1
|
Bakker JW, Esser HJ, Sprong H, Godeke GJ, Hoornweg TE, de Boer WF, Pijlman GP, Koenraadt CJM. Differential susceptibility of geographically distinct Ixodes ricinus populations to tick-borne encephalitis virus and louping ill virus. Emerg Microbes Infect 2024; 13:2321992. [PMID: 38484290 PMCID: PMC10946273 DOI: 10.1080/22221751.2024.2321992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging pathogen in the Netherlands. Multiple divergent viral strains are circulating and the focal distribution of TBEV remains poorly understood. This may, however, be explained by differences in the susceptibility of tick populations for specific viruses and viral strains, and by viral strains having higher infection success in their local tick population. We investigated this hypothesis by exposing Dutch Ixodes ricinus ticks to two different TBEV strains: TBEV-NL from the Netherlands and TBEV-Neudoerfl from Austria. In addition, we exposed ticks to louping Ill virus (LIV), which is endemic to large parts of the United Kingdom and Ireland, but has not been reported in the Netherlands. Ticks were collected from two locations in the Netherlands: one location without evidence of TBEV circulation and one location endemic for the TBEV-NL strain. Ticks were infected in a biosafety level 3 laboratory using an artificial membrane feeding system. Ticks collected from the region without evidence of TBEV circulation had lower infection rates for TBEV-NL as compared to TBEV-Neudoerfl. Vice versa, ticks collected from the TBEV-NL endemic region had higher infection rates for TBEV-NL compared to TBEV-Neudoerfl. In addition, LIV infection rates were much lower in Dutch ticks compared to TBEV, which may explain why LIV is not present in the Netherlands. Our findings show that ticks from two distinct geographical populations differ in their susceptibility to TBEV strains, which could be the result of differences in the genetic background of the tick populations.
Collapse
Affiliation(s)
- Julian W. Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Helen J. Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tabitha E. Hoornweg
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem F. de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
2
|
Casades-Martí L, Peralbo-Moreno A, Delacour-Estrella S, Ruiz-Fons F. Environmental determinants of West Nile virus vector abundance at the wildlife-livestock interface. MEDICAL AND VETERINARY ENTOMOLOGY 2024. [PMID: 39499206 DOI: 10.1111/mve.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024]
Abstract
The diversity and abundance of vectors are essential parameters in the transmission dynamics of West Nile virus (WNV) between its avian reservoirs and clinically susceptible mammalian species. Knowing the determinants of vector abundance could be thus useful in preventing West Nile fever (WNF) cases and associated socio-economic impact. We designed a survey at the wildlife-livestock interface to test the hypothesis that variations in environmental favourability between anthropized and wild scenarios modulate WNV vector abundance and transmission risk. In a continental Mediterranean region where WNF has recently emerged, we selected nine sampling sites and allocated three areas to every site with a decreasing gradient of wildlife-livestock interaction: A1-a horse farm where interaction is maximal; A2-a zone of intermediate interaction 500-1000 m from the farm; and A3-an entirely wild zone of low interaction 1-5 km from the farm. At a fortnightly frequency, we estimated mosquito abundance at each of the 27 study sites in May-December 2018 and April-July 2019. We estimated bird and mammal abundance, collected meteorological information and characterised mosquito habitat at the site scale. Thereafter, we studied the determinants of Culex spp., Culex pipiens sensu lato (s.l.) Linnaeus, 1758 (Diptera: Culicidae) and Culex theileri Theobald, 1903 abundance by constructing negative binomial generalised linear mixed models. We identified 20 mosquito species, with a notable predominance of Culex spp. and, particularly, of Cx. pipiens s.l. We found differences in the spatiotemporal distribution of Culex spp. abundance and confirmed our hypothesis by finding important effects of local environmental variations in abundance. The accumulated rainfall in fortnights 4-14 and the mean temperature of the two fortnights before sampling were positively and statistically significantly associated with the abundance of Cx. pipiens s.l. (Z = 13.09, p < 0.001, and Z = 9.91, p < 0. 001, respectively) and Culex spp. (Z = 13.35, p < 0.001, and Z = 6.99, p < 0.001, respectively), while the mean temperature of the two previous fortnights was a positive statistically significant predictor (Z = 14.69, p < 0.001) of the abundance of Cx. theileri. The farm environment was the most conducive predictor to hosting Culex spp. compared with wild settings. Our results indicate that continental Mediterranean environments are favourable for WNV circulation and maintenance, especially the environment of anthropized rural settings such as farms. These results will have an impact on the spatiotemporal risk prediction of WNF emergence in continental Mediterranean environments.
Collapse
Affiliation(s)
- Laia Casades-Martí
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alfonso Peralbo-Moreno
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sarah Delacour-Estrella
- Unizar, Departamento de Patologia Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Ruiz-Fons
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Davis E, Velez J, Hamik J, Fitzpatrick K, Haley J, Eschliman J, Panella A, Staples JE, Lambert A, Donahue M, Brault AC, Hughes HR. Evidence of Lineage 1 and 3 West Nile Virus in Person with Neuroinvasive Disease, Nebraska, USA, 2023. Emerg Infect Dis 2024; 30:2090-2098. [PMID: 39320165 PMCID: PMC11431902 DOI: 10.3201/eid3010.240595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
West Nile virus (WNV) is the most common cause of human arboviral disease in the contiguous United States, where only lineage 1 (L1) WNV had been found. In 2023, an immunocompetent patient was hospitalized in Nebraska with West Nile neuroinvasive disease and multisystem organ failure. Testing at the Centers for Disease Control and Prevention indicated an unusually high viral load and acute antibody response. Upon sequencing of serum and cerebrospinal fluid, we detected lineage 3 (L3) and L1 WNV genomes. L3 WNV had previously only been found in Central Europe in mosquitoes. The identification of L3 WNV in the United States and the observed clinical and laboratory features raise questions about the potential effect of L3 WNV on the transmission dynamics and pathogenicity of WNV infections. Determining the distribution and prevalence of L3 WNV in the United States and any public health and clinical implications is critical.
Collapse
|
4
|
Marini G, Drakulovic MB, Jovanovic V, Dagostin F, Wint W, Tagliapietra V, Vasic M, Rizzoli A. Drivers and epidemiological patterns of West Nile virus in Serbia. Front Public Health 2024; 12:1429583. [PMID: 39086811 PMCID: PMC11288825 DOI: 10.3389/fpubh.2024.1429583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background West Nile virus (WNV) is an emerging mosquito-borne pathogen in Serbia, where it has been detected as a cause of infection in humans since 2012. We analyzed and modelled WNV transmission patterns in the country between 2012 and 2023. Methods We applied a previously developed modelling approach to quantify epidemiological parameters of interest and to identify the most important environmental drivers of the force of infection (FOI) by means of statistical analysis in the human population in the country. Results During the study period, 1,387 human cases were recorded, with substantial heterogeneity across years. We found that spring temperature is of paramount importance for WNV transmission, as FOI magnitude and peak timing are positively associated with it. Furthermore, FOI is also estimated to be greater in regions with a larger fraction of older adult people, who are at higher risk to develop severe infections. Conclusion Our results highlight that temperature plays a key role in shaping WNV outbreak magnitude in Serbia, confirming the association between spring climatic conditions and WNV human transmission risk and thus pointing out the importance of this factor as a potential early warning predictor for timely application of preventive and control measures.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Mitra B. Drakulovic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Verica Jovanovic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Willy Wint
- Environmental Research Group Oxford Ltd., c/o Dept Biology, Oxford, United Kingdom
| | | | - Milena Vasic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
5
|
Da Veiga Leal S, Varela IBF, Monteiro DDS, Ramos de Sousa CM, da Luz Lima Mendonça M, De Pina AJ, Gonçalves AALM, Costa Osório H. Update on the composition and distribution of the mosquito fauna (Diptera: Culicidae) in Cabo Verde, a country at risk for mosquito-borne diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:919-924. [PMID: 38687673 DOI: 10.1093/jme/tjae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Mosquitoes play a critical role as vectors of pathogens affecting both humans and animals. Therefore, understanding their biodiversity and distribution is crucial to developing evidence-based vector control strategies. The current study updated the composition and distribution of mosquito species through a comprehensive survey of all municipalities of Cabo Verde. From October 2017 to September 2018, mosquito larvae and pupae were collected from 814 aquatic habitats. Anopheles gambiae (Giles, 1902) and Culex pipiens (Linnaeus, 1758) complexes were subjected to PCR-based techniques for sibling species identification. Ten mosquito species from 5 genera were identified: Aedes aegypti (Linnaeus, 1762), Aedes caspius (Pallas, 1771), Anopheles arabiensis (Patton, 1905), Anopheles pretoriensis (Theobald, 1903), Culex bitaeniorhynchus (Giles, 1901), Cx. pipiens, Culex quinquefasciatus (Say, 1823), Culex tritaeniorhynchus (Giles, 1901), Culiseta longiareolata (Macquart, 1838), and Lutzia tigripes (de Grandpre & de Charmoy, 1901). Santiago Island reported the highest number of species (n = 8). Ae. aegypti and Cx. quinquefasciatus were the most widely distributed species across the country. An. arabiensis was the sole species identified within the An. gambiae complex. The findings from our study will help guide health policy decisions to effectively control mosquito-borne diseases.
Collapse
Affiliation(s)
- Silvânia Da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Isaias Baptista Fernandes Varela
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde
| | - Davidson Daniel Sousa Monteiro
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde
| | - Celivianne Marisia Ramos de Sousa
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde
| | - Maria da Luz Lima Mendonça
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde
| | - Adilson José De Pina
- Programa de Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde, Várzea, Praia 855, Cabo Verde
| | | | - Hugo Costa Osório
- Centro de Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Saúde Ambiental, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
de Best PA, Abourashed A, Doornekamp L, van Gorp ECM, Timen A, Sikkema RS, Bartumeus F, Palmer JRB, Koopmans MPG. Determinants of intended prevention behaviour against mosquitoes and mosquito-borne viruses in the Netherlands and Spain using the MosquitoWise survey: cross-sectional study. BMC Public Health 2024; 24:1781. [PMID: 38965485 PMCID: PMC11223381 DOI: 10.1186/s12889-024-19293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.
Collapse
Affiliation(s)
- Pauline A de Best
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands.
- National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, the Netherlands.
| | - Ayat Abourashed
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, 17300, Spain
| | - Laura Doornekamp
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
- Department of Medical Microbiology and Infectious Diseases, University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Eric C M van Gorp
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Aura Timen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, the Netherlands
- Department of Primary and Community Care, RadboudUMC, Nijmegen, 6525 GA, the Netherlands
- Athena Institute, VU University, Amsterdam, 1081 HV, the Netherlands
| | - Reina S Sikkema
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| | - Frederic Bartumeus
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, 17300, Spain
- Centre de Recerca Ecològica I Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - John R B Palmer
- Department of Political and Social Sciences, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Marion P G Koopmans
- Viroscience, Erasmus University Medical Center, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
7
|
Fay RL, Cruz-Loya M, Keyel AC, Price DC, Zink SD, Mordecai EA, Ciota AT. Population-specific thermal responses contribute to regional variability in arbovirus transmission with changing climates. iScience 2024; 27:109934. [PMID: 38799579 PMCID: PMC11126822 DOI: 10.1016/j.isci.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander C. Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Dana C. Price
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
| | - Steve D. Zink
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
8
|
Linthout C, Martins AD, de Wit M, Delecroix C, Abbo SR, Pijlman GP, Koenraadt CJM. The potential role of the Asian bush mosquito Aedes japonicus as spillover vector for West Nile virus in the Netherlands. Parasit Vectors 2024; 17:262. [PMID: 38886805 PMCID: PMC11181672 DOI: 10.1186/s13071-024-06279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years the Asian bush mosquito Aedes japonicus has invaded Europe, including the Netherlands. This species is a known vector for a range of arboviruses, possibly including West Nile virus (WNV). As WNV emerged in the Netherlands in 2020, it is important to investigate the vectorial capacity of mosquito species present in the Netherlands to estimate the risk of future outbreaks and further spread of the virus. Therefore, this study evaluates the potential role of Ae. japonicus in WNV transmission and spillover from birds to dead-end hosts in the Netherlands. METHODS We conducted human landing collections in allotment gardens (Lelystad, the Netherlands) in June, August and September 2021 to study the diurnal and seasonal host-seeking behaviour of Ae. japonicus. Furthermore, their host preference in relation to birds using live chicken-baited traps was investigated. Vector competence of field-collected Ae. japonicus mosquitoes for two isolates of WNV at two different temperatures was determined. Based on the data generated from these studies, we developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model to calculate the risk of WNV spillover from birds to humans via Ae. japonicus, under the condition that the virus is introduced and circulates in an enzootic cycle in a given area. RESULTS Our results show that Ae. japonicus mosquitoes are actively host seeking throughout the day, with peaks in activity in the morning and evening. Their abundance in August was higher than in June and September. For the host-preference experiment, we documented a small number of mosquitoes feeding on birds: only six blood-fed females were caught over 4 full days of sampling. Finally, our vector competence experiments with Ae. japonicus compared to its natural vector Culex pipiens showed a higher infection and transmission rate when infected with a local, Dutch, WNV isolate compared to a Greek isolate of the virus. Interestingly, we also found a small number of infected Cx. pipiens males with virus-positive leg and saliva samples. CONCLUSIONS Combining the field and laboratory derived data, our model predicts that Ae. japonicus could act as a spillover vector for WNV and could be responsible for a high initial invasion risk of WNV when present in large numbers.
Collapse
Affiliation(s)
- Charlotte Linthout
- Department of Entomology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariken de Wit
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gorben P Pijlman
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
9
|
de Freitas Costa E, Streng K, Avelino de Souza Santos M, Counotte MJ. The effect of temperature on the boundary conditions of West Nile virus circulation in Europe. PLoS Negl Trop Dis 2024; 18:e0012162. [PMID: 38709836 PMCID: PMC11098507 DOI: 10.1371/journal.pntd.0012162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/16/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.
Collapse
Affiliation(s)
- Eduardo de Freitas Costa
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Kiki Streng
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Michel Jacques Counotte
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| |
Collapse
|
10
|
Reis LAM, Pampolha ABO, Dias DD, Santos MM, Pantoja JADS, Araújo PADS, da Silva FS, do Nascimento BLS, Carvalho VL, da Silva EVP, Nunes Neto JP. Ilheus Virus (ILHV) Resistance in Culex quinquefasciatus from the Northern Region of Brazil. Life (Basel) 2024; 14:427. [PMID: 38672699 PMCID: PMC11051376 DOI: 10.3390/life14040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Orthoflavivirus ilheusense (ILHV) is a member of the Flaviviridae family. It was first isolated in 1944 from pools of Aedes serratus and Psorophora ferox mosquitoes; however, it has also been detected in species of the genus Culex, such as Cx. portesi and Cx. coronator. The objective of this study was to examine the vector competence of Cx. quinquefasciatus mosquitoes to ILHV infection and the subsequent transmission of the virus through their saliva during feeding on blood. METHODS F1 generation females of Cx. quinquefasciatus (Ananindeua/PA) were orally infected with goose blood infected with strain BeH7445, and body, head and saliva samples were analyzed at 7, 14, and 21 dpi using the techniques of virus isolation in cells and indirect immunofluorescence. RESULTS The presence of ILHV was not detected in the body and head samples of Cx. quinquefasciatus females at any of the three dpi's analyzed, indicating that the lineage of mosquitoes analyzed was resistant to ILHV. CONCLUSIONS According to the results obtained in this study, the species Cx. quinquefasciatus proved resistant to ILHV, regardless of the virus titers to which it was exposed, which suggests the possibility that this species does not act as a vector in the ILHV transmission cycle.
Collapse
Affiliation(s)
- Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Ana Beatriz Oliveira Pampolha
- Institute of Biological Sciences, Faculty of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Daniel Damous Dias
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Maissa Maia Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Jamilla Augusta de Sousa Pantoja
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Pedro Arthur da Silva Araújo
- Graduate Program in Biology of Infectious and Parasitary Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66077-830, Brazil
| | - Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Bruna Lais Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Valéria Lima Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil (E.V.P.d.S.)
| |
Collapse
|
11
|
Rehbein MM, Viadero R, Hunt JR, Miller C. The Role of Temperature, Wind Speed, and Precipitation on the Abundance of Culex Species and West Nile Virus Infection Rate in Rural West-Central Illinois. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:1-10. [PMID: 38314881 DOI: 10.2987/23-7152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
While most research on West Nile virus (WNV) and its main vector, the Culex mosquito, has been conducted in laboratory or urban settings, studies with field-caught mosquitoes in rural areas, such as west-central Illinois, are lacking. The objective of this research was to investigate key abiotic factors using macroclimate data, including temperature, precipitation, and wind speed, to determine their influence on field-caught mosquito abundance in 4 rural counties in Illinois from 2014 to 2016. Additionally, the relationship between minimum infection rate (MIR) and thermal time was examined. Using gravid traps at 15 sites, Culex mosquitoes were collected twice a week. A total of 5,255 adult female Culex mosquitoes (Cx. pipiens, Cx. quinquefasciatus, and Cx. restuans) were collected in 2014; 9,138 in 2015; and 5,702 in 2016. Regression models were developed based on outcomes of relationships between field-caught mosquitoes and abiotic factors. Precipitation and thermal time had the most significant relationship with mosquito abundance (r2 = 0.993 and r2 = 0.993, respectively), while wind speed was less (r2 = 0.714). The greatest number of Culex and the highest annual MIR were observed in 2015, which was also the driest of the 3 sampling seasons. Mosquito abundance was observed to increase with warmer degree days and MIR was found to increase with abundance in mosquitoes. These models can be used for other mosquito surveillance and monitoring studies in various climate types and environments.
Collapse
|
12
|
Blom R, Krol L, Langezaal M, Schrama M, Trimbos KB, Wassenaar D, Koenraadt CJM. Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats. Parasit Vectors 2024; 17:95. [PMID: 38424573 PMCID: PMC10902945 DOI: 10.1186/s13071-024-06186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Culex pipiens sensu stricto (s.s.) is considered the primary vector of Usutu virus and West Nile virus, and consists of two morphologically identical but behaviourally distinct biotypes (Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus) and their hybrids. Both biotypes are expected to differ in their feeding behaviour, and pipiens/molestus hybrids are presumed to display intermediate feeding behaviour. However, the evidence for distinct feeding patterns is scarce, and to date no studies have related differences in feeding patterns to differences in host abundance. METHODS Mosquitoes were collected using CO2-baited traps. We collected blood-engorged Cx. pipiens/torrentium specimens from 12 contrasting urban sites, namely six city parks and six residential areas. Blood engorged Cx. pipiens/torrentium mosquitoes were identified to the species and biotype/hybrid level via real-time polymerase chain reaction (PCR). We performed blood meal analysis via PCR and Sanger sequencing. Additionally, avian host communities were surveyed via vocal sounds and/or visual observation. RESULTS We selected 64 blood-engorged Cx. pipiens/torrentium mosquitoes of which we successfully determined the host origin of 55 specimens. Of these, 38 belonged to biotype pipiens, 14 were pipiens/molestus hybrids and the identity of three specimens could not be determined. No blood-engorged biotype molestus or Cx. torrentium specimens were collected. We observed no differences in feeding patterns between biotype pipiens and pipiens/molestus hybrids across different habitats. Avian community composition differed between city parks and residential areas, whereas overall avian abundance did not differ between the two habitat types. CONCLUSIONS Our results show the following: (1) Cx. pipiens s.s. feeding patterns did not differ between city parks and residential areas, regardless of whether individuals were identified as biotype pipiens or pipiens/molestus hybrids. (2) We detected differences in host availability between city parks and residential areas. (3) We show that in both urban habitat types, biotype pipiens and pipiens/molestus hybrids fed on both mammalian and avian hosts. This underscores the potential role in arbovirus transmission of biotype pipiens and pipiens/molestus hybrids.
Collapse
Affiliation(s)
- Rody Blom
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Utrecht, The Netherlands
| | - Melissa Langezaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Daan Wassenaar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Madeira S, Bernardino R, Osório HC, Boinas F. Mosquito (Diptera: Culicidae) Fauna of a Zoological Park in an Urban Setting: Analysis of Culex pipiens s.l. and Their Biotypes. INSECTS 2024; 15:45. [PMID: 38249051 PMCID: PMC10816151 DOI: 10.3390/insects15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes.
Collapse
Affiliation(s)
- Sara Madeira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | | | - Hugo Costa Osório
- CEVDI—INSA—Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, 2965-575 Águas de Moura, Portugal;
- ISAMB—Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Fernando Boinas
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
14
|
Lu L, Zhang F, Oude Munnink BB, Munger E, Sikkema RS, Pappa S, Tsioka K, Sinigaglia A, Dal Molin E, Shih BB, Günther A, Pohlmann A, Ziegler U, Beer M, Taylor RA, Bartumeus F, Woolhouse M, Aarestrup FM, Barzon L, Papa A, Lycett S, Koopmans MPG. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog 2024; 20:e1011880. [PMID: 38271294 PMCID: PMC10810478 DOI: 10.1371/journal.ppat.1011880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.
Collapse
Affiliation(s)
- Lu Lu
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Feifei Zhang
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bas B. Oude Munnink
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Emmanuelle Munger
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Reina S. Sikkema
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Barbara B. Shih
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Günther
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, United Kingdom
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Centre for Research on Ecology and Forestry Applications (CREAF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marion P. G. Koopmans
- Erasmus MC, Viroscience and Pandemic and Disaster Preparedness Centre, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Soto A, De Coninck L, Devlies AS, Van De Wiele C, Rosales Rosas AL, Wang L, Matthijnssens J, Delang L. Belgian Culex pipiens pipiens are competent vectors for West Nile virus while Culex modestus are competent vectors for Usutu virus. PLoS Negl Trop Dis 2023; 17:e0011649. [PMID: 37729233 PMCID: PMC10545110 DOI: 10.1371/journal.pntd.0011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.
Collapse
Affiliation(s)
- Alina Soto
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lander De Coninck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Devlies
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Celine Van De Wiele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lanjiao Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abbo SR, de Almeida JPP, Olmo RP, Balvers C, Griep JS, Linthout C, Koenraadt CJM, Silva BM, Fros JJ, Aguiar ERGR, Marois E, Pijlman GP, Marques JT. The virome of the invasive Asian bush mosquito Aedes japonicus in Europe. Virus Evol 2023; 9:vead041. [PMID: 37636319 PMCID: PMC10460169 DOI: 10.1093/ve/vead041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Roenick P Olmo
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Carlijn Balvers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Jet S Griep
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Bruno M Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Rod. Jorge Amado Km 16, Ilhéus 45662-900, Brazil
| | - Eric Marois
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| |
Collapse
|
17
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
18
|
Giatropoulos A, Koliopoulos G, Pantelakis PN, Papachristos D, Michaelakis A. Evaluating the Sublethal Effects of Origanum vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex pipiens biotype molestus (Diptera: Culicidae). INSECTS 2023; 14:400. [PMID: 37103215 PMCID: PMC10146918 DOI: 10.3390/insects14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Culex pipiens is a mosquito species complex spread worldwide that poses a serious threat to human health as the primary vector of West Nile virus. Its control is mainly based on larvicidal applications with synthetic insecticides on mosquito breeding sites. However, the excessive use of synthetic larvicides may provoke mosquito resistance issues and negative side effects to the aquatic environment and human health. Plant-derived essential oils, including those from the Lamiaceae family, can be eco-friendly alternative larvicidal agents causing acute larval toxicity and/or growth inhibitory effects on the developmental stages of mosquitoes through different modes of action. In the current laboratory study, we evaluated the sublethal effects of carvacrol-rich oregano essential oil and pure carvacrol on Cx. pipiens biotype molestus, the autogenous member of the Cx. pipiens species complex, after the exposure of 3rd-4th instar larvae to LC50 concentrations. The short-term (24 h) larvicidal treatment with the sublethal concentrations of both tested materials exhibited an acute lethal effect on the exposed larvae as well as significant delayed mortality for surviving larvae and pupae. Larvicidal treatment with carvacrol reduced the longevity of the emerged males. In addition, the morphological abnormalities that were observed at the larval and pupal stage along with failed adult emergence indicate the potential growth inhibitory properties of the tested bioinsecticides. Our findings suggest that carvacrol and carvacrol-rich oregano oil are effective plant-based larvicides at doses lower than the acute lethal ones, thus promoting an environmentally friendly and more affordable perspective for their use against the WNV vector Cx. pipiens biotype molestus.
Collapse
Affiliation(s)
- Athanasios Giatropoulos
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | - George Koliopoulos
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece
| | - Pavlos-Nektarios Pantelakis
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561 Kifissia, Greece
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Papachristos
- Laboratory of Agricultural Entomology, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| |
Collapse
|
19
|
Ravazi A, de Oliveira J, Madeira FF, Nunes GM, dos Reis YV, de Oliveira ABB, Azevedo LMS, Galvão C, de Azeredo-Oliveira MTV, da Rosa JA, Alevi KCC. Climate and Environmental Changes and Their Potential Effects on the Dynamics of Chagas Disease: Hybridization in Rhodniini (Hemiptera, Triatominae). INSECTS 2023; 14:378. [PMID: 37103193 PMCID: PMC10143345 DOI: 10.3390/insects14040378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Chagas disease affects about eight million people. In view of the issues related to the influence of anthropogenic changes in the dynamics of the distribution and reproductive interaction of triatomines, we performed experimental crosses between species of the Rhodniini tribe in order to evaluate interspecific reproductive interactions and hybrid production capacity. Reciprocal crossing experiments were conducted among Rhodnius brethesi × R. pictipes, R. colombiensis × R. ecuadoriensis, R. neivai × R. prolixus, R. robustus × R. prolixus, R. montenegrensis × R. marabaensis; R. montenegrensis × R. robustus, R. prolixus × R. nasutus and R. neglectus × R. milesi. With the exception of crosses between R. pictipes ♀ × R. brethesi ♂, R. ecuadoriensis ♀ × R. colombiensis ♂ and R. prolixus ♀ × R. neivai ♂, all experimental crosses resulted in hybrids. Our results demonstrate that both allopatric and sympatric species produce hybrids, which can generate concern for public health agencies in the face of current anthropogenic events. Thus, we demonstrate that species of the Rhodniini tribe are capable of producing hybrids under laboratory conditions. These results are of great epidemiological importance and raise an important discussion about the influence of climatic and environmental interactions on Chagas disease dynamics.
Collapse
Affiliation(s)
- Amanda Ravazi
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, Botucatu 18618-689, SP, Brazil
| | - Jader de Oliveira
- Laboratório de Entomologia em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo (USP), Av. Dr. Arnaldo 715, São Paulo 01246-904, SP, Brazil
| | - Fernanda Fernandez Madeira
- Laboratório de Biologia Celular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Giovana Menezes Nunes
- Laboratório de Biologia Celular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Yago Visinho dos Reis
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, Botucatu 18618-689, SP, Brazil
| | - Ana Beatriz Bortolozo de Oliveira
- Laboratório de Biologia Celular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Luísa Martins Sensato Azevedo
- Laboratório de Biologia Celular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brazil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, RJ, Brazil
| | - Maria Tercília Vilela de Azeredo-Oliveira
- Laboratório de Biologia Celular, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - João Aristeu da Rosa
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14801-902, SP, Brazil
| | - Kaio Cesar Chaboli Alevi
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, Botucatu 18618-689, SP, Brazil
- Laboratório de Entomologia em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo (USP), Av. Dr. Arnaldo 715, São Paulo 01246-904, SP, Brazil
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brazil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
20
|
Reis LAM, Silva EVPD, Dias DD, Freitas MNO, Caldeira RD, Araújo PADS, Silva FSD, Rosa Junior JW, Brandão RCF, Nascimento BLSD, Martins LC, Neto JPN. Vector Competence of Culex quinquefasciatus from Brazil for West Nile Virus. Trop Med Infect Dis 2023; 8:tropicalmed8040217. [PMID: 37104343 PMCID: PMC10144584 DOI: 10.3390/tropicalmed8040217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
West Nile virus is characterized as a neurotropic pathogen, which can cause West Nile fever and is transmitted by mosquitoes of the genus Culex. In 2018, the Instituto Evandro Chagas performed the first isolation of a WNV strain in Brazil from a horse brain sample. The present study aimed to evaluate the susceptibility of orally infected Cx. quinquefasciatus from the Amazon region of Brazil to become infected and transmit the WNV strain isolated in 2018. Oral infection was performed with blood meal artificially infected with WNV, followed by analysis of infection, dissemination, and transmission rates, as well as viral titers of body, head, and saliva samples. At the 21st dpi, the infection rate was 100%, the dissemination rate was 80%, and the transmission rate was 77%. These results indicate that Cx. quinquefasciatus is susceptible to oral infection by the Brazilian strain of WNV and may act as a possible vector of the virus since it was detected in saliva from the 21st dpi.
Collapse
Affiliation(s)
- Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Maria Nazaré Oliveira Freitas
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Rossela Damasceno Caldeira
- Graduate Program in Biology of Infectious and Parasitary Agents, Biological Sciences Institute, Federal University of Pará, Belém 66077-830, Brazil
| | - Pedro Arthur da Silva Araújo
- Graduate Program in Biology of Infectious and Parasitary Agents, Biological Sciences Institute, Federal University of Pará, Belém 66077-830, Brazil
| | - Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - José Wilson Rosa Junior
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | | | - Bruna Laís Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Lívia Caricio Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| |
Collapse
|
21
|
Körsten C, Al-Hosary AA, Holicki CM, Schäfer M, Tews BA, Vasić A, Ziegler U, Groschup MH, Silaghi C. Simultaneous Coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans Mosquitoes. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6305484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The mosquito-borne zoonotic flaviviruses West Nile virus (WNV) and Usutu virus (USUV) are endemic in many European countries and emerged in Germany in recent years. Due to the increasing overlap of their distribution areas and their similar epidemiology, coinfections of WNV and USUV are possible. Indeed, coinfections in vertebrate hosts as a rare event have already been reported from some countries including Germany. However, it is largely unknown whether and to what extent coinfections could affect the vector competence of mosquitoes for WNV and USUV. For this purpose, the mosquito species Culex pipiens biotype pipiens, Culex pipiens biotype molestus, and Aedes vexans were orally infected in mono- and simultaneous coinfections with German strains of WNV and USUV. Mosquitoes were incubated for 14 days at 26°C, 85% relative humidity, and a 16 : 8 light-dark photocycle, before they were dissected and forced to salivate. The results showed a decrease in USUV susceptibility in Culex pipiens biotype pipiens, an increase in USUV susceptibility in Aedes vexans, and no obvious interaction between both viruses in Culex pipiens biotype molestus. Vector competence for WNV appeared to be unaffected by a simultaneous occurrence of USUV in all tested mosquito species. Coinfections with both viruses were only found in Culex mosquitoes, and cotransmission of WNV and USUV was observed in Culex pipiens biotype molestus. Overall, our results show that viral interactions between WNV and USUV vary between mosquito species, and that the interaction mainly occurs during infection and replication in the mosquito midgut. The results of this study confirm that to fully understand the interaction between WNV and USUV, studies with various mosquito species are necessary. In addition, we found that even mosquito species with a low susceptibility to both viruses, such as Ae. vexans, can play a role in their transmission in areas with cocirculation.
Collapse
|
22
|
Worldwide transmission and infection risk of mosquito vectors of West Nile, St. Louis encephalitis, Usutu and Japanese encephalitis viruses: a systematic review. Sci Rep 2023; 13:308. [PMID: 36609450 PMCID: PMC9822987 DOI: 10.1038/s41598-022-27236-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The increasing trend of mosquito-borne pathogens demands more accurate global estimations of infection and transmission risks between mosquitoes. Here, we systematically review field and laboratory studies to assess the natural field infection and experimental laboratory transmission risk in Culex mosquitoes. We studied four worldwide flaviviruses: West Nile, Usutu, Japanese encephalitis, and St. Louis encephalitis, belonging to the Japanese encephalitis Serocomplex (JES). The PRISMA statement was carried out for both approaches. The Transmission-Infection Risk of the diverse mosquito species for the different viruses was estimated through seven variables. We considered 130 and 95 articles for field and experimental approach, respectively. We identified 30 species naturally infected, and 23 species capable to transmit some of the four flaviviruses. For the JES, the highest Transmission-Infection Risk estimate was recorded in Culex quinquefasciatus (North America). The maximum Infection-Transmission Risk values for West Nile was Culex restuans, for Usutu it was Culex pipiens (Europe), for St. Louis encephalitis Culex quinquefasciatus (North America), and for Japanese encephalitis Culex gelidus (Oceania). We conclude that on a worldwide scale, a combination of field and experimental data offers a better way of understanding natural infection and transmission risks between mosquito populations.
Collapse
|
23
|
Vector Competence of German Aedes punctor (Kirby, 1837) for West Nile Virus Lineages 1 and 2. Viruses 2022; 14:v14122787. [PMID: 36560791 PMCID: PMC9787774 DOI: 10.3390/v14122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany.
Collapse
|
24
|
An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus. Sci Rep 2022; 12:19946. [PMID: 36402904 PMCID: PMC9675847 DOI: 10.1038/s41598-022-24527-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
We extend a previously developed epidemiological model for West Nile virus (WNV) infection in humans in Greece, employing laboratory-confirmed WNV cases and mosquito-specific characteristics of transmission, such as host selection and temperature-dependent transmission of the virus. Host selection was defined by bird host selection and human host selection, the latter accounting only for the fraction of humans that develop symptoms after the virus is acquired. To model the role of temperature on virus transmission, we considered five temperature intervals (≤ 19.25 °C; > 19.25 and < 21.75 °C; ≥ 21.75 and < 24.25 °C; ≥ 24.25 and < 26.75 °C; and > 26.75 °C). The capacity of the new model to fit human cases and the week of first case occurrence was compared with the original model and showed improved performance. The model was also used to infer further quantities of interest, such as the force of infection for different temperatures as well as mosquito and bird abundances. Our results indicate that the inclusion of mosquito-specific characteristics in epidemiological models of mosquito-borne diseases leads to improved modelling capacity.
Collapse
|
25
|
Arich S, Haba Y, Assaid N, Fritz ML, McBride CS, Weill M, Taki H, Sarih M, Labbé P. No association between habitat, autogeny and genetics in Moroccan Culex pipiens populations. Parasit Vectors 2022; 15:405. [PMID: 36329500 PMCID: PMC9635193 DOI: 10.1186/s13071-022-05469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Mosquitoes of the Culex pipiens complex are found across the globe and are the focus of many research studies. Among the temperate species C. pipiens sensu stricto (s.s.), two forms are usually described: molestus and pipiens. These two forms are indistinguishable in terms of morphology but show behavioral and physiological differences that may have consequences for their associated epidemiology. The two forms are well defined in the northern part of the species distribution, where autogeny is strictly associated with the molestus form. However, whether the two remain distinct and show the characteristic differences in behavior is less clear in North Africa, at the southern edge of their range. Methods The association between autogeny, as determined by ovarian dissection, and molecular forms, based on the CQ11 microsatellite marker, was studied in six Moroccan populations of C. pipiens. Results An overall low prevalence of autogeny was found at three of the Moroccan regions studied, although it reached 17.5% in the Agadir population. The prevalence of form-specific CQ11 alleles was quite similar across all populations, with the molestus allele being rarer (approx. 15%), except in the Agadir population where it reached 43.3%. We found significant deficits in heterozygotes at the diagnostic CQ11 locus in three populations, but the three other populations showed no significant departure from panmixia, which is in line with the results of a retrospective analysis of the published data. More importantly, we found no association between the autogeny status and CQ11 genotypes, despite the many females analyzed. Conclusions There was limited evidence for two discrete forms in Morocco, where individuals carrying pipiens and molestus alleles breed and mate in the same sites and are equally likely to be capable of autogeny. These observations are discussed in the epidemiological context of Morocco, where C. pipiens is the main vector of several arboviruses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05469-3.
Collapse
Affiliation(s)
- Soukaina Arich
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France.,Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco.,Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Najlaa Assaid
- Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mylène Weill
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Laboratoire Des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pierrick Labbé
- Institut Des Sciences de L'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD-EPHE, Université de Montpellier, Montpellier, Cedex 5, France. .,Institut Universitaire de France, 1 rue Descartes, 75231 Cedex 05, Paris, France.
| |
Collapse
|
26
|
Marini G, Pugliese A, Wint W, Alexander NS, Rizzoli A, Rosà R. Modelling the West Nile virus force of infection in the European human population. One Health 2022; 15:100462. [DOI: 10.1016/j.onehlt.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
27
|
Dimas Martins A, ten Bosch Q, Heesterbeek JAP. Exploring the influence of competition on arbovirus invasion risk in communities. PLoS One 2022; 17:e0275687. [PMID: 36223367 PMCID: PMC9555654 DOI: 10.1371/journal.pone.0275687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Arbovirus outbreaks in communities are affected by how vectors, hosts and non-competent species interact. In this study, we investigate how ecological interactions between species and epidemiological processes influence the invasion potential of a vector-borne disease. We use an eco-epidemiological model to explore the basic reproduction number R0 for a range of interaction strengths in key processes, using West Nile virus infection to parameterize the model. We focus our analysis on intra and interspecific competition between vectors and between hosts, as well as competition with non-competent species. We show that such ecological competition has non-linear effects on R0 and can greatly impact invasion risk. The presence of multiple competing vector species results in lower values for R0 while host competition leads to the highest values of risk of disease invasion. These effects can be understood in terms of how the competitive pressures influence the vector-to-host ratio, which has a positive relationship with R0. We also show numerical examples of how vector feeding preferences become more relevant in high competition conditions between hosts. Under certain conditions, non-competent hosts, which can lead to a dilution effect for the pathogen, can have an amplification effect if they compete strongly with the competent hosts, hence facilitating pathogen invasion in the community.
Collapse
Affiliation(s)
- Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands,* E-mail:
| | - Quirine ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - J. A. P. Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.
Collapse
Affiliation(s)
- Rachel L Fay
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States
| | - Alexander C Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, NY, United States
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
29
|
Farooq Z, Rocklöv J, Wallin J, Abiri N, Sewe MO, Sjödin H, Semenza JC. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg Health Eur 2022; 17:100370. [PMID: 35373173 PMCID: PMC8971633 DOI: 10.1016/j.lanepe.2022.100370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have increased over the past decade, with a 7.2-fold increase in 2018 compared to 2017, and a markedly expanded geographic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-long (2010-2019) data at high spatial resolution. Methods We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contribution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively. Findings Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water availability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018 outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest predictors, in addition to past climatic trends. Interpretation Our AI-based framework can be deployed to trigger rapid and timely alerts for active surveillance and vector control measures in order to intercept an imminent WNV-outbreak in Europe. Funding The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT (grant agreement 2018-05973).
Collapse
|
30
|
Abstract
It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country’s adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966–2020), explored mosquito (2016–2019) and land type distributions (1992–2019), and used climate data (1981–2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance. Lourenço et al. review historical data and quantify the transmission potential of West Nile virus in Portugal. They report a North-South divide in infection patterns, a higher ecological capacity in the south, and an increasing positive effect of climate change over the last 40 years.
Collapse
|
31
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
32
|
Tajudeen YA, Oladunjoye IO, Mustapha MO, Mustapha ST, Ajide-Bamigboye NT. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot Perspect 2021; 11:371-381. [PMID: 35079581 PMCID: PMC8767080 DOI: 10.34172/hpp.2021.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The rapid circulation of arboviruses in the human population has been linked with changes in climatic, environmental, and socio-economic conditions. These changes are known to alter the transmission cycles of arboviruses involving the anthropophilic vectors and thus facilitate an extensive geographical distribution of medically important arboviral diseases, thereby posing a significant health threat. Using our current understanding and assessment of relevant literature, this review aimed to understand the underlying factors promoting the spread of arboviruses and how the three most renowned interdisciplinary and holistic approaches to health such as One Health, Eco-Health, and Planetary Health can be a panacea for control of arboviruses. Methods: A comprehensive structured search of relevant databases such as Medline, PubMed, WHO, Scopus, Science Direct, DOAJ, AJOL, and Google Scholar was conducted to identify recent articles on arboviruses and holistic approaches to health using the keywords including "arboviral diseases", "arbovirus vectors", "arboviral infections", "epidemiology of arboviruses", "holistic approaches", "One Health", "Eco-Health", and "Planetary Health". Results: Changes in climatic factors like temperature, humidity, and precipitation support the growth, breeding, and fecundity of arthropod vectors transmitting the arboviral diseases. Increased human migration and urbanization due to socio-economic factors play an important role in population increase leading to the rapid geographical distribution of arthropod vectors and transmission of arboviral diseases. Medical factors like misdiagnosis and misclassification also contribute to the spread of arboviruses. Conclusion: This review highlights two important findings: First, climatic, environmental, socio-economic, and medical factors influence the constant distributions of arthropod vectors. Second, either of the three holistic approaches or a combination of any two can be adopted on arboviral disease control. Our findings underline the need for holistic approaches as the best strategy to mitigating and controlling the emerging and reemerging arboviruses.
Collapse
|
33
|
Cuervo PF, Artigas P, Mas-Coma S, Bargues MD. West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transbound Emerg Dis 2021; 69:e1113-e1129. [PMID: 34812589 DOI: 10.1111/tbed.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
West Nile virus (WNV), a well-known emerging vector-borne arbovirus with a zoonotic life cycle, represents a threat to both public and animal health. Transmitted by ornithophilic mosquitoes, its transmission is difficult to predict and even more difficult to prevent. The massive and unprecedented number of human cases and equid outbreaks in Spain during 2020 interpellates for new approaches. For the first time, we present an integrate analysis from a niche perspective to provide an insight to the situation of West Nile disease (WND) in Spain. Our modelling approach benefits from the combined use of global occurrence records of outbreaks of WND in equids and of its two alleged main vectors in Spain, Culex pipiens and Cx. perexiguus. Maps of the climatic suitability for the presence of the two vectors species and for the circulation of WNV are provided. The main outcome of our study is a map delineating the areas under certain climatic risk of transmission. Our analyses indicate that the climatic risk of transmission of WND is medium in areas nearby the south Atlantic coastal area of the Cadiz Gulf and the Mediterranean coast, and high in southwestern Spain. The higher risk of transmission in the basins of the rivers Guadiana and Guadalquivir cannot be attributed exclusively to the local abundance of Cx. pipiens, but could be ascribed to the presence and abundance of Cx. perexiguus. Furthermore, this integrated analysis suggests that the WNV presents an ecological niche of its own, not fully overlapping the ones of its hosts or vector, and thus requiring particular environmental conditions to succeed in its infection cycle.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET - Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Patricio Artigas
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Santiago Mas-Coma
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Dolores Bargues
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
34
|
Murrieta RA, Garcia-Luna SM, Murrieta DJ, Halladay G, Young MC, Fauver JR, Gendernalik A, Weger-Lucarelli J, Rückert C, Ebel GD. Impact of extrinsic incubation temperature on natural selection during Zika virus infection of Aedes aegypti and Aedes albopictus. PLoS Pathog 2021; 17:e1009433. [PMID: 34752502 PMCID: PMC8629396 DOI: 10.1371/journal.ppat.1009433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/29/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) require replication across a wide range of temperatures to perpetuate. While vertebrate hosts tend to maintain temperatures of approximately 37°C—40°C, arthropods are subject to ambient temperatures which can have a daily fluctuation of > 10°C. Temperatures impact vector competence, extrinsic incubation period, and mosquito survival unimodally, with optimal conditions occurring at some intermediate temperature. In addition, the mean and range of daily temperature fluctuations influence arbovirus perpetuation and vector competence. The impact of temperature on arbovirus genetic diversity during systemic mosquito infection, however, is poorly understood. Therefore, we determined how constant extrinsic incubation temperatures of 25°C, 28°C, 32°C, and 35°C control Zika virus (ZIKV) vector competence and population dynamics within Aedes aegypti and Aedes albopictus mosquitoes. We also examined fluctuating temperatures which better mimic field conditions in the tropics. We found that vector competence varied in a unimodal manner for constant temperatures peaking between 28°C and 32°C for both Aedes species. Transmission peaked at 10 days post-infection for Aedes aegypti and 14 days for Aedes albopictus. Conversely, fluctuating temperature decreased vector competence. Using RNA-seq to characterize ZIKV population structure, we identified that temperature alters the selective environment in unexpected ways. During mosquito infection, constant temperatures more often elicited positive selection whereas fluctuating temperatures led to strong purifying selection in both Aedes species. These findings demonstrate that temperature has multiple impacts on ZIKV biology, including major effects on the selective environment within mosquitoes. Arthropod-borne viruses (arboviruses) have emerged in recent decades due to complex factors that include increases in international travel and trade, the breakdown of public health infrastructure, land use changes, and many others. Climate change also has the potential to shift the geographical ranges of arthropod vectors, consequently increasing the global risk of arbovirus infection. Changing temperatures may alter the virus-host interaction, ultimately resulting in the emergence of new viruses and virus genotypes in new areas. Therefore, we sought to characterize how temperature (both constant and fluctuating) alters the ability of Aedes aegypti and Aedes albopictus to transmit Zika virus, and how it influences virus populations within mosquitoes. We found that intermediate temperatures maximize virus transmission compared to more extreme and fluctuating temperatures. Constant temperatures increased positive selection on virus genomes, while fluctuating temperatures strengthened purifying selection. Our studies provide evidence that in addition to altering vector competence, temperature significantly influences natural selection within mosquitoes.
Collapse
Affiliation(s)
- Reyes A. Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Selene M. Garcia-Luna
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Deedra J. Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gareth Halladay
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joseph R. Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, Laboratory of Epidemiology of Public Health, New Haven, Connecticut, United States of America
| | - Alex Gendernalik
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Fay RL, Ngo KA, Kuo L, Willsey GG, Kramer LD, Ciota AT. Experimental Evolution of West Nile Virus at Higher Temperatures Facilitates Broad Adaptation and Increased Genetic Diversity. Viruses 2021; 13:1889. [PMID: 34696323 PMCID: PMC8540194 DOI: 10.3390/v13101889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Kiet A. Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
| | - Laura D. Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| |
Collapse
|
36
|
Ferraguti M, Martínez-de la Puente J, Figuerola J. Ecological Effects on the Dynamics of West Nile Virus and Avian Plasmodium: The Importance of Mosquito Communities and Landscape. Viruses 2021; 13:v13071208. [PMID: 34201673 PMCID: PMC8310121 DOI: 10.3390/v13071208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023] Open
Abstract
Humans and wildlife are at risk from certain vector-borne diseases such as malaria, dengue, and West Nile and yellow fevers. Factors linked to global change, including habitat alteration, land-use intensification, the spread of alien species, and climate change, are operating on a global scale and affect both the incidence and distribution of many vector-borne diseases. Hence, understanding the drivers that regulate the transmission of pathogens in the wild is of great importance for ecological, evolutionary, health, and economic reasons. In this literature review, we discuss the ecological factors potentially affecting the transmission of two mosquito-borne pathogens circulating naturally between birds and mosquitoes, namely, West Nile virus (WNV) and the avian malaria parasites of the genus Plasmodium. Traditionally, the study of pathogen transmission has focused only on vectors or hosts and the interactions between them, while the role of landscape has largely been ignored. However, from an ecological point of view, it is essential not only to study the interaction between each of these organisms but also to understand the environmental scenarios in which these processes take place. We describe here some of the similarities and differences in the transmission of these two pathogens and how research into both systems may facilitate a greater understanding of the dynamics of vector-borne pathogens in the wild.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, E-18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Jordi Figuerola
- Doñana Biological Station (EBD-CSIC), E-41092 Seville, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
37
|
Abbo SR, Visser TM, Koenraadt CJM, Pijlman GP, Wang H. Effect of blood source on vector competence of Culex pipiens biotypes for Usutu virus. Parasit Vectors 2021; 14:194. [PMID: 33832527 PMCID: PMC8028107 DOI: 10.1186/s13071-021-04686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infectious blood meal experiments have been frequently performed with different virus-vector combinations to assess the transmission potential of arthropod-borne (arbo)viruses. A wide variety of host blood sources have been used to deliver arboviruses to their arthropod vectors in laboratory studies. The type of blood used during vector competence experiments does not always reflect the blood from the viremic vertebrate hosts in the field, but little is known about the effect of blood source on the experimental outcome of vector competence studies. Here we investigated the effect of avian versus human blood on the infection and transmission rates of the zoonotic Usutu virus (USUV) in its primary mosquito vector Culex pipiens. Methods Cx. pipiens biotypes (pipiens and molestus) were orally infected with USUV through infectious blood meals containing either chicken or human whole blood. The USUV infection and transmission rates were determined by checking mosquito bodies and saliva for USUV presence after 14 days of incubation at 28 °C. In addition, viral titers were determined for USUV-positive mosquito bodies and saliva. Results Human and chicken blood lead to similar USUV transmission rates for Cx. pipiens biotype pipiens (18% and 15%, respectively), while human blood moderately but not significantly increased the transmission rate (30%) compared to chicken blood (17%) for biotype molestus. USUV infection rates with human blood were consistently higher in both Cx. pipiens biotypes compared to chicken blood. In virus-positive mosquitoes, USUV body and saliva titers did not differ between mosquitoes taking either human or chicken blood. Importantly, biotype molestus had much lower USUV saliva titers compared to biotype pipiens, regardless of which blood was offered. Conclusions Infection of mosquitoes with human blood led to higher USUV infection rates as compared to chicken blood. However, the blood source had no effect on the vector competence for USUV. Interestingly, biotype molestus is less likely to transmit USUV compared to biotype pipiens due to very low virus titers in the saliva. ![]()
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Marini G, Manica M, Delucchi L, Pugliese A, Rosà R. Spring temperature shapes West Nile virus transmission in Europe. Acta Trop 2021; 215:105796. [PMID: 33310078 DOI: 10.1016/j.actatropica.2020.105796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
West Nile Virus (WNV) is now endemic in many European countries, causing hundreds of human cases every year, with a high spatial and temporal heterogeneity. Previous studies have suggested that spring temperature might play a key role at shaping WNV transmission. Specifically, warmer temperatures in April-May might amplify WNV circulation, thus increasing the risk for human transmission later in the year. To test this hypothesis, we collated publicly available data on the number of human infections recorded in Europe between 2011 and 2019. We then applied generalized linear models to quantify the relationship between human cases and spring temperature, considering both average conditions (over years 2003-2010) and deviations from the average for subsequent years (2011-2019). We found a significant positive association both spatial (average conditions) and temporal (deviations). The former indicates that WNV circulation is higher in usually warmer regions while the latter implies a predictive value of spring conditions over the coming season. We also found a positive association with WNV detection during the previous year, which can be interpreted as an indication of the reliability of the surveillance system but also of WNV overwintering capacity. Weather anomalies at the beginning of the mosquito breeding season might act as an early warning signal for public health authorities, enabling them to strengthen in advance ongoing surveillance and prevention strategies.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy; Center for Information and Communication Technology, Bruno Kessler Foundation, Trento, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige (TN), Italy
| |
Collapse
|
39
|
Lourenço J, Thompson RN, Thézé J, Obolski U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. ACTA ACUST UNITED AC 2021; 25. [PMID: 33213688 PMCID: PMC7678037 DOI: 10.2807/1560-7917.es.2020.25.46.1900629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Climate is a major factor in the epidemiology of West Nile virus (WNV), a pathogen increasingly pervasive worldwide. Cases increased during 2018 in Israel, the United States and Europe. Aim We set to retrospectively understand the spatial and temporal determinants of WNV transmission in Israel, as a case study for the possible effects of climate on virus spread. Methods We employed a suitability index to WNV, parameterising it with prior knowledge pertaining to a bird reservoir and Culex species, using local time series of temperature and humidity as inputs. The predicted suitability index was compared with confirmed WNV cases in Israel (2016–2018). Results The suitability index was highly associated with WNV cases in Israel, with correlation coefficients of 0.91 (p value = 4 × 10− 5), 0.68 (p = 0.016) and 0.9 (p = 2 × 10− 4) in 2016, 2017 and 2018, respectively. The fluctuations in the number of WNV cases between the years were explained by higher area under the index curve. A new WNV seasonal mode was identified in the south-east of Israel, along the Great Rift Valley, characterised by two yearly peaks (spring and autumn), distinct from the already known single summer peak in the rest of Israel. Conclusions By producing a detailed geotemporal estimate of transmission potential and its determinants in Israel, our study promotes a better understanding of WNV epidemiology and has the potential to inform future public health responses. The proposed approach further provides opportunities for retrospective and prospective mechanistic modelling of WNV epidemiology and its associated climatic drivers.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robin N Thompson
- Christ Church, University of Oxford, Oxford, United Kingdom.,Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Joint Research Unit Epidemiology of Animal and Zoonotic Diseases (EPIA), INRA, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Uri Obolski
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.,School of Public Health, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, Groschup MH. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit Vectors 2020; 13:625. [PMID: 33380339 PMCID: PMC7774236 DOI: 10.1186/s13071-020-04532-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dorothee E Scheuch
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Lettow
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Helge Kampen
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Doreen Werner
- Biodiversity of Aquatic and Semiaquatic Landscape Features, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
41
|
Rumbos CI, Athanassiou CG. Assessment of selected larvicides for the control of Culex pipiens biotype pipiens and Culex pipiens biotype molestus under laboratory and semi-field conditions. PEST MANAGEMENT SCIENCE 2020; 76:3568-3576. [PMID: 32533802 DOI: 10.1002/ps.5847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/31/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The insecticidal efficacy of selected mosquito larvicides [teflubenzuron, S-methoprene, diflubenzuron, temephos, Bacillus thuringiensis var. israelensis (Bti) and polydimethylsiloxane (PDMS)], applied alone or in combination, against two Culex pipiens biotypes, Cx. p. pipiens and Cx. p. molestus, was compared under laboratory and semi-field conditions. Registered larvicides were evaluated at the label dose, whereas those not registered for mosquito control were tested at the label dose per area, i.e. as plant protection products. Teflubenzuron and temephos were also evaluated at half the label dose, alone or in combination with a non-ionic surfactant. Larval mortality and adult emergence were assessed after 1, 3, 5, 7, 9, 11, 16 and 20 days of exposure. RESULTS In all cases, PDMS showed complete (100%) larval control after 3 days of exposure against both biotypes. With temephos, all larvae were dead after 1 day of exposure, even at half the label dose. For teflubenzuron, mortality reached 100% at the end of the bioassays and adult emergence was avoided completely, whereas for diflubenzuron, mortality was close to 100% at the end of the trials. By contrast, in S-methoprene-treated water, control was below the 90% mortality threshold for both biotypes. In semi-field trails, in all treatments with Bti, all larvae of both biotypes were dead after 1 day of exposure. CONCLUSIONS Based on our data, and with the exception of S-methoprene, the larvicides tested remained below the threshold for effective treatment against larvae of Cx. p. pipiens and Cx. p. molestus for the entire duration of the study. Most of the larvicides tested showed high levels of efficacy against Cx. p. pipiens and Cx. p. molestus larvae in laboratory and semi-field bioassays. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christos I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
42
|
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, Ter Braak CJF, Te Beest DE, Hendriks M, Nijhuis EH, Warris S, Drolet BS, van Overbeek L, Koenraadt CJM. Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. MICROBIAL ECOLOGY 2020; 80:703-717. [PMID: 32462391 PMCID: PMC7476999 DOI: 10.1007/s00248-020-01517-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/23/2020] [Indexed: 05/10/2023]
Abstract
Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.
Collapse
Affiliation(s)
- Tim W R Möhlmann
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Chantal B F Vogels
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Dennis E Te Beest
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Marc Hendriks
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Els H Nijhuis
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Sven Warris
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, USDA, Agricultural Research Service, 1515 College Ave, Manhattan, KS, USA
| | - Leo van Overbeek
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
43
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
44
|
Glavinic U, Varga J, Paslaru AI, Hauri J, Torgerson P, Schaffner F, Veronesi E. Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasit Vectors 2020; 13:479. [PMID: 32948231 PMCID: PMC7501641 DOI: 10.1186/s13071-020-04361-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics.
Collapse
Affiliation(s)
- Uros Glavinic
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jasmin Varga
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Anca Ioana Paslaru
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeannine Hauri
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Paul Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Francis Schaffner Consultancy, Lörracherstrasse 50, 4125, Riehen, Switzerland
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
45
|
Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, El Moustaid F, Rohr J, Johnson LR, Mordecai EA. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. eLife 2020; 9:e58511. [PMID: 32930091 PMCID: PMC7492091 DOI: 10.7554/elife.58511] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector-pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23-26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24-25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Ecology and Evolutionary Biology, University of California Los AngelesLos AngelesUnited States
| | | | - Mailo G Numazu
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Hani Slamani
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jeremy M Cohen
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Forest and Wildlife Ecology, University of WisconsinMadisonUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jason Rohr
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Biological Sciences, Eck Institute of Global Health, Environmental Change Initiative, University of Notre DameSouth BendUnited States
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
46
|
Filomatori CV, Merwaiss F, Bardossy ES, Alvarez DE. Impact of alphavirus 3'UTR plasticity on mosquito transmission. Semin Cell Dev Biol 2020; 111:148-155. [PMID: 32665176 DOI: 10.1016/j.semcdb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.
Collapse
Affiliation(s)
- Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina.
| |
Collapse
|
47
|
Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva. Viruses 2020; 12:v12060659. [PMID: 32575394 PMCID: PMC7354520 DOI: 10.3390/v12060659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that caused a large outbreak in the Americas in 2015 and 2016. The virus is currently present in tropical areas around the globe and can cause severe disease in humans, including Guillain-Barré syndrome and congenital microcephaly. The tropical yellow fever mosquito, Aedes aegypti, is the main vector in the urban transmission cycles of ZIKV. The discovery of ZIKV in wild-caught Culex mosquitoes and the ability of Culex quinquefasciatus mosquitoes to transmit ZIKV in the laboratory raised the question of whether the common house mosquito Culex pipiens, which is abundantly present in temperate regions in North America, Asia and Europe, could also be involved in ZIKV transmission. In this study, we investigated the vector competence of Cx. pipiens (biotypes molestus and pipiens) from the Netherlands for ZIKV, using Usutu virus as a control. After an infectious blood meal containing ZIKV, none of the tested mosquitoes accumulated ZIKV in the saliva, although 2% of the Cx. pipiens pipiens mosquitoes showed ZIKV–positive bodies. To test the barrier function of the mosquito midgut on virus transmission, ZIKV was forced into Cx. pipiens mosquitoes by intrathoracic injection, resulting in 74% (molestus) and 78% (pipiens) ZIKV–positive bodies. Strikingly, 14% (molestus) and 7% (pipiens) of the tested mosquitoes accumulated ZIKV in the saliva after injection. This is the first demonstration of ZIKV accumulation in the saliva of Cx. pipiens upon forced infection. Nevertheless, a strong midgut barrier restricted virus dissemination in the mosquito after oral exposure and we, therefore, consider Cx. pipiens as a highly inefficient vector for ZIKV.
Collapse
|
48
|
Holicki CM, Ziegler U, Răileanu C, Kampen H, Werner D, Schulz J, Silaghi C, Groschup MH, Vasić A. West Nile Virus Lineage 2 Vector Competence of Indigenous Culex and Aedes Mosquitoes from Germany at Temperate Climate Conditions. Viruses 2020; 12:v12050561. [PMID: 32438619 PMCID: PMC7291008 DOI: 10.3390/v12050561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) is a widespread zoonotic arbovirus and a threat to public health in Germany since its first emergence in 2018. It has become of particular relevance in Germany in 2019 due to its rapid geographical spread and the detection of the first human clinical cases. The susceptibility of indigenous Culex pipiens (biotypes pipiens and molestus) for a German WNV lineage 2 strain was experimentally compared to that of Serbian Cx. pipiens biotype molestus and invasive German Aedes albopictus. All tested populations proved to be competent laboratory vectors of WNV. Culex pipiens biotype pipiens displayed the highest transmission efficiencies (40.0%–52.9%) at 25 °C. This biotype was also able to transmit WNV at 18 °C (transmission efficiencies of 4.4%–8.3%), proving that temperate climates in Central and Northern Europe may support WNV circulation. Furthermore, due to their feeding behaviors, Cx. pipiens biotype molestus and Ae. albopictus can act as “bridge vectors”, leading to human WNV infections.
Collapse
Affiliation(s)
- Cora M. Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.M.H.); (U.Z.); (J.S.); (M.H.G.)
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.M.H.); (U.Z.); (J.S.); (M.H.G.)
| | - Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.R.); (H.K.); (C.S.)
| | - Helge Kampen
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.R.); (H.K.); (C.S.)
| | - Doreen Werner
- Biodiversity of Aquatic and Semiaquatic Landscape Features, Leibniz-Centre for Agricultural Landscape Research, 15374 Muencheberg, Germany;
| | - Jana Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.M.H.); (U.Z.); (J.S.); (M.H.G.)
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.R.); (H.K.); (C.S.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.M.H.); (U.Z.); (J.S.); (M.H.G.)
| | - Ana Vasić
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (C.R.); (H.K.); (C.S.)
- Correspondence:
| |
Collapse
|
49
|
Wöhnke E, Vasic A, Raileanu C, Holicki CM, Tews BA, Silaghi C. Comparison of vector competence of Aedes vexans Green River and Culex pipiens biotype pipiens for West Nile virus lineages 1 and 2. Zoonoses Public Health 2020; 67:416-424. [PMID: 32162489 DOI: 10.1111/zph.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV), a zoonotic arbovirus, has recently established an autochthonous transmission cycle in Germany. In dead-end hosts like humans and horses the WNV infection may cause severe symptoms in the central nervous system. In nature, WNV is maintained in an enzootic transmission cycle between birds and ornithophilic mosquitoes. Bridge vector species, such as members of the Culex pipiens complex and Aedes spp., also widely distributed in Germany, might transmit WNV to other vertebrate host species. This study determined and compared the vector competence of field-collected northern-German Cx. pipiens biotype pipiens and laboratory-reared Ae. vexans Green River (GR) for WNV lineage 1 (strain: Magpie/Italy/203204) and WNV lineage 2 (strain: "Austria") under temperatures typical for northern Germany in spring/summer and autumn. For assessment of vector competence, 7- to 14-day-old female mosquitoes were offered a WNV containing blood meal via Hemotek membrane feeding system or cotton-stick feeding. After incubation at 18°C respectively 24°C for 14 days engorged female mosquitoes were salivated and dissected for determination of infection, dissemination and transmission rates by reverse transcriptase quantitative real-time PCR (RT-qPCR). Both Ae. vexans GR and Cx. pipiens biotype pipiens were infected with both tested WNV strains and tested 14 days post-inoculation. Disseminated infections were detected only in Ae. vexans GR incubated at 18°C and in Cx. pipiens pipiens incubated at 24°C after infection with WNV lineage 1. Transmission of WNV lineage 1 was detected in Cx. pipiens pipiens incubated at 24°C. These results indicate that Cx. pipiens pipiens from Northern Germany may be involved in the transmission of WNV, also to dead-end hosts like humans and horses.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Laboratory of Vector Capacity, Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Ana Vasic
- Laboratory of Vector Capacity, Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Cristian Raileanu
- Laboratory of Vector Capacity, Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Cora Marielle Holicki
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Birke Andrea Tews
- Laboratory for Molecular Vector-Pathogen-Interaction, Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Cornelia Silaghi
- Laboratory of Vector Capacity, Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany.,University Greifswald, Greifswald, Germany
| |
Collapse
|
50
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|