1
|
De Kesel W, Vanden Broecke B, Borremans B, Fourchault L, Willems E, Ceulemans A, Sabuni C, Massawe A, Makundi RH, Leirs H, Peeters M, Verheyen E, Gryseels S, Mariën J, Ariën KK. Antibodies against medically relevant arthropod-borne viruses in the ubiquitous African rodent Mastomys natalensis. PLoS Negl Trop Dis 2024; 18:e0012233. [PMID: 39231158 PMCID: PMC11404846 DOI: 10.1371/journal.pntd.0012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Over the past decades, the number of arthropod-borne virus (arbovirus) outbreaks has increased worldwide. Knowledge regarding the sylvatic cycle (i.e., non-human hosts/environment) of arboviruses is limited, particularly in Africa, and the main hosts for virus maintenance are unknown. Previous studies have shown the presence of antibodies against certain arboviruses (i.e., chikungunya-, dengue-, and Zika virus) in African non-human primates and bats. We hypothesize that small mammals, specifically rodents, may function as amplifying hosts in anthropogenic environments. The detection of RNA of most arboviruses is complicated by the viruses' short viremic period within their hosts. An alternative to determine arbovirus hosts is by detecting antibodies, which can persist several months. Therefore, we developed a high-throughput multiplex immunoassay to detect antibodies against 15 medically relevant arboviruses. We used this assay to assess approximately 1,300 blood samples of the multimammate mouse, Mastomys natalensis from Tanzania. In 24% of the samples, we detected antibodies against at least one of the tested arboviruses, with high seroprevalences of antibodies reacting against dengue virus serotype one (7.6%) and two (8.4%), and chikungunya virus (6%). Seroprevalence was higher in females and increased with age, which could be explained by inherent immunity and behavioral differences between sexes, and the increased chance of exposure to an arbovirus with age. We evaluated whether antibodies against multiple arboviruses co-occur more often than randomly and found that this may be true for some members of the Flaviviridae and Togaviridae. In conclusion, the development of an assay against a wide diversity of medically relevant arboviruses enabled the analysis of a large sample collection of one of the most abundant African small mammals. Our findings highlight that Mastomys natalensis is involved in the transmission cycle of multiple arboviruses and provide a solid foundation to better understand the role of this ubiquitous rodent in arbovirus outbreaks.
Collapse
Affiliation(s)
- Wim De Kesel
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Wildlife Health Ecology Research Organization, San Diego, California, United States of America
| | - Léa Fourchault
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Elisabeth Willems
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ann Ceulemans
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christopher Sabuni
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia Massawe
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes H Makundi
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Erik Verheyen
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
McMahon R, Toepfer S, Sattler N, Schneider M, Narciso-Abraham M, Hadl S, Hochreiter R, Kosulin K, Mader R, Zoihsl O, Wressnigg N, Dubischar K, Buerger V, Eder-Lingelbach S, Jaramillo JC. Antibody persistence and safety of a live-attenuated chikungunya virus vaccine up to 2 years after single-dose administration in adults in the USA: a single-arm, multicentre, phase 3b study. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00357-8. [PMID: 39146946 DOI: 10.1016/s1473-3099(24)00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Chikungunya virus infection can lead to long-term debilitating symptoms. A precursor phase 3 clinical study showed high seroprotection (defined as a 50% plaque reduction of chikungunya virus-specific neutralising antibodies on a micro plaque reduction neutralisation test [μPRNT] titre of ≥150 in baseline seronegative participants) up to 6 months after a single vaccination of the chikungunya virus vaccine VLA1553 (Valneva Austria, Vienna, Austria) and a good safety profile. Here we report antibody persistence and safety up to 2 years. METHODS In this single-arm, multicentre, phase 3b study, we recruited participants from the precursor phase 3 trial from professional vaccine trial sites in the USA. Participants (aged ≥18 years) were eligible if they had completed the previous study and received VLA1553. Chikungunya virus-specific neutralising antibodies were evaluated at 28 days, 6 months, and 1 year and 2 years after vaccination. The primary outcome was the proportion of seroprotected participants (ie, μPRNT50 titre of ≥150) at 1 and 2 years, assessed in all eligible participants who had at least one post-vaccination immunogenicity sample available, overall and by age group at the time of vaccination (18-64 years and ≥65 years). Adverse events of special interest at the time of transition from the previous study to the current study (ie, at 6 months) and serious adverse events during the current study were recorded (ie, between 6 months and 2 years). All analyses were descriptive. This study is registered with ClinicalTrials.gov, NCT04838444, and immunogenicity follow-up is ongoing. FINDINGS In the precursor study, participants were screened between Sept 17, 2020, and April 10, 2021; data cutoff for this analysis was March 31, 2023. Of 2724 participants in the precursor study who received one dose of VLA1553, 363 participants were analysed in this study (310 [85%] aged 18-64 years and 53 [15%] aged ≥65 years at enrolment in the precursor study; mean age 47·7 years [SD 14·2], 207 [57%] of 363 participants were female, 156 [43%] were male, 280 [77%] were White, and 314 [87%] were not Hispanic or Latino). Strong seroprotection was observed at 1 year (98·9% [356 of 360 assessable participants; 97·2-99·7]) and 2 years (96·8% [306 of 316; 94·3-98·5]) after vaccination, and was very similar between those aged 18-64 years (at 1 year: 98·7% [303 of 307; 96·7-99·6]; at 2 years: 96·6% [256 of 265; 93·7-98·4]) and those aged 65 years and older (at 1 year: 100% [53 of 53; 93·3-100]; at 2 years: 98·0% [50 of 51; 89·6-100]) at each timepoint. No adverse events of special interest were ongoing at the time of transition. Ten serious adverse events occurred in nine (2%) participants between the 6-month and 2-year timepoints, including one death (due to drug overdose) that was determined to not be related to VLA1553. INTERPRETATION After a single VLA1553 vaccination, chikungunya virus-neutralising antibodies above the threshold considered to be protective persisted up to 2 years and there were no long-term serious adverse events related to vaccination. VLA1553 is an efficient and safe intervention that offers high seroprotection against chikungunya virus infection, a virus likely to spread globally with an urgent demand for long-lasting prophylaxis. FUNDING Valneva Austria, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
3
|
Cannac M, Nisole S. TRIMming down Flavivirus Infections. Viruses 2024; 16:1262. [PMID: 39205236 PMCID: PMC11359179 DOI: 10.3390/v16081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Flaviviruses comprise a large number of arthropod-borne viruses, some of which are associated with life-threatening diseases. Flavivirus infections are rising worldwide, mainly due to the proliferation and geographical expansion of their vectors. The main human pathogens are mosquito-borne flaviviruses, including dengue virus, Zika virus, and West Nile virus, but tick-borne flaviviruses are also emerging. As with any viral infection, the body's first line of defense against flavivirus infections is the innate immune defense, of which type I interferon is the armed wing. This cytokine exerts its antiviral activity by triggering the synthesis of hundreds of interferon-induced genes (ISGs), whose products can prevent infection. Among the ISGs that inhibit flavivirus replication, certain tripartite motif (TRIM) proteins have been identified. Although involved in other biological processes, TRIMs constitute a large family of antiviral proteins active on a wide range of viruses. Furthermore, whereas some TRIM proteins directly block viral replication, others are positive regulators of the IFN response. Therefore, viruses have developed strategies to evade or counteract TRIM proteins, and some even hijack certain TRIM proteins to their advantage. In this review, we summarize the current state of knowledge on the interactions between flaviviruses and TRIM proteins, covering both direct and indirect antiviral mechanisms.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| |
Collapse
|
4
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
5
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
6
|
Ong SQ, Dawood MM, Rahman H, Alias MF, Moideen MA, Lee PC, Fiorenzano JM, Christy N, McGlynn T, Cote N, Letizia AG. A protocol and training guidelines for mosquito sampling in remote areas with limited power supply. MethodsX 2024; 12:102563. [PMID: 38328504 PMCID: PMC10847759 DOI: 10.1016/j.mex.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.
Collapse
Affiliation(s)
- Song-Quan Ong
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Malaysia
- Vysnova Partners, LLC, Alexandria, VA 22314, USA
| | | | - Homathevi Rahman
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Malaysia
| | | | | | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
- Vysnova Partners, LLC, Alexandria, VA 22314, USA
| | | | | | - Thomas McGlynn
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore
| | - Noel Cote
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore
| | | |
Collapse
|
7
|
Bonilla-Aldana DK, Rodas-Fuenmayor MM, Ruiz-Aristizabal LM, Ulloque-Badaracco JR, Alarcón-Braga EA, Hernandez-Bustamante EA, Cabrera-Guzman JC, Ulloque-Badaracco RR, Benites-Zapata VA, Rodriguez-Morales AJ. Serological and molecular detection of dengue virus in animals: A systematic review and meta-analysis. LE INFEZIONI IN MEDICINA 2024; 32:183-201. [PMID: 38827825 PMCID: PMC11142411 DOI: 10.53854/liim-3202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/27/2024] [Indexed: 06/05/2024]
Abstract
Introduction Dengue is a vector-borne disease, especially important in tropical and subtropical areas. The first presentation of many arboviral diseases occurred mainly in animals, including multiple Alphaviruses and Flaviviruses, such as dengue. Objective To determine the serological and molecular frequency of the dengue virus in animals. Methods A systematic literature review was carried out in five databases for the proportion of animals infected with dengue, defined by molecular and serological tests. A meta-analysis was performed using a random-effects model to calculate the pooled prevalence and 95% confidence intervals (CI). Cochran?s Q test and the I2 statistic were used to assess the heterogeneity between the two studies. Results The presence of dengue in bats, primates, birds, sheep, horses, cattle, pigs, rodents and buffaloes, according to serological methods, had a prevalence of 10%, 29%, 8%, 1%, 11%, 0%, 49%, 2%, 7%, respectively. According to molecular methods, the presence of dengue in bats had a seroprevalence of 6.0%. Conclusion The present study confirms the presence of the Dengue virus in a large group of animal species, with potential implications as possible reservoirs of this virus, raising the possibility of zoonotic transmission.
Collapse
Affiliation(s)
| | - Marcela María Rodas-Fuenmayor
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda,
Colombia
| | - Luisa María Ruiz-Aristizabal
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda,
Colombia
| | | | | | - Enrique A. Hernandez-Bustamante
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo,
Peru
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima,
Peru
| | | | | | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima,
Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima,
Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda,
Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut,
Lebanon
| |
Collapse
|
8
|
Mantel N, Piras-Douce F, Chautard E, Marcos-Lopez E, Bodinham CL, Cosma A, Courtois V, Dhooge N, Gautheron S, Kaufmann SHE, Pizzoferro K, Lewis DJM, Martinon F, Pagnon A, Raynal F, Dereuddre-Bosquet N, Le Grand R. Cynomolgus macaques as a translational model of human immune responses to yellow fever 17D vaccination. J Virol 2024; 98:e0151623. [PMID: 38567951 PMCID: PMC11092345 DOI: 10.1128/jvi.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 05/15/2024] Open
Abstract
The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.
Collapse
Affiliation(s)
| | | | | | - Ernesto Marcos-Lopez
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Caroline L. Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Antonio Cosma
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Nina Dhooge
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Kathleen Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - David J. M. Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Anke Pagnon
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Franck Raynal
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| |
Collapse
|
9
|
Nissly RH, Lim L, Keller MR, Bird IM, Bhushan G, Misra S, Chothe SK, Sill MC, Kumar NV, Sivakumar AVN, Naik BR, Jayarao BM, Kuchipudi SV. The Susceptibility of Chickens to Zika Virus: A Comprehensive Study on Age-Dependent Infection Dynamics and Host Responses. Viruses 2024; 16:569. [PMID: 38675911 PMCID: PMC11054531 DOI: 10.3390/v16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.
Collapse
Affiliation(s)
- Ruth H. Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Levina Lim
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- DermBiont, Inc., 451 D Street, Suite 908, Boston, MA 02210, USA
| | - Margo R. Keller
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Ian M. Bird
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- Applied Biological Sciences Group, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Gitanjali Bhushan
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Sougat Misra
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Miranda C. Sill
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Nagaram Vinod Kumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - A. V. N. Sivakumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - B. Rambabu Naik
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - Bhushan M. Jayarao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
11
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
12
|
Bezerra KC, Vieira CMAG, de Oliveira-Filho EF, Reis CRS, Oriá RB. Susceptibility of solid organ transplant recipients to viral pathogens with zoonotic potential: A mini-review. Braz J Infect Dis 2024; 28:103742. [PMID: 38670166 PMCID: PMC11078645 DOI: 10.1016/j.bjid.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.
Collapse
Affiliation(s)
- Karine C Bezerra
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil
| | - Carlos Meton A G Vieira
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil
| | | | - Christian Robson S Reis
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Microbiologia, Recife, PE, Brazil
| | - Reinaldo B Oriá
- Universidade Federal do Ceará, Faculdade de Medicina, Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Hungwe FTT, Laycock KM, Ntereke TD, Mabaka R, Paganotti GM. A historical perspective on arboviruses of public health interest in Southern Africa. Pathog Glob Health 2024; 118:131-159. [PMID: 38082563 PMCID: PMC11141323 DOI: 10.1080/20477724.2023.2290375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Arboviruses are an existing and expanding threat globally, with the potential for causing devastating health and socioeconomic impacts. Mitigating this threat necessitates a One Health approach that integrates vector surveillance, rapid disease detection, and innovative prevention and control measures. In Southern Africa, limited data on the epidemiology of arboviruses, their vectors, and their hosts prevent an effective response. We reviewed the current knowledge on arboviruses in Southern Africa and identified opportunities for further research. A literature search was conducted to identify studies published on arboviruses in 10 tropical and temperate countries of the Southern African Development Community (SADC) from 1900 onward. We identified 280 studies, half (51.1%) originating from South Africa, that described 31 arboviral species, their vectors, and their clinical effects on hosts reported in the region. Arboviral research flourished in the SADC in the mid-20th century but then declined, before reemerging in the last two decades. Recent research consists largely of case reports describing outbreaks. Historical vector surveillance and serosurveys from the mid-20th century suggest that arboviruses are plentiful across Southern Africa, but large gaps remain in the current understanding of arboviral distribution, transmission dynamics, and public health impact.
Collapse
Affiliation(s)
- Faith T. T. Hungwe
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katherine M. Laycock
- The Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Rorisang Mabaka
- School of Allied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
14
|
Mendoza AP, Muñoz-Maceda A, Ghersi BM, De La Puente M, Zariquiey C, Cavero N, Murillo Y, Sebastian M, Ibañez Y, Parker PG, Perez A, Uhart M, Robinson J, Olson SH, Rosenbaum MH. Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru. PLoS One 2024; 19:e0287893. [PMID: 38324542 PMCID: PMC10849265 DOI: 10.1371/journal.pone.0287893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 02/09/2024] Open
Abstract
Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.
Collapse
Affiliation(s)
- A. Patricia Mendoza
- Wildlife Conservation Society - Peru Program, Lima, Peru
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
- Asociación Neotropical Primate Conservation – Perú, Moyobamba, San Martín, Perú
| | - Ana Muñoz-Maceda
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Bruno M. Ghersi
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | | | | | - Nancy Cavero
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Yovana Murillo
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | | | - Yohani Ibañez
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Patricia G. Parker
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
| | - Alberto Perez
- Servicio Nacional de Sanidad y Calidad Agroalimentaria, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, University of California - Davis, Davis, California, United States of America
| | - Janine Robinson
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Sarah H. Olson
- Wildlife Conservation Society - Health Program, Bronx, New York, United States of America
| | - Marieke H. Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
15
|
Tendu A, Kane Y, Li R, Omondi V, Chen X, Chen Y, Mastriani E, Lan J, Hughes AC, Berthet N, Wong G. Virome characterization and identification of a putative parvovirus and poxvirus in bat ectoparasites of Yunnan Province, China. One Health 2023; 17:100641. [PMID: 38024255 PMCID: PMC10665160 DOI: 10.1016/j.onehlt.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Ectoparasites found on bats are known to contain important microbes. However, the viruses hosted by these obligate parasites are understudied. This has led to the near oversight of the potential role of these ectoparasites in virus maintenance and transmission from bats to other interacting species and the environment. Here, we sampled bat ectoparasites parasitizing a diverse selection of bat species in the families Rhinolophidae, Vespertilionidae, Megadermatidae, Hipposideridae and Pteropodidae in Yunnan Province, China. We show that the ectoparasite prevalence was generally higher in male compared to female bats. Most ectoparasites were found to fall within the Nycteribiidae, Spinturnicidae and Streblidae bat ectoparasite families. We subsequently applied a non-biased sequencing of libraries prepared from the pooled ectoparasites, followed by an in-silico virus-centric analysis of the resultant reads. We show that ectoparasites hosted by the sampled families of bats are found to carry, in addition to a diverse set of phages, vertebrate and insect viruses in the families Aliusviridae, Ascoviridae, Chuviridae, Circoviridae, Flaviviridae, Hepadnaviridae, Hepeviridae, Herpesviridae, Iridoviridae, Marseilleviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Poxviridae, Reoviridae, Retroviridae, and Rhabdoviridae. We further report a partial Parvovirus VP1/VP2 gene and partial Poxvirus ubiquitin-like gene predicted by two independent next generation sequencing data analysis pipelines. This study describes the natural virome of bat ectoparasites, providing a platform for understanding the role these ectoparasites play in the maintenance and spread of viruses to other animals.
Collapse
Affiliation(s)
- Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai, China
| | - Xing Chen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Emilio Mastriani
- Centre for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Alice Catherine Hughes
- Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Nicolas Berthet
- Centre for Microbes, Development, and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai, China
- Institut Pasteur, Université Paris-Cité, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France
- Institut Pasteur - épidémiologie et physiopathologie des virus oncogenes, 25-28 Rue du Docteur Roux, 75724 Paris Cedex, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
de Almeida PR, Weber MN, Sonne L, Spilki FR. Aedes-borne orthoflavivirus infections in neotropical primates - Ecology, susceptibility, and pathogenesis. Exp Biol Med (Maywood) 2023; 248:2030-2038. [PMID: 38230520 PMCID: PMC10800122 DOI: 10.1177/15353702231220659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Arboviral diseases comprise a group of important infectious diseases imposing a heavy burden to public health in many locations of the world. Orthoflaviviruses are viruses belonging to the genus Orthoflavivirus; this genus includes some of the most relevant arboviruses to human health. Orthoflaviviruses can infect several different hosts, with some species being transmitted in cycles involving birds and anthropophilic mosquitoes and others transmitted between mammals and mostly Aedes sp. mosquitoes. Some of the most important sylvatic reservoirs of orthoflaviviruses are non-human primates (NHPs). Many flaviviruses that infect NHPs in nature have the potential to cause epidemics in humans, as has been observed in the cases of Orthoflavivirus denguei (dengue virus - DENV), Orthoflavivirus flavi (yellow fever virus - YFV), and Orthoflavivirus zikaense (Zika virus - ZIKV). In this minireview, we discuss important aspects regarding history, ecology involving NHP, distribution, disease outcome, and pathogenesis of these three major orthoflaviviruses that affect humans and NHP and relate this information to the potential of using NHP as experimental models. In addition, we suggest some orthoflaviviruses that could be better investigated, both in nature and in experimental studies, in light of the recent revolution in molecular biology.
Collapse
Affiliation(s)
- Paula Rodrigues de Almeida
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| | - Matheus Nunes Weber
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| | - Luciana Sonne
- Veterinary Pathology Sector, Veterinary Clinical Pathology Department, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
18
|
Salas-Rojas M, de Oliveira-Filho EF, Almazán-Marín C, Rodas-Martínez AZ, Aguilar-Setién Á, Drexler JF. Serological evidence for potential yellow fever virus infection in non-human primates, southeastern Mexico. ONE HEALTH OUTLOOK 2023; 5:14. [PMID: 37876014 PMCID: PMC10594671 DOI: 10.1186/s42522-023-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Arthropod-borne flaviviruses like dengue virus (DENV) and yellow fever virus (YFV) are major human pathogens. In Latin America, YFV is maintained in sylvatic cycles involving non-human primates (NHP) and forest-dwelling mosquitos. YFV supposedly does not circulate north of Panama. METHODS We conducted a serologic study for flaviviruses and other emerging viruses in NHP from southeastern Mexico. A total of thirty sera of black-handed spider monkeys (Ateles geoffroyi, n = 25), black howler monkeys (Alouatta pigra, n = 3), and mantled howler monkeys (Al. palliata, n = 2) sampled in 2012 and 2018 were screened by an indirect immunofluorescence assay (IFA) to detected IgG antibodies against DENV, YFV, Zika virus (ZIKV), West Nile virus (WNV), Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, Middle East respiratory syndrome coronavirus, and Zaire Ebola virus, and confirmed by plaque reduction neutralization tests (PRNT90) representing all mosquito-borne flavivirus serocomplexes circulating in the Americas. RESULTS A total of 16 sera (53.3%; 95% CI, 34.3-71.7) showed IFA reactivity to at least one tested flavivirus with end-point titers ranging from 1:100 to 1:1000. No serum reacted with other viruses. Monotypic and high mean PRNT90 endpoint YFV titers of 1:246 were found in 3 black-handed spider monkey sera (10.0%; 95% CI, 2.1-26.5) sampled in 2018 in Tabasco, compared to all other flaviviruses tested. Monotypic endpoint PRNT90 titers of 1:28 for Ilheus virus and 1:22 for WNV in serum of black howler monkeys sampled in 2018 in Tabasco suggested additional flavivirus exposure. CONCLUSIONS Our findings may suggest unnoticed YFV circulation. Intensification of YFV surveillance in NHP and vectors is warranted in Mexico and potentially other areas considered free of yellow fever.
Collapse
Affiliation(s)
- Mónica Salas-Rojas
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Edmilson Ferreira de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Cenia Almazán-Marín
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Alba Zulema Rodas-Martínez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Álvaro Aguilar-Setién
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany.
| |
Collapse
|
19
|
Meneses MV, Riva A, Salemi M, Mavian C. ARCA: the interactive database for arbovirus reported cases in the Americas. BMC Bioinformatics 2023; 24:312. [PMID: 37587443 PMCID: PMC10428600 DOI: 10.1186/s12859-023-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Accurate case report data are essential to understand arbovirus dynamics, including spread and evolution of arboviruses such as Zika, dengue and chikungunya viruses. Giving the multi-country nature of arbovirus epidemics in the Americas, these data are not often accessible or are reported at different time scales (weekly, monthly) from different sources. RESULTS We developed a publicly available and user-friendly database for arboviral case data in the Americas: ARCA. ARCA is a relational database that is hosted on the ARCA website. Users can interact with the database through the website by submitting queries through the website, which generates displays results and allows users to download these results in different, convenient file formats. Users can choose to view arboviral case data through a table which containscontaining the number of cases for a particular week, a plot, or through a map. CONCLUSION Our ARCA database is a useful tool for arboviral epidemiology research allowing for complex queries, data visualization, integration, and formatting.
Collapse
Affiliation(s)
- Maria V Meneses
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, USA.
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, USA.
| |
Collapse
|
20
|
Massengo NRB, Tinto B, Simonin Y. One Health Approach to Arbovirus Control in Africa: Interests, Challenges, and Difficulties. Microorganisms 2023; 11:1496. [PMID: 37374998 PMCID: PMC10302248 DOI: 10.3390/microorganisms11061496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The "One Health" concept considers that human and animal health, and ecosystems are closely related and aims to make a link between ecology and human and veterinary medicine. Due to the explosion in population growth along with the geographic and climatic conditions (equatorial and/or tropical climate), Africa is becoming a major hotspot for various socio-health issues associated with infectious diseases, including arboviruses. The incontestable advantages of a One Health approach in Africa lie in the fight against pathogens, such as arboviruses, and in the preservation of environmental, animal, and human health to ensure that the increasing high needs of this population are met as well as their protection against potential epidemics. The One Health strategy gives us a glimpse of the difficulties and challenges that the African continent faces. The importance of this approach in Africa is to establish guidelines and strategies for effective solutions and changes in behavior and harmful activities. Overall, the establishment of high-quality global health policies in the framework of the global health standards program would provide healthy and sustainable human-animal-environmental interactions for the welfare of all.
Collapse
Affiliation(s)
- Norvi Rigobert Bienvenu Massengo
- Formation Doctorale de Santé et Biologie Humaine, Faculté des Sciences de la Santé, Université Marien NGOUABI, Brazzaville BP69, Congo
| | - Bachirou Tinto
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso 01, Burkina Faso;
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, Etablissement Français du Sang, 34394 Montpellier, France
| |
Collapse
|
21
|
Lakhotia D, Tun YM, Mongkol N, Likhit O, Suthisawat S, Mangmee S, Tongthainan D, Fungfuang W, Tulayakul P, Boonnak K. A Serosurvey of Japanese Encephalitis Virus in Monkeys and Humans Living in Proximity in Thailand. Viruses 2023; 15:v15051125. [PMID: 37243211 DOI: 10.3390/v15051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a member of the Flaviviridae family and one of Asia's most common causes of encephalitis. JEV is a zoonotic virus that is transmitted to humans through the bite of infected mosquitoes of the Culex species. While humans are dead-end hosts for the virus, domestic animals such as pigs and birds are amplification hosts. Although JEV naturally infected monkeys have been reported in Asia, the role of non-human primates (NHPs) in the JEV transmission cycle has not been intensively investigated. In this study, we demonstrated neutralizing antibodies against JEV in NHPs (Macaca fascicularis) and humans living in proximity in two provinces located in western and eastern Thailand by using Plaque Reduction Neutralization Test (PRNT). We found a 14.7% and 5.6% seropositive rate in monkeys and 43.7% and 45.2% seropositive rate in humans living in west and east Thailand, respectively. This study observed a higher seropositivity rate in the older age group in humans. The presence of JEV neutralizing antibodies in NHPs that live in proximity to humans shows the occurrence of natural JEV infection, suggesting the endemic transmission of this virus in NHPs. According to the One Health concept, regular serological studies should be conducted especially at the animal-human interface.
Collapse
Affiliation(s)
- Divya Lakhotia
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yin May Tun
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nanthanida Mongkol
- Division of Microbiology and Parasitology, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Oranit Likhit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarocha Suthisawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suthee Mangmee
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
22
|
Ribeiro YP, Falcão LFM, Smith VC, de Sousa JR, Pagliari C, Franco ECS, Cruz ACR, Chiang JO, Martins LC, Nunes JAL, Vilacoert FSDS, Santos LCD, Furlaneto MP, Fuzii HT, Bertonsin Filho MV, da Costa LD, Duarte MIS, Furlaneto IP, Martins Filho AJ, Aarão TLDS, Vasconcelos PFDC, Quaresma JAS. Comparative Analysis of Human Hepatic Lesions in Dengue, Yellow Fever, and Chikungunya: Revisiting Histopathological Changes in the Light of Modern Knowledge of Cell Pathology. Pathogens 2023; 12:pathogens12050680. [PMID: 37242350 DOI: 10.3390/pathogens12050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Arboviruses, such as yellow fever virus (YFV), dengue virus (DENV), and chikungunya virus (CHIKV), present wide global dissemination and a pathogenic profile developed in infected individuals, from non-specific clinical conditions to severe forms, characterised by the promotion of significant lesions in different organs of the harbourer, culminating in multiple organ dysfunction. An analytical cross-sectional study was carried out via the histopathological analysis of 70 samples of liver patients, collected between 2000 and 2017, with confirmed laboratory diagnoses, who died due to infection and complications due to yellow fever (YF), dengue fever (DF), and chikungunya fever (CF), to characterise, quantify, and compare the patterns of histopathological alterations in the liver between the samples. Of the histopathological findings in the human liver samples, there was a significant difference between the control and infection groups, with a predominance of alterations in the midzonal area of the three cases analysed. Hepatic involvement in cases of YF showed a greater intensity of histopathological changes. Among the alterations evaluated, cell swelling, microvesicular steatosis, and apoptosis were classified according to the degree of tissue damage from severe to very severe. Pathological abnormalities associated with YFV, DENV, and CHIKV infections showed a predominance of changes in the midzonal area. We also noted that, among the arboviruses studied, liver involvement in cases of YFV infection was more intense.
Collapse
Affiliation(s)
- Yasmin Pacheco Ribeiro
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Luiz Fabio Magno Falcão
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Vanessa Cavaleiro Smith
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Jorge Rodrigues de Sousa
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Carla Pagliari
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Janniffer Oliveira Chiang
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Livia Carício Martins
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Juliana Abreu Lima Nunes
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Lais Carneiro Dos Santos
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Hellen Thais Fuzii
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| | | | - Luccas Delgado da Costa
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Ismari Perini Furlaneto
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| |
Collapse
|
23
|
Slonchak A, Chaggar H, Aguado J, Wolvetang E, Khromykh AA. Noncoding RNA of Zika Virus Affects Interplay between Wnt-Signaling and Pro-Apoptotic Pathways in the Developing Brain Tissue. Viruses 2023; 15:1062. [PMID: 37243147 PMCID: PMC10222578 DOI: 10.3390/v15051062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral RNA, sfRNA) of the Zika virus induces apoptosis of neural progenitors and is required for ZIKV pathogenesis in the developing brain. Herein, we expanded on our initial findings and identified biological processes and signaling pathways affected by the production of ZIKV sfRNA in the developing brain tissue. We employed 3D brain organoids generated from induced human pluripotent stem cells (ihPSC) as an ex vivo model of viral infection in the developing brain and utilized wild type (WT) ZIKV (producing sfRNA) and mutant ZIKV (deficient in the production of sfRNA). Global transcriptome profiling by RNA-Seq revealed that the production of sfRNA affects the expression of >1000 genes. We uncovered that in addition to the activation of pro-apoptotic pathways, organoids infected with sfRNA-producing WT, but not sfRNA-deficient mutant ZIKV, which exhibited a strong down-regulation of genes involved in signaling pathways that control neuron differentiation and brain development, indicating the requirement of sfRNA for the suppression of neurodevelopment associated with the ZIKV infection. Using gene set enrichment analysis and gene network reconstruction, we demonstrated that the effect of sfRNA on pathways that control brain development occurs via crosstalk between Wnt-signaling and proapoptotic pathways.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| |
Collapse
|
24
|
Franco Filho LC, Barata RR, Coelho MS, Cardoso JF, Lemos PDS, Dos Reis HS, Favacho JDFR, Faria NR, Nunes MRT. Genome sequencing of dengue virus serotype 4 in a bat brain sample (Platyrrhinus helleri) from the Brazilian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105407. [PMID: 36764633 DOI: 10.1016/j.meegid.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
The existence of sylvatic transmission of dengue virus in communities of neotropical bats remains uncertain. In this work we present a near-complete genome of dengue virus serotype 4 obtained from the brain sample of a bat from Platyrrhinus helleri specie collected in the Brazilian Amazon region. The presence of the virus in the brain sample may indicate a possible tropism for the central nervous system in bats, which may justify negative results in previous studies that focused on analysis of other tissues, such as liver and spleen. Besides the duration of dengue virus circulation in the Americas (circa 40 years) may be too short for an implementation of a sylvatic dengue virus cycle. Our findings suggest that continued monitoring is needed to confirm with the neotropical bats could potentially act as a natural reservoir of dengue in the region.
Collapse
|
25
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
26
|
Immunogenicity and protective activity of mRNA vaccine candidates against yellow fever virus in animal models. NPJ Vaccines 2023; 8:31. [PMID: 36871059 PMCID: PMC9984760 DOI: 10.1038/s41541-023-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the success of the widely used attenuated yellow fever (YF) vaccine, its global supply remains a substantial barrier to implementing vaccination campaigns in endemic regions and combating emerging epidemics. In A129 mice and rhesus macaques, we evaluated the immunogenicity and protective activity of messenger RNA (mRNA) vaccine candidates encapsulated in lipid nanoparticles, expressing the pre-membrane and envelope proteins or the non-structural protein 1 of YF virus. Vaccine constructs induced humoral and cell-mediated immune responses in mice, resulting in protection against lethal YF virus infection after passive administration of serum or splenocytes from vaccinated mice. Vaccination of macaques induced sustained high humoral and cellular immune responses for at least 5 months after the second dose. Our data demonstrate that these mRNA vaccine candidates can be considered an attractive addition to the licensed YF vaccine supply based on the induction of functional antibodies correlating with protection and T-cell responses; they could alleviate the limited supply of current YF vaccines, mitigating future YF epidemics.
Collapse
|
27
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
28
|
Koh C, Frangeul L, Blanc H, Ngoagouni C, Boyer S, Dussart P, Grau N, Girod R, Duchemin JB, Saleh MC. Ribosomal RNA (rRNA) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification. eLife 2023; 12:82762. [PMID: 36688360 PMCID: PMC10014081 DOI: 10.7554/elife.82762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito rRNA datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNA-seq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Carine Ngoagouni
- Institut Pasteur de Bangui, Medical Entomology LaboratoryBanguiCentral African Republic
| | - Sébastien Boyer
- Institut Pasteur du Cambodge, Medical and Veterinary Entomology UnitPhnom PenhCambodia
| | | | - Nina Grau
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Romain Girod
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Jean-Bernard Duchemin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile AbonnencCayenneFrench Guiana
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| |
Collapse
|
29
|
Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
During the last two decades, the world has witnessed the emergence and re-emergence of arthropod-borne viruses, better known as arboviruses. The close contact between sylvatic, rural and peri-urban vector species and humans has been mainly determined by the environment-modifying human activity. The resulting interactions have led to multiple dead-end host infections and have allowed sylvatic arboviruses to eventually adapt to new vectors and hosts, contributing to the establishment of urban transmission cycles of some viruses with enormous epidemiologic impact. The metagenomic next-generation sequencing (NGS) approach has allowed obtaining unbiased sequence information of millions of DNA and RNA molecules from clinical and environmental samples. Robust bioinformatics tools have enabled the assembly of individual sequence reads into contigs and scaffolds partially or completely representing the genomes of the microorganisms and viruses being present in biological samples of clinical relevance. In this review, we describe the different ecological scenarios for the emergence of viral diseases, the virus adaptation process required for the establishment of a new transmission cycle and the usefulness of NGS and computational methods for the discovery and routine genomic surveillance of mosquito-borne viruses in their ecosystems.
Collapse
|
30
|
Wen D, Ding LS, Zhang Y, Li X, Zhang X, Yuan F, Zhao T, Zheng A. Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine. Nat Commun 2022; 13:7780. [PMID: 36526630 PMCID: PMC9755785 DOI: 10.1038/s41467-022-35407-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Zoonotic viruses circulate in the natural reservoir and sporadically spill over into human populations, resulting in endemics or pandemics. We previously found that the Chaoyang virus (CYV), an insect-specific flavivirus (ISF), is replication-defective in vertebrate cells. Here, we develope a proof-of-concept mosquito-delivered vaccine to control the Zika virus (ZIKV) within inaccessible wildlife hosts using CYV as the vector. The vaccine is constructed by replacing the pre-membrane and envelope (prME) proteins of CYV with those of ZIKV, assigned as CYV-ZIKV. CYV-ZIKV replicates efficiently in Aedes mosquitoes and disseminates to the saliva, with no venereal or transovarial transmission observed. To reduce the risk of CYV-ZIKV leaking into the environment, mosquitoes are X-ray irradiated to ensure 100% infertility, which does not affect the titer of CYV-ZIKV in the saliva. Immunization of mice via CYV-ZIKV-carrying mosquito bites elicites robust and persistent ZIKV-specific immune responses and confers complete protection against ZIKV challenge. Correspondingly, the immunized mice could no longer transmit the challenged ZIKV to naïve mosquitoes. Therefore, immunization with an ISF-vectored vaccine via mosquito bites is feasible to induce herd immunity in wildlife hosts of ZIKV. Our study provides a future avenue for developing a mosquito-delivered vaccine to eliminate zoonotic viruses in the sylvatic cycle.
Collapse
Affiliation(s)
- Dan Wen
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Limin S. Ding
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanan Zhang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaoye Li
- grid.462338.80000 0004 0605 6769College of life sciences, Henan Normal University, 45300 Xinxiang, China
| | - Xing Zhang
- grid.410726.60000 0004 1797 8419College of life sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
31
|
Hakim MS, Annisa L, Gazali FM, Aman AT. The origin and continuing adaptive evolution of chikungunya virus. Arch Virol 2022; 167:2443-2455. [PMID: 35987965 DOI: 10.1007/s00705-022-05570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the responsible agent of chikungunya fever, a debilitating arthritic disease in humans. CHIKV is endemic in Africa and Asia, although transmission cycles are considerably different on these continents. Before 2004, CHIKV had received little attention, since it was only known to cause localised outbreaks in a limited region with no fatalities. However, the recent global reemergence of CHIKV has caused serious global health problems and shown its potential to become a significant viral threat in the future. Unexpectedly, the reemergence is more rapid and is geographically more extensive, especially due to increased intensity of global travel systems or failure to contain mosquito populations. Another important factor is the successful adaptation of CHIKV to a new vector, the Aedes albopictus mosquito. Ae. albopictus survives in both temperate and tropical climates, thus facilitating CHIKV expansion to non-endemic regions. The continuous spread and transmission of CHIKV pose challenges for the development of effective vaccines and specific antiviral therapies. In this review, we discuss the biology and origin of CHIKV in Africa as well as its subsequent expansion to other parts of the world. We also review the transmission cycle of CHIKV and its continuing adaptation to its mosquito vectors and vertebrate hosts. More-complete understanding of the continuous evolution of CHIKV may help in predicting the emergence of CHIKV strains with possibly greater transmission efficiency in the future.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Faris M Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
32
|
Mongkol N, Wang FS, Suthisawat S, Likhit O, Charoen P, Boonnak K. Seroprevalence of Chikungunya and Zika virus in nonhuman primates: A systematic review and meta-analysis. One Health 2022; 15:100455. [DOI: 10.1016/j.onehlt.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
|
33
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Alam MM, Mavian C, Okech BA, White SK, Stephenson CJ, Elbadry MA, Blohm GM, Loeb JC, Louis R, Saleem C, Madsen Beau de Rochars VE, Salemi M, Lednicky JA, Morris JG. Analysis of Zika Virus Sequence Data Associated with a School Cohort in Haiti. Am J Trop Med Hyg 2022; 107:873-880. [PMID: 36096408 PMCID: PMC9651511 DOI: 10.4269/ajtmh.22-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022] Open
Abstract
Zika virus (ZIKV) infections occurred in epidemic form in the Americas in 2014-2016, with some of the earliest isolates in the region coming from Haiti. We isolated ZIKV from 20 children with acute undifferentiated febrile illness who were part of a cohort of children seen at a school clinic in the Gressier region of Haiti. The virus was also isolated from three pools of Aedes aegypti mosquitoes collected at the same location. On phylogenetic analysis, three distinct ZIKV clades were identified. Strains from all three clades were present in Haiti in 2014, making them among the earliest isolates identified in the Western Hemisphere. Strains from all three clades were also isolated in 2016, indicative of their persistence across the time period of the epidemic. Mosquito isolates were collected in 2016 and included representatives from two of the three clades; in one instance, ZIKV was isolated from a pool of male mosquitoes, suggestive of vertical transmission of the virus. The identification of multiple ZIKV clades in Haiti at the beginning of the epidemic suggests that Haiti served as a nidus for transmission within the Caribbean.
Collapse
Affiliation(s)
- Md. Mahbubul Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Bernard A. Okech
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Sarah K. White
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Gabriela M. Blohm
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Rigan Louis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- State University of Haiti Faculty of Medicine and Pharmacy, Port-au-Prince, Haiti
| | - Cyrus Saleem
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Valery E. Madsen Beau de Rochars
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
35
|
Detection of Neutralizing Antibodies against Zika Virus in Wild Nonhuman Primates in Rwanda. J Wildl Dis 2022; 58:939-942. [PMID: 36136588 DOI: 10.7589/jwd-d-22-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
The range of nonhuman primate (NHP) species involved in Zika virus (ZIKV) sylvatic transmission is not known. We tested 97 NHP archived sera, collected from 2006 to 2016 in Rwandan National Parks, for neutralizing antibodies to ZIKV. Serum from one olive baboon (Papio anubis) was positive for ZIKV antibodies.
Collapse
|
36
|
Flavivirus-Host Interaction Landscape Visualized through Genome-Wide CRISPR Screens. Viruses 2022; 14:v14102164. [PMID: 36298718 PMCID: PMC9609550 DOI: 10.3390/v14102164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Flaviviruses comprise several important human pathogens which cause significant morbidity and mortality worldwide. Like any other virus, they are obligate intracellular parasites. Therefore, studying the host cellular factors that promote or restrict their replication and pathogenesis becomes vital. Since inhibiting the host dependency factors or activating the host restriction factors can suppress the viral replication and propagation in the cell, identifying them reveals potential targets for antiviral therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR) technology has provided an effective means of producing customizable genetic modifications and performing forward genetic screens in a broad spectrum of cell types and organisms. The ease, rapidity, and high reproducibility of CRISPR technology have made it an excellent tool for carrying out genome-wide screens to identify and characterize viral host dependency factors systematically. Here, we review the insights from various Genome-wide CRISPR screens that have advanced our understanding of Flavivirus-Host interactions.
Collapse
|
37
|
Novianto D, Hadi UK, Soviana S, Supriyono S, Rosmanah L, Darusman HS. Diversity of mosquito species and potential arbovirus transmission in long-tailed macaque (Macaca fascicularis) breeding facilities. Vet World 2022; 15:1961-1968. [DOI: 10.14202/vetworld.2022.1961-1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Mosquito-borne viral infections are diseases that reduce human and animal health levels. Their transmission involves wildlife animals as reservoirs and amplifying hosts, including long-tailed macaques (Macaca fascicularis), and potentially transmits to humans and vice versa. This study aimed to determine the species diversity, richness, and biting activity of mosquitoes in a long-tailed macaque breeding area facility and discover the presence of Flavivirus and Alphavirus as the two main arboviruses reported to infect macaques.
Materials and Methods: Human landing catch, light trap, and sweep net methods were used for mosquito collection around long-tailed macaques cages at parallel times for 12 h (18:00–06:00) for 12 nights. Mosquito species were identified to the species level based on the morphological identification key for Indonesian mosquitoes. Mosquito diversity was analyzed by several diversity indices. Mosquitoes caught using the human landing catch method were pooled based on mosquito species for viral ribonucleic acid extraction. Reverse transcription-polymerase chain reaction (RT-PCR) detected the non-structural protein 5 of the Flavivirus region and the non-structural protein 4 of the Alphavirus region. This study used the man-hour density and man-biting rate formulas for mosquito density.
Results: Ten mosquito species were collected, namely, Aedes albopictus, Anopheles aconitus, Anopheles minimus, Anopheles vagus, Armigeres foliatus, Armigeres subalbatus, Culex gelidus, Culex hutchinsoni, Culex tritaeniorhynchus, and Culex quinquefasciatus. The number of mosquitoes caught using the light trap method had the highest abundance. In contrast, the number of mosquito species caught using the sweep net method had lower diversity than the other two methods. Seven mosquito species were obtained using the human landing catch method. The mosquito species with the highest density was Cx. quinquefasciatus within the observed densest period from 20:00 to 21:00. Negative results were obtained from RT-PCR testing on five species detected using universal Flavivirus and Alphavirus primers.
Conclusion: The occurrence of mosquitoes in long-tailed macaque breeding facilities can be a source of transmission of zoonotic vector-borne diseases between animals and humans and vice versa.
Collapse
Affiliation(s)
- Dimas Novianto
- Parasitology and Medical Entomology Laboratory, Animal Biomedicine Study Program, Graduate School, IPB University, Bogor, Indonesia
| | - Upik Kesumawati Hadi
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Susi Soviana
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Supriyono Supriyono
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Lis Rosmanah
- Primate Research Centre, Institute of Research and Community Service IPB University, Bogor, Indonesia
| | - Huda Shalahudin Darusman
- Primate Research Centre, Institute of Research and Community Service IPB University, Bogor, Indonesia; Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
38
|
Passos PHO, Ramos DG, Romano AP, Cavalcante KRLJ, Miranda LHM, Coelho JMCO, Barros RC, Martins Filho AJ, Quaresma JAS, Macêdo IL, Wilson TM, Sousa DER, de Melo CB, Castro MB. Hepato-pathological hallmarks for the surveillance of Yellow Fever in South American non-human primates. Acta Trop 2022; 231:106468. [PMID: 35429458 DOI: 10.1016/j.actatropica.2022.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The early detection and diagnosis of deaths in free-ranging non-human primates (NHPs) are key points for the surveillance of Yellow Fever (YF) in Brazil. The histopathological identification of infectious diseases remains very useful and reliable in the screening and detection of emerging zoonotic diseases such as YF. We surveyed data records and liver slides stained with hematoxylin and eosin from the Epizootics Surveillance Network to control YF, Ministry of Health of Brazil, to evaluate histopathological hallmarks for the diagnosis of the YF virus infection. We selected natural fatal cases in NHPs from the genera Alouatta spp., Callithrix spp., and Sapajus spp. with a positive immunohistochemical assay for YF in liver samples. Our findings showed the full-spectrum YF-associated hepatic lesions in all NHPs, but some histopathological findings differed in the distribution and intensity between the three genera. In our study, South American NHPs showed significant differences in the YF-associated hepatic histopathological features compared to fatal cases reported in humans.
Collapse
Affiliation(s)
- Pedro H O Passos
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil; Brazilian Ministry of Health, Federal District, Brasilia, Brazil
| | - Daniel G Ramos
- Brazilian Ministry of Health, Federal District, Brasilia, Brazil
| | | | | | | | | | - Ramona C Barros
- Universidade do Estado do Pará, Belém, Pará, Brazil Veterinary
| | | | | | - Isabel L Macêdo
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil; Veterinary Pathology Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Tais M Wilson
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil; Veterinary Pathology Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Davi E R Sousa
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil; Veterinary Pathology Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Cristiano B de Melo
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil
| | - Marcio B Castro
- Graduate Program in Animal Science, University of Brasília, Federal District, Brasilia, Brazil; Veterinary Pathology Laboratory, University of Brasília, Federal District, Brasília, Brazil.
| |
Collapse
|
39
|
Masika MM, Korhonen EM, Smura T, Uusitalo R, Ogola J, Mwaengo D, Jääskeläinen AJ, Alburkat H, Gwon YD, Evander M, Anzala O, Vapalahti O, Huhtamo E. Serological Evidence of Exposure to Onyong-Nyong and Chikungunya Viruses in Febrile Patients of Rural Taita-Taveta County and Urban Kibera Informal Settlement in Nairobi, Kenya. Viruses 2022; 14:v14061286. [PMID: 35746757 PMCID: PMC9230508 DOI: 10.3390/v14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Several alphaviruses, such as chikungunya (CHIKV) and Onyong-nyong (ONNV), are endemic in Kenya and often cause outbreaks in different parts of the country. We assessed the seroprevalence of alphaviruses in patients with acute febrile illness in two geographically distant areas in Kenya with no previous record of alphavirus outbreaks. Blood samples were collected from febrile patients in health facilities located in the rural Taita-Taveta County in 2016 and urban Kibera informal settlement in Nairobi in 2017 and tested for CHIKV IgG and IgM antibodies using an in-house immunofluorescence assay (IFA) and a commercial ELISA test, respectively. A subset of CHIKV IgG or IgM antibody-positive samples were further analyzed using plaque reduction neutralization tests (PRNT) for CHIKV, ONNV, and Sindbis virus. Out of 537 patients, 4 (0.7%) and 28 (5.2%) had alphavirus IgM and IgG antibodies, respectively, confirmed on PRNT. We show evidence of previous and current exposure to alphaviruses based on serological testing in areas with no recorded history of outbreaks.
Collapse
Affiliation(s)
- Moses Muia Masika
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
- Correspondence: ; Tel.: +254-721770306
| | - Essi M. Korhonen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Joseph Ogola
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Dufton Mwaengo
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Anne J. Jääskeläinen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Hussein Alburkat
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
40
|
Niederfahrenhorst A, Rothe C. [Important arboviral diseases in returning travelers: dengue, chikungunya and zika]. Dtsch Med Wochenschr 2022; 147:755-767. [PMID: 35672023 DOI: 10.1055/a-1661-3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arboviral infections are an important differential diagnosis in returning travelers with fever, muscle or joint pain and rash. Arboviruses have spread widely around the globe in the last decades. The most common arboviral infections in returning travelers from tropical and subtropical areas are dengue, chikungunya and zika. Their most important vectors, Aedes (Stegomyia) mosquito species, have adapted to the urban environment, which enabled arboviruses to establish urban transmission cycles. Population growth, urbanization, globalization, modern means of transportation and global warming are speeding up their spread.Laboratory confirmation of an arboviral infection can generally be obtained by direct virus detection (PCR, antigen test) in the first week of illness; from the second week of illness serology can be used. Treatment is mostly symptomatic.Dengue fever is the most common cause of fever in returning travelers from South-East Asia. Patients have to be educated about and observed for warning signs of severe dengue that can rarely develop around day 5 of the disease and is marked by a rise in hematocrit.Chikungunya mostly occurs in epidemics and is characterized by severe and often long-lasting arthritis.Preconceptional screening for zika virus infection is not recommended. Instead, travelers should delay conception for up to three months after returning from a zika endemic area.Dengue, chikungunya and zika vaccine development has been hampered by difficulties, for example antibody-dependent-enhancement or the unpredictability of outbreaks, and up to now no vaccines for travelers have been licensed. Yet several promising vaccine candidates are currently under development.
Collapse
|
41
|
Brown R, Salgado-Lynn M, Jumail A, Jalius C, Chua TH, Vythilingam I, Ferguson HM. Exposure of Primate Reservoir Hosts to Mosquito Vectors in Malaysian Borneo. ECOHEALTH 2022; 19:233-245. [PMID: 35553290 PMCID: PMC9276546 DOI: 10.1007/s10393-022-01586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild simian populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and mosquito magnet independence traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n = 15) were positive for P. knowlesi by PCR screening, two were infected with another simian malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Recently, natural transmission of P. inui has been detected in humans and An. cracens in Peninsular Malaysia. The presence of P. inui in An. balabacensis here and previously in human-biting collections highlight its potential for spillover from macaques to humans in Sabah. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild simian populations.
Collapse
Affiliation(s)
- Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine and Hygiene, Liverpool, L3 5QA, UK.
| | - Milena Salgado-Lynn
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, UK
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Amaziasizamoria Jumail
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
| | - Cyrlen Jalius
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Tock-Hing Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
42
|
Putra IGAA, Adi AAAM, Astawa INM, Kardena IM, Wandia IN, Soma IG, Brotcorne F, Fuentes A. First survey on seroprevalence of Japanese encephalitis in long-tailed macaques (Macaca fascicularis) in Bali, Indonesia. Vet World 2022; 15:1341-1346. [PMID: 35765485 PMCID: PMC9210850 DOI: 10.14202/vetworld.2022.1341-1346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aim: Japanese encephalitis (JE) is a zoonotic infectious inflammatory brain disease caused by the JE virus (JEV). Considerable research into the seroprevalence of JE in domestic animals has been conducted, but there have been no reports of its occurrence in wild animals, including long-tailed macaques (Macaca fascicularis). This study aimed to estimate the seroprevalence of JEV infection and its determinants in long-tailed macaques in Bali and the prevalence of mosquito vectors. Materials and Methods: Blood samples (3 mL) were collected from a population of M. fascicularis (92 heads) inhabiting a small forest with irrigated rice field nearby (wetland area) in Ubud, Gianyar, and from two populations in dryland areas with no wet rice field (Uluwatu, Badung, and Nusa Penida, Bali Province, Indonesia). The collected sera were tested for antibodies against JEV using a commercially available enzyme-linked immunosorbent assay kit (qualitative monkey JE Immunoglobulin G antibody kit). The seropositivity of the antibodies was then compared based on different variables, namely, habitat type, age, and sex. Results: The seroprevalence of the JEV antibodies in all the samples tested was found to be 41.3%. The seropositivity of the monkey serum samples collected from the wetland area was 46.4%, which was higher than the seropositivity of the sera samples collected from the dried field areas (1.25%). Monkey sera collected from the wetland areas were 6.1 times (odds ratio [OR]: 6.1; 95% confidence interval [CI]: 0.71-51.5, p>0.05) more likely to be seropositive compared to the monkey sera collected from the dried field areas. Meanwhile, female monkeys were 1.79 times (OR: 1.79; 95% CI: 0.76-4.21; p>0.05) more likely to be seropositive to JEV than males. Similarly, juvenile monkeys were 2.38 times (OR: 2.38; 95% CI: 0.98-5.79); p>0.05) more likely to be seropositive against the JEV than adult monkeys. However, none of these differences achieved statistical significance. Regarding the JEV mosquito vector collection, more Culex mosquitoes were found in the samples from the wetland areas than from the dried field areas. Conclusion: The study confirms the existence of JEV infection in long-tailed macaques in Bali. There were patterned seropositivity differences based on habitat, age, and sex of the monkeys, but these were not significant. The possibility of monkeys as a JEV reservoir and the presence of the mosquitoes as the JEV vector are suggested but require more study to confirm.
Collapse
Affiliation(s)
- I Gusti Agung Arta Putra
- Laboratory of Animal Anatomy and Physiology, Faculty of Animal Husbandry, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia; Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - Anak Agung Ayu Mirah Adi
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Nyoman Mantik Astawa
- Laboratory of Veterinary Virology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Made Kardena
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Udayana University, Kampus Sudirman, Jalan PB Sudirman, Denpasar, Bali, Indonesia
| | - I Nengah Wandia
- Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - I Gede Soma
- Primate Research Center, Udayana University, Kampus Bukit, Jimbaran, Badung, Bali, Indonesia
| | - Fany Brotcorne
- Research Unit SPHERES, Department of Biology, Ecology, and Evolution, University of Liege, Belgium
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, 123 Aaron Burr Hall, Princeton NJ 08544, United States
| |
Collapse
|
43
|
Seroprevalence of IgG Antibodies Against Multiple Arboviruses in Bats from Cameroon, Guinea, and the Democratic Republic of Congo. Vector Borne Zoonotic Dis 2022; 22:252-262. [DOI: 10.1089/vbz.2021.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review. Malar J 2022; 21:89. [PMID: 35300703 PMCID: PMC8929260 DOI: 10.1186/s12936-022-04110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has emerged across Southeast Asia and is now the main cause of malaria in humans in Malaysia. A critical priority for P. knowlesi surveillance and control is understanding whether transmission is entirely zoonotic or is also occurring through human-mosquito-human transmission. Methods A systematic literature review was performed to evaluate existing evidence which refutes or supports the occurrence of sustained human-mosquito-human transmission of P. knowlesi. Possible evidence categories and study types which would support or refute non-zoonotic transmission were identified and ranked. A literature search was conducted on Medline, EMBASE and Web of Science using a broad search strategy to identify any possible published literature. Results were synthesized using the Synthesis Without Meta-analysis (SWiM) framework, using vote counting to combine the evidence within specific categories. Results Of an initial 7,299 studies screened, 131 studies were included within this review: 87 studies of P. knowlesi prevalence in humans, 14 studies in non-human primates, 13 studies in mosquitoes, and 29 studies with direct evidence refuting or supporting non-zoonotic transmission. Overall, the evidence showed that human-mosquito-human transmission is biologically possible, but there is limited evidence of widespread occurrence in endemic areas. Specific areas of research were identified that require further attention, notably quantitative analyses of potential transmission dynamics, epidemiological and entomological surveys, and ecological studies into the sylvatic cycle of the disease. Conclusion There are key questions about P. knowlesi that remain within the areas of research that require more attention. These questions have significant implications for malaria elimination and eradication programs. This paper considers limited but varied research and provides a methodological framework for assessing the likelihood of different transmission patterns for emerging zoonotic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04110-z.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University Medical School, Lancaster, UK. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Bhowmick IP, Pandey A, Subbarao SK, Pebam R, Majumder T, Nath A, Nandi D, Basu A, Sarkar A, Majumder S, Debbarma J, Dasgupta D, Borgohain A, Chanda R, Das M, Gogoi K, Gogoi K, Joshi PL, Kaur H, Borkakoti B, Ranjan Bhattacharya D, Khan AM, Sen S, Narain K. Diagnosis of Indigenous Non-Malarial Vector-Borne Infections from Malaria Negative Samples from Community and Rural Hospital Surveillance in Dhalai District, Tripura, North-East India. Diagnostics (Basel) 2022; 12:362. [PMID: 35204453 PMCID: PMC8871021 DOI: 10.3390/diagnostics12020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aetiology of non-malaria vector-borne diseases in malaria-endemic, forested, rural, and tribal-dominated areas of Dhalai, Tripura, in north-east India, was studied for the first time in the samples collected from malaria Rapid Diagnostic Kit negative febrile patients by door-to-door visits in the villages and primary health centres. Two hundred and sixty serum samples were tested for the Dengue NS1 antigen and the IgM antibodies of Dengue, Chikungunya, Scrub Typhus (ST), and Japanese Encephalitis (JE) during April 2019-March 2020. Fifteen Dengue, six JE, twelve Chikungunya, nine ST and three Leptospirosis, and mixed infections of three JE + Chikungunya, four Dengue + Chikungunya, three Dengue + JE + Chikungunya, one Dengue + Chikungunya + ST, and one Dengue + ST were found positive by IgM ELISA tests, and four for the Dengue NS1 antigen, all without any travel history. True prevalence values estimated for infections detected by Dengue IgM were 0.134 (95% CI: 0.08-0.2), Chikungunya were 0.084 (95% CI: 0.05-0.13), Scrub were 0.043 (95% CI: 0.01-0.09), and Japanese Encephalitis were 0.045 (95% CI: 0.02-0.09). Dengue and Chikungunya were associated significantly more with a younger age. There was a lack of a defined set of symptoms for any of the Dengue, Chikungunya, JE or ST infections, as indicated by the k-modes cluster analysis. Interestingly, most of these symptoms have an overlapping set with malaria; thereby, it becomes imperative that malaria and these non-malaria vector-borne disease diagnoses are made in a coordinated manner. Findings from this study call for advances in routine diagnostic procedures and the development of a protocol that can accommodate, currently, in practicing the rapid diagnosis of malaria and other vector-borne diseases, which is doable even in the resource-poor settings of rural hospitals and during community fever surveillance.
Collapse
Affiliation(s)
- Ipsita Pal Bhowmick
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Apoorva Pandey
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi 110029, India; (A.P.); (H.K.); (A.M.K.)
| | - Sarala K. Subbarao
- Formerly National Institute of Malaria Research, Indian Council of Medical Research ICMR, New Delhi 110029, India;
| | - Rocky Pebam
- North Eastern Space Applications Centre, Department of Space, Government of India Umiam, Umiam 793103, India; (R.P.); (A.N.); (A.B.)
| | - Tapan Majumder
- Department of Microbiology, Agartala Government Medical College, Agartala 799006, India; (T.M.); (A.S.); (S.M.)
| | - Aatreyee Nath
- North Eastern Space Applications Centre, Department of Space, Government of India Umiam, Umiam 793103, India; (R.P.); (A.N.); (A.B.)
| | - Diptarup Nandi
- National Institute of Biomedical Genomics, Kalyani 741251, India; (D.N.); (A.B.)
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani 741251, India; (D.N.); (A.B.)
| | - Apurba Sarkar
- Department of Microbiology, Agartala Government Medical College, Agartala 799006, India; (T.M.); (A.S.); (S.M.)
| | - Saikat Majumder
- Department of Microbiology, Agartala Government Medical College, Agartala 799006, India; (T.M.); (A.S.); (S.M.)
| | - Jotish Debbarma
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Dipanjan Dasgupta
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Arup Borgohain
- North Eastern Space Applications Centre, Department of Space, Government of India Umiam, Umiam 793103, India; (R.P.); (A.N.); (A.B.)
| | - Rajdeep Chanda
- Department of Forestry, Mizoram University, Aizawl 796004, India;
| | - Mandakini Das
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
- Roche Diagnostics India Pvt. Ltd., Mumbai 400069, India
| | - Karuna Gogoi
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Kongkona Gogoi
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Pyare Laal Joshi
- Formerly National Vector Borne Disease Control Program (NVBDCP), New Delhi 110054, India;
| | - Harpreet Kaur
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi 110029, India; (A.P.); (H.K.); (A.M.K.)
| | - Biswajyoti Borkakoti
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Dibya Ranjan Bhattacharya
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| | - Abdul Mamood Khan
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi 110029, India; (A.P.); (H.K.); (A.M.K.)
| | - Satyajit Sen
- Regional Office of Health and Family Welfare, Kolkata 700106, India;
| | - Kanwar Narain
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India; (J.D.); (D.D.); (M.D.); (K.G.); (K.G.); (B.B.); (D.R.B.); (K.N.)
| |
Collapse
|
46
|
Oliveira-Filho EFD, Carneiro IO, Fischer C, Kühne A, Postigo-Hidalgo I, Ribas JRL, Schumann P, Nowak K, Gogarten JF, de Lamballerie X, Dantas-Torres F, Netto EM, Franke CR, Couacy-Hymann E, Leendertz FH, Drexler JF. Evidence against Zika virus infection of pets and peri-domestic animals in Latin America and Africa. J Gen Virol 2022; 103. [PMID: 35077341 PMCID: PMC8895617 DOI: 10.1099/jgv.0.001709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decades after its discovery in East Africa, Zika virus (ZIKV) emerged in Brazil in 2013 and infected millions of people during intense urban transmission. Whether vertebrates other than humans are involved in ZIKV transmission cycles remained unclear. Here, we investigate the role of different animals as ZIKV reservoirs by testing 1723 sera of pets, peri-domestic animals and African non-human primates (NHP) sampled during 2013–2018 in Brazil and 2006–2016 in Côte d'Ivoire. Exhaustive neutralization testing substantiated co-circulation of multiple flaviviruses and failed to confirm ZIKV infection in pets or peri-domestic animals in Côte d'Ivoire (n=259) and Brazil (n=1416). In contrast, ZIKV seroprevalence was 22.2% (2/9, 95% CI, 2.8–60.1) in West African chimpanzees (Pan troglodytes verus) and 11.1% (1/9, 95% CI, 0.3–48.3) in king colobus (Colobus polycomos). Our results indicate that while NHP may represent ZIKV reservoirs in Africa, pets or peri-domestic animals likely do not play a role in ZIKV transmission cycles.
Collapse
Affiliation(s)
- Edmilson F. de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ignacio Postigo-Hidalgo
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Peggy Schumann
- Labor Berlin, Charité Vivantes Services GmbH, Berlin, Germany
| | - Kathrin Nowak
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jan F. Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
- Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - Xavier de Lamballerie
- Unité des Virus Émergents (Aix-Marseille University, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | | | - Emmanuel Couacy-Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- German Centre for Infection Research (DZIF), associated partner site Charité, Berlin, Germany
| |
Collapse
|
47
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
48
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
49
|
Celone M, Okech B, Han BA, Forshey BM, Anyamba A, Dunford J, Rutherford G, Mita-Mendoza NK, Estallo EL, Khouri R, de Siqueira IC, Pollett S. A systematic review and meta-analysis of the potential non-human animal reservoirs and arthropod vectors of the Mayaro virus. PLoS Negl Trop Dis 2021; 15:e0010016. [PMID: 34898602 PMCID: PMC8699665 DOI: 10.1371/journal.pntd.0010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Improving our understanding of Mayaro virus (MAYV) ecology is critical to guide surveillance and risk assessment. We conducted a PRISMA-adherent systematic review of the published and grey literature to identify potential arthropod vectors and non-human animal reservoirs of MAYV. We searched PubMed/MEDLINE, Embase, Web of Science, SciELO and grey-literature sources including PAHO databases and dissertation repositories. Studies were included if they assessed MAYV virological/immunological measured occurrence in field-caught, domestic, or sentinel animals or in field-caught arthropods. We conducted an animal seroprevalence meta-analysis using a random effects model. We compiled granular georeferenced maps of non-human MAYV occurrence and graded the quality of the studies using a customized framework. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Sixteen studies detected MAYV in wild-caught mosquito genera including Haemagogus, Aedes, Culex, Psorophora, Coquillettidia, and Sabethes. Vertebrate animals or arthropods with MAYV were detected in Brazil, Panama, Peru, French Guiana, Colombia, Trinidad, Venezuela, Argentina, and Paraguay. Among non-human vertebrates, the Primate order had the highest pooled seroprevalence at 13.1% (95% CI: 4.3-25.1%). From the three most studied primate genera we found the highest seroprevalence was in Alouatta (32.2%, 95% CI: 0.0-79.2%), followed by Callithrix (17.8%, 95% CI: 8.6-28.5%), and Cebus/Sapajus (3.7%, 95% CI: 0.0-11.1%). We further found that MAYV occurs in a wide range of vectors beyond Haemagogus spp. The quality of evidence behind these findings was variable and prompts calls for standardization of reporting of arbovirus occurrence. These findings support further risk emergence prediction, guide field surveillance efforts, and prompt further in-vivo studies to better define the ecological drivers of MAYV maintenance and potential for emergence.
Collapse
Affiliation(s)
- Michael Celone
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, United States of America
| | - Bernard Okech
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, United States of America
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Brett M. Forshey
- Armed Forces Health Surveillance Division, Silver Spring, Maryland, United States of America
| | - Assaf Anyamba
- University Space Research Association & NASA/Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, United States of America
| | - James Dunford
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, Maryland, United States of America
| | - George Rutherford
- Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Elizabet Lilia Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET-Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina
| | - Ricardo Khouri
- Instituto Gonçalo Moniz-Fiocruz, R. Waldemar Falcão, Salvador, Bahia, Brazil
| | | | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| |
Collapse
|
50
|
Fourié T, El Bara A, Dubot-Pérès A, Grard G, Briolant S, Basco LK, Ouldabdallahi Moukah M, Leparc-Goffart I. Emergence of dengue virus serotype 2 in Mauritania and molecular characterization of its circulation in West Africa. PLoS Negl Trop Dis 2021; 15:e0009829. [PMID: 34695119 PMCID: PMC8568173 DOI: 10.1371/journal.pntd.0009829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/04/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
The number of sporadic and epidemic dengue fever cases have reportedly been increasing in recent years in some West African countries, such as Senegal and Mali. The first epidemic of laboratory-confirmed dengue occurred in Nouakchott, the capital city of Mauritania situated in the Saharan desert, in 2014. On-site diagnosis of dengue fever was established using a rapid diagnostic test for dengue. In parallel, the presence of Aedes aegypti mosquitoes in the city was confirmed. The initial diagnosis was confirmed by RT-PCR, which showed that all samples from the 2014 dengue epidemic in Nouakchott were dengue virus serotype 2 (DENV-2). The whole genome or envelope protein gene of these strains, together with other DENV-2 strains obtained from travelers returning from West African countries to France between 2016 and 2019 (including two Mauritanian strains in 2017 and 2018), were sequenced. Phylogenetic analysis suggested a recent emergence of an epidemic strain from the cosmopolitan genotype belonging to West African cosmopolitan lineage II, which is genetically distinct from African sylvatic genotype. The origin of this DENV-2 lineage is still unknown, but our data seem to suggest a recent and rapid dispersion of the epidemic strain throughout the region. More complete genome sequences of West African DENV-2 are required for a better understanding of the dynamics of its circulation. Arboviral surveillance and outbreak forecasting are urgently needed in West Africa. In Africa, dengue viruses 1 to 4 are transmitted to primates by Aedes mosquitoes in a sylvatic cycle or an urban/epidemic cycle involving humans. Infection in humans may be asymptomatic or may range from mild flu-like illness to severe hemorrhagic fever. The dengue viruses have a pantropical distribution, mostly in urbanized areas where vectors have become well adapted. This report shows dengue can also emerge in desert areas, as seen for the first time in an outbreak in 2014 in Nouakchott, Mauritania, where climatic, environmental, and human behavioral changes favor the emergence of Aedes mosquitoes. Dengue virus 2 was found in multiple human samples collected during the outbreak. Genomic analysis of dengue virus 2 isolates from the Mauritanian outbreak and from infected travelers revealed the rapid emergence of a specific “West African epidemic strain” of the virus throughout West Africa during the last decade, which is distinct from other strains found elsewhere and from historical or sylvatic strains. More genomic data would help us understand the circulation of dengue virus in West Africa, to help forecast and mitigate outbreaks in this region.
Collapse
Affiliation(s)
- Toscane Fourié
- Unité des Virus Emergents (UVE), Aix Marseille Université - IRD 190—INSERM 1207, Marseille, France
- Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Ahmed El Bara
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Audrey Dubot-Pérès
- Unité des Virus Emergents (UVE), Aix Marseille Université - IRD 190—INSERM 1207, Marseille, France
| | - Gilda Grard
- Unité des Virus Emergents (UVE), Aix Marseille Université - IRD 190—INSERM 1207, Marseille, France
- Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Sébastien Briolant
- Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU—Méditerranée Infection, Marseille, France
| | - Leonardo K. Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU—Méditerranée Infection, Marseille, France
| | - Mohamed Ouldabdallahi Moukah
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouakchott, Mauritania
- Initiative mauritanienne pour la lutte contre les maladies endémiques “MEDCINGO” Nouakchott, Mauritania
| | - Isabelle Leparc-Goffart
- Unité des Virus Emergents (UVE), Aix Marseille Université - IRD 190—INSERM 1207, Marseille, France
- Institut de Recherche Biomédicale des Armées, Marseille, France
- * E-mail:
| |
Collapse
|