1
|
Damen M, Bekele D, Gashaw F. Malaria prevalence and patients' knowledge, attitude, and preventive practices toward the disease in the Jawi District, Awi Zone, Northwest Ethiopia. FRONTIERS IN PARASITOLOGY 2025; 4:1535306. [PMID: 39974570 PMCID: PMC11832530 DOI: 10.3389/fpara.2025.1535306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
Background Malaria is the most important parasitic illness causing morbidity and mortality with high prevalence in tropical regions. Objective This study was aimed at evaluating the 7-year malaria trend and community awareness at Jawi Health Center and primary Hospital in Northwest Ethiopia. Methods A retrospective and cross-sectional or prospective design were used for the study. The data was analyzed using SPSS version 22 software. The findings were considered significant at P < 0.05. Results Among 62,624 blood films between 2015 and 2021 at Jawi Health Center, 40.9% were positive. Plasmodium falciparum accounted for 85.8%. Women had more mixed infections (P. falciparum and P. vivax) (X2 = 8.9, df = 2, P = 0.011) than men. A greater proportion (20.6%) of malaria cases was observed within the under 5 years age group and the number of malaria cases was higher in September, October, and June. The overall prevalence of malaria was found to be 25.2% and June had the highest proportion (75.6%). In total, 335 (80.9%) respondents recognized mosquito bites as the cause and fever (50%) as a clinical symptom of malaria. More than half of the respondents (60.1%) never sleep under mosquito nets. Conclusion Thus, these findings have substantial implications for the trend of malaria prevalence and patient awareness of the disease which support the existing malaria control efforts.
Collapse
Affiliation(s)
- Mekete Damen
- Department of Biology, College of Natural and Computational Sciences, Kotebe University of Education, Addis Ababa, Ethiopia
| | - Damtew Bekele
- Department of Biology, College of Natural and Computational Sciences, Ambo University, Ambo, Ethiopia
| | - Fikru Gashaw
- Department of Biology, College of Natural and Computational Sciences, Kotebe University of Education, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Tarekegn M, Dugassa S, Negash Y, Tekie H, Woldehawariat Y. A survey of malaria vectors feeding preference, biting site and resting behaviour in the malaria elimination settings of Dembiya District, north-western Ethiopia. Malar J 2024; 23:352. [PMID: 39568036 PMCID: PMC11580510 DOI: 10.1186/s12936-024-05148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Despite the progress in scaling vector control interventions in Ethiopia, malaria is still a major health problem in the country. Monitoring of the local vector populations and the effectiveness of vector control strategies is necessary to guide programme decisions to optimize malaria prevention efforts. This study investigated the feeding preference, the biting behaviour and resting behaviours of Anopheles mosquitoes in selected localities of Dembiya District. METHODS Adult Anopheles mosquitoes were sampled indoors and outdoors from June 2018 to May 2019 using CDC light traps, pyrethrum spray catches, artificial pit shelters, and mouth aspirators at both Guramba Bata and Arebiya study sites. Anopheles mosquitoes were identified to the species level. Their blood meal source and Plasmodium sporozoite infections were determined using an enzyme-linked immunosorbent assay. RESULTS Anopheles mosquitoes belonging to 11 species were identified from 2,055 collected mosquito specimens. Anopheles pharoensis was the predominant species at both the Guramba Bata (46.5%) and Arebiya (46.2%) study sites. The CDC light traps caught the highest number of Anopheles mosquitoes in both study sites. In Guramba Bata the density of outdoor host-seeking and resting Anopheles mosquitoes were higher than indoors (P ≤ 0.05). The human blood indexes (HBI) of indoor and outdoor host-seeking Anopheles arabiensis were 17.4% and 15.3%, respectively. The entomological inoculation rate (EIR) of outdoor host-seeking An. arabiensis was 4.7 infective bites/person/year. Additionally, the outdoor EIR of host-seeking Anopheles coustani was 25.7ib/p/year. CONCLUSIONS Anopheles mosquitoes in Dembiya district were more likely to seek a host and rest outdoors than indoors. A reevaluation of vector control strategies is needed to ensure Ethiopia remains on the path to malaria elimination. The detection of Plasmodium circumsporozoite protein in potential secondary vectors, such as An. coustani requires further investigation to substantiate their role in malaria transmission.
Collapse
Affiliation(s)
- Mihretu Tarekegn
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
- Department of Biological Sciences, College of Natural and Computational Sciences, Woldia University, PO. Box, 400, Ethiopia, Woldia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Yohannes Negash
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Habte Tekie
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Yitbarek Woldehawariat
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa.
| |
Collapse
|
3
|
Ashine T, Kochora A, Shibru H, Bekele A, Assefa M, Gidisa B, Negash N, Weetman D, Ayele TA, Gadisa E, Massebo F. Plasticity of blood feeding behavior of Anopheles mosquitoes in Ethiopia: a systematic review. Parasit Vectors 2024; 17:408. [PMID: 39342300 PMCID: PMC11439269 DOI: 10.1186/s13071-024-06493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The efficacy of vector control tools depends on the behavior of the vector species. Many studies have sought to determine the feeding behavior of Anopheles mosquitoes in different settings of Ethiopia. We have performed a systematic review aimed to generate pooled evidence on the overall and species-specific blood meal sources of Anopheles mosquitoes in Ethiopia. METHODS A search for relevant articles was performed in two electronic databases (PubMed and Science Direct) and three search engines (Google Scholar, Research Gate and Google) between 11 March and 2 April 2024. Following the initial identification of articles, we used EndNote X8 software and removed duplicate articles and screened the remaining articles by careful reading of their titles and abstracts. The full text of articles that passed this screening phase was retrieved, read and evaluated against predetermined selection criteria. The final decision for inclusion in the systematic review was made after a methodological quality check using the JBI critical appraisal checklist. All relevant data were extracted from tables, figures and texts of the included articles using a premade template in Excel, and the data were analyzed using Stata version 14 software. RESULTS Of the 2431 studies identified, 27 met the inclusion criteria; all were published between 1997 and 2024. At 215 data points (frequency of tests of each Anopheles species by location and method of mosquito collections), 18,771 Anopheles mosquitoes belonging to 23 species or species complexes were tested for blood meal sources. The commonest sources of blood meals for Anopheles mosquitoes were bovine (36.0%, n = 6758) and human (29.4%, n = 5520). Among the tested anophelines, Anopheles (An.) arabiensis accounted for 67.9% (n = 12,741), followed by An. pharoensis, An. demeilloni and An. stephensi at 10.0%, 5.6% and 4.4%, respectively. Overall, there was no difference in the mean proportion of An. arabiensis detected with domestic animal blood (33.4%, 95% confidence interval [CI] 32.4-34.4%) and those detected with human blood (31.8%, 95% CI 30.9-32.8%). However, a greater proportion of the outdoor collected An. arabiensis were found to feed on bovines (47.9%, 95% CI 35.3-60.6) compared to humans (12.9%, 95% CI 0.8-24.9, P < 0.01). The foraging ratio (FR), which accounts for host availability, was greater for bovines (FR = 0.7) than for humans (FR = 0.2) for An. arabiensis, indicating preferential feeding on bovine hosts. This host preference was supported by the host preference index (human:bovine = 0.4). Anopheles pharoensis was detected with a slightly higher human blood index (53.5%, n = 1005) compared to bovine blood index (45.2%, n = 849). In contrast, An. demeilloni, An. coustani and An. marshalli were detected with a higher bovine blood index. Recently invaded urban malaria vector, An. stephensi was found with a higher ovine blood index. CONCLUSIONS Bovine and human hosts are common sources of a blood meal for Anopheles mosquitoes. In terms of host availability, An. arabiensis showed preferential feeding on bovines/cattle. Targeting domestic animals, bovines and ovines with endectocides could supplement current vector control interventions. STUDY REGISTRATION The protocol of this study was registered on the International Prospective Register of Systematic Reviews, registration no. CRD42024515725.
Collapse
Affiliation(s)
- Temesgen Ashine
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Abena Kochora
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hailu Shibru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Alemayehu Bekele
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Muluken Assefa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Bedasa Gidisa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Nigatu Negash
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | | | - Endalamaw Gadisa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
4
|
Molla E, Dugassa S, Alemayehu L, Ejigu LA, Deressa JD, Demisse M, Abdo M, Wolde Behaksra S, Keffale M, Tadesse FG, Gadisa E, Mamo H. Seasonal Dynamics of Symptomatic and Asymptomatic Plasmodium falciparum and Plasmodium vivax Infections in Coendemic Low-Transmission Settings, South Ethiopia. Am J Trop Med Hyg 2024; 111:481-489. [PMID: 38955195 PMCID: PMC11376164 DOI: 10.4269/ajtmh.24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024] Open
Abstract
Ethiopia has a plan to eliminate malaria in selected low-transmission districts by 2025. However, complex factors such as seasonality, focal heterogeneity, and coendemicity of Plasmodium vivax and Plasmodium falciparum, and asymptomatic cases, along with other factors, pose challenges. This longitudinal study assessed these dynamics and associated factors in three elimination-targeted settings in southern Ethiopia. The study included rural districts (Wonago and Yirgacheffe) and an urban setting (Dilla town) with 504 participants from 168 households per season. The study covered the peak and minor malaria transmission seasons and the dry season. Finger-prick blood was collected for microscopy, rapid diagnostic tests, and 18S-rRNA-based quantitative polymerase chain reaction (qPCR). During the dry season, P. vivax accounted for most infections (64.5%, 71/110) and symptomatic malaria (50.9%, 29/57), whereas P. falciparum dominated during the peak transmission season (45.7%, 42/92 infections and 58.1%, 25/43 of symptomatic cases). Treatment-seeking behavior was low, with 65.3% (143/219) of symptomatic individuals not seeking treatment. Dilla town had significantly higher infection prevalence (29.6%, 149/504, P <0.001) in all seasons compared with the rural sites. The incidence rate was 12/1,000 person-seasons by qPCR and 5/1,000 person-seasons by microscopy. Urban residents, those with low hemoglobin levels, nonuse of mosquito nets, and proximity to stagnant water had a significantly higher risk of infection (P <0.001). Tailored approaches are needed in elimination-targeted areas, focusing on urban settings, Plasmodium species, and strengthening community-level interventions for behavioral change and active case detection.
Collapse
Affiliation(s)
- Eshetu Molla
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lina Alemayehu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | - Melat Abdo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | | | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Tinto B, Bicaba B, Kagoné TS, Kayiwa J, Rabe I, Merle CSC, Zango A, Ayouba A, Salinas S, Kania D, Simonin Y. Co-circulation of two Alphaviruses in Burkina Faso: Chikungunya and O'nyong nyong viruses. PLoS Negl Trop Dis 2024; 18:e0011712. [PMID: 38870214 PMCID: PMC11206941 DOI: 10.1371/journal.pntd.0011712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) and O'nyong nyong virus (ONNV) are phylogenetically related alphaviruses in the Semliki Forest Virus (SFV) antigenic complex of the Togaviridae family. There are limited data on the circulation of these two viruses in Burkina Faso. The aim of our study was to assess their circulation in the country by determining seroprevalence to each of the viruses in blood donor samples and by retrospective molecular and serological testing of samples collected as part of national measles and rubella surveillance. METHODOLOGY/PRINCIPAL FINDINGS All blood donor samples were analyzed on the Luminex platform using CHIKV and ONNV E2 antigens. Patient samples collected during national measles-rubella surveillance were screened by an initial ELISA for CHIKV IgM (CHIKjj Detect IgM ELISA) at the national laboratory. The positive samples were then analyzed by a second ELISA test for CHIKV IgM (CDC MAC-ELISA) at the reference laboratory. Finally, samples that had IgM positive results for both ELISA tests and had sufficient residual volume were tested by plaque reduction neutralization testing (PRNT) for CHIKV and ONNV. These same patient samples were also analyzed by rRT-PCR for CHIKV. Among the blood donor specimens, 55.49% of the samples were positive for alphaviruses including both CHIKV and ONNV positive samples. Among patient samples collected as part of national measles and rubella surveillance, 3.09% were IgM positive for CHIKV, including 2.5% confirmed by PRNT. PRNT failed to demonstrate any ONNV infections in these samples. No samples tested by RT-qPCR. had detectable CHIKV RNA. CONCLUSIONS/SIGNIFICANCE Our results suggest that CHIKV and ONNV have been circulating in the population of Burkina Faso and may have been confused with malaria, dengue fever or other febrile diseases such as measles or rubella. Our study underscores the necessity to enhance arbovirus surveillance systems in Burkina Faso.
Collapse
Affiliation(s)
- Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Brice Bicaba
- Centre des Opérations de Réponse aux Urgences Sanitaires, Ouagadougou, Burkina Faso
| | | | - John Kayiwa
- Uganda Virus Research Institute, Republic of Uganda
| | - Ingrid Rabe
- Special programme for research and training in Tropical disease (TDR), World Health Organization, Geneva, Switzerland
| | - Corinne Simone Collette Merle
- Special programme for research and training in Tropical disease (TDR), World Health Organization, Geneva, Switzerland
| | - Alidou Zango
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Ahidjo Ayouba
- Recherches translationnelles sur le VIH et maladies infectieuses, Université de Montpellier, IRD, Inserm, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
| | - Dramane Kania
- Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Adugna T, Zelalem L, Alelign G. Blood smears examination and prevalence of malaria in Addis Zemen Town, Northwest Ethiopia (2013-2021): a retrospective study. Trop Dis Travel Med Vaccines 2024; 10:12. [PMID: 38745210 PMCID: PMC11095033 DOI: 10.1186/s40794-024-00219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION In Ethiopia, malaria is one of the major public health and socioeconomic problems, though tremendous efforts have been made. Currently, the country has a plan to eliminate malaria by 2030. To achieve this plan, epidemiological studies associated with malaria prevalence with gender, age groups, species types, and seasons are essential. Therefore, the aim of this study was to assess the prevalence of malaria from 2013 to 2021 in Addis Zemen town, Northwest Ethiopia. METHODS A retrospective study was conducted at assess the trend of malaria prevalence over the last nine years using recorded blood smear reports in the laboratory logbook from governmental health institutions. Trends in malaria cases and the proportion of genders, age groups, species, and seasons over time were compared. The data were analyzed using the SPSS-23 software package. RESULTS The overall malaria prevalence between 2013 and 2021 was 10.4%. From all confirmed cases, the minimum and maximum prevalence of malaria cases were recorded in 2018 (2%) and 2016 (33.2%) years, respectively. The infectious rate of males (59.3%) was significantly higher than that of females (40.7%) (p < 0.0001). In all survey periods, all age groups were infected by malaria parasites; the majority of the cases were between 15 and 45 years (57%) older than others. Statistically, a greater proportion of P. falciparum (80.1%) was recorded than P. vivax (18.5%) (p < 0.0001). Malaria cases were occurring throughout each month. The relative highest peaks of total malaria cases were observed during the months of September, October, and November. Seasonally, the highest infection rate was observed during spring (40.20%) compared to other seasons. CONCLUSIONS In conclusion, the study revealed that malaria transmission remained high, which affected males more than females and potentially reproductive ages. Two of the most important Plasmodium species were identified and found during all reviewed months and years, though P. falciparum was the most prevalent. Hence, the problem can be alleviated by using season-based long-lasting insecticide treated nets, regularly overseeing ongoing irrigation activity, overseeing the reduction of the water level of the Sheni River, health education, and providing immediate patient treatment.
Collapse
|
7
|
Ashine T, Eyasu A, Asmamaw Y, Simma E, Zemene E, Epstein A, Brown R, Negash N, Kochora A, Reynolds AM, Bulto MG, Tafesse T, Dagne A, Lukus B, Esayas E, Behaksra SW, Woldekidan K, Kassa FA, Deressa JD, Assefa M, Dillu D, Assefa G, Solomon H, Zeynudin A, Massebo F, Sedda L, Donnelly MJ, Wilson AL, Weetman D, Gadisa E, Yewhalaw D. Spatiotemporal distribution and bionomics of Anopheles stephensi in different eco-epidemiological settings in Ethiopia. Parasit Vectors 2024; 17:166. [PMID: 38556881 PMCID: PMC10983662 DOI: 10.1186/s13071-024-06243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Malaria is a major public health concern in Ethiopia, and its incidence could worsen with the spread of the invasive mosquito species Anopheles stephensi in the country. This study aimed to provide updates on the distribution of An. stephensi and likely household exposure in Ethiopia. METHODS Entomological surveillance was performed in 26 urban settings in Ethiopia from 2021 to 2023. A kilometer-by-kilometer quadrant was established per town, and approximately 20 structures per quadrant were surveyed every 3 months. Additional extensive sampling was conducted in 50 randomly selected structures in four urban centers in 2022 and 2023 to assess households' exposure to An. stephensi. Prokopack aspirators and CDC light traps were used to collect adult mosquitoes, and standard dippers were used to collect immature stages. The collected mosquitoes were identified to species level by morphological keys and molecular methods. PCR assays were used to assess Plasmodium infection and mosquito blood meal source. RESULTS Catches of adult An. stephensi were generally low (mean: 0.15 per trap), with eight positive sites among the 26 surveyed. This mosquito species was reported for the first time in Assosa, western Ethiopia. Anopheles stephensi was the predominant species in four of the eight positive sites, accounting for 75-100% relative abundance of the adult Anopheles catches. Household-level exposure, defined as the percentage of households with a peridomestic presence of An. stephensi, ranged from 18% in Metehara to 30% in Danan. Anopheles arabiensis was the predominant species in 20 of the 26 sites, accounting for 42.9-100% of the Anopheles catches. Bovine blood index, ovine blood index and human blood index values were 69.2%, 32.3% and 24.6%, respectively, for An. stephensi, and 65.4%, 46.7% and 35.8%, respectively, for An. arabiensis. None of the 197 An. stephensi mosquitoes assayed tested positive for Plasmodium sporozoite, while of the 1434 An. arabiensis mosquitoes assayed, 62 were positive for Plasmodium (10 for P. falciparum and 52 for P. vivax). CONCLUSIONS This study shows that the geographical range of An. stephensi has expanded to western Ethiopia. Strongly zoophagic behavior coupled with low adult catches might explain the absence of Plasmodium infection. The level of household exposure to An. stephensi in this study varied across positive sites. Further research is needed to better understand the bionomics and contribution of An. stephensi to malaria transmission.
Collapse
Affiliation(s)
- Temesgen Ashine
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia.
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Eyasu
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Yehenew Asmamaw
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Eba Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nigatu Negash
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abena Kochora
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alison M Reynolds
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Temesgen Tafesse
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu Dagne
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Biniyam Lukus
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Endashaw Esayas
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Kidist Woldekidan
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Jimma Dinsa Deressa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Muluken Assefa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dereje Dillu
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Gudissa Assefa
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Hiwot Solomon
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Ahmed Zeynudin
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Fekadu Massebo
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Endalamaw Gadisa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
8
|
Shibeshi A, Sebsibe A, Teka A, Aklilu E. Ethnobotanical Study of Mosquito Repellent Plants Used in Seweyna District, Bale Zone, Southeast, Ethiopia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:6610579. [PMID: 38962017 PMCID: PMC11221966 DOI: 10.1155/2024/6610579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 07/05/2024]
Abstract
Malaria control efforts through vector control strategies are hindered by the development of insecticide resistance by major malaria vectors in many malaria-endemic areas, which necessitate the need for alternative control measures. The aim of this study was to document plants traditionally used as mosquito repellents in Seweyna district, southeastern Ethiopia. The ethnobotanical data were collected using semistructured interviews, field observation, and guided field walks in four kebeles of the district with 98 informants. A total of 19 plant species were used by the local community as mosquito repellent, with 42.1% being trees. These plant species belong to 12 families. Of these families, the family Burseraceae was the most represented, with four species, followed by Fabaceae (3 species). The most frequently mentioned plant species were Mimusops kummel (90.81%), followed by Acokanthera schimperi (84.69%), Boswellia microphylla (79.6%), and Calpurnia aurea (79.6%). The stem was the most common plant part used (47.3%) to repel mosquitoes. Most of the local communities (52.6%) use the burning of either fresh or dry plant parts to generate smoke, which is the most common practice. The current ethnobotanical study indicates that the local community in the Seweyna district uses the plants to repel mosquitoes. In the future, the repellent efficacy of these plants against the major malaria vector should be tested under laboratory and field conditions. Besides, the identification of the bioactive compounds responsible for the repellent activity should also be determined.
Collapse
Affiliation(s)
| | | | - Alemtshay Teka
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Esayas Aklilu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Damene E, Massebo F. Administration of ivermectin to cattle induced mortality, reduced fecundity and survivorship of Anopheles arabiensis in Ethiopia: an implication for expansion of vector control toolbox. Trop Med Health 2024; 52:11. [PMID: 38229204 PMCID: PMC10790479 DOI: 10.1186/s41182-023-00575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Although many countries have shown interest in eliminating malaria, approaches that complement existing vector control interventions are needed because existing methods have been scaled up but malaria still persists. Therefore, the effect of ivermectin administration to cattle was evaluated for its effect on mortality, survivorship and mortality of laboratory reared Anopheles arabiensis. METHODS Three calves were randomly selected and injected with ivermectin at a therapeutic dose of 0.2 mg/kg, while the other two calves received no treatment and served as controls. Five tents were constructed for the trial. Calves were housed in tents (one per tent) and then 30 starved female An. arabiensis were introduced into each tent. Only fully engorged females were collected from each tent and placed in different mosquito cages to monitor their mortality, survival and fecundity. Data analysis was done using SPSS version 16. RESULTS During the follow-up period (until day 21), ivermectin induced significantly higher mortality when compared to controls. It resulted in an average 24-h mortality rate of 81.6% against An. arabiensis on the first day following treatment. 100% An. arabiensis that fed on ivermectin-treated calves on the first day after treatment died within four days. Egg production rate of An. arabiensis that fed on ivermectin-treated calves was significantly lower compared to controls (F = 768.7, P < 0.001). CONCLUSION In conclusion, ivermectin induced mortality, reduced fecundity and survivorship of laboratory maintained An. arabiensis. Further study is recommended using a wild mosquito population. Moreover, mass ivermectin administration to domestic animals could be recommended to supplement the existing indoor based interventions.
Collapse
Affiliation(s)
- Ephrem Damene
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
10
|
Eligo N, Wegayehu T, Pareyn M, Tamiru G, Lindtjørn B, Massebo F. Anopheles arabiensis continues to be the primary vector of Plasmodium falciparum after decades of malaria control in southwestern Ethiopia. Malar J 2024; 23:14. [PMID: 38195563 PMCID: PMC10777518 DOI: 10.1186/s12936-024-04840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Investigating the species distribution and their role in malaria transmission is important as it varies from place to place and is highly needed to design interventions appropriate to the site. The current study aimed to investigate the Anopheles mosquito species distribution and their infection rate in southwestern Ethiopia. METHODS The study was conducted in 14 malaria-endemic kebeles (the smallest administrative unit), which were situated in eight different malaria-endemic districts and four zones in southwestern Ethiopia. Ten per cent of households in each village were visited to collect adult mosquitoes using Centers for Disease Control and Prevention (CDC) light traps. The larval and pupal collection was done from breeding sites within the villages, and reared to adults. Female mosquitoes were morphologically identified. The head and thorax of adult Anopheles mosquitoes were tested for circumsporozoite proteins (CSPs) using ELISA. At the same time, legs, wings, and abdomen were used to identify sibling species using PCR targeting the rDNA intergenic spacers region for species typing of the Anopheles funestus group and the internal transcribed spacer 2 region genes for Anopheles gambiae complex. RESULTS A total of 1445 Anopheles mosquitoes comprising eight species were collected. Of 813 An. gambiae complex tested by PCR, 785 (97%) were Anopheles arabiensis, and the remaining 28 (3%) were not amplified. There were 133 An. funestus group captured and tested to identify the species, of which 117 (88%) were positive for Anopheles parensis, and 15 (11%) were not amplified. A single specimen (1%) showed a band with a different base pair length from the known An. funestus group species. Sequencing revealed this was Anopheles sergentii. Among 1399 Anopheles tested for CSPs by ELISA, 5 (0.4%) An. arabiensis were positive for Plasmodium falciparum and a single (0.07%) was positive for Plasmodium vivax. CONCLUSIONS Anopheles arabiensis continues to play the principal role in malaria transmission despite implementing indoor-based interventions for decades. Sequencing results suggest that An. sergentii was amplified by the An. funestus group primer, producing PCR amplicon size of different length. Therefore, relying solely on amplifying a specific gene of interest in grouping species could be misleading, as different species may share the same gene.
Collapse
Affiliation(s)
- Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Teklu Wegayehu
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Myrthe Pareyn
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Girum Tamiru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Bernt Lindtjørn
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
11
|
Akuoko OK, Dhikrullahi SB, Hinne IA, Mohammed AR, Owusu-Asenso CM, Coleman S, Dadzie SK, Kyerematen R, Boakye DA, Wilson MD, Afrane YA. Biting behaviour, spatio-temporal dynamics, and the insecticide resistance status of malaria vectors in different ecological zones in Ghana. Parasit Vectors 2024; 17:16. [PMID: 38195546 PMCID: PMC10775458 DOI: 10.1186/s13071-023-06065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.
Collapse
Affiliation(s)
- Osei K Akuoko
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| | - Shittu B Dhikrullahi
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A Hinne
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
- Department of Biochemistry and Molecular Biology, CABNR, University of Nevada, Reno, NV, USA
| | - Abdul R Mohammed
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Christopher M Owusu-Asenso
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Sylvester Coleman
- Department of Clinical Microbiology - Vector Biology Laboratory, School of Medicine and Dentistry (SMD)-College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Rosina Kyerematen
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
12
|
Hadebe MT, Malgwi SA, Okpeku M. Revolutionizing Malaria Vector Control: The Importance of Accurate Species Identification through Enhanced Molecular Capacity. Microorganisms 2023; 12:82. [PMID: 38257909 PMCID: PMC10818655 DOI: 10.3390/microorganisms12010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Many factors, such as the resistance to pesticides and a lack of knowledge of the morphology and molecular structure of malaria vectors, have made it more challenging to eradicate malaria in numerous malaria-endemic areas of the globe. The primary goal of this review is to discuss malaria vector control methods and the significance of identifying species in vector control initiatives. This was accomplished by reviewing methods of molecular identification of malaria vectors and genetic marker classification in relation to their use for species identification. Due to its specificity and consistency, molecular identification is preferred over morphological identification of malaria vectors. Enhanced molecular capacity for species identification will improve mosquito characterization, leading to accurate control strategies/treatment targeting specific mosquito species, and thus will contribute to malaria eradication. It is crucial for disease epidemiology and surveillance to accurately identify the Plasmodium spp. that are causing malaria in patients. The capacity for disease surveillance will be significantly increased by the development of more accurate, precise, automated, and high-throughput diagnostic techniques. In conclusion, although morphological identification is quick and achievable at a reduced cost, molecular identification is preferred for specificity and sensitivity. To achieve the targeted malaria elimination goal, proper identification of vectors using accurate techniques for effective control measures should be prioritized.
Collapse
Affiliation(s)
| | | | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
13
|
Aschale Y, Getachew A, Yewhalaw D, De Cristofaro A, Sciarretta A, Atenafu G. Systematic review of sporozoite infection rate of Anopheles mosquitoes in Ethiopia, 2001-2021. Parasit Vectors 2023; 16:437. [PMID: 38008761 PMCID: PMC10680292 DOI: 10.1186/s13071-023-06054-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Adult mosquitoes of the genus Anopheles are important vectors of Plasmodium parasites, causative agents of malaria. The aim of this review was to synthesize the overall and species-specific proportion of Anopheles species infected with sporozoites and their geographical distribution in the last 2 decades (2001-2021). METHODS A comprehensive search was conducted using databases (PubMed, Google Scholar, Science Direct, Scopus, African Journals OnLine) and manual Google search between January 1 and February 15, 2022. Original articles describing work conducted in Ethiopia, published in English and reporting infection status, were included in the review. All the required data were extracted using a standardized data extraction form, imported to SPSS-24, and analyzed accordingly. The quality of each original study was assessed using a quality assessment tool adapted from the Joanna Briggs Institute critical appraisal checklist. This study was registered on PROSPERO (International Prospective Register of Systematic Reviews; registration no. CRD42022299078). RESULTS A search for published articles produced a total of 3086 articles, of which 34 met the inclusion criteria. Data on mosquito surveillance revealed that a total of 129,410 anophelines comprising 25 species were captured, of which 48,365 comprising 21 species were tested for sporozoites. Anopheles arabiensis was the dominant species followed by An. pharoensis and An. coustani complex. The overall proportion infected with sporozoites over 21 years was 0.87%. Individual proportions included Anopheles arabiensis (1.09), An. pharoensis (0.79), An. coustani complex (0.13), An. funestus (2.71), An. demeilloni (0.31), An. stephensi (0.70), and An. cinereus (0.73). Plasmodium falciparum sporozoites accounted 79.2% of Plasmodium species. Mixed infection of Plasmodium vivax and P. falciparum was only reported from one An. arabiensis sample. CONCLUSIONS Anopheles arebiensis was the dominant malaria vector over the years, with the highest sporozoite infection proportion of 2.85% and an average of 0.90% over the years. Other species contributing to malaria transmission in the area were An. pharoensis, An. coustani complex, An. funestus, An. stephensi, and An. coustani. The emergence of new vector species, in particular An. stephensi, is particularly concerning and should be investigated further.
Collapse
Affiliation(s)
- Yibeltal Aschale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aklilu Getachew
- School of Medical Laboratory Science, Jimma University, Jimma, Ethiopia
| | | | - Antonio De Cristofaro
- Department of Agriculture, Environment and Food Sciences, University of Molise, Molise, Italy
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, University of Molise, Molise, Italy
| | - Getnet Atenafu
- Department of Biology, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
14
|
Nzioki I, Machani MG, Onyango SA, Kabui KK, Githeko AK, Ochomo E, Yan G, Afrane YA. Differences in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems of western Kenya. Parasit Vectors 2023; 16:376. [PMID: 37864217 PMCID: PMC10590029 DOI: 10.1186/s13071-023-05944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/24/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.
Collapse
Affiliation(s)
- Irene Nzioki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | - Kevin K Kabui
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
15
|
Lelisa K, Hailemeskel E, Bekele D, Dugassa S. Malaria positivity rate trend analysis at water resources development project of Wonji Sugar Estate Oromia, Ethiopia. Parasitol Res 2023; 122:2259-2266. [PMID: 37507541 DOI: 10.1007/s00436-023-07923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Evidence on the trends of the proportion of malaria infections detected by routine passive case detection at health facilities is important for public health decision making especially in areas moving towards elimination. The objective was to assess nine years of trends on clinical malaria infections detected at health facility and its associated climate factors, in the water resource development set up of Wonji sugar estate, Oromia, Ethiopia. Retrospective data were collected from malaria-suspected patient recording logbook at Wonji sugar factory's primary hospital. Monthly average meteorological data were obtained from the estate meteorological station. Data were collected from April through June 2018 and January 2022. The data were analyzed using Stata version 16.0 software for Chi-square and regression analysis. Over the last nine years, 34,388 cases were legible for analysis with complete data. Of these, 11.75% (4039/34388) were positive for clinical malaria. Plasmodium vivax test positivity was the highest proportion (8.2%, n = 2820) followed by Plasmodium falciparum (3.48%, n = 1197) and mixed infections (P. falciparum and P. vivax, 0.06%, n = 21). The odds of being positive for malaria was highest in males (AOR = 1.46; 95%CI = 1.36-1.52; P < 0.001) compared to females and in older individuals of above 15 years old (AOR = 4.55, 95%CI = 4.01-5.17, P < 0.001) followed by school-aged children (5-15 years old) (AOR = 2.16; 95%CI = 1.88-2.49, P < 0.001). There was no significant variation in the proportion of malaria-positive cases in the dry and wet seasons (P = 0.059). Malaria test positivity rates were associated with average monthly rainfall (AdjIRR = 1.00; 95%CI = 1.00-1.001, P < 0.001) while negatively associated with average monthly minim temperature (adjIRR = 0.94; 95%CI = 0.94-0.95; P < 0.001) and average monthly relative humidity (adjIRR = 0.99, 95%CI = 0.99-1.00, P = 0.023). There was year-round malaria transmission, adults especially males and school children frequently tested malaria positive. Hence, alternative vector management tools like larval source management have to be deployed besides ITNs and IRS in such water development areas to achieve the malaria elimination goal.
Collapse
Affiliation(s)
- Kidane Lelisa
- Vector Biology and Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Dilla University, PO Box 419, Dilla, Ethiopia.
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Wollo University, PO Box 1145, Dessie, Ethiopia.
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Damtew Bekele
- Department of Biology, College of Natural and Computational Sciences, Ambo University, PO Box 19, Ambo, Ethiopia
| | - Sisay Dugassa
- Vector Biology and Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Loha E. Association between Livestock Ownership and Malaria Incidence in South-Central Ethiopia: A Cohort Study. Am J Trop Med Hyg 2023; 108:1145-1150. [PMID: 37094783 PMCID: PMC10540100 DOI: 10.4269/ajtmh.22-0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/02/2023] [Indexed: 04/26/2023] Open
Abstract
Zooprophylaxis is one of the possible environmental vector control strategies for malaria prevention. However, its effect on reducing malaria transmission has been questionable, requiring a detailed understanding of contextual factors. This study aims to evaluate the effect of keeping livestock on malaria incidence in south-central Ethiopia. A cohort of 34,548 people in a total of 6,071 households was followed for 121 weeks from October 2014 to January 2017. Baseline data were collected, including livestock ownership. Weekly home visits were done to actively search for malaria cases, and passive case detection was also carried out. Malaria was diagnosed with rapid diagnostic tests. Log binomial and parametric regression survival-time models were used to estimate effect measures. A total of 27,471 residents had complete follow-ups, and the majority (87.5%) lived in households owning livestock, including cattle, sheep, goats, and chickens. The overall incidence risk of malaria was 3.7%, and there was a 24% reduction in the risk of malaria among livestock owners. The total cohort contributed to 71,861.62 person-years of observation. The incidence rate of malaria was 14.7 cases per 1,000 person-years. There was a 17% reduction in the rate of malaria among livestock owners. Meanwhile, the protective effect of livestock ownership increased as the number of livestock or the livestock-to-human ratio increased. In conclusion, livestock owners had less malaria. In a setup where domestication of livestock is a common practice and the predominant malaria vector tends to feed more on livestock than humans, zooprophylaxis remains a promising strategy for malaria prevention.
Collapse
Affiliation(s)
- Eskindir Loha
- Centre for International Health, University of Bergen, Bergen, Norway
- Chr. Michelsen Institute, Bergen, Norway
- School of Public Health, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
17
|
Nzioki I, Machani MG, Onyango SA, Kabui KK, Githeko AK, Ochomo E, Yan G, Afrane YA. Current observations on shifts in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems in Western Kenya. RESEARCH SQUARE 2023:rs.3.rs-2772202. [PMID: 37090522 PMCID: PMC10120786 DOI: 10.21203/rs.3.rs-2772202/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae) (98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s (hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yaw A Afrane
- University of Ghana Medical School, University of Ghana
| |
Collapse
|
18
|
Perugini E, Guelbeogo WM, Guglielmo F, Poggi C, Gabrieli E, Ranson H, Della Torre A, Pombi M. The interplay between malaria vectors and human activity accounts for high residual malaria transmission in a Burkina Faso village with universal ITN coverage. Parasit Vectors 2023; 16:101. [PMID: 36922855 PMCID: PMC10015820 DOI: 10.1186/s13071-023-05710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Mosquito and human behaviour interaction is a key determinant of the maximum level of protection against malaria that can be provided by insecticide-treated nets (ITNs). Nevertheless, scant literature focuses on this interaction, overlooking a fundamental factor for efficient malaria control. This study aims to estimate malaria transmission risk in a Burkina Faso village by integrating vector biting rhythms with some key information about human habits. METHODS Indoor/outdoor human landing catches were conducted for 16 h (16:00-08:00) during 8 nights (September 2020) in Goden village. A survey about net usage and sleeping patterns was submitted to half the households (October-December 2020). A subsample of collected specimens of Anopheles gambiae sensu lato was molecularly processed for species identification, Plasmodium detection from heads-thoraxes and L1014F pyrethroid-resistance allele genotyping. Hourly mosquito abundance was statistically assessed by GLM/GAM, and the entomological inoculation rate (EIR) was corrected for the actual ITN usage retrieved from the questionnaire. RESULTS Malaria transmission was mainly driven by Anopheles coluzzii (68.7%) followed by A. arabiensis (26.2%). The overall sporozoite rate was 2% with L1014F estimated frequency of 0.68 (N = 1070 out of 15,201 A. gambiae s.l. collected). No major shift in mosquito biting rhythms in response to ITN or differences between indoor and outdoor catches were detected. Impressive high biting pressure (mean 30.3 mosquitoes/person/hour) was exerted from 20:00 to 06:00 with a peak at 4:00. Human survey revealed that nearly all inhabitants were awake before 20:00 and after 7:00 and at least 8.7% had no access to bednets. Adjusting for anthropological data, the EIR dropped from 6.7 to 1.2 infective bites/person/16 h. In a scenario of full net coverage and accounting only for the human sleeping patterns, the daily malaria transmission risk not targetable by ITNs was 0.69 infective bites. CONCLUSIONS The high mosquito densities and interplay between human/vector activities means that an estimated 10% of residual malaria transmission cannot be prevented by ITNs in the village. Locally tailored studies, like the current one, are essential to explore the heterogeneity of human exposure to infective bites and, consequently, to instruct the adoption of new vector control tools strengthening individual and community protection.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Federica Guglielmo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Eugenio Gabrieli
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| |
Collapse
|
19
|
Salomé G, Riddin M, Braack L. Species Composition, Seasonal Abundance, and Biting Behavior of Malaria Vectors in Rural Conhane Village, Southern Mozambique. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3597. [PMID: 36834293 PMCID: PMC9966379 DOI: 10.3390/ijerph20043597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Malaria vector surveillance provides important data to inform the effective planning of vector control interventions at a local level. The aim of this study was to determine the species diversity and abundance, biting activity, and Plasmodium infectivity of Anopheles mosquitoes from a rural village in southern Mozambique. Human landing catches were performed monthly between December 2020 and August 2021. All collected Anopheles were identified to the species level and tested for the presence of malaria parasites. Eight Anopheles species were identified among the 1802 collected anophelines. Anopheles gambiae sensu lato (s.l.) were the most abundant (51.9%) and were represented by Anopheles quadriannulatus and Anopheles arabiensis. Anopheles funestus s.l. represented 4.5%. The biting activity of An. arabiensis was more pronounced early in the evening and outdoors, whereas that of An. funestus sensu stricto (s.s.) was more intense late in the night, with no significant differences in location. One An. funestus s.s. and one An. arabiensis, both collected outdoors, were infected with Plasmodium falciparum. The overall entomologic inoculation rate was estimated at 0.015 infective bites per person per night. The significant outdoor and early evening biting activity of An. arabiensis and An. funestus found in this village may negatively impact the effectiveness of current vector control interventions. Additional vector control tools that can target these mosquitoes are needed.
Collapse
Affiliation(s)
- Graça Salomé
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Department of Physiological Sciences, Faculty of Medicine, Eduardo Mondlane University, 702 Salvador Allende Ave., Maputo P.O. Box 257, Mozambique
| | - Megan Riddin
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Malaria Consortium, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi Rd, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Malaria vector feeding, peak biting time and resting place preference behaviors in line with Indoor based intervention tools and its implication: scenario from selected sentinel sites of Ethiopia. Heliyon 2022; 8:e12178. [PMID: 36578426 PMCID: PMC9791363 DOI: 10.1016/j.heliyon.2022.e12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/27/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In Ethiopia, malaria incidence has significantly reduced in the past decade through the combined use of conventional vector control approaches and treatment using antimalarial drugs. However, the sustainability of this achievement is threatened by the shift in biting and resting behaviors and emergence of insecticide resistance by the primary malaria vector. Therefore, continuous monitoring of the behaviour of malaria mosquitoes in different sentinel sites is crucial to design effective prevention and control methods in the local context. Entomological investigations were conducted in three sentinel sites for five consecutive months during the major malaria transmission season. The species composition, population dynamics, biting and resting behaviours of malaria vectors were determined using center for disease control and prevention (CDC) light trap, human landing catch (HLC), pyrethrum spray catch (PSC) and Pitfall shelter collection (PFS). Accordingly, 10 households for CDC, 10 households for PSC, 10 households for PFS and 5 households for HLC from each site were randomly enrolled for mosquito collection. A total of 8,297 anopheline mosquitoes were collected from the three sites, out of which 4,525 (54.5 %) were An. gambiae, s.l. 2,028 (24.4 %) were An. pharoensis, 160 (1.9 %) were An. funestus and the rest 1,584 (19 %) were other anophelines (An. coustani, An. cinerus and An. tenebrosus). No significant variation (P = 0.476) was observed between indoor (25.2/trap-night and outdoor collections (20.1/trap-night). Six hundred seventy six (43.3%) of An. gambiae s.l. (primary vector) were collected between 18:00 and 22:00 h. Biting activity declined between 00:00 and 02:00 h. The national malaria control program should pay close attention to the shifting behavior of vector mosquitoes as the observed outdoor feeding tendency of the vector population could pose challenges to the indoor intervention tools IRS and LLINs.
Collapse
|
21
|
Soumare HM, Dabira ED, Camara MM, Jadama L, Gaye PM, Kanteh S, Jawara EA, Njie AK, Sanneh F, Ndiath MO, Lindsay SW, Conteh B, Ceesay S, Mohammed N, Ooko M, Bradley J, Drakeley C, Erhart A, Bousema T, D’Alessandro U. Entomological impact of mass administration of ivermectin and dihydroartemisinin-piperaquine in The Gambia: a cluster-randomized controlled trial. Parasit Vectors 2022; 15:435. [PMID: 36397132 PMCID: PMC9673448 DOI: 10.1186/s13071-022-05557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vector control interventions in sub-Saharan Africa rely on insecticide-treated nets and indoor residual spraying. Insecticide resistance, poor coverage of interventions, poor quality nets and changes in vector behavior threaten the effectiveness of these interventions and, consequently, alternative tools are needed. Mosquitoes die after feeding on humans or animals treated with ivermectin (IVM). Mass drug administration (MDA) with IVM could reduce vector survival and decrease malaria transmission. The entomological impact of MDA of combined IVM and dihydroartemisinin-piperaquine was assessed in a community-based, cluster-randomized trial. METHODS A cluster-randomized trial was implemented in 2018 and 2019 in 32 villages in the Upper River Region, The Gambia. The with the inhabitants of 16 intervention villages eligible to receive three monthly rounds of MDA at the beginning of the malaria transmission season. Entomological surveillance with light traps and human landing catches (HLC) was carried out during a 7- to 14-day period after each round of MDA, and then monthly until the end of the year. The mosquitocidal effect of IVM was determined by direct membrane feeding assays. RESULTS Of the 15,017 mosquitoes collected during the study period, 99.65% (n = 14,965) were Anopheles gambiae sensu lato (An. gambiae s.l.), comprising Anopheles arabiensis (56.2%), Anopheles coluzzii (24.5%), Anopheles gambiae sensu stricto (An. gembiae s.s.; 16.0%) and Anopheles funestus sensu lato (An. funestus s.l.; 0.35%). No effect of the intervention on vector parity was observed. Vector density determined on light trap collections was significantly lower in the intervention villages in 2019 (adjusted incidence rate ratio: 0.39; 95% confidence interval [CI]: 0.20, 0.74; P = 0.005) but not in 2018. However, vector density determined in HLC collections was similar in both the intervention and control villages. The entomological inoculation rate was significantly lower in the intervention villages than in the control villages (odds ratio: 0.36, 95% CI: 0.19, 0.70; P = 0·003). Mosquito mortality was significantly higher when blood fed on IVM-treated individuals up to 21 days post-treatment, particularly in adults and individuals with a higher body mass index. CONCLUSION Mass drug administration with IVM decreased vector density and the entomological inoculation rate while the effect on vector parity was less clear. Survival of mosquitoes fed on blood collected from IVM-treated individuals was significantly lower than that in mosquitoes which fed on controls. The influence of host characteristics on mosquito survivorship indicated that dose optimization could improve IVM efficacy. Future detailed entomological evaluation trials in which IVM is administered as stand-alone intervention may elucidate the contribution of this drug to the observed reduction in transmission.
Collapse
Affiliation(s)
- Harouna M. Soumare
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Edgard Diniba Dabira
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Muhammed M. Camara
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lamin Jadama
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Pa Modou Gaye
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainey Kanteh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ebrima A. Jawara
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Amie Kolleh Njie
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatou Sanneh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mamadou Ousman Ndiath
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Bakary Conteh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainey Ceesay
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Nuredin Mohammed
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Michael Ooko
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Annette Erhart
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
22
|
Chan K, Cano J, Massebo F, Messenger LA. Cattle-related risk factors for malaria in southwest Ethiopia: a cross-sectional study. Malar J 2022; 21:179. [PMID: 35689237 PMCID: PMC9188194 DOI: 10.1186/s12936-022-04202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the low to moderate intensity of malaria transmission present in Ethiopia, malaria is still a leading public health problem. Current vector control interventions, principally long-lasting insecticidal nets and indoor residual spraying, when deployed alone or in combination, are insufficient to control the dominant vector species due to their exophagic and exophilic tendencies. Zooprophylaxis presents a potential supplementary vector control method for malaria; however, supporting evidence for its efficacy has been mixed. METHODS To identify risk factors of malaria and to estimate the association between cattle and Anopheles vector abundance as well as malaria risk, a cross-sectional study was conducted in a village near Arba Minch, Ethiopia. Epidemiological surveys (households = 95, individuals = 463), mosquito collections using CDC light traps and a census of cattle and human populations were conducted. To capture environmental conditions, land cover and water bodies were mapped using satellite imagery. Risk factor analyses were performed through logistic, Poisson, negative binomial, and spatial weighted regression models. RESULTS The only risk factor associated with self-reported malaria illness at an individual level was being a child aged 5 or under, where they had three times higher odds than adults. At the household level, variables associated with malaria vector abundance, especially those indoors, included socioeconomic status, the proportion of children in a household and cattle population density. CONCLUSIONS Study results are limited by the low abundance of malaria vectors found and use of self-reported malaria incidence. Environmental factors together with a household's socioeconomic status and host availability played important roles in the risk of malaria infection in southwest Ethiopia. Cattle abundance in the form of higher cattle to human ratios may act as a protective factor against mosquito infestation and malaria risk. Humans should remain indoors to maximize potential protection against vectors and cattle kept outside of homes.
Collapse
Affiliation(s)
- Kallista Chan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jorge Cano
- Expanded Special Project for Elimination of NTDs, World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Fekadu Massebo
- Department of Biology, Collage of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
23
|
Hassen J, Dinka H. Magnitude of urban malaria and its associated risk factors: the case of Batu town, Oromia Regional State, Ethiopia. J Int Med Res 2022; 50:3000605221080686. [PMID: 35259963 PMCID: PMC8918979 DOI: 10.1177/03000605221080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to assess the magnitude of malaria and its associated risk factors in urban, Batu town, Oromia Regional State, Ethiopia. METHODS This health-facility based prospective cross-sectional study enrolled 356 febrile malaria patients to assess risk factors associated with malaria infection. RESULTS An overall positivity rate of 17.13% (61/356) for malaria infection was observed. Among the malaria-positive patients, 50.8% (31/61) of them were positive for Plasmodium vivax, 45.90% (28/61) were positive for Plasmodium falciparum, and 3.3% (2/61) had mixed infections of P. falciparum and P. vivax. Logistic regression analysis revealed that individuals who possessed insecticide-treated net (Odds ratio [OR] = 0.38, 95% confidence interval [CI] [0.194, 0.743]) and whose houses were sprayed with insecticides (OR = 0.18, 95% CI [0.097, 0.34]) were significantly less likely to have a malaria infection. Individuals living closer to stagnant water had a significantly greater chance of malaria infection than those who lived a distance from stagnant water (OR = 0.34, 95% CI [0.19, 0.59]). CONCLUSION The present study revealed that malaria remains a public health problem in the urban area of Batu town, which suggests that the same might be true for other urban areas in the country.
Collapse
Affiliation(s)
- Jifar Hassen
- Department of Applied Biology, 125545Adama Science and Technology University, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Oromia, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, 125545Adama Science and Technology University, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Oromia, Ethiopia
| |
Collapse
|
24
|
File T, Chala B. Five-Year Trend Analysis of Malaria Cases in East Shawa Zone, Ethiopia. Ethiop J Health Sci 2021; 31:1215-1222. [PMID: 35392345 PMCID: PMC8968380 DOI: 10.4314/ejhs.v31i6.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Malaria is an infectious disease caused by Plasmodium parasites. Of the five human malaria parasites Plasmodium falciparum and Plasmodium vivax are the two co-endemic predominant and widely distributed species in Ethiopia, with major public health importance. Even though enormous effort has been made countrywide to reduce the disease burden little was reported about trends of malaria transmission in the several localities of malarious areas like East Shawa Zone, Ethiopia. Thus, the present study was aimed at assessing fiveyear (2016-2020) trends of malaria transmission at Adama, Boset and Lume districts of East Shawa Zone of Oromia Regional State, Ethiopia. METHODS Retrospective data was extracted from the central surveillance database of East Shawa Zone Health Office. The data collected was analyzed from September 2020 to December 2020 to examine trends of malaria epidemiology in three malarious districts in the Zone. RESULTS The results of the present study showed a remarkable decrease in slide positivity rate (SPR) from 16.3 to 1.4% from 2016 to 2018 in the areas. However, a recent slight increase of malaria SPR was observed. On the other hand, as age increases more male individuals were infected with malaria compared to female of similar age groups. Falciparum, vivax and mixed malaria infection accounted for 53%, 41% and 6% respectively. CONCLUSIONS Even though, an overall reduction of malaria incidence was revealed in the study areas, an increase in malaria SPR was observed in 2019 and 2020. Such inconsistency in reduction of malaria cases in the study area demands due attention of health planners.
Collapse
Affiliation(s)
- Temesgen File
- Department of Applied Biology, School of applied Natural Sciences, Adama Science and Technology University. P.O..Box. 1888, Adama, Ethiopia
| | - Bayissa Chala
- Department of Applied Biology, School of applied Natural Sciences, Adama Science and Technology University. P.O..Box. 1888, Adama, Ethiopia
| |
Collapse
|
25
|
Zemene E, Belay DB, Tiruneh A, Lee MC, Yewhalaw D, Yan G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infect Dis 2021; 21:882. [PMID: 34454443 PMCID: PMC8403392 DOI: 10.1186/s12879-021-06592-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the behaviour of local malaria vectors is essential as effectiveness of the commonly used vector-targeted malaria control tools heavily relies on behaviour of the major malaria vectors. This study was conducted to determine species composition, biting behaviour, host preference and infectivity of anopheline mosquitoes, and assess utilization of insecticide-treated nets (ITNs) in a low transmission setting in Southwest Ethiopia. METHODS Adult anopheline mosquitoes were collected using human landing catches (HLCs), Centers for Disease Control and Prevention (CDC) light traps (LTs) and Pyrethrum Spray Catches (PSCs) from June 2016 to May 2018 in Kishe, Jimma Zone, Southwest Ethiopia. The anopheline mosquitoes were morphologically identified. Moreover, sub-sample of An. gambiae s.l. was identified to species using polymerase chain reaction (PCR). Circum-sporozoite proteins (CSPs) and blood meal sources of the anopheline mosquitoes were tested using enzyme-linked immunosorbent assay (ELISA). In addition, a cross-sectional survey was conducted to assess ITN utilization by the inhabitants. RESULTS A total of 3659 anopheline mosquitoes comprising An. coustani complex (84.4%), An. gambiae s.l. (11.3%), and An. pharoensis and An. squamosus comprising less than 5% were collected. The anopheline mosquitoes showed marked outdoor (67%) and early evening (63%) biting behaviour. An. coustani complex and An. gambiae s.l. were predominantly zoophilic and anthropophilic, respectively. None of the sampled anopheline were CSP-positive. Most of the households (97.8%) owned at least one ITN, with modest usage by the inhabitants (73.4%). ITN usage was significantly higher among under-five children (AOR = 7.9, 95% CI: 4.41-14.03), household heads and spouses (AOR = 4.8, 95% CI: 3.0-7.59), those with sufficient access to ITNs (AOR = 1.8, 95% CI: 1.39-2.35), and who were not utilizing alternative mosquito repellents (AOR = 2.2, 95% CI: 1.58-2.99). CONCLUSION The anopheline mosquito species exhibited predominantly outdoor and early evening biting activity. Household ITN coverage was high with slight gap in usage. Vector control interventions should target outdoor and early biting vectors to further suppress the local mosquito population. Moreover, sensitization of the community on consistent use of ITNs is required.
Collapse
Affiliation(s)
- Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Denekew Bitew Belay
- Department of Statistics, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abebaw Tiruneh
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
26
|
Thongsripong P, Hyman JM, Kapan DD, Bennett SN. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:397-414. [PMID: 34249219 PMCID: PMC8266639 DOI: 10.1093/aesa/saab011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 05/26/2023]
Abstract
Despite the critical role that contact between hosts and vectors, through vector bites, plays in driving vector-borne disease (VBD) transmission, transmission risk is primarily studied through the lens of vector density and overlooks host-vector contact dynamics. This review article synthesizes current knowledge of host-vector contact with an emphasis on mosquito bites. It provides a framework including biological and mathematical definitions of host-mosquito contact rate, blood-feeding rate, and per capita biting rates. We describe how contact rates vary and how this variation is influenced by mosquito and vertebrate factors. Our framework challenges a classic assumption that mosquitoes bite at a fixed rate determined by the duration of their gonotrophic cycle. We explore alternative ecological assumptions based on the functional response, blood index, forage ratio, and ideal free distribution within a mechanistic host-vector contact model. We highlight that host-vector contact is a critical parameter that integrates many factors driving disease transmission. A renewed focus on contact dynamics between hosts and vectors will contribute new insights into the mechanisms behind VBD spread and emergence that are sorely lacking. Given the framework for including contact rates as an explicit component of mathematical models of VBD, as well as different methods to study contact rates empirically to move the field forward, researchers should explicitly test contact rate models with empirical studies. Such integrative studies promise to enhance understanding of extrinsic and intrinsic factors affecting host-vector contact rates and thus are critical to understand both the mechanisms driving VBD emergence and guiding their prevention and control.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute of Biodiversity Sciences and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawai’i at Manoa, 3050 Maile Way, Honolulu, HI 96822
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
27
|
Olkeba BK, Goethals PLM, Boets P, Duchateau L, Degefa T, Eba K, Yewhalaw D, Mereta ST. Mesocosm Experiments to Quantify Predation of Mosquito Larvae by Aquatic Predators to Determine Potential of Ecological Control of Malaria Vectors in Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136904. [PMID: 34199088 PMCID: PMC8296878 DOI: 10.3390/ijerph18136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Malaria parasites are transmitted to humans by infectious female Anopheles mosquitoes. Chemical-insecticide-based mosquito control has been successful in reducing the burden of malaria. However, the emergence of insecticide resistance in malaria vectors and concerns about the effect of the chemicals on the environment, human health, and non-target organisms present a need for new or alternative vector control intervention tools. Biocontrol methods using aquatic invertebrate predators have emerged as a potential alternative and additional tool to control mosquito populations. Ecological control specifically makes use of species insights for improving the physical habitat conditions of competitors and predators of vectors. A first step towards this is to gain knowledge on the predation potential of several typically present macroinvertebrates. Hence, this study aimed at (1) examining the influence of the predation of hemipterans on the number of emerging adult mosquitoes and (2) detecting Anopheles mosquito DNA in the gut of those predators. The prey and predators were collected from a range of water bodies located in the Gilgel Gibe watershed, southwest Ethiopia. A semi-field study was carried out using mesocosms which were constructed using plastic containers mimicking the natural aquatic habitat of immature Anopheles mosquitoes. Adult mosquitoes that emerged from the mesocosms were collected using a mechanical aspirator. At the end of the experiment, predators were withdrawn from the mesocosms and identified to genus level. Polymerase Chain Reaction (PCR) was employed to identify sibling species of Anopheles gambiae s.l. and to detect Anopheles mosquito DNA in the gut of the predators. Data were analysed using R software. Giant water bugs (belostomatids) were the most aggressive predators of Anopheles larvae, followed by backswimmers (notonectids) and water boatmen (corixids). All female Anopheles gambiae s.l. emerged from the mesocosms were identified as Anopheles arabiensis. Anopheles arabiensis DNA was detected in the gut content of hemipteran specimens analysed from the three families. The number of the adult mosquitoes emerging from the mesocosms was affected by the presence of predators. The findings of this study provide evidence of the potential use of aquatic macroinvertebrate predators as biocontrol agents against immature Anopheles mosquitoes and their potential to be considered as a component of integrated vector management for insecticide resistance and the combined restoration of aquatic ecosystems via smart ecological engineering.
Collapse
Affiliation(s)
- Beekam Kebede Olkeba
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
- Department of Environmental Health Science, Hawassa University, Hawassa P.O. Box 1560, Ethiopia
- Correspondence:
| | - Peter L. M. Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
| | - Pieter Boets
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
- Provincial Centre of Environmental Research, Godshuizenlaan 95, 9000 Ghent, Belgium
| | - Luc Duchateau
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.D.); (D.Y.)
| | - Kasahun Eba
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.D.); (D.Y.)
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Seid Tiku Mereta
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
| |
Collapse
|
28
|
Tadesse Y, Irish SR, Chibsa S, Dugassa S, Lorenz LM, Gebreyohannes A, Teka H, Solomon H, Gezahegn E, Petros Y, Haile M, Eshetu M, Murphy M. Malaria prevention and treatment in migrant agricultural workers in Dangur district, Benishangul-Gumuz, Ethiopia: social and behavioural aspects. Malar J 2021; 20:224. [PMID: 34011347 PMCID: PMC8135166 DOI: 10.1186/s12936-021-03766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sixty percent of the Ethiopia population is at risk of malaria, with the highest prevalence reported in Gambella (6%) and Benishangul-Gumuz (3%) regions. Within these regions are large agricultural developments with high numbers of seasonal migrant workers. The migrant workers are believed to be at increased risk for malaria infection due to their poor living conditions and outdoor activities, but there is little information on their specific behaviours and health risks. This study was conducted to address this gap. METHODS Quantitative observations were conducted from September to December 2017 in the Benishangul-Gumuz Region. The nightly routines of mobile migrant workers were observed every month for 4 consecutive months. The study team collected quantitative data including nocturnal behavioural observations of worker living conditions, malaria prevention efforts, and work activities and surveys of worker representatives. Qualitative data was collected from migrant workers, farm managers and local health providers using focus group discussions and semi-structured interviews. RESULTS Migrant workers arrived in the study area during the peak malaria transmission season and the workers in focus groups reported repeated cases of malaria during their stay on the farms. Overall, less than a quarter of the migrant workers were sleeping under a mosquito net by midnight in all 4 observation months. Some work activities also took place outdoors at night. The study additionally found a lack of access to malaria prevention and treatment at the farms and challenges in utilizing local public health facilities. CONCLUSIONS There is a need to better address malaria prevention and treatment needs among migrant workers in Ethiopia through outreach from existing healthcare infrastructure and within the farms themselves. This will help prevent malaria transmission both within this population and prevent transmission of malaria back to home communities in lower burden areas in Ethiopia.
Collapse
Affiliation(s)
- Yehualashet Tadesse
- USAID
- Private Health Sector Project, Abt Associates Inc., Addis Ababa, Ethiopia.
| | - Seth R Irish
- The US President's Malaria Initiative, Bureau for Global Health, Office of Infectious Disease, United States Agency for International Development, 1300 Pennsylvania Ave NW, Washington, DC, 20523, USA.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA
| | - Sheleme Chibsa
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA.,U.S. Agency for International Development (USAID), Entoto Street, Addis Ababa, Ethiopia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lena M Lorenz
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Hiwot Teka
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA.,U.S. Agency for International Development (USAID), Entoto Street, Addis Ababa, Ethiopia
| | - Hiwot Solomon
- Disease Prevention and Control Directorate, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Eshetu Gezahegn
- USAID
- Private Health Sector Project, Abt Associates Inc., Addis Ababa, Ethiopia
| | - Yonas Petros
- USAID
- Private Health Sector Project, Abt Associates Inc., Addis Ababa, Ethiopia
| | - Mesfin Haile
- USAID
- Private Health Sector Project, Abt Associates Inc., Addis Ababa, Ethiopia
| | - Mesfin Eshetu
- USAID
- Private Health Sector Project, Abt Associates Inc., Addis Ababa, Ethiopia
| | - Matthew Murphy
- The US President's Malaria Initiative, Bureau for Global Health, Office of Infectious Disease, United States Agency for International Development, 1300 Pennsylvania Ave NW, Washington, DC, 20523, USA.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA
| |
Collapse
|
29
|
Bamou R, Rono M, Degefa T, Midega J, Mbogo C, Ingosi P, Kamau A, Ambelu A, Birhanu Z, Tushune K, Kopya E, Awono-Ambene P, Tchuinkam T, Njiokou F, Yewhalaw D, Antonio Nkondjio C, Mwangangi J. Entomological and Anthropological Factors Contributing to Persistent Malaria Transmission in Kenya, Ethiopia, and Cameroon. J Infect Dis 2021; 223:S155-S170. [PMID: 33906217 PMCID: PMC8079137 DOI: 10.1093/infdis/jiaa774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia. Methods Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests. Results Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites. Conclusions The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.
Collapse
Affiliation(s)
- Roland Bamou
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Vector-Borne Diseases Laboratory, Applied Biology and Ecology Research Unit, Department of Animal Biology, Faculty of Science, University of Dschang, Yaounde, Cameroon
| | - Martin Rono
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Kilifi, Kenya
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Janet Midega
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya.,Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Prophet Ingosi
- Pwani University Bioscience Research Centre, Kilifi, Kenya
| | - Alice Kamau
- Kenya Medical Research Institute-Wellcome Trust Research Program, Kilifi,Kenya
| | - Argaw Ambelu
- Department of Environmental Health Sciences and Technology, Public Health Faculty, Jimma University, Jimma, Ethiopia
| | - Zewdie Birhanu
- Department of Health, Behavior and Society, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | - Kora Tushune
- Department of Health Management, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Edmond Kopya
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory, Applied Biology and Ecology Research Unit, Department of Animal Biology, Faculty of Science, University of Dschang, Yaounde, Cameroon
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Christophe Antonio Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaounde, Cameroon.,Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph Mwangangi
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Kilifi, Kenya.,Centre for Vector Disease Control, Kenya Medical Research Institute, Kwale,Kenya
| |
Collapse
|
30
|
Rufalco-Moutinho P, Moura Kadri S, Peres Alonso D, Moreno M, Carrasco-Escobar G, Prussing C, Gamboa D, Vinetz JM, Mureb Sallum MA, Conn JE, Martins Ribolla PE. Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PLoS One 2021; 16:e0246215. [PMID: 33831004 PMCID: PMC8031405 DOI: 10.1371/journal.pone.0246215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.
Collapse
Affiliation(s)
- Paulo Rufalco-Moutinho
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Samir Moura Kadri
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Peres Alonso
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Dionicia Gamboa
- Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Anice Mureb Sallum
- Faculdade de Saúde Pública, Departamento de Epidemiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Paulo Eduardo Martins Ribolla
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
31
|
Degefa T, Githeko AK, Lee MC, Yan G, Yewhalaw D. Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Trop 2021; 216:105837. [PMID: 33485868 DOI: 10.1016/j.actatropica.2021.105837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Ethiopia has shown a notable progress in reducing malaria burden over the past decade, mainly due to the scaleup of vector control interventions such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Based on the progress, the country has set goals to eliminate malaria by 2030. However, residual malaria transmission due to early evening and outdoor biting vectors could pose a challenge to malaria elimination efforts. This study assessed vector behavior, patterns of human exposure to vector bites and residual malaria transmission in southwestern Ethiopia. Anopheles mosquitoes were collected monthly from January to December 2018 using human landing catches (HLCs), human-baited double net traps, CDC light traps and pyrethrum spray catches. Human behavior data were collected using questionnaire to estimate the magnitude of human exposure to mosquito bites occurring indoors and outdoors at various times of the night. Enzyme-linked immunosorbent assay (ELISA) was used to determine mosquito blood meal sources and sporozoite infections. A total of 2,038 female Anopheles mosquitoes comprising Anopheles arabiensis (30.8%), An. pharoensis (40.5%), An. coustani (28.1%), An. squamosus (0.3%) and An. funestus group (0.2%) were collected. Anopheles arabiensis and An. pharoensis were 2.4 and 2.5 times more likely to seek hosts outdoors than indoors, respectively. However, 66% of human exposure to An. arabiensis and 39% of exposure to An. pharoensis bites occurred indoors for LLIN non-users. For LLIN users, 75% of residual exposure to An. arabiensis bites occurred outdoors while 23% occurred indoors before bed time. Likewise, 84% of residual exposure to An. pharoensis bites occurred outdoors while 15% occurred indoors before people retired to bed. Anopheles arabiensis and An. pharoensis were 4.1 and 4.8 times more likely to feed on bovine than humans, respectively. Based on the HLC, an estimated indoor and outdoor EIR of An. arabiensis was 6.2 and 1.4 infective bites/person/year, respectively, whereas An. pharoensis had an estimated outdoor EIR of 3.0 infective bites/person/year. In conclusion, An. arabiensis and An. pharoensis showed exophagic and zoophagic behavior. Human exposure to An. arabiensis bites occurred mostly indoors for LLIN non-users, while most of the exposure to both An. arabiensis and An. pharoensis bites occurred outdoors for LLIN users. Malaria transmission by An. arabiensis occurred both indoors and outdoors, whereas An. pharoensis contributed exclusively to outdoor transmission. Additional control tools targeting early-evening and outdoor biting malaria vectors are required to complement the current control interventions to control residual transmission and ultimately achieve malaria elimination.
Collapse
|
32
|
Dugassa S, Murphy M, Chibsa S, Tadesse Y, Yohannes G, Lorenz LM, Solomon H, Yewhalaw D, Irish SR. Malaria in migrant agricultural workers in western Ethiopia: entomological assessment of malaria transmission risk. Malar J 2021; 20:95. [PMID: 33593385 PMCID: PMC7885338 DOI: 10.1186/s12936-021-03633-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ethiopia has made great strides in malaria control over the last two decades. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is one way this transmission might be addressed, but little is known about malaria vectors in this part of the country. METHODS To better understand the vector species involved in malaria transmission and their behaviour, human landing collections were conducted in Dangur woreda, Benishangul-Gumuz, between July and December 2017. This period encompasses the months with the highest rain and the peak mosquito population. Mosquitoes were identified to species and tested for the presence of Plasmodium sporozoites. RESULTS The predominant species of the Anopheles collected was Anopheles arabiensis (1,733; i.e. 61.3 % of the entire Anopheles), which was also the only species identified with sporozoites (Plasmodium falciparum and Plasmodium vivax). Anopheles arabiensis was collected as early in the evening as 18:00 h-19:00 h, and host-seeking continued until 5:00 h-6:00 h. Nearly equal numbers were collected indoors and outdoors. The calculated entomological inoculation rate for An. arabiensis for the study period was 1.41 infectious bites per month. More An. arabiensis were collected inside and outside worker's shelters than in fields where workers were working at night. CONCLUSIONS Anopheles arabiensis is likely to be the primary vector of malaria in the agricultural development areas studied. High rates of human biting took place inside and outdoor near workers' residential housing. Improved and targeted vector control in this area might considerably reduce malaria transmission.
Collapse
Affiliation(s)
- Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Mathew Murphy
- Centers for Disease Control and Prevention, 1600 Clifton Road, 30329-4027, Atlanta, GA, USA
- The US President's Malaria Initiative, Bureau for Global Health, United States Agency for International Development, 1300 Pennsylvania Ave NW, 20523, Washington, DC, USA
| | - Sheleme Chibsa
- The US President's Malaria Initiative, Bureau for Global Health, United States Agency for International Development, 1300 Pennsylvania Ave NW, 20523, Washington, DC, USA
- U.S. Agency for International Development (USAID), Entoto Street, Addis Ababa, Ethiopia
| | - Yehualashet Tadesse
- The President's Malaria Initiative Private Health Sector Project, Abt Associates Inc, Haile Gebreselassie road, Rebecca Building, 5th Floor, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- The President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Gerji Road, Sami Building, 1st Floor, Addis Ababa, Ethiopia
| | - Lena M Lorenz
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
- College of Medicine & Veterinary Medicine, University of Edinburgh, University of Edinburgh, UK
| | - Hiwot Solomon
- Disease prevention and control directorate, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Seth R Irish
- Centers for Disease Control and Prevention, 1600 Clifton Road, 30329-4027, Atlanta, GA, USA
- The US President's Malaria Initiative, Bureau for Global Health, United States Agency for International Development, 1300 Pennsylvania Ave NW, 20523, Washington, DC, USA
| |
Collapse
|
33
|
Genotyping cognate Plasmodium falciparum in humans and mosquitoes to estimate onward transmission of asymptomatic infections. Nat Commun 2021; 12:909. [PMID: 33568678 PMCID: PMC7875998 DOI: 10.1038/s41467-021-21269-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Malaria control may be enhanced by targeting reservoirs of Plasmodium falciparum transmission. One putative reservoir is asymptomatic malaria infections and the scale of their contribution to transmission in natural settings is not known. We assess the contribution of asymptomatic malaria to onward transmission using a 14-month longitudinal cohort of 239 participants in a high transmission site in Western Kenya. We identify P. falciparum in asymptomatically- and symptomatically-infected participants and naturally-fed mosquitoes from their households, genotype all parasites using deep sequencing of the parasite genes pfama1 and pfcsp, and use haplotypes to infer participant-to-mosquito transmission through a probabilistic model. In 1,242 infections (1,039 in people and 203 in mosquitoes), we observe 229 (pfcsp) and 348 (pfama1) unique parasite haplotypes. Using these to link human and mosquito infections, compared with symptomatic infections, asymptomatic infections more than double the odds of transmission to a mosquito among people with both infection types (Odds Ratio: 2.56; 95% Confidence Interval (CI): 1.36-4.81) and among all participants (OR 2.66; 95% CI: 2.05-3.47). Overall, 94.6% (95% CI: 93.1-95.8%) of mosquito infections likely resulted from asymptomatic infections. In high transmission areas, asymptomatic infections are the major contributor to mosquito infections and may be targeted as a component of transmission reduction.
Collapse
|
34
|
Thongsripong P, Qu Z, Yukich JO, Hyman JM, Wesson DM. An Investigation of Human-Mosquito Contact Using Surveys and Its Application in Assessing Dengue Viral Transmission Risk. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1942-1954. [PMID: 32652036 DOI: 10.1093/jme/tjaa134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Aedes-borne viral diseases such as dengue fever are surging in incidence in recent years. To investigate viral transmission risks, the availability of local transmission parameters is essential. One of the most important factors directly determining infection risk is human-mosquito contact. Yet the contact rate is not often characterized, compared with other risk metrics such as vector density, because of the limited research tool options. In this study, human-mosquito contact was assessed in two study sites in the Southern United States using self-administered standardized survey instruments. The fraction of mosquito bites attributed to important vector species was estimated by human landing sampling. The survey participants reported a significantly higher outdoor mosquito bite exposure than indoor. The reported bite number was positively correlated with outdoor time during at-risk periods. There was also a significant effect of the study site on outdoor bite exposure, possibly due to the differing vector density. Thus, the levels of human-mosquito contact in this study were influenced both by the mosquito density and human behaviors. A dengue virus transmission model demonstrated that the observed difference in the contact rates results in differential virus transmission risks. Our findings highlight the practicality of using surveys to investigate human-mosquito contact in a setting where bite exposure levels differ substantially, and serve as a basis for further evaluations. This study underscores a new avenue that can be used in combination with other field methods to understand how changes in human behavior may influence mosquito bite exposure which drives mosquito-borne virus transmission.
Collapse
Affiliation(s)
| | - Zhuolin Qu
- Department of Mathematics, Tulane University, New Orleans, LA
| | - Joshua O Yukich
- Department of Tropical Medicine, Tulane University, New Orleans, LA
| | - James M Hyman
- Department of Mathematics, Tulane University, New Orleans, LA
| | - Dawn M Wesson
- Department of Tropical Medicine, Tulane University, New Orleans, LA
| |
Collapse
|
35
|
The Impact of Insecticide Pre-Exposure on Longevity, Feeding Succession, and Egg Batch Size of Wild Anopheles gambiae s.l. J Trop Med 2020; 2020:8017187. [PMID: 33061994 PMCID: PMC7539113 DOI: 10.1155/2020/8017187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). Conclusion It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.
Collapse
|
36
|
Adugna T, Getu E, Yewhalaw D. Species diversity and distribution of Anopheles mosquitoes in Bure district, Northwestern Ethiopia. Heliyon 2020; 6:e05063. [PMID: 33102831 PMCID: PMC7569303 DOI: 10.1016/j.heliyon.2020.e05063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/14/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Malaria is one the leading health problem of the Ethiopia. Previously, areas above 2,000 m elevation were considered as malaria free areas. However, the major malaria epidemics were seen in areas at an altitude up to 3,000 m above sea level. These epidemics were due to climate and land-use changes (ecological changes) and still malaria is a growing health problem in highland parts of Ethiopia. This study aimed to investigate the species diversity, abundance and distribution of Anopheles mosquitoes in highland fringe of Bure district, Northwestern Ethiopia. It was done in the three different agroecological villages, Bukta (Irrigated), Workimdr (non-irrigated with few dry season breeding habitats) and Shnebekuma (non-irrigated with many dry season breeding habitats). Anopheles mosquitoes were collected by the Centers for Disease Control and Prevention Light Traps Catches, Pyrethrum Spray Catches, and Artificial Pit Shelters (APSs) from twenty-seven houses, thirty houses, and six APSs, respectively. Anopheles mosquitoes were identified morphologically to species using standard keys. Furthermore, molecular identification of Anopheles gambiae s.l was carried out using species-specific Polymerase Chain Reaction. Independent T-Test and One-way- ANOVA were employed to compare the mean mosquito's density between villages and species, indoor and outdoor host seeking mosquitoes. Descriptive statistic was used to calculate the proportion of each Anopheles species. Nine Anopheles mosquito species were identified in the study area which includes: Anopheles demeilloni, An. arabiensis, An. funestus group, An. coustani, An. squamosus, An. cinereus, An. pharoensis, An. rupicolus, and An. natalensis. Of the 4,703 Anopheles mosquitoes collected, An. demeilloni was the most prominent (50.7%, n = 2383) whereas An. rupicolus (0.03%, n = 3), and An. natalensis (0.02%, n = 1) were the least abundant. Higher mean density of Anopheles mosquitoes was collected from the non-irrigated village (2.395 ± 0.100) than irrigated (1.351 ± 0.109) (p = 0.001). In conclusion, three of the most important malaria vectors (An. arabiensis, An. funestus group and An. pharoensis) of Ethiopia were recorded in the study sites, especially the first two was found thought-out the year. Most of the Anopheles mosquitoes were collected from non-irrigated villages. Thus, breeding habitat management must be practiced throughout the year together with long-lasting insecticide-treated nets and insecticide residual sprays.
Collapse
Affiliation(s)
- Tilahun Adugna
- Debre Tabor University, P.O. Box: 272, Debre Tabor, Ethiopia
| | - Emana Getu
- Addis Ababa University, P.O. Box: 2003, Addis Ababa, Ethiopia
| | | |
Collapse
|
37
|
Alkadir S, Gelana T, Gebresilassie A. A five year trend analysis of malaria prevalence in Guba district, Benishangul-Gumuz regional state, western Ethiopia: a retrospective study. Trop Dis Travel Med Vaccines 2020; 6:18. [PMID: 32944266 PMCID: PMC7488133 DOI: 10.1186/s40794-020-00112-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 02/12/2023] Open
Abstract
Background In Ethiopia, malaria is a serious public health concern and has great impact on socio-economy. The trend analysis of malaria data from health facilities is useful for understanding its transmission dynamics and implementing evidence-based malaria control strategies. The aim of this study was to determine the trends of malaria infection in Guba district, western Ethiopia. Methods A retrospective study was undertaken at Mankush Health Centre, western Ethiopia. All malaria cases reported from 2014 to 2018 were carefully reviewed from the laboratory record books to determine the trends of malaria morbidity. Data were analyzed using SPSS version 20.0. Results In total, 16,964 malaria suspects were diagnosed using microscopy over the last 5 years, of which 8658 (51.04%) were confirmed positive cases. Plasmodium falciparum, P. vivax, and mixed infection (both species) accounted for 75.2, 24.5 and 0.28% of the cases, respectively. Males patients were more affected (n = 5028, 58.1%) than female ones (n = 3630, 41.9%). Of the total confirmed cases, 60.4% were age group of subjects (≥ 15 years) followed by 22.6% of 5–14 years and 15.9% of under 5 years. High malaria prevalence was observed in spring (September to November) season, while the least was observed in autumn (March to May) with the prevalence of 45.6 and 11.5%, respectively. Conclusions The study demonstrated that malaria is a public health concern, in which P. falciparum is the predominant species followed by P. vivax. Therefore, the district health bureau and other concerned stakeholders should strength evidence-based malaria control and prevention interventions to interrupt disease transmission and eventual reduction malaria of malaria cases in Guba district.
Collapse
Affiliation(s)
- Shemsia Alkadir
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tegenu Gelana
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Araya Gebresilassie
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
38
|
Zeru MA, Shibru S, Massebo F. Exploring the impact of cattle on human exposure to malaria mosquitoes in the Arba Minch area district of southwest Ethiopia. Parasit Vectors 2020; 13:322. [PMID: 32571402 PMCID: PMC7310237 DOI: 10.1186/s13071-020-04194-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The success of indoor interventions that target mosquitoes for malaria control is partially dependent on early evening and outdoor biting behaviours of mosquito vectors. In southwest Ethiopia, people and cattle live in proximity, which calls to investigate whether the presence of cattle increase or decrease bites from malaria mosquito vectors. This study assessed both host-seeking and overnight activity of malaria mosquito vectors given the presence or absence of cattle in Chano Mille village, Arba Minch district, Ethiopia. METHODS Anopheles species density and activity time was compared when a calf was: (i) placed inside; (ii) 1 m away from; or (iii) absent from a tent with a human volunteer resting insides using hourly human landing catches (HLC) conducted from 18:00-0:00 h for 3 months. This trial was performed close to the shore of the Lake Abaya to minimize the interference of other animals on mosquito movement. The overnight activity of malaria vectors was assessed within a Chano village from 18:00-6:00 h with collections carried out both indoors and outdoors by HLC. Generalized estimating equations were used to statistically assess differences. RESULTS Anopheles pharoensis was significantly more prevalent when a calf was present either inside (42%, P < 0.001), or adjacent to (46%, P = 0.002) a tent relative to a tent without a calf present. The presence of a calf did not affect densities of the primarily anthropophilic species A. gambiae (s.l.), or An. tenebrosus. Anopheles gambiae (s.l.) (P < 0.001) and An. pharoensis (P = 0.015) both had a tendency for early evening biting between 19:00 h and 20:00 h. Anopheles gambiae (s.l.) was mainly biting humans outdoors in the village. CONCLUSIONS The presence of calves within and close to human dwellings acts to draw malaria mosquitoes toward the human occupant with the potential to increase their risk of malaria. Hence, deployment of cattle far from human residence could be recommended to reduce human exposure. Outdoor and early evening biting could threaten the success of current indoor-based interventions. Hence, tools could be designed to reduce this threat.
Collapse
Affiliation(s)
- Melkam Abiye Zeru
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia. .,Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| | - Simon Shibru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
39
|
Madewell ZJ, López MR, Espinosa-Bode A, Brouwer KC, Sánchez CG, McCracken JP. Inverse association between dengue, chikungunya, and Zika virus infection and indicators of household air pollution in Santa Rosa, Guatemala: A case-control study, 2011-2018. PLoS One 2020; 15:e0234399. [PMID: 32559225 PMCID: PMC7304608 DOI: 10.1371/journal.pone.0234399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/24/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dengue, chikungunya, and Zika viruses are increasingly important public health problems. Burning vegetation, leaves, and other plant products have been shown to be effective mosquito repellents for their vector, Aedes spp., but there has been scant research on whether firewood cooking smoke in households influences mosquito populations or mosquito-borne diseases. About 2.9 billion people worldwide use biomass fuel for household cooking and heating, resulting in an estimated 1.6 million deaths annually from household air pollution (HAP)-related diseases. Global health agencies now encourage households to transition from biomass to clean fuels, but it is unclear whether such interventions may actually increase risk for mosquito-borne diseases. This retrospective case-control study evaluated associations between arboviral infections and cooking with firewood in Santa Rosa, Guatemala. METHOD Vigilancia Integrada Comunitaria (VICo) was a prospective public health surveillance system for bacterial, parasitic, and viral causes of diarrheal, neurological, respiratory, and febrile illnesses in hospitals and clinics in the department of Santa Rosa, Guatemala. Enrolled VICo in-patients and out-patients during 2011-2018 were interviewed using standardized questionnaires on demographics and household characteristics. Blood and stool specimens were collected and tested to identify the etiologies presenting symptoms. Cases were defined as laboratory-positive for dengue, chikungunya, or Zika virus infections. Controls were laboratory-positive for bacterial and viral diarrheal illnesses (e.g., Salmonella, Shigella, Campylobacter, Escherichia coli, rotavirus, norovirus, sapovirus, or astrovirus). Cooking with firewood, kitchen location, stove type, and firewood cooking frequency were the independent exposure variables. Logistic regression models were used to analyze unadjusted and adjusted associations between arboviral infections and exposures of interest. RESULT There were 311 arboviral cases and 1,239 diarrheal controls. Arboviral infections were inversely associated with cooking with firewood in the main house (AOR: 0.22; 95% CI: 0.08-0.57), cooking with firewood on an open hearth (AOR: 0.50; 95% CI: 0.33-0.78), and cooking with firewood ≥5 times per week (AOR: 0.54; 95% CI: 0.36-0.81), adjusting for age, sex, ethnicity, socioeconomic status index, number of people per household, community population density, community elevation, recruitment location, season, and admission year. CONCLUSION Several primary determinants of HAP exposure were inversely associated with arboviral infections. Additional studies are needed to understand whether interventions to reduce HAP might actually increase risk for mosquito-borne infectious diseases, which would warrant improved education and mosquito control efforts in conjunction with fuel interventions.
Collapse
Affiliation(s)
- Zachary J. Madewell
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- PhD Program in Public Health (Epidemiology), University of California, San Diego, CA, United States of America
- San Diego State University, San Diego, CA, United States of America
| | - María Reneé López
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Andrés Espinosa-Bode
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Kimberly C. Brouwer
- Division of Global Health, Department of Family Medicine & Public Health, University of California, San Diego, CA, United States of America
| | - César G. Sánchez
- Ministerio de Salud Pública y Asistencia Social, Guatemala City, Guatemala
| | - John P. McCracken
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| |
Collapse
|
40
|
Perugini E, Guelbeogo WM, Calzetta M, Manzi S, Virgillito C, Caputo B, Pichler V, Ranson H, Sagnon N, Della Torre A, Pombi M. Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasit Vectors 2020; 13:277. [PMID: 32487147 PMCID: PMC7268364 DOI: 10.1186/s13071-020-04142-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the overall major impact of long-lasting insecticide treated nets (LLINs) in eliciting individual and collective protection to malaria infections, some sub-Saharan countries, including Burkina Faso, still carry a disproportionately high share of the global malaria burden. This study aims to analyse the possible entomological bases of LLIN limited impact, focusing on a LLIN-protected village in the Plateau Central region of Burkina Faso. METHODS Human landing catches (HLCs) were carried out in 2015 for 12 nights both indoors and outdoors at different time windows during the highest biting activity phase for Anopheles gambiae (s.l.). Collected specimens were morphologically and molecularly identified and processed for Plasmodium detection and L1014F insecticide-resistance allele genotyping. RESULTS Almost 2000 unfed An. gambiae (s.l.) (54% Anopheles coluzzii and 44% Anopheles arabiensis) females landing on human volunteers were collected, corresponding to a median number of 23.5 females/person/hour. No significant differences were observed in median numbers of mosquitoes collected indoors and outdoors, nor between sporozoite rates in An. coluzzii (6.1%) and An. arabiensis (5.5%). The estimated median hourly entomological inoculation rate (EIR) on volunteers was 1.4 infective bites/person/hour. Results do not show evidence of the biting peak during night hours typical for An. gambiae (s.l.) in the absence of bednet protection. The frequency of the L1014F resistant allele (n = 285) was 66% in An. coluzzii and 38% in An. arabiensis. CONCLUSIONS The observed biting rate and sporozoite rates are in line with the literature data available for An. gambiae (s.l.) in the same geographical area before LLIN implementation and highlight high levels of malaria transmission in the study village. Homogeneous biting rate throughout the night and lack of preference for indoor-biting activity, suggest the capacity of both An. coluzzii and An. arabiensis to adjust their host-seeking behaviour to bite humans despite bednet protection, accounting for the maintenance of high rates of mosquito infectivity and malaria transmission. These results, despite being limited to a local situation in Burkina Faso, represent a paradigmatic example of how high densities and behavioural plasticity in the vector populations may contribute to explaining the limited impact of LLINs on malaria transmission in holo-endemic Sudanese savannah areas in West Africa.
Collapse
Affiliation(s)
- Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Wamdaogo Moussa Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.,Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - N'Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| |
Collapse
|
41
|
Aschale Y, Ayehu A, Worku L, Addisu A, Zeleke AJ, Bayih AG, Lemma W. Anopheles gambiae s.l (Diptera: Culicidae) seasonal abundance, abdominal status and parity rates in Metema-Armachiho lowland, Northwest Ethiopia. BMC Infect Dis 2020; 20:333. [PMID: 32393183 PMCID: PMC7216343 DOI: 10.1186/s12879-020-05068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/03/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Malaria is a life threating vector borne disease caused by different Plasmodium parasites. Metema and Armachiho are two of the top five malaria endemic areas among the districts of Amhara region in Ethiopia. Transmission pattern is seasonal and migrant laborers who visit these areas for employment in mechanized agriculture are highly affected. The aim of this study was to investigate seasonal abundance, abdominal status and parity rate of An.gambiae s.l in Metema-Armachiho lowlands, Northwest Ethiopia. METHOD A 1 year longitudinal entomological study was conducted in Metema-Armachiho lowlands from June 2016-May 2017. Mosquitoes were collected using CDC-light traps in indoor and outdoor sites for four consecutive days in each month. A total of eight standard battery operated CDC-light traps were used to collect mosquitoes. Female mosquitoes were classed as unfed, fed or gravid under a dissecting microscope. The ovaries of all unfed An.gambiae s.l mosquitoes were examined for evidence of parity. Data were entered and analyzed using SPSS-20 software. Chi-square test was applied to show significant difference between variables. P-value< 0.05 was taken as statistically significant. RESULTS Of the total 1253 mosquitoes collected, 713 (552 female, 161 male) were culex and 540 (501 female, 39 male) were An.gambiae s.l. About 50.9% were collected in June-August 2016, 21.7% in September-November 2016, 12.0% in December 2016-February 2017 and 15.4% in March to May 2017. Of the total, 57.2 and 42.8% of the An.gambiae s.l were collected from indoor and outdoor sites respectively. Of the total females collected, 76.8% were unfed; of which 69.4% were parous. Significantly higher number of female An.gambiae s.l were collected in indoor and there was significant difference in abdominal status of An.gambiae s.l mosquitoes collected in different season (P < 0.05). CONCLUSIONS Highest number of An.gambiae s.l was observed from June-August followed by September-November. The parity rate of An.gambiae s.l was high and there was significant difference in abdominal status of An.gambiae s.l collected in different season.
Collapse
Affiliation(s)
- Yibeltal Aschale
- Department of Medical Parasitology, College of Health Sciences, Debre Markos University, P.O. Box: 269, Debre Markos, Ethiopia
| | - Animen Ayehu
- Department of Medical Parasitology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ligabaw Worku
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ayenew Addisu
- Director General,Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Genetu Bayih
- Director General,Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Wossenseged Lemma
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
42
|
Mekuriaw W, Balkew M, Messenger LA, Yewhalaw D, Woyessa A, Massebo F. The effect of ivermectin ® on fertility, fecundity and mortality of Anopheles arabiensis fed on treated men in Ethiopia. Malar J 2019; 18:357. [PMID: 31703736 PMCID: PMC6842263 DOI: 10.1186/s12936-019-2988-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Insecticide resistance is a growing threat to malaria vector control. Ivermectin, either administered to humans or animals, may represent an alternate strategy to reduce resistant mosquito populations. The aim of this study was to assess the residual or delayed effect of administering a single oral dose of ivermectin to humans on the survival, fecundity and fertility of Anopheles arabiensis in Ethiopia. Methods Six male volunteers aged 25–40 years (weight range 64–72 kg) were recruited; four of them received a recommended single oral dose of 12 mg ivermectin and the other two individuals were untreated controls. A fully susceptible insectary colony of An. arabiensis was fed on treated and control participants at 1, 4, 7, 10 and 13 days post ivermectin-administration. Daily mosquito mortality was recorded for 5 days. An. arabiensis fecundity and fertility were measured from day 7 post treatment, by dissection to examine the number of eggs per mosquito, and by observing larval hatching rates, respectively. Results Ivermectin treatment induced significantly higher An. arabiensis mortality on days 1 and 4, compared to untreated controls (p = 0.02 and p < 0.001, respectively). However, this effect had declined by day 7, with no significant difference in mortality between treated and control groups (p = 0.06). The mean survival time of mosquitoes fed on day 1 was 2.1 days, while those fed on day 4 survived 4.0 days. Mosquitoes fed on the treatment group at day 7 and 10 produced significantly lower numbers of eggs compared to the untreated controls (p < 0.001 and p = 0.04, respectively). An. arabiensis fed on day 7 on treated men also had lower larval hatching rates than mosquitoes fed on days 10 and 13 (p = 0.003 and p = 0.001, respectively). Conclusion A single oral dose of ivermectin given to humans can induce mortality and reduce survivorship of An. arabiensis for 7 days after treatment. Ivermectin also had a delayed effect on fecundity of An. arabiensis that took bloodmeals from treated individuals on day 7 and 10. Additional studies are warranted using wild, insecticide-resistant mosquito populations, to confirm findings and a phase III evaluation among community members in Ethiopia is needed to determine the impact of ivermectin on malaria transmission.
Collapse
Affiliation(s)
- Wondemeneh Mekuriaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia. .,Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| | - Meshesha Balkew
- Abt Associates, PMI Vectorlink Project in Ethiopia, Addis Ababa, Ethiopia
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia.,Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
43
|
Spatiotemporal clustering of malaria in southern-central Ethiopia: A community-based cohort study. PLoS One 2019; 14:e0222986. [PMID: 31568489 PMCID: PMC6768540 DOI: 10.1371/journal.pone.0222986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Understanding the spatiotemporal clustering of malaria transmission would help target interventions in settings of low malaria transmission. The aim of this study was to assess whether malaria infections were clustered in areas with long-lasting insecticidal nets (LLINs) alone, indoor residual spraying (IRS) alone, or a combination of LLINs and IRS interventions, and to determine the risk factors for the observed malaria clustering in southern-central Ethiopia. Methods A cohort of 34,548 individuals residing in 6,071 households was followed for 121 weeks, from October 2014 to January 2017. Both active and passive case detection mechanisms were used to identify clinical malaria episodes, and there were no geographic heterogeneity in data collection methods. Using SaTScan software v 9.4.4, a discrete Poisson model was used to identify high rates of spatial, temporal, and spatiotemporal malaria clustering. A multilevel logistic regression model was fitted to identify predictors of spatial malaria clustering. Results The overall incidence of malaria was 16.5 per 1,000 person-year observations. Spatial, temporal, and spatiotemporal clustering of malaria was detected in all types of malaria infection (P. falciparum, P. vivax, or mixed). Spatial clustering was identified in all study arms: for LLIN + IRS arm, a most likely cluster size of 169 cases in 305 households [relative risk (RR) = 4.54, P<0.001]; for LLIN alone arm a cluster size of 88 cases in 103 households (RR = 5.58, P<0.001); for IRS alone arm a cluster size of 58 cases in 50 households (RR = 7.15, P<0.001), and for control arm a cluster size of 147 cases in 377 households (RR = 2.78, P<0.001). Living 1 km closer to potential vector breeding sites increased the odds of being in spatial clusters by 41.32 fold (adjusted OR = 41.32, 95% CI = 3.79–138.89). Conclusions The risk of malaria infection varied significantly between kebeles, within kebeles, and even among households in areas targeted for different types of malaria control interventions in low malaria transmission setting. The results of this study can be used in planning and implementation of malaria control strategies at micro-geographic scale. Trial registration PACT R2014 11000 882128 (8 September 2014).
Collapse
|
44
|
Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Trop 2019; 197:105059. [PMID: 31194960 DOI: 10.1016/j.actatropica.2019.105059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Assessing the biting behaviour of malaria vectors plays an integral role in understanding the dynamics of malaria transmission in a region. Biting times and preference for biting indoors or outdoors varies among mosquito species and across regions. These behaviours may also change over time in response to vector control measures such as long-lasting insecticidal nets (LLINs). Data on these parameters can provide the sites and times at which different interventions would be effective for vector control. This study assessed the biting patterns of malaria vectors in Chikwawa district, southern Malawi. The study was conducted during the dry and wet seasons in 2016 and 2017, respectively. In each season, mosquitoes were collected indoors and outdoors for 24 nights in six houses per night using the human landing catch. Volunteers were organized into six teams of two individuals, whereby three teams collected mosquitoes indoors and the other three collected mosquitoes outdoors each night, and the teams were rotated among twelve houses. All data were analyzed using Poisson log-linear models. The most abundant species were Anopheles gambiae sensu lato (primarily An. arabiensis) and An. funestus s.l. (exclusively An. funestus s.s.). During the dry season, the biting activity of An. gambiaes.l. was constant outdoors across the categorized hours (18:00 h to 08:45 h), but highest in the late evening hours (21:00 h to 23:45 h) during the wet season. The biting activity of An. funestus s.l. was highest in the late evening hours (21:00 h to 23:45 h) during the dry season and in the late night hours (03:00 h to 05:45 h) during the wet season. Whereas the number of An. funestuss.l. biting was constant (P = 0.662) in both seasons, that of An. gambiaes.l. was higher during the wet season than in the dry season (P = 0.001). Anopheles gambiae s.l. was more likely to bite outdoors than indoors in both seasons. During the wet season, An. funestus s.l. was more likely to bite indoors than outdoors but during the dry season, the bites were similar both indoors and outdoors. The biting activity that occurred in the early and late evening hours, both indoors and outdoors coincides with the times at which individuals may still be awake and physically active, and therefore unprotected by LLINs. Additionally, a substantial number of anopheline bites occurred outdoors. These findings imply that LLINs would only provide partial protection from malaria vectors, which would affect malaria transmission in this area. Therefore, protection against bites by malaria mosquitoes in the early and late evening hours is essential and can be achieved by designing interventions that reduce vector-host contacts during this period.
Collapse
|
45
|
Kenea O, Balkew M, Tekie H, Deressa W, Loha E, Lindtjørn B, Overgaard HJ. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial. Malar J 2019; 18:182. [PMID: 31126286 PMCID: PMC6534825 DOI: 10.1186/s12936-019-2811-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual house spraying (IRS) and long-lasting insecticidal nets (LLINs) are the key front-line malaria vector interventions against Anopheles arabiensis, the sole primary malaria vector in Ethiopia. Universal coverage of both interventions has been promoted and there is a growing demand in combinations of interventions for malaria control and elimination. This study compared the impact on entomological outcomes of combining IRS and LLINs with either intervention alone in Adami Tullu district, south-central Ethiopia. The epidemiological outcomes were recently published on a separate paper. METHODS This factorial, cluster-randomized, controlled trial randomized villages to four study arms: IRS + LLIN, IRS, LLIN, and control. LLINs (PermaNet 2.0) were provided free of charge. IRS with propoxur was applied before the main malaria transmission season in 2014, 2015 and 2016. Adult mosquitoes were collected in randomly selected villages in each arm using CDC light trap catch (LTC) set close to a sleeping person, pyrethrum spray catch (PSC), and artificial pit shelter (PIT), for measuring mosquito host-seeking density (HSD), indoor resting density (IRD), and outdoor resting density (ORD), respectively. Human landing catch (HLC) was performed in a sub-set of villages to monitor An. arabiensis human biting rates (HBR). Mean vector densities and HBR were compared among study arms using incidence rate ratio (IRR) calculated by negative binomial regression. RESULTS There were no significant differences in mean densities (HSD, IRD, ORD) and HBR of An. arabiensis between the IRS + LLIN arm and the IRS arm (p > 0.05). However, mean HSD, IRD, ORD, and HBR were significantly lower in the IRS + LLIN arm than in the LLIN alone arm (p < 0.05). All An. arabiensis tested for malaria infection were negative for Plasmodium species. For this reason, the entomological inoculation rate could not be determined. CONCLUSIONS The IRS + LLIN were as effective as IRS alone in reducing densities and HBR of An. arabiensis. However, the effectiveness of the two interventions combined was higher than LLINs alone in reducing densities and HBR of the vector. Added impact of the combination intervention against malaria infectivity rates of An. arabiensis compared to either intervention alone remains unknown and warrants further research. Trial registration PACTR201411000882128. Registered 8 September 2014, https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-016-1154-2.
Collapse
Affiliation(s)
- Oljira Kenea
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia. .,Department of Biology, Wollega University, Nekemte, Ethiopia.
| | - Meshesha Balkew
- Akililu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Habte Tekie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wakgari Deressa
- Department of Preventive Medicine, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eskindir Loha
- School of Public and Environmental Health, Hawassa University, Hawassa, Ethiopia
| | - Bernt Lindtjørn
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Hans J Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
46
|
Getachew D, Gebre-Michael T, Balkew M, Tekie H. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia. Parasit Vectors 2019; 12:257. [PMID: 31122286 PMCID: PMC6533711 DOI: 10.1186/s13071-019-3499-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background Vector control interventions using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly practiced tools for the control of malaria in Ethiopia. In order to evaluate the effectiveness of these control interventions, and understand the prevailing malaria vectors, their incrimination in disease transmission, and their resting and feeding behavior, we set out to identify the Anopheles species, their blood meal sources, and entomological inoculation rate (EIR) in Ghibe and Darge within the Ghibe River basin, southwestern Ethiopia. Methods Adult Anopheles mosquitoes were sampled both indoors and outdoors from January 2015 to October 2016 using Centers for Disease Control and Prevention (CDC) light traps, pyrethrum spray catch (PSC), artificial pit shelters and mouth aspirators. Mosquito species were morphologically identified, and their blood meal sources and malaria sporozoite rates were assessed using enzyme-linked immunosorbent assays. Results In total, 13 species of Anopheles mosquitoes were identified, among which Anopheles gambiae (s.l.) was the predominant species: 87.9 and 67.7% in Ghibe and Darge, respectively. The mean density of An. gambiae (s.l.) collected per night using CDC light traps was 1.8 and 0.7 outdoors and indoors, respectively, in Ghibe, and 0.125 and 0.07 indoors and outdoors, respectively, in Darge. Anopheles mosquito abundance was higher in houses near the river than in houses far from the river in both study sites. Among Anopheles mosquitoes sampled using CDC light trap catches, 67.6% were unfed and the indoor and outdoor human blood indices of An. gambiae (s.l.) were 58.4 and 15.8%, respectively in Ghibe, while in Darge, they were 57.1 and 50%, respectively. Sporozoite rates were 0.07% for P. vivax and 0.07% for P. falciparum in Ghibe and zero in Darge. In Ghibe, the overall EIRs for P. falciparum and P. vivax were zero and 8.4 infective bites/person/year, respectively, in 2015, while zero and 5.4 infective bites/person/year for P. vivax and P. falciparum, respectively, in 2016. No Plasmodium-positive Anopheles mosquitoes were identified from Darge. Conclusions Anopheles gambiae (s.l.), the principal vector of malaria in Ethiopia was the most abundant species both indoors and outdoors, fed both on human and cattle blood and occurred at higher frequencies near rivers. Anopheles gambiae (s.l.) that were circumsporozoite-positive for Plasmodium species were collected from Ghibe, but not Darge.
Collapse
Affiliation(s)
- Dejene Getachew
- Department of Biology, Dire Dawa University, P. O. Box 1362, Dire Dawa, Ethiopia. .,Department of Zoological Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| | - Teshome Gebre-Michael
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Habte Tekie
- Department of Zoological Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
47
|
Berhanu A, Abera A, Nega D, Mekasha S, Fentaw S, Assefa A, Gebrewolde G, Wuletaw Y, Assefa A, Dugassa S, Tekie H, Tasew G. Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic areas of Ethiopia. BMC Microbiol 2019; 19:85. [PMID: 31035931 PMCID: PMC6489185 DOI: 10.1186/s12866-019-1456-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/11/2019] [Indexed: 11/22/2022] Open
Abstract
Background Anopheles mosquitoes are of great importance to human health. A number of studies have shown that midgut and salivary gland microflora have an impact on malaria parasite burden through colonization mechanisms, involving either direct Plasmodium microbiota interaction or bacterial-mediated induction of mosquito immune response. The objective of this study was to isolate and identify the microflora from the midgut and salivary glands of Anopheles species. Methods A total of 20 pools (ten per pool) from insectary-reared and 56 pools (five per pool) of field-collected Anopheles mosquitoes were anesthetized by chloroform and dissected. 70% of ethanol was used for surface sterilization of mosquitoes and laboratory equipment, followed by rinsing Anopheles mosquitoes four times with 1X PBS. Each pool of dissected midgut and salivary gland sample was transferred in 1X PBS and squashed, incubated in the water bath and enriched in tryptic soya broth for 24 h at 35 ± 2 °C. As a control, the PBS solutions used to rinse the mosquitoes were also incubated in tryptic soya broth in the same conditions as the sample. After enrichment, a loopful of each sample was taken and inoculated on Blood, Chocolate, MacConkey, and Sabouraud Dextrose agar. Finally, the microbiota was isolated by colony characteristics, biochemical tests, and automated VITEK 2 Compact Analyzer. Results From all field and laboratory mosquitoes, Pseudomonas was found to be the dominant microbiota identified from all species of Anopheles mosquitoes. Acinetobacter and Klebsiellapneumonia and other families of gram-positive and gram-negative bacteria were identified. Conclusions A number of bacteria were isolated and identified. This is the first report on isolation and identification of microbiota from midgut and salivary glands of Anopheles species in Ethiopia. It can be used as a baseline for studying the relationship between microbiota and mosquitoes, and for the development of a new malaria biological control.
Collapse
Affiliation(s)
- Abib Berhanu
- Insect Science Stream, Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adugna Abera
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia.
| | - Desalegn Nega
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia
| | - Sindew Mekasha
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Clinical Bacteriology and Mycology Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abebe Assefa
- Clinical Bacteriology and Mycology Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Gashaw Gebrewolde
- Vaccine and Diagnostic Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Wuletaw
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia
| | - Sisay Dugassa
- Vector Biology and Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Habte Tekie
- Insect Science Stream, Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, P.O. Box: 1242, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, Hailu A, Robberstad B, Assegid M, Overgaard HJ, Lindtjørn B. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J 2019; 18:141. [PMID: 30999957 PMCID: PMC6471954 DOI: 10.1186/s12936-019-2775-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Conflicting results exist on the added benefit of combining long-lasting insecticidal nets (LLINs) with indoor residual spraying (IRS) to control malaria infection. The main study objective was to evaluate whether the combined use of LLINs and IRS with propoxur provides additional protection against Plasmodium falciparum and/or Plasmodium vivax among all age groups compared to LLINs or IRS alone. Methods This cluster-randomized, controlled trial was conducted in the Rift Valley area of Ethiopia from September 2014 to January 2017 (121 weeks); 44 villages were allocated to each of four study arms: LLIN + IRS, IRS, LLIN, and control. Each week, 6071 households with 34,548 persons were surveyed by active and passive case detection for clinical malaria. Primary endpoints were the incidence of clinical malaria and anaemia prevalence. Results During the study, 1183 malaria episodes were identified, of which 55.1% were P. falciparum and 25.3% were P. vivax, and 19.6% were mixed infections of P. falciparum and P. vivax. The overall malaria incidence was 16.5 per 1000 person-years of observation time (PYO), and similar in the four arms with 17.2 per 1000 PYO in the LLIN + IRS arm, 16.1 in LLIN, 17.0 in IRS, and 15.6 in the control arm. There was no significant difference in risk of anaemia among the trial arms. Conclusions The clinical malaria incidence and anaemia prevalence were similar in the four study groups. In areas with low malaria incidence, using LLINs and IRS in combination or alone may not eliminate malaria. Complementary interventions that reduce residual malaria transmission should be explored in addition to LLINs and IRS to further reduce malaria transmission in such settings. Trial registration PACTR201411000882128 (08 September 2014) Electronic supplementary material The online version of this article (10.1186/s12936-019-2775-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eskindir Loha
- School of Public Health, Hawassa University, Hawassa, Ethiopia
| | - Wakgari Deressa
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Taye Gari
- School of Public Health, Hawassa University, Hawassa, Ethiopia.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Meshesha Balkew
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Oljira Kenea
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tarekegn Solomon
- School of Public Health, Hawassa University, Hawassa, Ethiopia.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Alemayehu Hailu
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Bjarne Robberstad
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Meselech Assegid
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia.,Centre for International Health, University of Bergen, Bergen, Norway
| | | | - Bernt Lindtjørn
- Centre for International Health, University of Bergen, Bergen, Norway.
| |
Collapse
|
49
|
Carter TE, Yared S, Hansel S, Lopez K, Janies D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J 2019; 18:135. [PMID: 30992003 PMCID: PMC6469081 DOI: 10.1186/s12936-019-2768-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recent finding of a typically non-African Anopheles species in eastern Ethiopia emphasizes the need for detailed species identification and characterization for effective malaria vector surveillance. Molecular approaches increase the accuracy and interoperability of vector surveillance data. To develop effective molecular assays for Anopheles identification, it is important to evaluate different genetic loci for the ability to characterize species and population level variation. Here the utility of the internal transcribed spacer 2 (ITS2) and cytochrome oxidase I (COI) loci for detection of Anopheles species from understudied regions of eastern Ethiopia was investigated. METHODS Adult mosquitoes were collected from the Harewe locality (east) and Meki (east central) Ethiopia. PCR and Sanger sequencing were performed for portions of the ITS2 and COI loci. Both NCBI's Basic Local Alignment Search tool (BLAST) and phylogenetic analysis using a maximum-likelihood approach were performed to identify species of Anopheles specimens. RESULTS Two species from the east Ethiopian collection, Anopheles arabiensis and Anopheles pretoriensis were identified. Analyses of ITS2 locus resulted in delineation of both species. In contrast, analysis of COI locus could not be used to delineate An. arabiensis from other taxa in Anopheles gambiae complex, but could distinguish An. pretoriensis sequences from sister taxa. CONCLUSION The lack of clarity from COI sequence analysis highlights potential challenges of species identification within species complexes. These results provide supporting data for the development of molecular assays for delineation of Anopheles in east Ethiopia.
Collapse
Affiliation(s)
- Tamar E Carter
- Department of Biology, Baylor University, Waco, TX, USA.
| | - Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Shantoy Hansel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Karen Lopez
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
50
|
Gari T, Lindtjørn B. Reshaping the vector control strategy for malaria elimination in Ethiopia in the context of current evidence and new tools: opportunities and challenges. Malar J 2018; 17:454. [PMID: 30518395 PMCID: PMC6282332 DOI: 10.1186/s12936-018-2607-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
The core vector control measures, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), reduce the risk of malaria infection by targeting indoor biting mosquitoes. These two interventions are found to be effective in malaria control, but not sufficient to eliminate malaria. The main challenges with LLINs and IRS are insecticide resistance, misuse of the interventions, host behaviour, such as staying out-door during early night or sleeping outdoor without using protective measures, and vector behaviour including feeding on bovine blood, outdoor biting and outdoor resting. Therefore, for complete interruption of malaria transmission in a defined area there is a need to consider a variety of interventions that can help prevent out-door as well as indoor malaria transmission. In Ethiopia, to achieve the malaria elimination goal, a mix of vector control tools, such as intensifying the use of LLINs and IRS, and supplemented by use of ivermectin administration, zooprophylaxis, odour-baited mosquito trapping, improving housing and larva control measures tailored to the local situation of malaria transmission, may be needed.
Collapse
Affiliation(s)
- Taye Gari
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
| | - Bernt Lindtjørn
- Centre for International Health, University of Bergen, Bergen, Norway
| |
Collapse
|