1
|
Kim DY, Hii J, Chareonviriyaphap T. Air-Drying Time Affects Mortality of Pyrethroid-Susceptible Aedes aegypti Exposed to Transfluthrin-Treated Filter Papers. INSECTS 2024; 15:616. [PMID: 39194820 DOI: 10.3390/insects15080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Increasing temperature can enhance the geographical spread and behavior of disease vector mosquitoes, exposing vulnerable populations to Aedes-borne viruses and infections. To address this risk, cost-effective and sustained intervention vector control tools are required, such as volatile pyrethroid spatial repellents. This study used a high-throughput screening system toxicity bioassay to determine the discriminating concentrations of transfluthrin-treated filter papers with variable air-drying times exposed to pyrethroid-susceptible Aedes aegypti mosquitoes. At the highest transfluthrin concentration (0.01706%), a significant reduction in mosquito mortality was observed in filter papers air-dried for 24 h compared to those air-dried for 1 h (odds ratio = 0.390, p < 0.001, 95% confidence interval: 0.23-0.66). Conversely, no significant difference in mortality was found between filter papers air-dried for 1 h and those air-dried for 12 h (odds ratio = 0.646, p = 0.107, 95% confidence interval: 0.38-1.10). The discriminating concentration was 2.8-fold higher for transfluthrin-treated filter papers air-dried for 24 h than it was for papers air-dried for 1 h, and it increased 5-fold from 1 h to 336 h of air-drying. These results show that the optimal air-drying period of transfluthrin-treated filter paper is critical, as higher discriminating concentration values may lead to underestimations of insecticide resistance. The instability of transfluthrin-treated papers necessitates the use of the World Health Organization (WHO) bottle bioassay, which is the preferred method for determining mosquito susceptibility to volatile insecticides.
Collapse
Affiliation(s)
- Dae-Yun Kim
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Research and Lifelong Learning Center for Urban and Environmental Entomology, Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Jeffrey Hii
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Brisbane, QL 4000, Australia
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Research and Lifelong Learning Center for Urban and Environmental Entomology, Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Peard EF, Luu C, Hageman KJ, Sepesy R, Bernhardt SA. Exploring sources of inaccuracy and irreproducibility in the CDC bottle bioassay through direct insecticide quantification. Parasit Vectors 2024; 17:310. [PMID: 39030647 PMCID: PMC11264779 DOI: 10.1186/s13071-024-06369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The Centers for Disease Control and Prevention (CDC) bottle bioassay is a commonly used susceptibility test for measuring insect response to insecticide exposure. However, inconsistencies and high variability in insect response when conducting CDC bottle bioassays have been reported in previous publications. We hypothesized that the CDC bottle bioassay results may be compromised when expected and actual insecticide concentrations in the bottles are not equivalent and that inadequate bottle cleaning and/or loss during insecticide introduction and bottle storage steps could be responsible. We explored this hypothesis by quantifying insecticides using gas chromatography tandem mass spectrometry (GC-MS/MS) in bottles that had been cleaned, prepared, and stored according to the CDC guidelines. METHODS We investigated the bottle cleaning, preparation, and storage methods outlined in the CDC bottle bioassay procedure to identify sources of irreproducibility. We also investigated the effectiveness of cleaning bottles by autoclaving because this method is commonly used in insecticide assessment laboratories. The two insecticides used in this study were chlorpyrifos and lambda-cyhalothrin (λ-cyhalothrin). Insecticides were removed from glass bioassay bottles by rinsing with ethyl-acetate and n-hexane and then quantified using GC-MS/MS. RESULTS The CDC bottle bioassay cleaning methods did not sufficiently remove both insecticides from the glass bottles. The cleaning methods removed chlorpyrifos, which has higher water solubility, more effectively than λ-cyhalothrin. Chlorpyrifos experienced significant loss during the bottle-coating process whereas λ-cyhalothrin did not. As for bottle storage, no significant decreases in insecticide concentrations were observed for 6 h following the initial drying period for either insecticide. CONCLUSIONS The CDC bottle bioassay protocol is susceptible to producing inaccurate results since its recommended bottle cleaning method is not sufficient and semi-volatile insecticides can volatilize from the bottle during the coating process. This can lead to the CDC bottle bioassay producing erroneous LC50 values. High levels of random variation were also observed in our experiments, as others have previously reported. We have outlined several steps that CDC bottle bioassay users could consider that would lead to improved accuracy and reproducibility when acquiring toxicity data.
Collapse
Affiliation(s)
- Evah F Peard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Calvin Luu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Kimberly J Hageman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA.
| | - Rose Sepesy
- Department of Biology, Utah State University, Logan, UT, USA
| | | |
Collapse
|
3
|
Praulins G, Murphy-Fegan A, Gillespie J, Mechan F, Gleave K, Lees R. Unpacking WHO and CDC Bottle Bioassay Methods: A Comprehensive Literature Review and Protocol Analysis Revealing Key Outcome Predictors. Gates Open Res 2024; 8:56. [PMID: 39170853 PMCID: PMC11335745 DOI: 10.12688/gatesopenres.15433.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Resistance monitoring is a key element in controlling vector-borne diseases. The World Health Organization (WHO) and Centres for Disease Control and Prevention (CDC) have each developed bottle bioassay methods for determining insecticide susceptibility in mosquito vectors which are used globally. Methods This study aimed to identify variations in bottle bioassay methodologies and assess the potential impact on the data that is generated. Our approach involved a systematic examination of existing literature and protocols from WHO and CDC, with a focus on the specifics of reported methodologies, variation between versions, and reported outcomes. Building on this, we experimentally evaluated the impact of several variables on bioassay results. Results Our literature review exposed a significant inconsistency in the how bioassay methods are reported, hindering reliable interpretation of data and the ability to compare results between studies. The experimental research provided further insight by specifically identifying two key factors that influence the outcomes of bioassays: mosquito dry weight and relative humidity (RH). This finding not only advances our comprehension of these assays but also underscores the importance of establishing precisely defined methodologies for resistance monitoring. The study also demonstrates the importance of controlling bioassay variables, noting the significant influence of wing length, as an indicator of mosquito size, on mortality rates in standardized bioassays. Conclusions Generating data with improved protocol consistency and precision will not only deepen our understanding of resistance patterns but also better inform vector control measures. We call for continued research and collaboration to refine and build consensus on bioassay techniques, to help bolster the global effort against vector-borne diseases like malaria.
Collapse
Affiliation(s)
- Giorgio Praulins
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Annabel Murphy-Fegan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jack Gillespie
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Frank Mechan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Gleave
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rosemary Lees
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
4
|
Escobar D, González-Olvera G, Gómez-Rivera ÁS, Navarrete-Carballo J, Mis-Ávila P, Baack-Valle R, Escalante G, Reyes-Cabrera G, Correa-Morales F, Che-Mendoza A, Vazquez-Prokopec G, Lenhart A, Manrique-Saide P. Insecticide susceptibility status of Anopheles albimanus populations in historical malaria foci in Quintana Roo, Mexico. Malar J 2024; 23:165. [PMID: 38796456 PMCID: PMC11128101 DOI: 10.1186/s12936-024-04993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mexico has experienced a significant reduction in malaria cases over the past two decades. Certification of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using both phenotypic and genotypic approaches. METHODS Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene. RESULTS A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insecticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles. CONCLUSION The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are susceptible to the main insecticides used by the Ministry of Health.
Collapse
Affiliation(s)
- Denis Escobar
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gabriela González-Olvera
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | - Juan Navarrete-Carballo
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Pedro Mis-Ávila
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Raquel Baack-Valle
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Guillermo Escalante
- Servicios Estatales de Salud de Quintana Roo, Chetumal, Quintana Roo, Mexico
| | - Gerardo Reyes-Cabrera
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaría de Salud, Ciudad de México, Mexico
| | - Fabian Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaría de Salud, Ciudad de México, Mexico
| | - Azael Che-Mendoza
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| |
Collapse
|
5
|
Real-Jaramillo S, Bustillos JJ, Moncayo AL, Neira M, Fárez L, Beltrán E, Ocaña-Mayorga S. Phenotypic resistance not associated with knockdown mutations (kdr) in Anopheles albimanus exposed to deltamethrin in southern coastal Ecuador. Malar J 2024; 23:17. [PMID: 38217047 PMCID: PMC10787486 DOI: 10.1186/s12936-023-04818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Decrease in malaria rates (e.g. incidence and cases) in Latin America maintains this region on track to achieve the goal of elimination. During the last 5 years, three countries have been certified as malaria free. However, the region fails to achieve the goal of 40% reduction on malaria rates and an increase of cases has been reported in some countries, including Ecuador. This scenario has been associated with multiple causes, such as decrease of funding to continue anti-malarial programmes and the development of insecticide resistance of the main malaria vectors. In Ecuador, official reports indicated phenotypic resistance in Aedes aegypti and Anopheles albimanus to deltamethrin and malathion, particularly in the coastal areas of Ecuador, however, information about the mechanisms of resistance have not been yet elucidated. This study aims to evaluate phenotypic response to deltamethrin and its relationship with kdr mutations in An. albimanus from two localities with different agricultural activities in southern coastal Ecuador. METHODS The CDC bottle assay was carried out to evaluate the phenotypic status of the mosquito's population. Sequencing the voltage gated sodium channel gene (VGSC) sought knockdown mutations (kdr) in codons 1010, 1013 and 1014 associated with resistance. RESULTS Phenotypic resistance was found in Santa Rosa (63.3%) and suspected resistance in Huaquillas (82.1%); with females presenting a higher median of knockdown rate (83.7%) than males (45.6%). No statistical differences were found between the distributions of knockdown rate for the two localities (p = 0.6048) which indicates no influence of agricultural activity. Although phenotypic resistance was confirmed, genetic analysis demonstrate that this resistance was not related with the kdr mechanism of the VGSC gene because no mutations were found in codons 1010 and 1013, while in codon 1014, 90.6% showed the susceptible sequence (TTG) and 7.3% ambiguous nucleotides (TKK and TYG). CONCLUSIONS These results highlighted the importance of continuous monitoring of resistance in malaria vectors in Ecuador, particularly in areas that have reported outbreaks during the last years. It is also important to elucidate the mechanism involved in the development of the resistance to PYs to propose alternative insecticides or strategies for vector control in areas where resistance is present.
Collapse
Affiliation(s)
- Sebasthian Real-Jaramillo
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Juan J Bustillos
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Ana L Moncayo
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Marco Neira
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
- The Cyprus Institute, Climate and Atmosphere Research Center (CARE-C), Nicosia, Cyprus
| | - Leonardo Fárez
- Laboratorio de Referencia Intermedio de Entomología CZ707D02, Ministerio de Salud Pública de Ecuador, Machala, Ecuador
| | - Efraín Beltrán
- Unidad Académica de Ciencias Químicas y de La Salud, Universidad Técnica de Machala, Machala, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador.
| |
Collapse
|
6
|
Penilla-Navarro P, Solis-Santoyo F, Lopez-Solis A, Rodriguez AD, Vera-Maloof F, Lozano S, Contreras-Mejía E, Vázquez-Samayoa G, Torreblanca-Lopez R, Perera R, Black IV WC, Saavedra-Rodriguez K. Pyrethroid susceptibility reversal in Aedes aegypti: A longitudinal study in Tapachula, Mexico. PLoS Negl Trop Dis 2024; 18:e0011369. [PMID: 38166129 PMCID: PMC10786364 DOI: 10.1371/journal.pntd.0011369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/12/2024] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Pyrethroid resistance in Aedes aegypti has become widespread after almost two decades of frequent applications to reduce the transmission of mosquito-borne diseases. Because few insecticide classes are available for public health use, insecticide resistance management (IRM) is proposed as a strategy to retain their use. A key hypothesis of IRM assumes that negative fitness is associated with resistance, and when insecticides are removed from use, susceptibility is restored. In Tapachula, Mexico, pyrethroids (PYRs) were used exclusively by dengue control programs for 15 years, thereby contributing to selection for high PYR resistance in mosquitoes and failure in dengue control. In 2013, PYRs were replaced by organophosphates-insecticides from a class with a different mode of action. To test the hypothesis that PYR resistance is reversed in the absence of PYRs, we monitored Ae. aegypti's PYR resistance from 2016 to 2021 in Tapachula. We observed significant declining rates in the lethal concentration 50 (LC50), for permethrin and deltamethrin. For each month following the discontinuation of PYR use by vector control programs, we observed increases in the odds of mosquitoes dying by 1.5% and 8.4% for permethrin and deltamethrin, respectively. Also, knockdown-resistance mutations (kdr) in the voltage-gated sodium channel explained the variation in the permethrin LC50s, whereas variation in the deltamethrin LC50s was only explained by time. This trend was rapidly offset by application of a mixture of neonicotinoid and PYRs by vector control programs. Our results suggest that IRM strategies can be used to reverse PYR resistance in Ae. aegypti; however, long-term commitment by operational and community programs will be required for success.
Collapse
Affiliation(s)
- Patricia Penilla-Navarro
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Francisco Solis-Santoyo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Alma Lopez-Solis
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Americo D. Rodriguez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Farah Vera-Maloof
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Saul Lozano
- Centers for Disease Control and Prevention, Arboviral Diseases Branch, Fort Collins, Colorado
| | - Elsa Contreras-Mejía
- Jurisdiccion Sanitaria VII, Tapachula Chiapas, Antiguo Hospital General de Tapachula, Tapachula, Chiapas, Mexico
| | - Geovanni Vázquez-Samayoa
- Jurisdiccion Sanitaria VII, Tapachula Chiapas, Antiguo Hospital General de Tapachula, Tapachula, Chiapas, Mexico
| | - Rene Torreblanca-Lopez
- Jurisdiccion Sanitaria VII, Tapachula Chiapas, Antiguo Hospital General de Tapachula, Tapachula, Chiapas, Mexico
| | - Rushika Perera
- Center for Vector-Borne Infectious Diseases, Colorado State University, 1685 Campus Delivery, Fort Collins, Colorado
| | - William C. Black IV
- Center for Vector-Borne Infectious Diseases, Colorado State University, 1685 Campus Delivery, Fort Collins, Colorado
| | - Karla Saavedra-Rodriguez
- Center for Vector-Borne Infectious Diseases, Colorado State University, 1685 Campus Delivery, Fort Collins, Colorado
| |
Collapse
|
7
|
Murray HL, Hribar LJ. Resistance and inhibitor testing on Aedes aegypti (Linnaeus) (Culicidae: Diptera) populations in the Florida Keys. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:53-63. [PMID: 38147301 DOI: 10.52707/1081-1710-49.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 12/27/2023]
Abstract
Aedes aegypti is the species of greatest concern for mosquito-borne disease in the Florida Keys. Previous locally transmitted dengue outbreaks in Key West (2009-2010) and Key Largo (2020) illustrate the need for an immediate and effective response plan to maintain Ae. aegypti populations below threshold levels. An important part of the Florida Keys Mosquito Control District's vector response plan is adulticide application because it can provide an immediate reduction in Ae. aegypti adults in the community. It has become apparent that in the Florida Keys, and throughout Florida, Ae. aegypti resistance to the adulticide permethrin is prevalent. This study uses the CDC bottle bioassay method to look at resistance in Ae. aegypti collected from Key Largo, Vaca Key, and Key West, FL. Resistance was found in all three populations when exposed to permethrin and Sumithrin® but not malathion. Inhibitor testing revealed that esterase and glutathione transferase activity is involved in resistance to permethrin in Key Largo and Key West Ae. aegypti populations while oxidase activity is involved in resistance to permethrin in Ae. aegypti from Vaca Key. Lack of knockdown at the diagnostic time and previous studies detecting the presence of kdr-associated allele mutations suggest knockdown resistance in all three populations. Results from this study show that there are multiple factors involved with resistance in the Ae. aegypti populations in the Florida Keys and that resistance mechanisms vary between islands. Continued surveillance will remain important so the most effective active ingredients can be used in response to future disease transmission.
Collapse
Affiliation(s)
- Heidi L Murray
- Florida Keys Mosquito Control District, Marathon, FL 33050, U.S.A.,
| | | |
Collapse
|
8
|
Okafor MA, Ekpo ND, Opara KN, Udoidung NI, Ataya FS, Yaro CA, Batiha GES, Alexiou A, Papadakis M. Pyrethroid insecticides susceptibility profiles and evaluation of L1014F kdr mutant alleles in Culex quinquefasciatus from lymphatic filariasis endemic communities. Sci Rep 2023; 13:18716. [PMID: 37907533 PMCID: PMC10618241 DOI: 10.1038/s41598-023-44962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
This study investigated the dynamics in pyrethriod resistance and the presence/frequencies of L1014F knockdown resistance mutant allelles in Culex quinquefasciatus vector populations from Uruan Local Government Area of AkwaIbom State, Southern Nigeria between the months of March and November, 2021. Uruan LGA is among the endemic LGAs for lymphatic filariasis in AkwaIbomState. Female Anopheles mosquitoes from Eman Uruan, Ituk Mbang and Idu Uruan were exposed to permethrin, deltamethrin and alphacypermethrin in CDC insecticide coated bottles for susceptibility bioassay following standard protocols. The mosquitoes were obtained as aquatic forms from the study sites and reared under laboratory conditions to adults. The adult mosquitoes were used for this study. All the mosquitoes used for the insecticide susceptibility bioassay were morphologically identified. Standard Polymerase chain reaction (PCR) was used for authenticating the Culex quinquefasciatus species. A portion of the vgsc (917 bp) gene spanning the entire intron and the exon containing the L1014F mutation associated with knockdown resistance (kdr) in the vectorswere amplified using Allele-SPECIFIC POLYMERASE CHAIN REACTION (AS-PCR) in order to detect target site insensitivity in the vectors from the study sites. Results obtained revealed that vectors from all the study sites were resistant to permethrin insecticide (mortality rate: 18-23%). Suspected resistance (mortality rate: 90-93%) to deltamethrin and low resistance (mortality rate: 82-85%) to alphacypermethrin insecticides were detected. knockdown was more rapid with deltamethrin and alphacypermethrin than with permethrin across the study sites considering their KDT50 and KDT95. The frequency of the resistant phenotypes ranged from 35.14 to 55.3% across the study sites with a net of 45.1% resistant phenotype recorded in this study. The 1014F allelic frequency calculated from Hardy-Weinberg principle for vector populations across the study sites ranged from 0.500 (50.00%) to 0.7763 (77.63%). All populations witnessed significant (p < 0.05) deviations from Hardy-Weinberg equilibrium in the distribution of these alleles. The findings of this study show that there is a tendency to record an entire population of resistant vectors in this study area over time due to natural selection. The public health implication of these findings is that the use of pyrethroid based aerosols, coils, sprays, LLITNs and others for the purpose of controlling vectors of lymphatic filariasis and other diseases may be effort in futility.
Collapse
Affiliation(s)
- Martina Anurika Okafor
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Ndifreke Daniel Ekpo
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria.
| | - Kenneth Nnamdi Opara
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Nsima Ibanga Udoidung
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Clement Ameh Yaro
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
9
|
Matope A, Lees RS, Spiers A, Foster GM. A bioassay method validation framework for laboratory and semi-field tests used to evaluate vector control tools. Malar J 2023; 22:289. [PMID: 37770855 PMCID: PMC10540336 DOI: 10.1186/s12936-023-04717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Vector control interventions play a fundamental role in the control and elimination of vector-borne diseases. The evaluation of vector control products relies on bioassays, laboratory and semi-field tests using live insects to assess the product's effectiveness. Bioassay method development requires a rigorous validation process to ensure that relevant methods are used to capture appropriate entomological endpoints which accurately and precisely describe likely efficacy against disease vectors as well as product characteristics within the manufacturing tolerance ranges for insecticide content specified by the World Health Organization. Currently, there are no standardized guidelines for bioassay method validation in vector control. This report presents a framework for bioassay validation that draws on accepted validation processes from the chemical and healthcare fields and which can be applied for evaluating bioassays and semi-field tests in vector control. The validation process has been categorized into four stages: preliminary development; feasibility experiments; internal validation, and external validation. A properly validated method combined with an appropriate experimental design and data analyses that account for both the variability of the method and the product is needed to generate reliable estimates of product efficacy to ensure that at-risk communities have timely access to safe and reliable vector control products.
Collapse
Affiliation(s)
- Agnes Matope
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rosemary S Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Angus Spiers
- Innovation to Impact (I2I), Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
10
|
Kim DY, Hii J, Chareonviriyaphap T. Transfluthrin and Metofluthrin as Effective Repellents against Pyrethroid-Susceptible and Pyrethroid-Resistant Aedes aegypti (L.) (Diptera: Culicidae). INSECTS 2023; 14:767. [PMID: 37754735 PMCID: PMC10531799 DOI: 10.3390/insects14090767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Aedes aegypti is a major vector of dengue fever in tropical regions. Spatial repellents (SRs) have shown promise in delaying pesticide resistance. Methods for discriminating concentrations (DCs) are well established using various bioassay tools, while data for high-throughput screening system (HITSS) toxicity bioassay (TOX) are absent. In this study, we compared and optimized lethal (LCs) and sub-lethal concentrations (SLCs) of transfluthrin (TFT) and metofluthrin (MFT) on pyrethroid-susceptible (USDA) and pyrethroid-resistant (Pu-Teuy) Ae. aegypti (L.) strains, using the HITSS-TOX. Mean mortality (MT) was 100% at LC99 and DC, compared to LC50 (45.0 ± 3.7%) and LC75 (65.8 ± 7.0%) for the USDA strain. However, the resistant strain (Pu-Teuy) showed reduced susceptibility against TFT and a significantly lower MT at LC50 (12.5 ± 4.4%; t = 5.665, df = 10, p < 0.001), LC75 (9.2 ± 3.5%; t = 4.844, df = 10, p = 0.001), LC99 (55.0 ± 9.9%; t = 4.538, df = 5, p = 0.006), and DC (75.0 ± 5.2%; U = 3.0, p = 0.007). The DC of TFT (0.15222%) was 4.7-fold higher than for MFT (0.03242%) in USDA strain. The baseline DCs established are useful to better understand susceptibility and the efficacy of various repellents against field populations of Ae. aegypti.
Collapse
Affiliation(s)
- Dae-Yun Kim
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Jeffrey Hii
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Brisbane, QLD 4000, Australia;
| | | |
Collapse
|
11
|
Hutton SM, Miarinjara A, Stone NE, Raharimalala FN, Raveloson AO, Rakotobe Harimanana R, Harimalala M, Rahelinirina S, McDonough RF, Ames AD, Hepp C, Rajerison M, Busch JD, Wagner DM, Girod R. Knockdown resistance mutations are common and widely distributed in Xenopsylla cheopis fleas that transmit plague in Madagascar. PLoS Negl Trop Dis 2023; 17:e0011401. [PMID: 37607174 PMCID: PMC10443838 DOI: 10.1371/journal.pntd.0011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/22/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Plague, caused by the bacterium Yersinia pestis, remains an important disease in Madagascar, where the oriental rat flea, Xenopsylla cheopis, is a primary vector. To control fleas, synthetic pyrethroids (SPs) have been used for >20 years, resulting in resistance in many X. cheopis populations. The most common mechanisms of SP resistance are target site mutations in the voltage-gated sodium channel (VGSC) gene. METHODOLOGY/PRINCIPAL FINDINGS We obtained 25 collections of X. cheopis from 22 locations across Madagascar and performed phenotypic tests to determine resistance to deltamethrin, permethrin, and/or dichlorodiphenyltrichloroethane (DDT). Most populations were resistant to all these insecticides. We sequenced a 535 bp segment of the VGSC gene and identified two different mutations encoding distinct substitutions at amino acid position 1014, which is associated with knockdown resistance (kdr) to SPs in insects. Kdr mutation L1014F occurred in all 25 collections; a rarer mutation, L1014H, was found in 12 collections. There was a significant positive relationship between the frequency of kdr alleles and the proportion of individuals surviving exposure to deltamethrin. Phylogenetic comparisons of 12 VGSC alleles in Madagascar suggested resistant alleles arose from susceptible lineages at least three times. Because genotype can reasonably predict resistance phenotype, we developed a TaqMan PCR assay for the rapid detection of kdr resistance alleles. CONCLUSIONS/SIGNIFICANCE Our study provides new insights into VGSC mutations in Malagasy populations of X. cheopis and is the first to report a positive correlation between VGSC genotypes and SP resistance phenotypes in fleas. Widespread occurrence of these two SP resistance mutations in X. cheopis populations in Madagascar reduces the viability of these insecticides for flea control. However, the TaqMan assay described here facilitates rapid detection of kdr mutations to inform when use of these insecticides is still warranted to reduce transmission of plague.
Collapse
Affiliation(s)
- Shelby M. Hutton
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Adelaide Miarinjara
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fara N. Raharimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Annick O. Raveloson
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Mireille Harimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Abbe D. Ames
- Office of Field Operations, Food Safety Inspection Service, Department of Agriculture, Souderton, Pennsylvania, United States of America
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | | | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
12
|
Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, Rašić G, Beebe NW, Devine GJ. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942761 DOI: 10.1002/ps.7462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND With no effective drugs or widely available vaccines, dengue control in Bangladesh is dependent on targeting the primary vector Aedes aegypti with insecticides and larval source management. Despite these interventions, the dengue burden is increasing in Bangladesh, and the country experienced its worst outbreak in 2019 with 101 354 hospitalized cases. This may be partially facilitated by the presence of intense insecticide resistance in vector populations. Here, we describe the intensity and mechanisms of resistance to insecticides commonly deployed against Ae. aegypti in Dhaka, Bangladesh. RESULTS Dhaka Ae. aegypti colonies exhibited high-intensity resistance to pyrethroids. Using CDC bottle assays, we recorded 2-24% mortality (recorded at 24 h) to permethrin and 48-94% mortality to deltamethrin, at 10× the diagnostic dose. Bioassays conducted using insecticide-synergist combinations suggested that metabolic mechanisms were contributing to pyrethroid resistance, specifically multi-function oxidases, esterases, and glutathione S-transferases. In addition, kdr alleles were detected, with a high frequency (78-98%) of homozygotes for the V1016G mutation. A large proportion (≤ 74%) of free-flying and resting mosquitoes from Dhaka colonies survived exposure to standard applications of pyrethroid aerosols in an experimental free-flight room. Although that exposure affected the immediate host-seeking behavior of Ae. aegypti, the effect was transient in surviving mosquitoes. CONCLUSION The intense resistance characterized in this study is likely compromising the operational effectiveness of pyrethroids against Ae. aegypti in Dhaka. Switching to alternative chemical classes may offer a medium-term solution, but ultimately a more sustainable and effective approach to controlling dengue vectors is required. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hasan Mohammad Al-Amin
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mohammad Shafiul Alam
- International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- CSIRO, Brisbane, Queensland, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Corbel V, Kont MD, Ahumada ML, Andréo L, Bayili B, Bayili K, Brooke B, Pinto Caballero JA, Lambert B, Churcher TS, Duchon S, Etang J, Flores AE, Gunasekaran K, Juntarajumnong W, Kirby M, Davies R, Lees RS, Lenhart A, Lima JBP, Martins AJ, Müller P, N’Guessan R, Ngufor C, Praulins G, Quinones M, Raghavendra K, Verma V, Rus AC, Samuel M, Ying KS, Sungvornyothin S, Uragayala S, Velayudhan R, Yadav RS. A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasit Vectors 2023; 16:21. [PMID: 36670470 PMCID: PMC9863080 DOI: 10.1186/s13071-022-05554-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London (ICL), Norfolk Place, London, W2 1PG UK
| | - Martha Liliana Ahumada
- Grupo de Entomología, Instituto Nacional de Salud, Avenida calle 26 No. 51-20—Zona 6 CAN, 111321 Bogotá D.C., Colombia
| | - Laura Andréo
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
| | - Bazoma Bayili
- Institut de Recherche en Sciences de la Santé (IRSS), 399 Avenue de la liberte., 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Koama Bayili
- Institut de Recherche en Sciences de la Santé (IRSS), 399 Avenue de la liberte., 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Basil Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases/NHLS and Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jesús A. Pinto Caballero
- Laboratorio de Referencia Nacional de Entomología (LRNE), Centro Nacional de Salud Pública, Instituto Nacional de Salud, Av. Defensores del Morro 2268 (Ex Huaylas) Chorrillos, Lima 9-(511) 748-0000, Anexo 1548, Lima, Peru
| | - Ben Lambert
- Department of Mathematics, University of Exeter, North Park Rd, Exeter, EX4 4QF UK
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London (ICL), Norfolk Place, London, W2 1PG UK
| | - Stephane Duchon
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche de Yaoundé (IRY)–Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Laboratorio de Entomologia Medica, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N Ciudad Universitaria, 66455 San Nicolas de los Garza, NL Mexico
| | - Kasinathan Gunasekaran
- Indian Council of Medical Research-Vector Control Research Centre (VCRC), Indira Nagar, Puducherry, 605006 India
| | - Waraporn Juntarajumnong
- Department of Entomology, Faculty of Agriculture, Kasetsart University (KU), 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| | - Matt Kirby
- Kilimanjaro Christian Medical Centre (KCMC), Kilimanjaro Christian Medical University College–The Pan African Malaria Vector Research Consortium (KCMUCo-PAMVERC), Off Sokoine Road, PO Box 2228, Moshi, Kilimanjaro Tanzania
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
| | - Rachel Davies
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Audrey Lenhart
- Entomology Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd, Atlanta, GA 30329 USA
| | - José Bento Pereira Lima
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Ademir J. Martins
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Pie Müller
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4312 Allschwil, Switzerland
- University of Basel, Petersplatz 1, PO Box 4001, Basel, Switzerland
| | - Raphael N’Guessan
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
- Face Ecole des Infirmiers, Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500 Bouaké, Côte d’Ivoire
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
- Centres de Recherches Entomologiques de Cotonou (CREC), Ministère de la santé du Bénin, BP 2604, Cotonou, Benin
| | - Giorgio Praulins
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Martha Quinones
- Public Health Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
| | - Kamaraju Raghavendra
- Indian Council of Medical Research-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077 India
| | - Vaishali Verma
- Indian Council of Medical Research-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077 India
| | - Adanan Che Rus
- Vector Control Research Unit (VCRU), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Michael Samuel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases/NHLS and Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Koou Sin Ying
- Environmental Health Institute (EHI), National Environmental Agency (NEA), 11 Biopolis Way, #06-05/08 Helios Block, Singapore, 138667 Singapore
| | - Sungsit Sungvornyothin
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University (MU), 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Sreehari Uragayala
- Field Unit, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research (NIMR), Poojanahalli, Kannamangla Post, Devanahalli Taluk, Bengaluru, 562110 India
| | - Raman Velayudhan
- Vector Control, Veterinary Public Health and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| | - Rajpal S. Yadav
- Vector Control, Veterinary Public Health and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| |
Collapse
|
14
|
Althoff RA, Huijben S. Comparison of the variability in mortality data generated by CDC bottle bioassay, WHO tube test, and topical application bioassay using Aedes aegypti mosquitoes. Parasit Vectors 2022; 15:476. [PMID: 36539831 PMCID: PMC9769033 DOI: 10.1186/s13071-022-05583-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. METHODS We compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose-response against deltamethrin (DM) using the DM-resistant Aedes aegypti strain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose-response curve and assess variation around model predictions. In addition, 10 replicates of 20-25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. RESULTS The topical application bioassay exhibited the lowest amount of variation in the dose-response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. CONCLUSION These data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective.
Collapse
Affiliation(s)
- Rachel A. Althoff
- grid.215654.10000 0001 2151 2636The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - Silvie Huijben
- grid.215654.10000 0001 2151 2636The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ USA ,grid.215654.10000 0001 2151 2636Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ USA
| |
Collapse
|
15
|
Paré PSL, Hien DFDS, Bayili K, Yerbanga RS, Cohuet A, Carrasco D, Guissou E, Gouagna LC, Yaméogo KB, Diabaté A, Ignell R, Dabiré RK, Lefèvre T, Gnankiné O. Natural plant diet impacts phenotypic expression of pyrethroid resistance in Anopheles mosquitoes. Sci Rep 2022; 12:21431. [PMID: 36509797 PMCID: PMC9744732 DOI: 10.1038/s41598-022-25681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Success in reducing malaria transmission through vector control is threatened by insecticide resistance in mosquitoes. Although the proximal molecular mechanisms and genetic determinants involved are well documented, little is known about the influence of the environment on mosquito resistance to insecticides. The aim of this study was to assess the effect of plant sugar feeding on the response of Anopheles gambiae sensu lato to insecticides. Adults were fed with one of four treatments, namely a 5% glucose control solution, nectariferous flowers of Barleria lupulina, of Cascabela thevetia and a combination of both B. lupulina + C. thevetia. WHO tube tests were performed with 0.05% and 0.5% deltamethrin, and knockdown rate (KD) and the 24 h mosquito mortality were measured. Plant diet significantly influenced mosquito KD rate at both concentrations of deltamethrin. Following exposure to 0.05% deltamethrin, the B. lupulina diet induced a 2.5 fold-increase in mosquito mortality compared to 5% glucose. Species molecular identification confirmed the predominance of An. gambiae (60% of the samples) over An. coluzzii and An. arabiensis in our study area. The kdr mutation L1014F displayed an allelic frequency of 0.75 and was positively associated with increased phenotypic resistance to deltamethrin. Plant diet, particularly B. lupulina, increased the susceptibility of mosquitoes to insecticides. The finding that B. lupulina-fed control individuals (i.e. not exposed to deltamethrin) also displayed increased 24 h mortality suggests that plant-mediated effects may be driven by a direct effect of plant diet on mosquito survival rather than indirect effects through interference with insecticide-resistance mechanisms. Thus, some plant species may weaken mosquitoes, making them less vigorous and more vulnerable to the insecticide. There is a need for further investigation, using a wider range of plant species and insecticides, in combination with other relevant environmental factors, to better understand the expression and evolution of insecticide resistance.
Collapse
Affiliation(s)
- Prisca S. L. Paré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| | - Domonbabele F. D. S. Hien
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Koama Bayili
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso ,Institut des Sciences et Techniques (INSTech - BOBO), Bobo‑Dioulasso, Burkina Faso
| | - Anna Cohuet
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - David Carrasco
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Edwige Guissou
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Koudraogo B. Yaméogo
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Department of Plant Protection Biology, Unit of Chemical Ecology, Disease Vector Group, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roch K. Dabiré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| |
Collapse
|
16
|
Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo MW, N'Guessan R, Elobolobo E, Saute F, Varela K, Chaccour CJ, Zulliger R, Wagman J, Robertson ML, Rowland M, Donnelly MJ, Gonahasa S, Staedke SG, Kolaczinski J, Churcher TS. Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data. Nat Commun 2022; 13:3862. [PMID: 35790746 PMCID: PMC9256631 DOI: 10.1038/s41467-022-30700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of malaria transmission has been known for over a century but it is still unclear whether entomological measures are sufficiently reliable to inform policy decisions in human health. Decision-making on the effectiveness of new insecticide-treated nets (ITNs) and the indoor residual spraying of insecticide (IRS) have been based on epidemiological data, typically collected in cluster-randomised control trials. The number of these trials that can be conducted is limited. Here we use a systematic review to highlight that efficacy estimates of the same intervention may vary substantially between trials. Analyses indicate that mosquito data collected in experimental hut trials can be used to parameterize mechanistic models for Plasmodium falciparum malaria and reliably predict the epidemiological efficacy of quick-acting, neuro-acting ITNs and IRS. Results suggest that for certain types of ITNs and IRS using this framework instead of clinical endpoints could support policy and expedite the widespread use of novel technologies.
Collapse
Affiliation(s)
| | - Corine Ngufor
- Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin
- London School of Hygiene and Tropical Medicine, London, UK
| | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Raphael N'Guessan
- London School of Hygiene and Tropical Medicine, London, UK
- Institut Pierre Richet, Bouake, Côte d'Ivoire
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | | | | | - Rose Zulliger
- US President's Malaria Initiative, USAID, Washington, DC, USA
| | | | | | - Mark Rowland
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
17
|
Kpanou CD, Sagbohan HW, Sovi A, Osse R, Padonou GG, Salako A, Tokponnon F, Fassinou AJ, Yovogan B, Nwangwu UC, Adoha CJ, Odjo EM, Ahogni I, Sidick A, Saïd Baba-Moussa L, Akogbéto M. Assessing Insecticide Susceptibility and Resistance Intensity of Anopheles gambiae s.l. Populations From Some Districts of Benin Republic, West Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:949-956. [PMID: 35357491 DOI: 10.1093/jme/tjac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Pyrethroid resistance is widespread in sub-Saharan Africa. The objective of this study was to assess the insecticide resistance intensity in Anopheles gambiae s.l. (Diptera: Culicidae) in four districts of Benin in order to better understand how pyrethroid-only nets are likely to be effective. Thus, adult females of An. gambiae s.l., reared from field-collected larvae were used for assessing resistance intensity to permethrin and deltamethrin. They were tested at 1×, 5×, and 10× the diagnostic dose, using both WHO susceptibility tube testing and CDC bottle bioassays. Identification of molecular species, as well as of L1014F Kdr and Ace-1R mutations was performed using the PCR. The level of expression of biochemical enzymes was also evaluated. Overall, moderate to high resistance intensity to permethrin and deltamethrin was observed, irrespective of the testing method. While the L1014F Kdr frequency was high (>75%), Ace-1R was low (≤6%) in An. gambiaes.s. and Anopheles coluzzii, the two predominant species [52% (95% CI: 44.8-59.1) and 45% (95% CI: 38.0-52.2), respectively]. Anopheles arabiensis was found at very low frequency (3%, 95%CI: 1.1-6.4). For Biochemical analyses, α and β-esterases were over-expressed in all four districts, while mixed-function oxidases (MFOs) were over-expressed in only one. Overall, the two testing methods led to comparable conclusions, though there were a few inconsistencies between them. The moderate-high resistance intensity observed in the study area suggests that dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) may provide better control of insecticide-resistant mosquitoes.
Collapse
Affiliation(s)
- Casimir Dossou Kpanou
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Hermann W Sagbohan
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Arthur Sovi
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Department of Sciences and Techniques for Animal and Fisheries Production, Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Razaki Osse
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département des Sciences Animales et Halieutiques, École de gestion et d'exploitation des systèmes d'élevage, Université Nationale d'Agriculture de Porto-Novo, BP 43 Kétou, Bénin
| | - Gil G Padonou
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Albert Salako
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
| | - Filémon Tokponnon
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
| | - Arsène Jacques Fassinou
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
| | - Boulais Yovogan
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Udoka C Nwangwu
- Department of Disease Surveillance, National Arbovirus and Vectors Research Centre (NAVRC), 4 Park Ave, GRA 400102, Enugu, Nigeria
| | - Constantin J Adoha
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Esdras Mahoutin Odjo
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Idelphonse Ahogni
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
| | - Aboubakar Sidick
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
| | - Lamine Saïd Baba-Moussa
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| | - Martin Akogbéto
- Département de Biologie des Vecteurs, Centre de Recherche entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Benin
- Département de Zoologie, Faculté des Sciences et Techniques, University of Abomey-Calavi, 01 BP 526 Abomey-Calavi, Benin
| |
Collapse
|
18
|
Owusu-Asenso CM, Mingle JAA, Weetman D, Afrane YA. Spatiotemporal distribution and insecticide resistance status of Aedes aegypti in Ghana. Parasit Vectors 2022; 15:61. [PMID: 35183249 PMCID: PMC8858493 DOI: 10.1186/s13071-022-05179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Vector control is the main intervention used to control arboviral diseases transmitted by Aedes mosquitoes because there are no effective vaccines or treatments for most of them. Control of Aedes mosquitoes relies heavily on the use of insecticides, the effectiveness of which may be impacted by resistance. In addition, rational insecticide application requires detailed knowledge of vector distribution, dynamics, resting, and feeding behaviours, which are poorly understood for Aedes mosquitoes in Africa. This study investigated the spatiotemporal distribution and insecticide resistance status of Aedes aegypti across ecological extremes of Ghana. Methods
Immature mosquitoes were sampled from containers in and around human dwellings at seven study sites in urban, suburban, and rural areas of Ghana. Adult Aedes mosquitoes were sampled indoors and outdoors using Biogents BG-Sentinel 2 mosquito traps, human landing catches, and Prokopack aspiration. Distributions of immature and adult Aedes mosquitoes were determined indoors and outdoors during dry and rainy seasons at all sites. The phenotypic resistance status of Aedes mosquitoes to insecticides was determined using World Health Organization susceptibility bioassays. The host blood meal source was determined by polymerase chain reaction. Results A total of 16,711 immature Aedes were sampled, with over 70% found in car tyres. Significantly more breeding containers had Aedes immatures during the rainy season (11,856; 70.95%) compared to the dry season (4855; 29.05%). A total of 1895 adult Aedes mosquitos were collected, including Aedes aegypti (97.8%), Aedes africanus (2.1%) and Aedesluteocephalus (0.1%). Indoor sampling of adult Aedes yielded a total of 381 (20.1%) and outdoor sampling a total of 1514 (79.9%) mosquitoes (z = − 5.427, P = 0.0000) over the entire sampling period. Aedes aegypti populations were resistant to dichlorodiphenyltrichloroethane at all study sites. Vectors showed suspected resistance to bendiocarb (96–97%), permethrin (90–96%) and deltamethrin (91–96%), and were susceptible to the organophosphate for all study sites. Blood meal analysis showed that the Aedes mosquitoes were mostly anthropophilic, with a human blood index of 0.9 (i.e. humans, 90%; human and dog, 5%; dog and cow, 5%). Conclusions Aedes mosquitoes were found at high densities in all ecological zones of Ghana. Resistance of Aedes spp. to pyrethroids and carbamates may limit the efficacy of vector control programmes and thus requires careful monitoring. Graphical
abstract ![]()
Collapse
|
19
|
Lissenden N, Kont MD, Essandoh J, Ismail HM, Churcher TS, Lambert B, Lenhart A, McCall PJ, Moyes CL, Paine MJI, Praulins G, Weetman D, Lees RS. Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. INSECTS 2021; 12:insects12090826. [PMID: 34564266 PMCID: PMC8465213 DOI: 10.3390/insects12090826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary A group of insecticides, called pyrethroids, are the main strategy for controlling the mosquito vectors of malaria. Pyrethroids are used in all insecticide-treated bednets, and many indoor residual spray programmes (in which insecticides are sprayed on the interior walls of houses). There are different types of pyrethroids within the class (e.g., deltamethrin and permethrin). Across the world, mosquitoes are showing signs of resistance to the pyrethroids, such as reduced mortality following contact. However, it is unclear if this resistance is uniform across the pyrethroid class (i.e., if a mosquito is resistant to deltamethrin, whether it is resistant to permethrin at the same level). In addition, it is not known if switching between different pyrethroids can be used to effectively maintain mosquito control when resistance to a single pyrethroid has been detected. This review examined the evidence from molecular studies, resistance testing from laboratory and field data, and mosquito behavioural assays to answer these questions. The evidence suggested that in areas where pyrethroid resistance exists, different mortality seen between the pyrethroids is not necessarily indicative of an operationally relevant difference in control performance, and there is no reason to rotate between common pyrethroids (i.e., deltamethrin, permethrin, and alpha-cypermethrin) as an insecticide resistance management strategy. Abstract Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.
Collapse
Affiliation(s)
- Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London SW7 2BX, UK; (M.D.K.); (T.S.C.); (B.L.)
| | - Audrey Lenhart
- U.S. Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Atlanta, GA 30329, USA;
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | | | - Mark J. I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Giorgio Praulins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
| | - Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (N.L.); (J.E.); (H.M.I.); (P.J.M.); (M.J.I.P.); (G.P.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| |
Collapse
|
20
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
21
|
Blouquy L, Mottet C, Olivares J, Plantamp C, Siegwart M, Barrès B. How varying parameters impact insecticide resistance bioassay: An example on the worldwide invasive pest Drosophila suzukii. PLoS One 2021; 16:e0247756. [PMID: 33667239 PMCID: PMC7935283 DOI: 10.1371/journal.pone.0247756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/12/2021] [Indexed: 11/18/2022] Open
Abstract
Monitoring pesticide resistance is essential for effective and sustainable agricultural practices. Bioassays are the basis for pesticide-resistance testing, but devising a reliable and reproducible method can be challenging because these tests are carried out on living organisms. Here, we investigated five critical parameters and how they affected the evaluation of resistance to the organophosphate phosmet or the pyrethroid lambda-cyhalothrin using a tarsal-contact protocol on Drosophila suzukii, a worldwide invasive pest. Three of the parameters were related to insect biology: (i) sex, (ii) age of the imago (adult stage) and (iii) genetic diversity of the tested population. The two remaining parameters were linked to the experimental setup: (iv) the number of individuals tested per dose and (v) the duration of exposure to the active ingredient. Results showed that response to insecticide differed depending on sex, males being twice as susceptible to phosmet as females. Age principally affected young females' susceptibility to phosmet, because 0-24 hour-old flies were twice as susceptible as 24-48 hour-old and 72-96 hour-old females. Genetic diversity had no observable effect on resistance levels. The precision and accuracy of the median lethal dose (LD50) were greatly affected by the number of individuals tested per dose with a threshold effect. Finally, optimal duration of exposure to the active ingredient was 24 h, as we found an underestimation of mortality when assessed between 1 and 5 h after exposure to lambda-cyhalothrin. None of the main known point mutations on the para sodium channel gene associated with a knockdown effect were observed. Our study demonstrates the importance of calibrating the various parameters of a bioassay to develop a reliable method. It also provides a valuable and transferable protocol for monitoring D. suzukii resistance worldwide.
Collapse
Affiliation(s)
- Lucile Blouquy
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
- PSH - Unité de recherche Plantes et Systèmes de Culture Horticoles, INRAE, Avignon, France
| | - Claire Mottet
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | - Jérôme Olivares
- PSH - Unité de recherche Plantes et Systèmes de Culture Horticoles, INRAE, Avignon, France
| | | | - Myriam Siegwart
- PSH - Unité de recherche Plantes et Systèmes de Culture Horticoles, INRAE, Avignon, France
| | - Benoit Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| |
Collapse
|
22
|
Parker C. Collection and Rearing of Container Mosquitoes and a 24-h Addition to the CDC Bottle Bioassay. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:13. [PMID: 33135763 PMCID: PMC7751146 DOI: 10.1093/jisesa/ieaa059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Container mosquitoes (Diptera: Culicidae) oviposit their eggs in both natural and artificial containers. Many container mosquito species also serve as important vectors of disease-causing pathogens including Aedes aegypti, Ae. albopictus, and Ae. triseriatus. Control of these species can be done through the use of adulticide sprays. The efficacy of these treatments is highly dependent on the insecticide susceptibility status of the local mosquito populations. This paper provides protocols on collecting and rearing container mosquitoes for use in the Centers for Disease Control and Prevention (CDC) bottle bioassay. A brief description of the CDC bottle bioassay is provided as well as a standardized protocol for the incorporation of a 24-h mortality to the CDC bottle bioassay. Results from this 24-h holding addition to the CDC bottle bioassay reveal that some forms of resistance may be missed without the incorporation of the additional mortality reading. These protocols provide a foundation for new laboratories to establish rearing protocols and begin conducting resistance monitoring.
Collapse
Affiliation(s)
- Casey Parker
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, Vero Beach, FL
| |
Collapse
|
23
|
Culex erythrothorax (Diptera: Culicidae): Activity periods, insecticide susceptibility and control in California (USA). PLoS One 2020; 15:e0228835. [PMID: 32649665 PMCID: PMC7351207 DOI: 10.1371/journal.pone.0228835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
The mosquito Culex erythrothorax Dyar is a West Nile virus (WNV) vector that breeds in wetlands with emergent vegetation. Urbanization and recreational activities near wetlands place humans, birds and mosquitoes in close proximity, increasing the risk of WNV transmission. Adult Cx. erythrothorax abundance peaked in a wetland bordering the San Francisco Bay of California (USA) during the first 3 hours after sunset (5527 ± 4070 mosquitoes / trap night) while peak adult Culex tarsalis Coquillett abundance occurred during the subsequent 3 h period (83 ± 30 Cx. tarsalis). When insecticide resistance was assessed using bottle bioassay, Cx. erythrothorax was highly sensitive to permethrin, naled, and etofenprox insecticides compared to a strain of Culex pipiens that is susceptible to insecticides (LC50 = 0.35, 0.71, and 4.1 μg/bottle, respectively). The Cx. erythrothorax were 2.8-fold more resistant to resmethrin, however, the LC50 value was low (0.68 μg/bottle). Piperonyl butoxide increased the toxicity of permethrin (0.5 μg/bottle) and reduced knock down time, but a higher permethrin concentration (2.0 μg/bottle) did not have similar effects. Bulk mixed-function oxidase, alpha-esterase, or beta-esterase activities in mosquito homogenates were higher in Cx. erythrothorax relative to the Cx. pipiens susceptible strain. There was no difference in the activity of glutathione S-transferase between the two mosquito species and insensitive acetylcholine esterase was not detected. Larvicides that were applied to the site had limited impact on reducing mosquito abundance. Subsequent removal of emergent vegetation in concert with larvicide applications and reduced daily environmental temperature substantially reduced mosquito abundance. To control Cx. erythrothorax in wetlands, land managers should consider vegetation removal so that larvicide can efficiently enter the water. Vector control agencies may more successfully control adult viremic Cx. erythrothorax that enter nearby neighborhoods by applying adulticides during the 3 h that follow sunset.
Collapse
|
24
|
Sovi A, Keita C, Sinaba Y, Dicko A, Traore I, Cisse MBM, Koita O, Dengela D, Flatley C, Bankineza E, Mihigo J, Belemvire A, Carlson J, Fornadel C, Oxborough RM. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016-2018): PBO or next generation LLINs may provide greater control. Parasit Vectors 2020; 13:239. [PMID: 32384907 PMCID: PMC7206711 DOI: 10.1186/s13071-020-04100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/25/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.
Collapse
Affiliation(s)
- Arthur Sovi
- Faculty of Agronomy, University of Parakou, BP123 Parakou, Benin
- Centre de Recherche Entomologique de Cotonou, 06BP2604 Cotonou, Benin
- Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Chitan Keita
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Youssouf Sinaba
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Abdourhamane Dicko
- Programme National de Lutte contre le Paludisme (PNLP), Ministère de la Santé, Bamako, Mali
| | - Ibrahim Traore
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Moussa B. M. Cisse
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmane Koita
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| | - Cecilia Flatley
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| | - Elie Bankineza
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Jules Mihigo
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Bamako, Mali
| | - Allison Belemvire
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
| | - Jenny Carlson
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
| | - Christen Fornadel
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
- Innovative Vector Control Consortium (IVCC), Washington, D.C USA
| | - Richard M. Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| |
Collapse
|
25
|
Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S, Chandre F. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl Trop Dis 2019; 13:e0007615. [PMID: 31600206 PMCID: PMC6786541 DOI: 10.1371/journal.pntd.0007615] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The landscape of mosquito-borne disease risk has changed dramatically in recent decades, due to the emergence and reemergence of urban transmission cycles driven by invasive Aedes aegypti and Ae. albopictus. Insecticide resistance is already widespread in the yellow fever mosquito, Ae. Aegypti; is emerging in the Asian tiger mosquito Ae. Albopictus; and is now threatening the global fight against human arboviral diseases such as dengue, yellow fever, chikungunya, and Zika. Because the panel of insecticides available for public health is limited, it is of primary importance to preserve the efficacy of existing and upcoming active ingredients. Timely implementation of insecticide resistance management (IRM) is crucial to maintain the arsenal of effective public health insecticides and sustain arbovirus vector control. METHODOLOGY AND PRINCIPAL FINDINGS This Review is one of a series being generated by the Worldwide Insecticide resistance Network (WIN) and aims at defining the principles and concepts underlying IRM, identifying the main factors affecting the evolution of resistance, and evaluating the value of existing tools for resistance monitoring. Based on the lessons taken from resistance strategies used for other vector species and agricultural pests, we propose a framework for the implementation of IRM strategies for Aedes mosquito vectors. CONCLUSIONS AND SIGNIFICANCE Although IRM should be a fixture of all vector control programs, it is currently often absent from the strategic plans to control mosquito-borne diseases, especially arboviruses. Experiences from other public health disease vectors and agricultural pests underscore the need for urgent action in implementing IRM for invasive Aedes mosquitoes. Based on a plan developed for malaria vectors, here we propose some key activities to establish a global plan for IRM in Aedes spp.
Collapse
Affiliation(s)
- Isabelle Dusfour
- Laboratoire d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
- Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS), Université Grenoble-Alpes, Grenoble, France
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University (RU), New Brunswick, New Jersey, United States of America
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Kamaraju Raghavendra
- Department of Health Research, National Institute of Malaria Research, Dwarka, Delhi, India
| | - Mamadou B. Coulibaly
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ademir J. Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Shinji Kasai
- Laboratory of Pesticide Science, Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fabrice Chandre
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
26
|
Ser O, Cetin H. Investigation of Susceptibility Levels of Culex pipiens L. (Diptera: Culicidae) Populations to Synthetic Pyrethroids in Antalya Province of Turkey. J Arthropod Borne Dis 2019; 13:243-258. [PMID: 31879665 PMCID: PMC6928386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/26/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Culex pipiens L. (Diptera: Culicidae) is an important vector of several pathogens. This mosquito is widely distributed throughout the world. We aimed to determine the susceptibility levels of Cx. pipiens populations to some synthetic pyrethroid insecticides in Antalya, Turkey. METHODS The immature stages of mosquitoes were collected from eight locations in Alanya, Döşemealtı, Kemer, Kumluca, and Manavgat districts of Antalya between Apr and Oct of 2017. Adult susceptibility tests were carried out according to a modified version of the Centers for Disease Control and Prevention bottle bioassay. In the tests, the World Health Organization recommended diagnostic doses; permethrin (0.75%), etofenprox (0.5%), deltamethrin (0.05%) and lambda-cyhalothrin (0.05%) were used. RESULTS As a result of the susceptibility tests, deltamethrin was the least effective insecticide and it caused 58.78-97.56% mortalities on Cx. pipiens populations while permethrin was the most effective substance that caused 100% mortality on all populations. While all of the tested populations were found susceptible to permethrin, and possible resistant or resistant to deltamethrin. Etofenprox and lambda-cyhalothrin led to 91.54-100% and 93.1-100% mortalities, respectively. CONCLUSION The possible resistance or resistance to deltamethrin in all the areas is caused by the widespread use of this chemical against pests in agriculture and public health applications for long-term. Moreover, a concordance was found between resistance levels and the intensity of pesticide application in agriculture and public health, and organic and chemical pollution levels in the sampled habitats.
Collapse
Affiliation(s)
- Onder Ser
- Malaria Control Unit, Antalya Provincial Directorate of Health, Antalya, Turkey,Corresponding author: Dr Onder Ser, E-mail:
| | - Huseyin Cetin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| |
Collapse
|
27
|
Pwalia R, Joannides J, Iddrisu A, Addae C, Acquah-Baidoo D, Obuobi D, Amlalo G, Akporh S, Gbagba S, Dadzie SK, Athinya DK, Hadi MP, Jamet HP, Chabi J. High insecticide resistance intensity of Anopheles gambiae (s.l.) and low efficacy of pyrethroid LLINs in Accra, Ghana. Parasit Vectors 2019; 12:299. [PMID: 31196222 PMCID: PMC6567633 DOI: 10.1186/s13071-019-3556-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide resistance of Anopheles gambiae (s.l.) against public health insecticides is increasingly reported in Ghana and need to be closely monitored. This study investigated the intensity of insecticide resistance of An. gambiae (s.l.) found in a vegetable growing area in Accra, Ghana, where insecticides, herbicides and fertilizers are massively used for plant protection. The bioefficacy of long-lasting insecticidal nets (LLINs) currently distributed in the country was also assessed to delimitate the impact of the insecticide resistance intensity on the effectiveness of those nets. Methods Three- to five-day-old adult mosquitoes that emerged from collected larvae from Opeibea, Accra (Ghana), were assayed using CDC bottle and WHO tube intensity assays against different insecticides. The Vgsc-L1014F and ace-1 mutations within the population were also characterized using PCR methods. Furthermore, cone bioassays against different types of LLINs were conducted to evaluate the extent and impact of the resistance of An. gambiae (s.l.) from Opeibea. Results Anopheles gambiae (s.l.) from Opeibea were resistant to all the insecticides tested with very low mortality observed against organochlorine, carbamates and pyrethroid insecticides using WHO susceptibility tests at diagnostic doses during three consecutive years of monitoring. The average frequencies of Vgsc-1014F and ace-1 in the An. gambiae (s.l.) population tested were 0.99 and 0.76, respectively. The intensity assays using both CDC bottle and WHO tubes showed high resistance intensity to pyrethroids and carbamates with survivals at 10× the diagnostic doses of the insecticides tested. Only pirimiphos methyl recorded a low resistance intensity with 100% mortality at 5× the diagnostic dose. The bioefficacy of pyrethroid LLINs ranged from 2.2 to 16.2% mortality while the PBO LLIN, PermaNet® 3.0, was 73%. Conclusions WHO susceptibility tests using the diagnostic doses described the susceptibility status of the mosquito colony while CDC bottle and WHO tube intensity assays showed varying degrees of resistance intensity. Although both methods are not directly comparable, the indication of the resistance intensity showed the alarming insecticide resistance intensity in Opeibea and its surroundings, which could have an operational impact on the efficacy of vector control tools and particularly on pyrethroid LLINs. Electronic supplementary material The online version of this article (10.1186/s13071-019-3556-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Pwalia
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Joannitta Joannides
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Alidu Iddrisu
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Charlotte Addae
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Dominic Acquah-Baidoo
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Dorothy Obuobi
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Godwin Amlalo
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Samuel Akporh
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Sampson Gbagba
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Duncan K Athinya
- University of Nairobi, Nairobi, Kenya.,Vestergaard East Africa, Nairobi, Kenya
| | | | | | - Joseph Chabi
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
28
|
Valle D, Bellinato DF, Viana-Medeiros PF, Lima JBP, Martins Junior ADJ. Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem Inst Oswaldo Cruz 2019; 114:e180544. [PMID: 31038548 PMCID: PMC6489372 DOI: 10.1590/0074-02760180544] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aedes aegypti populations in Brazil have been subjected to insecticide selection pressures with variable levels and sources since 1967. Therefore, the Brazilian Ministry of Health (MoH) coordinated the activities of an Ae. aegypti insecticide resistance monitoring network (MoReNAa) from 1999 to 2012. OBJECTIVES The objective of this study was to consolidate all information available from between 1985 and 2017 regarding the resistance status and mechanisms of Brazilian Ae. aegypti populations against the main insecticide compounds used at the national level, including the larvicide temephos (an organophosphate) and the adulticide deltamethrin (a pyrethroid). METHODS Data were gathered from two sources: a bibliographic review of studies published from 1985 to 2017, and unpublished data produced by our team within the MoReNAa between 1998 and 2012. A total of 146 municipalities were included, many of which were evaluated several times, totalling 457 evaluations for temephos and 274 for deltamethrin. Insecticide resistance data from the five Brazilian regions were examined separately using annual records of both the MoH supply of insecticides to each state and the dengue incidence in each evaluated municipality. FINDINGS Ae. aegypti resistance to temephos and deltamethrin, the main larvicide and adulticide, respectively, employed against mosquitoes in Brazil for a long time, was found to be widespread in the country, although with some regional variations. Comparisons between metabolic and target-site resistance mechanisms showed that one or another of these was the main component of pesticide resistance in each studied population. MAIN CONCLUSIONS (i) A robust dataset on the assessments of the insecticide resistance of Brazilian Ae. aegypti populations performed since 1985 was made available through our study. (ii) Our findings call into question the efficacy of chemical control as the sole methodology of vector control. (iii) It is necessary to ensure that sustainable insecticide resistance monitoring is maintained as a key component of integrated vector management. (iv) Consideration of additional parameters, beyond the supply of insecticides distributed by the MoH or the diverse local dynamics of dengue incidence, is necessary to find consistent correlations with heterogeneous vector resistance profiles.
Collapse
Affiliation(s)
- Denise Valle
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivírus, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Diogo Fernandes Bellinato
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivírus, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil
| | | | - José Bento Pereira Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil.,Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil
| | - Ademir de Jesus Martins Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia e Controle de Artrópodes Vetores, Rio de Janeiro, RJ, Brasil.,Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
29
|
Oladipupo SO, Callaghan A, Holloway GJ, Gbaye OA. Variation in the susceptibility of Anopheles gambiae to botanicals across a metropolitan region of Nigeria. PLoS One 2019; 14:e0210440. [PMID: 30625231 PMCID: PMC6326496 DOI: 10.1371/journal.pone.0210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Pesticide resistance is normally associated with genetic changes, resulting in varied responses to insecticides between different populations. There is little evidence of resistance to plant allelochemicals; it is likely that their efficacy varies between genetically diverse populations, which may lead to the development of resistance in the future. This study evaluated the response of Anopheles gambiae (larvae and adults) from spatially different populations to acetone extracts of two botanicals, Piper guineense and Eugenia aromatica. Mosquito samples from 10 locations within Akure metropolis in Southwest Nigeria were tested for variation in susceptibility to the toxic effect of botanical extracts. The spatial distribution of the tolerance magnitude (T.M.) of the mosquito populations to the botanicals was also mapped. The populations of An. gambiae manifested significant differences in their level of tolerance to the botanicals. The centre of the metropolis was the hot spot of tolerance to the botanicals. There was a significant positive correlation between the adulticidal activities of both botanicals and initial knockdown. Hence, knockdown by these botanicals could be a predictor of their subsequent mortality. In revealing variation in response to botanical pesticides, our work has demonstrated that any future use of botanicals as alternative environmentally friendly vector control chemicals needs to be closely monitored to ensure that resistance does not develop.
Collapse
Affiliation(s)
- Seun Olaitan Oladipupo
- Department of Biology, Federal University of Technology, Akure, Nigeria
- Department of Entomology and Plant Pathology, Funchess Hall, Auburn University, Aurburn, Alabama, United States of America
| | - Amanda Callaghan
- Centre for Wildlife Assessment and Conservation, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Graham J. Holloway
- Centre for Wildlife Assessment and Conservation, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
30
|
Transgenic Metarhizium pingshaense synergistically ameliorates pyrethroid-resistance in wild-caught, malaria-vector mosquitoes. PLoS One 2018; 13:e0203529. [PMID: 30192847 PMCID: PMC6128571 DOI: 10.1371/journal.pone.0203529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 11/19/2022] Open
Abstract
Transgenic Metarhizium pingshaense expressing the spider neurotoxin Hybrid (Met-Hybrid) kill mosquitoes faster and at lower spore doses than wild-type strains. In this study, we demonstrate that this approach dovetails with the cornerstone of current malaria control: pyrethroid-insecticides, which are the cornerstone of current malaria control. We used World Health Organization (WHO) tubes, to compare the impact on insecticide resistance of Met-Hybrid with red fluorescent M. pingshaense (Met-RFP), used as a proxy for the wild-type fungus. Insecticides killed less than 20% of Anopheles coluzzii and Anopheles gambiae s.s. mosquitoes collected in a malaria endemic region of Burkina Faso where pyrethroid use is common. Seven days post-infection, mortality for insecticide-sensitive and resistant mosquitoes averaged 94% with Met-Hybrid and 64% with Met-RFP, with LT80 values of 5.32±0.199 days and 7.76±0.183 days, respectively. Eighty nine percent of insecticide-resistant mosquitoes exposed to permethrin five days post-infection with Met-Hybrid died within 24 hours: only 22% died from Met-Hybrid alone over this 24-hour period. Compared to Met-RFP, Met-Hybrid also significantly reduced flight capacity of mosquitoes 3 to 5 days post-infection. Based on WHOPES phase I laboratory susceptibility bioassays, transgenic Met-Hybrid provides effective biological control for adult African malaria vectors that may be used to synergistically manage insecticide resistance with current methods.
Collapse
|
31
|
Kuri-Morales PA, Correa-Morales F, González-Acosta C, Moreno-Garcia M, Santos-Luna R, Román-Pérez S, Salazar-Penagos F, Lombera-González M, Sánchez-Tejeda G, González-Roldán JF. Insecticide susceptibility status in Mexican populations of Stegomyia aegypti (= Aedes aegypti): a nationwide assessment. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:162-174. [PMID: 29165810 DOI: 10.1111/mve.12281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
In Mexico, mosquito vector-borne diseases are of public health concern as a result of their impact on human morbidity and mortality. The use of insecticides against adult mosquitoes is one of the most common ways of controlling mosquito population densities. However, the use of these compounds has resulted in the development of insecticide resistance. The aim of this study was to estimate susceptibility to six pyrethroids, two carbamates and two organophosphates in Mexican populations of Stegomyia aegypti (Linnaeus, 1762) (= Aedes aegypti) (Diptera: Culicidae) mosquitoes. Bottle insecticide susceptibility tests, with 1 h exposure, were performed on adult mosquitoes from 75 localities across 28 states. At 30 min of exposure, the proportion of fallen mosquitoes was recorded. After 60 min of exposure, mosquitoes were recovered in non-treated containers and mortality was determined at 24 h after the set-up of the experiment. In general, the carbamate insecticides represented the most effective group in terms of the proportion of mosquitoes fallen at 30 min (72-100%) and 24-h mortality (97-100%). High and widespread resistance to pyrethroids Types I and II and, to a lesser extent, to organophosphates was observed. Insecticide susceptibility among and within states was highly variable.
Collapse
Affiliation(s)
| | - F Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Mexico City, Mexico
| | - C González-Acosta
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Mexico City, Mexico
| | - M Moreno-Garcia
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Mexico City, Mexico
- Unidad de Bioensayo, Centro Regional de Control de Vectores Panchimalco, Servicios de Salud de Morelos, Morelos, Mexico
| | - R Santos-Luna
- Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - S Román-Pérez
- Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | | | - G Sánchez-Tejeda
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Mexico City, Mexico
| | - J F González-Roldán
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Mexico City, Mexico
| |
Collapse
|
32
|
Lopez-Monroy B, Gutierrez-Rodriguez SM, Villanueva-Segura OK, Ponce-Garcia G, Morales-Forcada F, Alvarez LC, Flores AE. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico. PEST MANAGEMENT SCIENCE 2018; 74:2176-2184. [PMID: 29575404 DOI: 10.1002/ps.4916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F-RDT] and Resistance Intensity Rapid Diagnostic Test [I-RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C. RESULTS All populations under study were resistant to the pyrethroids: bifenthrin (99%), d-(cis-trans)-phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F-RDT, and showed moderate to high-intensity resistance at 10× the diagnostic dose (DD) in I-RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high-intensity phenothrin resistance at 1× to 10× DD. CONCLUSIONS This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F-RDT and I-RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz Lopez-Monroy
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| | - Selene M Gutierrez-Rodriguez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| | - Olga Karina Villanueva-Segura
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| | - Gustavo Ponce-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| | - Franco Morales-Forcada
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| | - Leslie C Alvarez
- Universidad de los Andes, Nucleo Universitario Rafael Rangel, estado Trujillo, Venezuela
| | - Adriana E Flores
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Departamento de Zoologia de Invertebrados, San Nicolas de los Garza, Mexico
| |
Collapse
|
33
|
Messenger LA, Shililu J, Irish SR, Anshebo GY, Tesfaye AG, Ye-Ebiyo Y, Chibsa S, Dengela D, Dissanayake G, Kebede E, Zemene E, Asale A, Yohannes M, Taffese HS, George K, Fornadel C, Seyoum A, Wirtz RA, Yewhalaw D. Insecticide resistance in Anopheles arabiensis from Ethiopia (2012-2016): a nationwide study for insecticide resistance monitoring. Malar J 2017; 16:469. [PMID: 29151024 PMCID: PMC5694167 DOI: 10.1186/s12936-017-2115-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/10/2017] [Indexed: 11/27/2022] Open
Abstract
Background Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. However, the development of insecticide resistance and its implications for operational failure of preventative strategies are of concern. The aim of this study was to characterize insecticide resistance among Anopheles arabiensis populations in Ethiopia and describe temporal and spatial patterns of resistance between 2012 and 2016. Methods Between 2012 and 2016, resistance status of An. arabiensis was assessed annually during the long rainy seasons in study sites from seven of the nine regions in Ethiopia. Insecticide resistance levels were measured with WHO susceptibility tests and CDC bottle bioassays using insecticides from four chemical classes (organochlorines, pyrethroids, organophosphates and carbamates), with minor variations in insecticides tested and assays conducted between years. In selected sites, CDC synergist assays were performed by pre-exposing mosquitoes to piperonyl butoxide (PBO). In 2015 and 2016, mosquitoes from DDT and deltamethrin bioassays were randomly selected, identified to species-level and screened for knockdown resistance (kdr) by PCR. Results Intense resistance to DDT and pyrethroids was pervasive across Ethiopia, consistent with historic use of DDT for IRS and concomitant increases in insecticide-treated net coverage over the last 15 years. Longitudinal resistance trends to malathion, bendiocarb, propoxur and pirimiphos-methyl corresponded to shifts in the national insecticide policy. By 2016, resistance to the latter two insecticides had emerged, with the potential to jeopardize future long-term effectiveness of vector control activities in these areas. Between 2015 and 2016, the West African (L1014F) kdr allele was detected in 74.1% (n = 686/926) of specimens, with frequencies ranging from 31 to 100% and 33 to 100% in survivors from DDT and deltamethrin bioassays, respectively. Restoration of mosquito susceptibility, following pre-exposure to PBO, along with a lack of association between kdr allele frequency and An. arabiensis mortality rate, both indicate metabolic and target-site mutation mechanisms are contributing to insecticide resistance. Conclusions Data generated by this study will strengthen the National Malaria Control Programme’s insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia. Electronic supplementary material The online version of this article (10.1186/s12936-017-2115-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa A Messenger
- Entomology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA.
| | - Josephat Shililu
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Seth R Irish
- Entomology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA
| | - Gedeon Yohannes Anshebo
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Alemayehu Getachew Tesfaye
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Yemane Ye-Ebiyo
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Sheleme Chibsa
- U.S. Agency for International Development (USAID), Entoto Street, Addis Ababa, Ethiopia
| | - Dereje Dengela
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave., Suite 800 North, Bethesda, MD, 20814, USA
| | | | - Estifanos Kebede
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Abebe Asale
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Mekonnen Yohannes
- Medical and Entomology Unit, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mek'ele, Ethiopia
| | - Hiwot Solomon Taffese
- National Malaria Control Programne, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Kristen George
- President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Christen Fornadel
- President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Aklilu Seyoum
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave., Suite 800 North, Bethesda, MD, 20814, USA
| | - Robert A Wirtz
- Entomology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia.,Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
34
|
Owusu HF, Chitnis N, Müller P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci Rep 2017. [PMID: 28623302 PMCID: PMC5473885 DOI: 10.1038/s41598-017-03918-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Insecticide resistance threatens the success achieved through vector control in reducing the burden of malaria. An understanding of insecticide resistance mechanisms would help to develop novel tools and strategies to restore the efficacy of insecticides. Although we have substantially improved our understanding of the genetic basis of insecticide resistance over the last decade, we still know little of how environmental variations influence the mosquito phenotype. Here, we measured how variations in larval rearing conditions change the insecticide susceptibility phenotype of adult Anopheles mosquitoes. Anopheles gambiae and A. stephensi larvae were bred under different combinations of temperature, population density and nutrition, and the emerging adults were exposed to permethrin. Mosquitoes bred under different conditions showed considerable changes in mortality rates and body weight, with nutrition being the major factor. Weight is a strong predictor of insecticide susceptibility and bigger mosquitoes are more likely to survive insecticide treatment. The changes can be substantial, such that the same mosquito colony may be considered fully susceptible or highly resistant when judged by World Health Organization discriminatory concentrations. The results shown here emphasise the importance of the environmental background in developing insecticide resistance phenotypes, and caution for the interpretation of data generated by insecticide susceptibility assays.
Collapse
Affiliation(s)
- Henry F Owusu
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Nakul Chitnis
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland
| | - Pie Müller
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland.
| |
Collapse
|
35
|
Dang K, Singham GV, Doggett SL, Lilly DG, Lee CY. Effects of Different Surfaces and Insecticide Carriers on Residual Insecticide Bioassays Against Bed Bugs, Cimex spp. (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:558-566. [PMID: 28115498 DOI: 10.1093/jee/tow296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in acetone-based insecticide bioassays, with longer survival time on filter paper than on the glass surface. With the exception of deltamethrin, the different diluents (oil and acetone) also significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in the filter paper-based insecticide bioassays, with longer survival time with acetone as the diluent. For both strains of C. hemipterus, there were no significant effects with the different surfaces and diluents for all insecticides except for malathion and imidacloprid, which was largely due to high levels of resistance. The lower effectiveness for the insecticide acetone-based treatment on filter paper may be due to crystal bloom. This occurs when an insecticide, dissolved in a volatile solvent, is applied onto absorptive surfaces. The effect is reduced on nonabsorptive surfaces and slowed down with oil-based insecticides, whereby the oil forms a film on absorptive surfaces. These findings suggest that nonabsorptive surfaces should be used in bioassays to monitor insecticide resistance. If absorptive surfaces are used in bioassays for testing active ingredients, then oil-based insecticides should be preferably used.
Collapse
Affiliation(s)
- Kai Dang
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia (; )
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, Penang 11900, Malaysia
| | - Stephen L Doggett
- Department of Medical Entomology, Pathology West, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David G Lilly
- Department of Medical Entomology, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia (; )
| |
Collapse
|
36
|
Falckenhayn C, Carneiro VC, de Mendonça Amarante A, Schmid K, Hanna K, Kang S, Helm M, Dimopoulos G, Fantappié MR, Lyko F. Comprehensive DNA methylation analysis of the Aedes aegypti genome. Sci Rep 2016; 6:36444. [PMID: 27805064 PMCID: PMC5090363 DOI: 10.1038/srep36444] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 01/03/2023] Open
Abstract
Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.
Collapse
Affiliation(s)
- Cassandra Falckenhayn
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Katharina Hanna
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 21205 Baltimore, MD, USA
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 21205 Baltimore, MD, USA
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Chang KP, Kolli BK. New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives. Parasit Vectors 2016; 9:396. [PMID: 27412129 PMCID: PMC4942964 DOI: 10.1186/s13071-016-1674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture. Here we describe “photodynamic vaccination” (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials. We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study. The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development.
Collapse
Affiliation(s)
- Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| | - Bala K Kolli
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | | |
Collapse
|
38
|
Denlinger DS, Creswell JA, Anderson JL, Reese CK, Bernhardt SA. Diagnostic doses and times for Phlebotomus papatasi and Lutzomyia longipalpis sand flies (Diptera: Psychodidae: Phlebotominae) using the CDC bottle bioassay to assess insecticide resistance. Parasit Vectors 2016; 9:212. [PMID: 27083417 PMCID: PMC4833940 DOI: 10.1186/s13071-016-1496-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance to synthetic chemical insecticides is a worldwide concern in phlebotomine sand flies (Diptera: Psychodidae), the vectors of Leishmania spp. parasites. The CDC bottle bioassay assesses resistance by testing populations against verified diagnostic doses and diagnostic times for an insecticide, but the assay has been used limitedly with sand flies. The objective of this study was to determine diagnostic doses and diagnostic times for laboratory Lutzomyia longipalpis (Lutz & Nieva) and Phlebotomus papatasi (Scopoli) to ten insecticides, including pyrethroids, organophosphates, carbamates, and DDT, that are used worldwide to control vectors. METHODS Bioassays were conducted in 1,000-ml glass bottles each containing 10-25 sand flies from laboratory colonies of L. longipalpis or P. papatasi. Four pyrethroids, three organophosphates, two carbamates and one organochlorine, were evaluated. A series of concentrations were tested for each insecticide, and four replicates were conducted for each concentration. Diagnostic doses were determined only during the exposure bioassay for the organophosphates and carbamates. For the pyrethroids and DDT, diagnostic doses were determined for both the exposure bioassay and after a 24-hour recovery period. RESULTS Both species are highly susceptible to the carbamates as their diagnostic doses are under 7.0 μg/ml. Both species are also highly susceptible to DDT during the exposure assay as their diagnostic doses are 7.5 μg/ml, yet their diagnostic doses for the 24-h recovery period are 650.0 μg/ml for Lu. longipalpis and 470.0 μg/ml for P. papatasi. CONCLUSIONS Diagnostic doses and diagnostic times can now be incorporated into vector management programs that use the CDC bottle bioassay to assess insecticide resistance in field populations of Lu. longipalpis and P. papatasi. These findings provide initial starting points for determining diagnostic doses and diagnostic times for other sand fly vector species and wild populations using the CDC bottle bioassay.
Collapse
Affiliation(s)
| | | | | | - Conor K Reese
- Department of Biology, Utah State University, Logan, Utah, USA
| | | |
Collapse
|