, yellow, and the majority of the population (~93%) is composed of live cells, chronologically "old," with a significant drop in photosynthetic activity (decay > 75% of Fv/Fm and ɸPSII) and starch content. The information here achieved can be helpful when exploring the potential of this alga in toxicity studies or in biotechnological applications. KEY POINTS: • Physiological changes of P. subcapitata with chronological aging are shown • "Young" algae exhibit a semilunar shape, high photosynthetic activity, and accumulated starch • "Old"-live algae show reduced photosynthetic capacity and accumulated lipids.
Collapse
|
17
|
Patel AK, Kumar P, Chen CW, Tambat VS, Nguyen TB, Hou CY, Chang JS, Dong CD, Singhania RR. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. BIORESOURCE TECHNOLOGY 2022; 363:128009. [PMID: 36162780 DOI: 10.1016/j.biortech.2022.128009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
For commercial scale algal biorefining, harvesting cost is a major bottleneck. Thus, a cost-effective, less-energy intensive, and efficient harvesting method is being investigated. Among several harvesting methods, magnetic flocculation offers the benefits of modest operation, energy savings and quick separation. This study aims to develop novel magnetite-(Fe3O4) nanoparticles (MNPs) of 20 nm average size and their high reusability potential to reduce the harvesting cost of microalgae biomass. The MNPs were synthesized and characterized using FTIR, Zeta analyzer, and SEM before performing on Chlorella sorokiniana Kh12 and Tu5. For maximum harvesting efficiency >99%, the optimal culture pH, MNPs concentration, and agitation speed were 3, 200 mg/L, and 450 rpm, respectively. Subsequently, MNPs were recovered via alkaline treatment and reused up to 5 cycles as they retained their reactivity and harvesting efficiency. The studied MNPs-based harvesting method could be adopted at a commercial scale for cost-effective algae biorefinery in the future.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan
| |
Collapse
|
18
|
Kumari S, Kumari S, Singh A, Pandit PP, Sankhla MS, Singh T, Singh GP, Lodha P, Awasthi G, Awasthi KK. Employing algal biomass for fabrication of biofuels subsequent to phytoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:941-955. [PMID: 36222270 DOI: 10.1080/15226514.2022.2122927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An alga belongs to the multi-pertinent group which can add to a significant sector of environment. They show a prevailing gathering of microorganisms for bioremediation due to their significant capacity to inactivate toxic heavy metals. It can easily absorb or neutralize the toxicity of heavy metals from water and soil through phytoremediation. Biosorption is a promising innovation that focuses on novel, modest, and exceptionally successful materials to apply in phytoremediation technology. Furthermore, algal biomass can be used for biofuel generation after phytoremediation using thermochemical or biological transformation processes. The algal components get affected by heavy metals during phytoremediation, but with the help of different techniques, these are yield efficient. The extreme lipid and mineral substances of microalgae have been proven helpful for biofuel manufacturing and worth extra products. Biofuels produced are bio-oil, biodiesel, bioethanol, biogas, etc. The reuse capability of algae can be utilized toward ecological manageability and economic facility. In this review article, the reuse and recycling of algal biomass for biofuel production have been represented. This novel technique has numerous benefits and produces eco-friendly and economically beneficial products.
Collapse
Affiliation(s)
- Supriya Kumari
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Surbhi Kumari
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Apoorva Singh
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | - Pritam P Pandit
- Department of Forensic Science, Vivekananda Global University, Jaipur, India
| | | | - Tanvi Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | | | - Payal Lodha
- Department of Botany, University of Rajasthan, Jaipur, India
| | - Garima Awasthi
- Department of Botany, University of Rajasthan, Jaipur, India
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| | - Kumud Kant Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, India
| |
Collapse
|
19
|
Khan O, Khan MZ, Khan E, Bhatt BK, Afzal A, Ağbulut Ü, Shaik S. An enhancement in diesel engine performance, combustion, and emission attributes fueled with Eichhornia crassipes oil and copper oxide nanoparticles at different injection pressures. ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 2022; 44:6501-6522. [DOI: 10.1080/15567036.2022.2100014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 09/01/2023]
Affiliation(s)
- Osama Khan
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Zaheen Khan
- Department of Mechanical Engineering, Institute of Engineering and Technology, Lucknow, India
| | - Emran Khan
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | | | - Asif Afzal
- Department of Mechanical Engineering, P. A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belgavi), Mangaluru, India
- University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Punjab, India
- Department of Mechanical Engineering, School of Technology, Glocal University, Uttar Pradesh, India
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Düzce University, Düzce, Turkey
| | - Saboor Shaik
- School of Mechanical Engineering, Vellore Institute of Technology Vellore, Vellore, India
| |
Collapse
|
20
|
Kumar Awasthi M, Yan B, Sar T, Gómez-García R, Ren L, Sharma P, Binod P, Sindhu R, Kumar V, Kumar D, Mohamed BA, Zhang Z, Taherzadeh MJ. Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. BIORESOURCE TECHNOLOGY 2022; 360:127620. [PMID: 35840028 DOI: 10.1016/j.biortech.2022.127620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Ricardo Gómez-García
- Universidade Cat́olica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laborat́orio Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create way 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Badr A Mohamed
- Department of Chemical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
21
|
Prihanto AA, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of researchers have predicted that the current food crisis is predicted to worsen in 2050. The prediction of this crisis is aligned with climate change causing increases in some basic foodstuff prices. Therefore, everyone should prepare to consume alternative foods at an early stage. Alternative foods have been widely developed, one of which involves microalgae. However, the type of microalgae produced by some countries on a large scale consists of only oceanic/seawater microalgae. This will have an impact on and hinder development in countries that do not have these resources. Therefore, it is necessary to explore the use of microalgae derived from freshwater. Unfortunately, freshwater microalgae are still rarely investigated for use as alternative foods. However, there is considerable potential to utilize freshwater microalgae, and these algae are very abundant and diverse. In terms of nutritional properties, compared to oceanic / seawater microalgae, freshwater microalgae contain nearly the same protein and amino acids, lipids and fatty acids, carbohydrates, and vitamins. There are even more species whose composition is similar to those currently consumed foods, such as beef, chicken, beans, eggs, and corn. In addition to dietary properties, freshwater microalgae also have functional properties, due to the presence of pigments, sterols, fatty acids, and polyphenols. Given the potential of freshwater microalgae, these aquatic resources need to be developed for potential use as future food resources.
Collapse
|
22
|
Li N, Chen C, Zhong F, Zhang S, Xia A, Huang Y, Liao Q, Zhu X. A novel magnet-driven rotary mixing aerator for carbon dioxide fixation and microalgae cultivation: focusing on bubble behavior and cultivation performance. J Biotechnol 2022; 352:26-35. [DOI: 10.1016/j.jbiotec.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
|
23
|
Javed MU, Mukhtar H, Hayat MT, Rashid U, Mumtaz MW, Ngamcharussrivichai C. Sustainable processing of algal biomass for a comprehensive biorefinery. J Biotechnol 2022; 352:47-58. [DOI: 10.1016/j.jbiotec.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
24
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
26
|
Arthrospira platensis Cultivation in a Bench-Scale Helical Tubular Photobioreactor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cultivations of Arthrospira platensis were carried out to evaluate the CO2 capture capacity of this cyanobacterium under bench-scale conditions. For this purpose, the influence of light intensity on the microbial growth and the photosynthetic efficiency has been investigated in a helical photobioreactor. Five cultivations were performed at different photosynthetic photon flux densities (23 ≤ PPFD ≤ 225 µmol photons m−2 s−1) by fed-batch pulse-feeding pure carbon dioxide from a cylinder into the helicoidal photobioreactor. In particular, a range of PPFD (82–190 µmol photons m−2 s−1) was identified in which biomass concentration reached values (9–11 gDW L−1) significantly higher than those reported in the literature for other configurations of closed photobioreactors. Furthermore, as A. platensis suspensions behave as Newtonian and non-Newtonian (pseudoplastic) fluids at very low and high biomass concentrations, respectively, a flow analysis was carried out for evaluating the most suitable mixing conditions depending on growth. The results obtained in this study appear to be very promising and suggest the use of this helicoidal photobioreactor configuration to reduce CO2 emissions from industrial gaseous effluents.
Collapse
|
27
|
Xiong Chang X, Mujawar Mubarak N, Ali Mazari S, Sattar Jatoi A, Ahmad A, Khalid M, Walvekar R, Abdullah E, Karri RR, Siddiqui M, Nizamuddin S. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
|
29
|
Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production. ENERGIES 2021. [DOI: 10.3390/en14217334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microalgae are considered to be potentially attractive feedstocks for biodiesel production, mainly due to their fast growth rate and high oil content accumulated in their cells. In this study, the suitability for biofuel production was tested for Chlorella vulgaris, Chlorella fusca, Oocystis submarina, and Monoraphidium strain. The effect of nutrient limitation on microalgae biomass growth, lipid accumulation, ash content, fatty acid profile, and selected physico-chemical parameters of algal biodiesel were analysed. The study was carried out in vertical tubular photobioreactors of 100 L capacity. The highest biomass content at 100% medium dose was found for Monoraphidium 525 ± 29 mg·L−1. A 50% reduction of nutrients in the culture medium decreased the biomass content by 23% for O. submarina, 19% for Monoraphidium, 13% for C. vulgaris and 9% for C. fusca strain. Nutrient limitation increased lipid production and reduced ash content in microalgal cells. The highest values were observed for Oocystis submarina, with a 90% increase in lipids and a 45% decrease in ash content in the biomass under stress conditions. The fatty acid profile of particular microalgae strains was dominated by palmitic, oleic, linoleic, and linoleic acids. Nutrient stress increased the amount of saturated and unsaturated fatty acids affecting the quality of biodiesel, but this was determined by the type of strain.
Collapse
|
30
|
Combustion, Performance, and Emission Behaviors of Biodiesel Fueled Diesel Engine with the Impact of Alumina Nanoparticle as an Additive. SUSTAINABILITY 2021. [DOI: 10.3390/su132112103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this research work is to evaluate the performance, combustion, and exhaust emissions of a variable compression ratio diesel engine utilizing diesel 25% rubber seed biodiesel mixture (B25) blended with 25 ppm and 50 ppm of alumina nanoparticle running with different operating conditions. An ultrasonicator was used to make uniform dispersion of alumina (Al) nanoparticles in the diesel–biodiesel mixture. Biodiesel mixture blended with nanoparticles has physicochemical characteristics that are comparable to ASTM (American Society for Testing and Materials) D6751 limitations. The results revealed that the B25 exhibited a lower cylinder peak pressure and lower HRR (heat release rate) than diesel at maximum power. BTE (brake thermal efficiency) of B25 is 2.2% lower than diesel, whereas BSFC of B25 is increased by 6% in contrast to diesel. Emissions of HC (hydrocarbon), CO (carbon monoxide), and smoke for B25 were diminished, while emissions of NOx (nitrogen oxide) were higher at maximum power. Further, the combustion and performance of diesel engine were improved with the inclusion of alumina nanoparticles to biodiesel blends. In comparison to B25, BTE of B25 with 50% alumina nanoparticles (B25Al50) mixture was enhanced by 4.8%, and the BSFC was diminished by 8.5%, while HC, CO, and smoke were also diminished by 36%, 20%, and 44%, respectively. At peak load, the maximum cylinder pressure and HRR of B25 were improved by 4.2% and 6.7%, respectively, with the presence of 50% alumina nanoparticles in a biodiesel blend (B25Al50).
Collapse
|
31
|
Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, Show PL. Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. CHEMOSPHERE 2021; 281:130886. [PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
Collapse
Affiliation(s)
- Jiunn Kwok Yap
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu, 610005, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Galicia-Medina CM, Vázquez-Piñón M, Alemán-Nava GS, Gallo-Villanueva RC, Martínez-Chapa SO, Madou MJ, Camacho-León S, García-Pérez JS, Esquivel-Hernández DA, Parra-Saldívar R, Pérez-González VH. Rapid Lipid Content Screening in Neochloris oleoabundans Utilizing Carbon-Based Dielectrophoresis. MICROMACHINES 2021; 12:mi12091023. [PMID: 34577668 PMCID: PMC8471556 DOI: 10.3390/mi12091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
In this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N−) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz–30 MHz) at a fixed amplitude of 7 VPP. The results showed a statistically significant difference between the dielectrophoretic behavior of N+ and N− cells at low frequencies (100–800 kHz), whereas a weak response was observed for mid- and high frequencies (1–30 MHz). Additionally, a finite element analysis using a 3D model was conducted to determine the dielectrophoretic trapping zones across the electrode gaps. These results suggest that low-cost glassy carbon is a reliable material for microalgae classification—between low and high cytoplasmic lipid content—through DEP, providing a fast and straightforward mechanism.
Collapse
Affiliation(s)
- Cynthia M. Galicia-Medina
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Matías Vázquez-Piñón
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Gibran S. Alemán-Nava
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Roberto C. Gallo-Villanueva
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Sergio O. Martínez-Chapa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Marc J. Madou
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA 92697, USA;
| | - Sergio Camacho-León
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Jonathan S. García-Pérez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Diego A. Esquivel-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
- Correspondence: (R.P.-S.); (V.H.P.-G.); Tel.: +52-(81)-8358-2000 (ext. 5561) (R.P.-S.); +52-(81)-8358-2000 (ext. 5414) (V.H.P.-G.)
| | - Víctor H. Pérez-González
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
- Correspondence: (R.P.-S.); (V.H.P.-G.); Tel.: +52-(81)-8358-2000 (ext. 5561) (R.P.-S.); +52-(81)-8358-2000 (ext. 5414) (V.H.P.-G.)
| |
Collapse
|
33
|
Huang JJ, Cheung PCK. Cold stress treatment enhances production of metabolites and biodiesel feedstock in Porphyridium cruentum via adjustment of cell membrane fluidity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146612. [PMID: 34030318 DOI: 10.1016/j.scitotenv.2021.146612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Porphyridium cruentum, a cell-wall-free marine Rhodophyta microalga was cultured under a 5-day cold stress at 0 °C and 15 °C, after reaching the late logarithmic growth phase. Compared with the control at 25 °C, the cold stress treatment significantly (p < 0.05) increased the microalgal biomass (1.21-fold); the amounts of total polyunsaturated fatty acids (1.22-fold); individual fatty acids including linoleic acid (1.50-fold) and eicosatrienoic acid (1.85-fold), and a major carotenoid zeaxanthin (1.53-fold). Furthermore, production of biodiesel feedstock including total C16 + C18 fatty acids was significantly enhanced (p < 0.05) by 1.18-fold after the cold stress treatment. Principal component analysis further indicated that the biosynthetic pathways of fatty acids and carotenoids in this microalga were correlated with the cold stress treatment. These results suggested that P. cruentum had adjusted its cellular membrane fluidity via an 'arm-raising and screw-bolt fastening' mechanism mediated by the synergistic roles of cis-unsaturated fatty acids and carotenoids. The insight obtained from the responses to cold stress in P. cruentum could be a novel technological approach to enhance the production of microalgal metabolites and biodiesel feedstock.
Collapse
Affiliation(s)
- Jim Junhui Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100, Waihuan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong Province, People's Republic of China; Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore; Marine Biology Institute, Shantou University, Shantou 515063, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
34
|
Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112627. [PMID: 33991767 DOI: 10.1016/j.jenvman.2021.112627] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Mekelle University, Department of Chemistry, Mekelle, Ethiopia.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | | | - Shiv Prasad
- Centre for Environment Science &Climate Resilient Agriculture (CESCRA) Indian Agricultural Research Institute New Delhi, 110012, India
| | | | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Thermal Performance of Compression Ignition Engine Using High Content Biodiesels: A Comparative Study with Diesel Fuel. SUSTAINABILITY 2021. [DOI: 10.3390/su13147688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.
Collapse
|
36
|
Chowdhury H, Barua P, Chowdhury T, Hossain N, Islam R, Sait SM, Salam B. Synthesis of biodiesel from chicken skin waste: an economic and environmental biofuel feedstock in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37679-37688. [PMID: 33723785 DOI: 10.1007/s11356-021-13424-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
One of the dominating meat supply industries, the poultry chicken sector, is facing waste management concerns worldwide. Due to high oil content containment, biofuel researchers emphasized poultry waste as abundant, cheap, and high-quality feedstock for biodiesel production. Therefore, in the current study, an experimental investigation of biodiesel production from wasted chicken skin through the transesterification process has been performed. The chicken skin used in this study for biodiesel production can be used as the potential waste source for biodiesel production worldwide. Techno-economic, environmental, and sustainability analyses were also performed. During the synthesis, the reaction was conducted with potassium hydroxide (KOH), and the process yielded 48% biodiesel. The cost of electricity for providing electricity is estimated at US$0.575 per kWh when an auto-sized generator has been fueled by biodiesel. The environmental and substantiality analysis found that biodiesel is more suitable than conventional diesel as an environmentally friendly and sustainable fuel.
Collapse
Affiliation(s)
- Hemal Chowdhury
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chattogram, 4349, Bangladesh
| | - Pranta Barua
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, 4349, Bangladesh
| | - Tamal Chowdhury
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, 4349, Bangladesh
| | - Nazia Hossain
- School of Engineering, RMIT University, 128 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Rabiul Islam
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, 4349, Bangladesh
| | | | - Bodius Salam
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chattogram, 4349, Bangladesh
| |
Collapse
|
37
|
Savvidou MG, Dardavila MM, Georgiopoulou I, Louli V, Stamatis H, Kekos D, Voutsas E. Optimization of Microalga Chlorella vulgaris Magnetic Harvesting. NANOMATERIALS 2021; 11:nano11061614. [PMID: 34202985 PMCID: PMC8234446 DOI: 10.3390/nano11061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Harvesting of microalgae is a crucial step in microalgae-based mass production of different high value-added products. In the present work, magnetic harvesting of Chlorella vulgaris was investigated using microwave-synthesized naked magnetite (Fe3O4) particles with an average crystallite diameter of 20 nm. Optimization of the most important parameters of the magnetic harvesting process, namely pH, mass ratio (mr) of magnetite particles to biomass (g/g), and agitation speed (rpm) of the C. vulgaris biomass-Fe3O4 particles mixture, was performed using the response surface methodology (RSM) statistical tool. Harvesting efficiencies higher than 99% were obtained for pH 3.0 and mixing speed greater or equal to 350 rpm. Recovery of magnetic particles via detachment was shown to be feasible and the recovery particles could be reused at least five times with high harvesting efficiency. Consequently, the described harvesting approach of C. vulgaris cells leads to an efficient, simple, and quick process, that does not impair the quality of the harvested biomass.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (M.G.S.); (D.K.)
| | - Maria Myrto Dardavila
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
- Correspondence: ; Tel.: +30-210-7723230
| | - Ioulia Georgiopoulou
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| | - Vasiliki Louli
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece;
| | - Dimitris Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (M.G.S.); (D.K.)
| | - Epaminondas Voutsas
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece; (I.G.); (V.L.); (E.V.)
| |
Collapse
|
38
|
Montone CM, Aita SE, Catani M, Cavaliere C, Cerrato A, Piovesana S, Laganà A, Capriotti AL. Profiling and quantitative analysis of underivatized fatty acids in Chlorella vulgaris microalgae by liquid chromatography-high resolution mass spectrometry. J Sep Sci 2021; 44:3041-3051. [PMID: 34101991 PMCID: PMC8453725 DOI: 10.1002/jssc.202100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Abstract
Chlorella vulgaris is a popular microalga used for biofuel production; nevertheless, it possesses a strong cell wall that hinders the extraction of molecules, especially lipids within the cell wall. For tackling this issue, we developed an efficient and cost‐effective method for optimal lipid extraction. Microlaga cell disruption by acid hydrolysis was investigated comparing different temperatures and reaction times; after hydrolysis, lipids were extracted with n‐hexane. The best recoveries were obtained at 140°C for 90 min. The microalgae were then analyzed by an untargeted approach based on liquid chromatography with high‐resolution mass spectrometry, providing the tentative identification of 28 fatty acids. First, a relative quantification on the untargeted data was performed using peak area as a surrogate of analyte abundance. Then, a targeted quantitative method was validated for the tentatively identified fatty acids, in terms of recovery (78‐100%), intra‐ and interday relative standard deviations (<10 and <9%, respectively) and linearity (R2 > 0.98). The most abundant fatty acids were palmitic, palmitoleic, oleic, linoleic, linolenic, and stearic acids.
Collapse
Affiliation(s)
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,CNR NANOTEC, Campus Ecotekne, University of Salento, Lecce, Italy
| | | |
Collapse
|
39
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
40
|
Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144236. [PMID: 33422843 DOI: 10.1016/j.scitotenv.2020.144236] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In recent years, microalgal feedstocks have gained immense potential for sustainable biofuel production. Thermochemical, biochemical conversions and transesterification processes are employed for biofuel production. Especially, the transesterification process of lipid molecules to fatty acid alkyl esters (FAAE) is being widely employed for biodiesel production. In the case of the extractive transesterification process, biodiesel is produced from the extracted microalgal oil. Whereas In-situ (reactive) transesterification allows the direct conversion of microalgae to biodiesel avoiding the sequential steps, which subsequently reduces the production cost. Though microalgae have the highest potential to be an alternate renewable feedstock, the minimization of biofuel production cost is still a challenge. The biorefinery approaches that rely on simple cascade processes involving cost-effective technologies are the need of an hour for sustainable bioenergy production using microalgae. At the same time, combining the biorefineries for both (i) high value-low volume (food and health supplements) and (ii) low value- high volume (waste remediation, bioenergy) from microalgae involves regulatory and technical problems. Waste-remediation and algal biorefinery were extensively reviewed in many previous reports. On the other hand, this review focuses on the cascade processes for efficient utilization of microalgae for integrated bioenergy production through the transesterification. Microalgal biomass remnants after the transesterification process, comprising carbohydrates as a major component (process flow A) or the carbohydrate fraction after bio-separation of pretreated microalgae (process flow B) can be utilized for bioethanol production. Therefore, this review concentrates on the cascade flow of integrated bioprocessing methods for biodiesel and bioethanol production through the transesterification and biochemical routes. The review also sheds light on the recent combinatorial approaches of transesterification of microalgae. The applicability of spent microalgal biomass residue for biogas and other applications to bring about zero-waste residue are discussed. Furthermore, techno-economic analysis (TEA), life cycle assessment (LCA) and challenges of microalgal biorefineries are discussed.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States
| | - Ramasamy Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
41
|
Nkosi N, Muzenda E, Gorimbo J, Belaid M. Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction. RSC Adv 2021; 11:11844-11871. [PMID: 35423733 PMCID: PMC8696848 DOI: 10.1039/d0ra08966d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Fossil fuels, particularly crude oil, have proven to be a source of energy to households, transportation and power industries over the past decades. This natural reserve is diminishing at an alarming rate with crude oil having reserves to last the earth for the next half a century. As a result, researchers are constantly seeking remedial technologies to close this gap. Thermochemical conversion processes such as pyrolysis, gasification and liquefaction (PGL) offer an alternative solution to mitigating the world's high reliance on crude oil. These processes can be employed to provide energy, fuel and high-end value-added products. This paper aims to highlight all the research and development advancements and trends that have been made over the past three decades while employing waste tyres and other feedstock. In addition, the prominent countries and their associated researchers who have made novel discoveries in the field of thermochemical conversion are extensively discussed. The research findings show that significant research outputs such as the utilization of vast types of feed materials, the reaction mechanisms, the factors affecting the processes, and the application of the different end-products for thermochemical processes are well documented in the literature. Also, the collected data showed that significant advancements have been achieved in developing PGL technologies. The following conclusions were drawn: (i) PGL technologies show a generally increasing percentage interest from 1990 to 2020, (ii) many authors have identified the end-products obtained from waste feedstocks, such as; waste tyres, biomass, plastics, food waste, microalgae and animal manure to yield promising application benefits, (iii) China has shown the greatest interest in investing into waste to energy initiatives and has demonstrated the vast applications of waste derived products and, (iv) employing waste tyres as a feedstock has shown potential for producing high-end value products in their crude form or refined form. Some of the shortcomings identified during the study are the modest interest shown by most African regions as well as the lack of regulatory frameworks developed by certain countries. Fossil fuels, particularly crude oil, have proven to be a source of energy to households, transportation and power industries over the past decades.![]()
Collapse
Affiliation(s)
- N Nkosi
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg Johannesburg South Africa
| | - E Muzenda
- Department of Chemical, Materials and Metallurgical Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology Palapye Botswana
| | - J Gorimbo
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa's College of Science, Engineering and Technology Cnr Pioneer and Christian De Wet Roads, Private Bag X6 Florida 1710 South Africa
| | - M Belaid
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg Johannesburg South Africa
| |
Collapse
|
42
|
Arun J, Gopinath KP, Sivaramakrishnan R, SundarRajan P, Malolan R, Pugazhendhi A. Technical insights into the production of green fuel from CO 2 sequestered algal biomass: A conceptual review on green energy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142636. [PMID: 33065504 DOI: 10.1016/j.scitotenv.2020.142636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 sequester than terrestrial plants in an eco-friendly and economical way with simultaneous wastewater remediation. Hydrothermal liquefaction of algae biomass was the most preferred mode for biofuel generation than pyrolysis due to high moisture content. The algae based fuels exhibit less greenhouse gases emission and higher energy value. This review helps the researchers, environmentalists and industrialists to evaluate the impact of algae based bio-energy towards green energy and environment.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India.
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
43
|
Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102103] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Hossain N, Nizamuddin S, Griffin G, Selvakannan P, Mubarak NM, Mahlia TMI. Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci Rep 2020; 10:18851. [PMID: 33139793 PMCID: PMC7606520 DOI: 10.1038/s41598-020-75936-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022] Open
Abstract
The recent implication of circular economy in Australia spurred the demand for waste material utilization for value-added product generations on a commercial scale. Therefore, this experimental study emphasized on agricultural waste biomass, rice husk (RH) as potential feedstock to produce valuable products. Rice husk biochar (RB) was obtained at temperature: 180 °C, pressure: 70 bar, reaction time: 20 min with water via hydrothermal carbonization (HTC), and the obtained biochar yield was 57.9%. Enhancement of zeta potential value from − 30.1 to − 10.6 mV in RB presented the higher suspension stability, and improvement of surface area and porosity in RB demonstrated the wastewater adsorption capacity. Along with that, an increase of crystallinity in RB, 60.5%, also indicates the enhancement of the catalytic performance of the material significantly more favorable to improve the adsorption efficiency of transitional compounds. In contrast, an increase of the atomic O/C ratio in RB, 0.51 delineated high breakdown of the cellulosic component, which is favorable for biofuel purpose. 13.98% SiO2 reduction in RB confirmed ash content minimization and better quality of fuel properties. Therefore, the rice husk biochar through HTC can be considered a suitable material for further application to treat wastewater and generate bioenergy.
Collapse
Affiliation(s)
- Nazia Hossain
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Sabzoi Nizamuddin
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Gregory Griffin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
45
|
Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, Jamal M, Mubarak NM, Griffin G, Kao N. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Soudagar MEM, Banapurmath NR, Afzal A, Hossain N, Abbas MM, Haniffa MACM, Naik B, Ahmed W, Nizamuddin S, Mubarak NM. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel-diesel fuel blend. Sci Rep 2020; 10:15326. [PMID: 32948806 PMCID: PMC7501273 DOI: 10.1038/s41598-020-72150-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/20/2020] [Indexed: 11/14/2022] Open
Abstract
This study deals with an experimental investigation to assess the characteristics of a modified common rail direct injection (CRDI) engine utilizing diesel, Mahua biodiesel, and their blends with synthesized zinc oxide (ZnO) nano additives. The physicochemical properties of diesel, diesel + 30 ppm ZnO nanoparticles (D10030), 20% Mahua biodiesel (MOME20), and Mahua biodiesel (20%) + 30 ppm ZnO nanoparticles (MOME2030) were measured in accordance to the American Society for Testing and Materials standards. The effects of modification of fuel injectors (FI) holes (7-hole FI) and toroidal reentrant combustion chamber (TRCC) piston bowl design on the performance of CRDI using different fuel blends were assessed. For injection timings (IT) and injection opening pressure (IOP) average increase in brake thermal efficiency for fuel blend D10030 and MOME2030 was 9.65% and 16.4%, and 8.83% and 5.06%, respectively. Also, for IT and IOP, the average reductions in brake specific fuel consumption, smoke, carbon monoxide, hydrocarbon and nitrogen oxide emissions for D10030 and MOME2030 were 10.9% and 7.7%, 18.2% and 8.6%, 12.6% and 11.5%, 8.74% and 13.1%, and 5.75% and 7.79%, respectively and 15.5% and 5.06%, 20.33% and 6.20%, 11.12% and 24.8%, 18.32% and 6.29%, and 1.79% and 6.89%, respectively for 7-hole fuel injector and TRCC. The cylinder pressure and heat release rate for D10030 and MOME2030 were enhanced by 6.8% and 17.1%, and 7.35% and 12.28%. The 7-hole fuel injector with the nano fuel blends at an injection timing and pressure of 10° btdc and 900 bar demonstrated the overall improvement of the engine characteristics due to the better air quality for fuel mixing. Similarly, the TRCC cylinder bowl geometry illustrated advanced ignition due to an improved swirl and turbulence. Also, the engine test results demonstrated that 30 ppm of ZnO nanoparticles in Mahua biodiesel (MOME2030) and diesel (D10030) with diethyl ether resulted overall enhancement of CRDI engine characteristics.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - N R Banapurmath
- Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, KLE Technological University, Vidyanagar, Hubballi, Karnataka, 580031, India
| | - Asif Afzal
- Department of Mechanical Engineering, P. A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Mangaluru, 574153, India
| | - Nazia Hossain
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Muhammad Mujtaba Abbas
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mhd Abd Cader Mhd Haniffa
- Advanced Materials Center, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bharat Naik
- Department of Mechanical Engineering, Jain College of Engineering, Belagavi, Karnataka, 590014, India
| | - Waqar Ahmed
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - N M Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Sarawak, Malaysia.
| |
Collapse
|
47
|
Simultaneous accumulation of lipid and carotenoid in freshwater green microalgae Desmodesmus subspicatus LC172266 by nutrient replete strategy under mixotrophic condition. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0564-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3 Biotech 2020; 10:331. [PMID: 32656064 DOI: 10.1007/s13205-020-02323-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/24/2020] [Indexed: 10/23/2022] Open
Abstract
Present study aimed to evaluate the influence of carbon/nitrogen ratio (C/N) on mixotrophic growth of microalgae and role of nanomaterial in cell recovery and lipid improvement. In this study, three microalgae species were isolated, screened from local freshwater body for lipid assimilation. The microalgae were identified as Chlorococcum sp., Scenedesmus sp., and Euglena sp. Mixotrophic cultivation of each microalgae strain using various organic carbon sources was preferred in contrast with photoautotrophic mode. Sucrose represented as the preeminent source for enhancing the microalgae biomass of 3.5 g/L and lipid content of 58.35%, which was a significant improvement as compared to control. Later, response surface methodology-central composite design (RSM-CCD), tool was employed to optimize the C/N ratio and demonstrated the maximum biomass production of 5.02 g/L along with the increased lipid content of 60.34%. Ti nanoparticles (Ti nps) were added to the culture for lipid enhancement in the stationary phase and biomass removal was performed by nanoparticle (np)-mediated flocculation technique. Optimized concentration of 15 ppm Ti nps determined the cell harvesting efficacy of 82.46% during 45 min of sedimentation time and 1.23-fold lipid enhancement was reported. Extracted lipid was converted to fatty acid methyl esters (FAME) by the process of transesterification and analyzed by gas chromatography-mass spectrometry (GC-MS). Characterization of FAME revealed the presence of 56.31% of saturated fatty acid (SFA) and 29.06% unsaturated fatty acids (UFA) that could be processed towards sustainable biodiesel production. Hence, our results suggested that integration of mixotrophic cultivation and Ti nps emerged as a new cost-effective approach for biomass and lipid enhancement in microalgae Chlorococcum sp.
Collapse
|
49
|
Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM. Sustainable energy from waste organic matters via efficient microbial processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137927. [PMID: 32208271 DOI: 10.1016/j.scitotenv.2020.137927] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 05/06/2023]
Abstract
This review emphasizes utilization of waste organic matters from water bodies and soil sources for sustainable energy development. These organic waste matters (including microplastics) from a variety of environmental sources have created a big challenge to utilize them for energy development for human needs, maintaining a cleaner environment and thereby, producing useful bioproducts (sustainable bioenergy or other primary metabolites). Anaerobic digestions as well as other effective wastewater treatment approaches are discussed. From the water bodies, waste organic matter reduction can be achieved by a reduction of chemical oxygen demand and biological oxygen demand after the waste treatment. Other forms of organic waste matter are available in the form of agro wastes or residues (stalk of wheat or rice, maize, corn etc.) due to crop cultivation, which are generally burnt into ashes. Such wastes can be utilized for bioenergy energy production, which would help for the reduction of climate changes or other toxic gases. Hydrogen, bioelectricity, ethanol, butanol, methane and algal diesel or other types of fuel sources would help to provide sustainable source of bioenergy that can be produced from these wastes via degradation by the biological processes. This review will discuss in depths about the sustainable nature of organic matters to produce clean energy via application of efficient biological methods to maintain a clean environment, thereby providing alternative options to fossil energy fuels.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, Gitam Institute of Technology and Management (Deemed to be University), A.P. 530045, India
| | - Nagaraj P Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad 580 002, Karnataka, India.
| |
Collapse
|
50
|
Potential of power generation from chicken waste-based biodiesel, economic and environmental analysis: Bangladesh’s perspective. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2113-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|