1
|
Chen M, Wang L, Zhou X, Chen G, Xu Z, Yan R, Qian J, Zhu G, Wu S, Wu H. Alanine to glycine substitution in the PyR2 confers sodium channel resistance to Type I pyrethroids. PEST MANAGEMENT SCIENCE 2024. [PMID: 39740097 DOI: 10.1002/ps.8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Aedes aegypti is a primary urban vector of dengue, yellow fever, Zika and chikungunya worldwide. Pyrethroid insecticides are the most effective insecticides for controlling Ae. aegypti. However, pyrethroid resistance has developed due to the long-term overuse of the insecticides, and many knockdown resistance (kdr) mutations have been identified in the resistant populations. A1007G, an alanine to glycine substitution, was found in resistant Ae. aegypti from Vietnam and Malaysia, which has always co-existed with F1534C and V1016G. However, the role of A1007G in pyrethroid resistance and the linkage of A1007G and F1534C or V1016G remain unknown. RESULTS In this study, we examined the effects of mutations on the sodium channel gating properties and pyrethroid sensitivity in Xenopus oocytes. We found mutations A1007G, A1007G + F1534C and A1007G + V1016G + F1534C shifted the voltage dependence of activation in the depolarizing direction. Mutations A1007G + F1534C and A1007G + V1016G + F1534C shifted the voltage dependence of inactivation in the depolarizing direction. Both mutations A1007G and F1534C reduced the channel sensitivity to two Type I pyrethroids, permethrin and bifenthrin, and synergistic effects were observed between mutations A1007G and F1534C. However, none of the mutations, A1007G, F1534C and A1007G + F1534C affected the channel sensitivity to two Type II pyrethroids, deltamethrin and cypermethrin. Furthermore, triple mutations A1007G + V1016G + F1534C significantly reduced the channel sensitivity to both Type I and Type II pyrethroids. CONCLUSION We identified A1007G had a distinct effect on sodium channel sensitivity to Type I, but not to Type II pyrethroids, also A1007G exhibited synergistic effects with F1534C to Type I pyrethroids, which will provide a fundamental insight into the distinct molecular interactions between insect sodium channel and Type I or Type II pyrethroids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Likui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Xiangyi Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Guoxing Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Egunjobi F, Andreazza F, Zhorov BS, Dong K. A unique mechanism of transfluthrin action revealed by mapping its binding sites in the mosquito sodium channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104214. [PMID: 39566664 PMCID: PMC11624841 DOI: 10.1016/j.ibmb.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Pyrethroid insecticides exert their toxic action by prolonging the opening of insect voltage-gated sodium channels, resulting in the characteristic tail current during membrane repolarization in voltage clamp experiments. Permethrin (PMT) and deltamethrin (DMT), representative type I and type II pyrethroids, respectively, are predicted to bind to two lipid-exposed pyrethroid receptor sites, PyR1 and PyR2, at the lipid-exposed interfaces of repeats II/III and I/II, respectively. Transfluthrin (TF), a volatile type I pyrethroid and mosquito repellent, has received increased attention in the global combat of vector-borne human diseases. However, the electrophysiological and molecular bases of TF action on insect sodium channels remain unexplored. In this study we discovered that, unlike DMT and PMT, TF barely induces the characteristic tail current of the Aedes aegypti mosquito sodium channel (AaNav1-1) expressed in Xenopus oocytes. Instead, TF induces a unique persistent current. We docked TF into the AlphaFold2 model of AaNav1-1 and found that the tetrafluorophenyl ring of TF binds to alpha helices S5, P1, and S6, but not to the linker helices S4-S5 within either PyR1 or PyR2. In agreement with the model, functional examination of 15 AaNav1-1 mutants demonstrated that substitutions of DMT/PMT-sensing residues in helices S5, P1, and S6, but not in the linker-helices S4-S5, altered channel sensitivity to TF. These results revealed the unique action of TF on channel gating and suggest a distinct subtype of type I pyrethroids with a previously uncharacterized pattern of interactions with residues at the dual pyrethroid receptor sites.
Collapse
Affiliation(s)
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia; Almazov National Medical Research Centre, Saint Petersburg, 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
García J, Chong M, Rojas AL, McMillan WO, Bennett KL, Lenhart AE, Chaves LF, Loaiza JR. Widespread geographic distribution of Aedes aegypti (Diptera: Culicidae) kdr variants in Panama. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1448-1458. [PMID: 39259661 DOI: 10.1093/jme/tjae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
We searched for evidence of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) mosquitoes from Panama. Conventional PCR was performed on 469 Ae. aegypti and 349 Ae. albopictus. We did not discover kdr mutations in Ae. albopictus, but 2 nonsynonymous kdr mutations, V1016I (found in 101 mosquitoes) and F1534C (found in 29 of the mosquitoes with the V1016I), were detected in Ae. aegypti. These kdr mutations were present in all specimens that were successfully sequenced for both IIS5-S6 and IIIS6 regions, which included samples collected from 8 of the 10 provinces of Panama. No other kdr mutations were found in Ae. aegypti, including V1016G, which has already been reported in Panama. Findings suggest that the V1016I-F1534C variant is prevalent in Panama, which might be related to the introduction and passive movement of mosquitoes as part of the used-tire trade. However, we cannot rule out the possibility that selection on de novo replacement of kdr mutations also partially explains the widespread distribution pattern of these mutations. These 2 ecological and evolutionary processes are not mutually exclusive, though, as they can occur in tandem. Research in Panama needs to calculate the genotypic and allelic frequencies of kdr alleles in local Ae. aegypti populations and to test whether some combinations confer phenotypic resistance or not. Finally, future studies will have to track the introduction and spreading of new kdr mutations in both Aedes species.
Collapse
Affiliation(s)
- Joel García
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panama, Campus Octavio Méndez Pereira, Avenida Transístmica, Panama City, Panama
| | - Mabelle Chong
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Ambar L Rojas
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - W Owen McMillan
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kelly L Bennett
- Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Audrey E Lenhart
- Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Luis F Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
- Department of Geography, Indiana University, Bloomington, IN, USA
| | - Jose R Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panama, Campus Octavio Méndez Pereira, Avenida Transístmica, Panama City, Panama
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama City, Panama
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama
| |
Collapse
|
4
|
Atencia–Pineda MC, Diaz-Ortiz D, Pareja–Loaiza P, García–Leal J, Hoyos–López R, Calderón–Rangel A, Fragozo-Castilla P, Pacheco-Lugo L, Flores AE, Maestre–Serrano R. Assessing pyrethroid resistance in Aedes aegypti from Cordoba Colombia: Implications of kdr mutations. PLoS One 2024; 19:e0309201. [PMID: 39172980 PMCID: PMC11340990 DOI: 10.1371/journal.pone.0309201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Resistance to insecticides is one of the great challenges that vector control programs must face. The constant use of pyrethroid-type insecticides worldwide has caused selection pressure in populations of the Aedes aegypti vector, which has promoted the emergence of resistant populations. The resistance mechanism to pyrethroid insecticides most studied to date is target-site mutations that desensitize the voltage-gated sodium channel (VGSC) of the insect to the action of pyrethroids. In the present study, susceptibility to the pyrethroid insecticides permethrin, lambda-cyhalothrin, and deltamethrin was evaluated in fourteen populations from the department of Córdoba, Colombia. The CDC bottle bioassay and WHO tube methods were used. Additionally, the frequencies of the F1534C, V1016I, and V410L mutations were determined, and the association of resistance with the tri-locus haplotypes was examined. The results varied between the two techniques used, with resistance to permethrin observed in thirteen of the fourteen populations, resistance to lambda-cyhalothrin in two populations, and susceptibility to deltamethrin in all the populations under study with the CDC method. In contrast, the WHO method showed resistance to the three insecticides evaluated in all populations. The frequencies of the mutated alleles ranged from 0.05-0.43 for 1016I, 0.94-1.0 for 1534C, and 0.01-0.59 for 410L. The triple homozygous mutant CIL haplotype was associated with resistance to all three pyrethroids evaluated with the WHO bioassay, while with the CDC bioassay, it was only associated with resistance to permethrin. This study highlights the importance of implementing systematic monitoring of kdr mutations, allowing resistance management strategies to be dynamically adjusted to achieve effective control of Aedes aegypti.
Collapse
Affiliation(s)
- María Claudia Atencia–Pineda
- Doctorado en Microbiología y Salud Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Diana Diaz-Ortiz
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Paula Pareja–Loaiza
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Javier García–Leal
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Richard Hoyos–López
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Universidad de Córdoba, Montería, Colombia
| | - Alfonso Calderón–Rangel
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Universidad de Córdoba, Montería, Colombia
| | - Pedro Fragozo-Castilla
- Grupo de Investigación Parasitología Agroecología Milenio, Universidad Popular del Cesar, Valledupar, Colombia
| | - Lisandro Pacheco-Lugo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Adriana E. Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garzas, México
| | - Ronald Maestre–Serrano
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| |
Collapse
|
5
|
Chen L, Zhou K, Shi J, Zheng Y, Zhao X, Du Q, Lin Y, Yin X, Jiang J, Feng X. Pyrethroid resistance status and co-occurrence of V1016G, F1534C and S989P mutations in the Aedes aegypti population from two dengue outbreak counties along the China-Myanmar border. Parasit Vectors 2024; 17:91. [PMID: 38414050 PMCID: PMC10898090 DOI: 10.1186/s13071-024-06124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Over the past two decades, dengue fever (DF) has emerged as a significant arboviral disease in Yunnan province, China, particularly in the China-Myanmar border area. Aedes aegypti, an invasive mosquito species, plays a crucial role in transmitting the dengue virus to the local population. Insecticide-based vector control has been the primary tool employed to combat DF, but the current susceptibility status of Ae. aegypti to commonly used insecticides is unknown. Assessment of Ae. aegypti resistance to pyrethroid insecticides and an understanding of the underlying mechanisms of this resistance in the China-Myanmar border region is of significant strategic importance for effectively controlling the DF epidemic in the area. METHODS Aedes aegypti larvae collected from Ruili and Gengma counties in Yunnan Province were reared to adults in the laboratory and tested for susceptibility to three pyrethroid insecticides (3.20% permethrin, 0.08% lambda-cyhalothrin and 0.20% deltamethrin) by the standard WHO susceptibility bioassay. Genotyping of mutations in the knockdown gene (kdr), namely S989P, V1016G and F1534C, that are responsible for resistance to pyrethroid insecticides was performed using allele-specific PCR methods. A possible association between the observed resistant phenotype and mutations in the voltage-gated sodium channel gene (VGSC) was also studied. RESULTS Aedes aegypti mosquitoes collected from the two counties and reared in the laboratory were resistant to all of the pyrethroids tested, with the exception of Ae. aegypti from Gengma County, which showed sensitivity to 0.20% deltamethrin. The mortality rate of Ae. aegypti from Ruili county exposed to 3.20% permethrin did not differ significantly from that of Ae. aegypti from Gengma County (χ2 = 0.311, P = 0.577). By contrast, the mortality rate of Ae. aegypti from Ruili County exposed to 0.08% lambda-cyhalothrin and 0.20% deltamethrin, respectively, was significantly different from that of Ae. aegypti from Gengma. There was no significant difference in the observed KDT50 of Ae. aegypti from the two counties to various insecticides. Four mutation types and 12 genotypes were detected at three kdr mutation sites. Based on results from all tested Ae. aegypti, the V1016G mutation was the most prevalent kdr mutation (100% prevalence), followed by the S989P mutation (81.6%) and the F1534C mutation (78.9%). The constituent ratio of VGSC gene mutation types was significantly different in Ae. aegypti mosquitoes from Ruili and those Gengma. The triple mutant S989P + V1016G + F1534C was observed in 274 Ae. aegypti mosquitoes (60.8%), with the most common genotype being SP + GG + FC (31.4%). The prevalence of the F1534C mutation was significantly higher in resistant Ae. aegypti from Ruili (odds ratio [OR] 7.43; 95% confidence interval [CI] 1.71-32.29; P = 0.01) and Gengma (OR 9.29; 95% CI 3.38-25.50; P = 0.00) counties than in susceptible Ae. aegypti when exposed to 3.20% permethrin and 0.08% lambda-cyhalothrin, respectively. No significant association was observed in the triple mutation genotypes with the Ae. aegypti population exposed to 3.20% permethrin and 0.20% deltamethrin resistance (P > 0.05), except for Ae. aegypti from Gengma County when exposed to 0.08% lambda-cyhalothrin (OR 2.86; 95% CI 1.20-6.81; P = 0.02). CONCLUSIONS Aedes aegypti from Ruili and Gengma counties have developed resistance to various pyrethroid insecticides. The occurrence of multiple mutant sites in VGSC strongly correlated with the high levels of resistance to pyrethroids in the Ae. aegypti populations, highlighting the need for alternative strategies to manage the spread of resistance. A region-specific control strategy for dengue vectors needs to be implemented in the future based on the status of insecticide resistance and kdr mutations.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Kemei Zhou
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Jun Shi
- Lincang Center for Disease Control and Prevention, Lincang, China
| | - Yuting Zheng
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Xiaotao Zhao
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Qingyun Du
- Gengma Center for Disease Control and Prevention, Gengma, China
| | - Yingkun Lin
- Dehong Prefecture Center for Disease Control and Prevention, Mangshi, China
| | - Xaioxiong Yin
- Ruili Center for Disease Control and Prevention, Ruili, China
| | - Jinyong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China.
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University, The University of Edinburgh, Shanghai, 20025, China.
| |
Collapse
|
6
|
Mendis BAN, Peiris V, Harshani WAK, Fernando HSD, de Silva BGDNK. Fine-scale monitoring of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Sri Lanka and modeling the phenotypic resistance using rational approximation. Parasit Vectors 2024; 17:18. [PMID: 38216956 PMCID: PMC10785423 DOI: 10.1186/s13071-023-06100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The unplanned and intensified use of insecticides to control mosquito-borne diseases has led to an upsurge of resistance to commonly used insecticides. Aedes aegypti, the main vector of dengue, chikungunya, and Zika virus, is primarily controlled through the application of adulticides (pyrethroid insecticides) and larvicides (temephos). Fine spatial-scale analysis of resistance may reveal important resistance-related patterns, and the application of mathematical models to determine the phenotypic resistance status lessens the cost and usage of resources, thus resulting in an enhanced and successful control program. METHODS The phenotypic resistance for permethrin, deltamethrin, and malathion was monitored in the Ae. aegypti populations using the World Health Organization (WHO) adult bioassay method. Mosquitoes' resistance to permethrin and deltamethrin was evaluated for the commonly occurring base substitutions in the voltage-gated sodium channel (vgsc) gene. Rational functions were used to determine the relationship between the kdr alleles and the phenotypic resistant percentage of Ae. aegypti in Sri Lanka. RESULTS The results of the bioassays revealed highly resistant Ae. aegypti populations for the two pyrethroid insecticides (permethrin and deltamethrin) tested. All populations were susceptible to 5% malathion insecticide. The study also revealed high frequencies of C1534 and G1016 in all the populations studied. The highest haplotype frequency was detected for the haplotype CC/VV, followed by FC/VV and CC/VG. Of the seven models obtained, this study suggests the prediction models using rational approximation considering the C allele frequencies and the total of C, G, and P allele frequencies and phenotypic resistance as the best fits for the area concerned. CONCLUSIONS This is the first study to our knowledge to provide a model to predict phenotypic resistance using rational functions considering kdr alleles. The flexible nature of the rational functions has revealed the most suitable association among them. Thus, a general evaluation of kdr alleles prior to insecticide applications would unveil the phenotypic resistance percentage of the wild mosquito population. A site-specific strategy is recommended for monitoring resistance with a mathematical approach and management of insecticide applications for the vector population.
Collapse
Affiliation(s)
- B A N Mendis
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - V Peiris
- Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
- Center for Optimization and Decision Science, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - W A K Harshani
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - H S D Fernando
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - B G D N K de Silva
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
7
|
Ould Lemrabott MA, Briolant S, Gomez N, Basco L, Ould Mohamed Salem Boukhary A. First report of kdr mutations in the voltage-gated sodium channel gene in the arbovirus vector, Aedes aegypti, from Nouakchott, Mauritania. Parasit Vectors 2023; 16:464. [PMID: 38115092 PMCID: PMC10731742 DOI: 10.1186/s13071-023-06066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Since 2014, dengue epidemics have occurred almost annually in Nouakchott, the capital city of Mauritania, coinciding with the recent establishment of Aedes aegypti, the primary vector of dengue, in the city. Anopheles arabiensis, the primary vector of malaria, is also abundant not only in Nouakchott but also in most areas of the country. Resistance to insecticides has been studied in An. arabiensis but not in Ae. aegypti in Mauritania. The objective of the present study was to establish the baseline data on the frequencies of knockdown resistance (kdr) mutations in the voltage-gated sodium channel (vgsc) gene in Ae. aegypti collected in Nouakchott to improve vector control. METHODS Resting Ae. aegypti mosquitoes were collected in 2017 and 2018 in Teyarett and Dar Naim districts in Nouakchott using a battery-powered aspirator. Polymerase chain reaction (PCR) and DNA sequencing were performed to detect the presence of five kdr mutations known to be associated with pyrethroid resistance: L982W, S989P, I1011M/G, V1016G/I, and F1534C. RESULTS A total of 100 female Ae. aegypti mosquitoes were identified among collected resting culicid fauna, of which 60% (60/100) were unfed, 12% (12/100) freshly blood-fed, and 28% (28/100) gravid. Among the mutations investigated in this study, 989P, 1016G, and 1534C were found to be widespread, with the frequencies of 0.43, 0.44, and 0.55, respectively. Mutations were not found in codons 982 and 1011. No other mutations were detected within the fragments analyzed in this study. Genotype distribution did not deviate from Hardy-Weinberg equilibrium. The most frequent co-occurring point mutation patterns among Ae. aegypti mosquitoes were the heterozygous individuals 989SP/1016VG/1534FC detected in 45.1% of mosquitoes. In addition, homozygous mutant 1534CC co-occurred simultaneously with homozygous wild type 989SS and 1016VV in 30.5% of mosquito specimens. Inversely, homozygous wild-type 1534FF co-occurred simultaneously with homozygous mutant 989PP and 1016GG in 19.5% of the mosquitoes. CONCLUSIONS To our knowledge, this is the first study reporting the presence of three point mutations in the vgsc gene of Ae. aegypti in Mauritania. The findings of the present study are alarming because they predict a high level of resistance to pyrethroid insecticides which are commonly used in vector control in the country. Therefore, further studies are urgently needed, in particular phenotypic characterization of insecticide resistance using the standardized test.
Collapse
Affiliation(s)
| | - Sébastien Briolant
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.
| | - Nicolas Gomez
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Leonardo Basco
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Université de Nouakchott, UR-GEMI, Nouveau Campus Universitaire, BP 5026, Nouakchott, Mauritania.
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
8
|
Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, Zhang Q, Chen K, Liu L, Wu M, Ma Z, Gao J, Zhang H, Zhao T. Evolution of knockdown resistance ( kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Front Cell Infect Microbiol 2023; 13:1265873. [PMID: 37808913 PMCID: PMC10552158 DOI: 10.3389/fcimb.2023.1265873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Aedes aegypti and Aedes albopictus are important vectors of human arboviruses, transmitting arboviral diseases such as yellow fever, dengue, chikungunya and Zika. These two mosquitoes coexist on Hainan Island and the Leizhou Peninsula in China. Over the past 40 years, the distribution of Ae. albopictus has gradually expanded in these areas, while the distribution of Ae. aegypti has declined dramatically mainly due to the ecological changes and some other factors such as heavy use of insecticide indoor based on endophagic bloodfeeding of the species. Methods This study focused on the knockdown resistance (kdr) genes of both mosquitoes, investigated their mutations, and analyzed their haplotype and evolutionary diversity combined with population genetic features based on the ND4/ND5 genes to further elucidate the molecular mechanisms underlying the development of insecticide resistance in both mosquitoes. Results Three mutations, S989P, V1016G and F1534C, were found to be present in Ae. aegypti populations, and the three mutations occurred synergistically. Multiple mutation types (F1534C/S/L/W) of the F1534 locus are found in Ae. albopictus populations, with the three common mutations F1534C, F1534S and F1534L all having multiple independent origins. The F1534W (TTC/TGG) mutation is thought to have evolved from the F1534L (TTC/TTG) mutation. The F1534S (TTC/TCG) mutation has evolved from the F1534S (TTC/TCC) mutation. The most common form of mutation at the F1534 locus found in this study was S1534C, accounting for 20.97%, which may have evolved from the F1534C mutation. In addition, a new non-synonymous mutation M1524I and 28 synonymous mutations were identified in Ae. albopictus populations. Correlation analysis showed that the genetic diversity of Ae. aegypti and Ae. albopictus populations did not correlate with their kdr haplotype diversity (P>0.05), but strong gene flow between populations may have contributed to the evolution of the kdr gene. Conclusion The study of kdr gene evolution in the two mosquito species may help to identify the evolutionary trend of insecticide resistance at an early stage and provide a theoretical basis for improving the efficiency of biological vector control and subsequent research into new insecticides.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Xin Ran
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Liao
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Wei Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Yu Bai
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Qiang Zhang
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Kan Chen
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Lan Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Mingyu Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Kadjo YMAE, Adja AM, Guindo-Coulibaly N, Zoh DD, Traoré DF, Assouho KF, Sadia-Kacou MAC, Kpan MDS, Yapi A, Chandre F. Insecticide Resistance and Metabolic Mechanisms in Aedes aegypti from Two Agrosystems (Vegetable and Cotton Crops) in Côte d'Ivoire. Vector Borne Zoonotic Dis 2023; 23:475-485. [PMID: 37615509 DOI: 10.1089/vbz.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background: The emergence of insecticide resistance in Aedes vectors mosquitoes poses a real challenge for arboviral-borne disease control. In Côte d'Ivoire, data are available on phenotypic resistance and the presence of kdr mutations in Aedes aegypti. Therefore, information on metabolic resistance in Aedes populations is very scarce. Here, we assessed the insecticide resistance status of Ae. aegypti in periurban and rural areas of Côte d'Ivoire, and we investigated the role of detoxification enzymes as possible resistance mechanisms. Materials and Methods: Aedes mosquito eggs were collected between June 2019 to April 2021 in two agricultural sites. Adults of Ae. aegypti were tested using World Health Organization tube assays, with seven insecticides belonging to pyrethroids, organochlorines, carbamates, and organophosphates classes. We determined the knockdown times (KdT50, KdT95) and resistance ratios of pyrethroids in natural populations. The synergist piperonyl butoxide (PBO) was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed-function oxidase levels, nonspecific esterases (NSEs), and glutathione S-transferases. Results: The results showed that Ae. aegypti populations were resistant to five insecticides with mortality of 46% and 89% for 0.75% permethrin, 68% and 92% for 0.05% deltamethrin, 57% and 89% for lambda-cyhalothrin, 41% and 47% for dichlorodiphenyltrichloroethane (DDT), 82% and 91% for chlorpyrifos-methyl in Songon-Agban and Kaforo, respectively. Susceptibility to carbamates was observed in our study sites. After exposure to PBO, the susceptibility of Ae. aegypti to pyrethroids and DDT was partially restored in Songon-Agban. Whereas in Kaforo, none increase of the mortality rates of Ae. aegypti for these four insecticides was observed after exposure to PBO. Increased activity of NSE (α-esterases) was found in Songon-Agban compared with the reference susceptible strain. Conclusion: These findings provide valuable information to support decisions for vector control strategies in Cote d'Ivoire. Also, we highlight the need for the monitoring of insecticide resistance management in Aedes vectors.
Collapse
Affiliation(s)
- Yapo Marie-Ange Edwige Kadjo
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Akré M Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Dounin Danielle Zoh
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Konan Fabrice Assouho
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | | | - Ahoua Yapi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
- Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
10
|
Wu H, Qian J, Xu Z, Yan R, Zhu G, Wu S, Chen M. Leucine to tryptophane substitution in the pore helix IIP1 confer sodium channel resistance to pyrethroids and DDT. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105490. [PMID: 37532317 DOI: 10.1016/j.pestbp.2023.105490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
Aedes aegypti is responsible for transmitting a variety of arboviral infectious diseases such as dengue and chikungunya. Insecticides, particularly pyrethroids, are used widely for mosquito control. However, intensive used of pyrethroids has led to the selection of kdr mutations on sodium channels. L982W, locating in the PyR1 (Pyrethroid receptor site 1), was first reported in Ae. aegypti populations collected from Vietnam. Recently, the high frequency of L982W was detected in pyrethroid-resistant populations of Vietnam and Cambodia, and also concomitant mutations L982W + F1534C was detected in both countries. However, the role of L982W in pyrethroid resistance remains unclear. In this study, we examined the effects of L982W on gating properties and pyrethroid sensitivity in Xenopus oocytes. We found that mutations L982W and L982W + F1534C shifted the voltage dependence of activation in the depolarizing direction, however, neither mutations altered the voltage dependence of inactivation. L982W significantly reduced channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, and Type II pyrethroids, deltamethrin and cypermethrin. No enhancement was observed when synergized with F1534C. In addition, L982W and L982W + F1534C mutations reduced the channel sensitivity to DDT. Our results illustrate the molecular basis of resistance mediates by L982W mutation, which will be helpful to understand the interacions of pyrethroids or DDT with sodium channels and develop molecular markers for monitoring pest resistance to pyrethroids and DDT.
Collapse
Affiliation(s)
- Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiali Qian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- College of life sciences, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China.
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
11
|
Niklas B, Rydzewski J, Lapied B, Nowak W. Toward Overcoming Pyrethroid Resistance in Mosquito Control: The Role of Sodium Channel Blocker Insecticides. Int J Mol Sci 2023; 24:10334. [PMID: 37373481 DOI: 10.3390/ijms241210334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Diseases spread by mosquitoes lead to the death of 700,000 people each year. The main way to reduce transmission is vector control by biting prevention with chemicals. However, the most commonly used insecticides lose efficacy due to the growing resistance. Voltage-gated sodium channels (VGSCs), membrane proteins responsible for the depolarizing phase of an action potential, are targeted by a broad range of neurotoxins, including pyrethroids and sodium channel blocker insecticides (SCBIs). Reduced sensitivity of the target protein due to the point mutations threatened malaria control with pyrethroids. Although SCBIs-indoxacarb (a pre-insecticide bioactivated to DCJW in insects) and metaflumizone-are used in agriculture only, they emerge as promising candidates in mosquito control. Therefore, a thorough understanding of molecular mechanisms of SCBIs action is urgently needed to break the resistance and stop disease transmission. In this study, by performing an extensive combination of equilibrium and enhanced sampling molecular dynamics simulations (3.2 μs in total), we found the DIII-DIV fenestration to be the most probable entry route of DCJW to the central cavity of mosquito VGSC. Our study revealed that F1852 is crucial in limiting SCBI access to their binding site. Our results explain the role of the F1852T mutation found in resistant insects and the increased toxicity of DCJW compared to its bulkier parent compound, indoxacarb. We also delineated residues that contribute to both SCBIs and non-ester pyrethroid etofenprox binding and thus could be involved in the target site cross-resistance.
Collapse
Affiliation(s)
- Beata Niklas
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Bruno Lapied
- University Angers, INRAE, SIFCIR, SFR QUASAV, F-49045 Angers, France
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
12
|
Waldman J, Klafke GM, Tirloni L, Logullo C, da Silva Vaz I. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis 2023; 14:102123. [PMID: 36716581 PMCID: PMC10033424 DOI: 10.1016/j.ttbdis.2023.102123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor - Centro de Pesquisa em Saúde Animal, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica de Artrópodes Hematófagos, IBqM, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Tanzila G, Rasheed SB, Khan NH, Kausar A, Jahan F, Wahid S. INSECTICIDE SUSCEPTIBILITY AND DETECTION OF kdr-GENE MUTATIONS IN AEDES AEGYPTI OF PESHAWAR, PAKISTAN. Acta Trop 2023; 242:106919. [PMID: 37028585 DOI: 10.1016/j.actatropica.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Dengue is a common disease in Peshawar, Pakistan whose primary vector is Aedes aegypti mosquito. Due to absence of vaccines and proper drugs for dengue, vector control is a necessary tool. Insecticide resistance in vectors is a threat to the control of dengue vector. This study presents the susceptibility status of Ae. aegypti to eight insecticides in district Peshawar and screen the mutations in knock down resistant gene (kdr). Ae. aegypti were found highly resistant to DDT and Deltamethrin while highly susceptible to Cyfluthrin and Bendiocarb. DNA sequencing of two domains (II and III) of kdr-gene have detected four SNPs in domain IIS6 at positions S989P and V1016G and two mutations at position T1520I and F1534C in domain IIIS6. Results showed a low frequency i.e. 0.19 and 0.12 for S989P and V1016G, moderate for T1520I (0.42) and high frequency for F1534C (0.86). Mutational combinations showed that the predominant combination was SSVVTICC (43%) in which T1520I was heterozygous and F1534C was homozygous mutant. This study will be helpful in designing vector control strategies for the control of dengue in the studied area and will provide first knowledge about Kdr gene mutations that confer resistance in this species.
Collapse
Affiliation(s)
- Gule Tanzila
- Jinnah College for Women, University of Peshawar, Peshawar 25000, Pakistan
| | | | - Nazma Habib Khan
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan
| | - Aisha Kausar
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan
| | - Fatima Jahan
- Department of Zoology, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Sobia Wahid
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan.
| |
Collapse
|
14
|
Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100306. [PMID: 36288047 PMCID: PMC9607256 DOI: 10.3390/tropicalmed7100306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Aedes aegypti and Aedes albopictus are two important vectors of several important arboviruses, including the dengue, chikungunya, and Zika viruses. Insecticide application is an important approach to reduce vector abundance during Aedes spp.-borne outbreaks in the absence of effective vaccines and treatments. However, insecticide overuse can result in the development of resistance, and careful monitoring of resistance markers is required. Methods: This meta-analysis and systematic review explored the spatial and temporal patterns of insecticide resistance in Asia from 2000 to 2021. PubMed, Scopus, EbscoHost, and Embase were used to enhance the search capability. The random-effects model was applied for the 94 studies that met our inclusion criteria for qualitative synthesis and meta-analysis. Results: Four major insecticides were studied (malathion, dichlorodiphenyltrichloroethane, permethrin, and deltamethrin). Dichlorodiphenyltrichloroethane resistance rates were high in both Ae. aegypti and Ae. albopictus (68% and 64%, respectively). Conversely, malathion resistance was less prevalent in Ae. aegypti (3%), and deltamethrin resistance was less common in Ae. albopictus (2%). Ae. aegypti displayed consistently high resistance rates (35%) throughout the study period, whereas the rate of insecticide resistance in Ae. albopictus increased from 5% to 12%. The rates of the major kdr mutations F1534C, V1016G, and S989P were 29%, 26%, and 22%, respectively. Conclusions: Insecticide resistance in both Ae. aegypti and Ae. albopictus is widespread in Asia, although the rates vary by country. Continuous monitoring of the resistance markers and modification of the control strategies will be important for preventing unexpected outbreaks. This systematic review and meta-analysis provided up-to-date information on insecticide resistance in dengue-endemic countries in Asia.
Collapse
|
15
|
Chung HH, Tsai CH, Teng HJ, Tsai KH. The role of voltage-gated sodium channel genotypes in pyrethroid resistance in Aedes aegypti in Taiwan. PLoS Negl Trop Dis 2022; 16:e0010780. [PMID: 36137080 PMCID: PMC9531798 DOI: 10.1371/journal.pntd.0010780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/04/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aedes aegypti is the major vector of dengue that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but the repeated usage of the same insecticides leads to resistance and hampers control efforts. Therefore, efficient and prompt monitoring of insecticide resistance in local mosquito populations is critical for dengue control. Methodology/Principal finding We collected Ae. aegypti in southern Taiwan in March and October 2016. We analyzed the voltage-gated sodium channel (vgsc) genotypes of parentals (G0) and G1 adults after cypermethrin insecticide bioassay. Our results showed that four VGSC mutations (S989P, V1016G, F1534C, and D1763Y) associated with resistance were commonly detected in field-collected Ae. aegypti. The frequencies of these four mutations in the local mosquito population were significantly higher in October (0.29, 0.4, 0.27 and 0.11) than in March (0.09, 0.16, 0.18 and 0.03). Specific vgsc combined genotypes composed of the one to four such mutations (SGFY/SGFY, SVCD/SVCD, SGFY/PGFD, SVCD/SGFY, PGFD/PGFD, and SVCD/PGFD) shifted towards higher frequencies in October, implying their resistance role. In addition, the cypermethrin exposure bioassay data supported the field observations. Moreover, our study observed an association between the resistance level and the proportion of resistance genotypes in the population. Conclusions/Significance This is the first study to demonstrate the role of four-locus vgsc genotypes in resistance evaluation in a local Ae. aegypti population in Taiwan. This alternative method using resistance-associated genotypes as an indicator of practically insecticide resistance monitoring is a useful tool for providing precise and real-time information for decision makers. Dengue outbreaks occur annually in Taiwan, and pyrethroid insecticides are commonly used to reduce mosquito density. Insecticide resistance of mosquitoes is commonly observed in the field and threatens vector control programs. Here, we analyzed the association between the combined vgsc genotype and resistance phenotype based on field surveillance data in March and October and a cypermethrin exposure bioassay. Resistance-attributable specific vgsc genotypes were proposed. Using the combined vgsc genotype rather than each vgsc allele is recommended for better resistance prediction to provide real-time information for control program managers.
Collapse
Affiliation(s)
- Han-Hsuan Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hui Tsai
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hwa-Jen Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- * E-mail: (HJT); (KHT)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail: (HJT); (KHT)
| |
Collapse
|
16
|
Fagbohun IK, Oyeniyi TA, Idowu ET, Nwanya O, Okonkwo F, Adesalu KO, Jimoh RT, Oladosu Y, Otubanjo OA, Adeogun AO. Detection and Co-occurrence of kdr (F1534C and S989P) Mutations in Multiple Insecticides Resistant Aedes aegypti (Diptera: Culicidae) in Nigeria. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1741-1748. [PMID: 35960164 DOI: 10.1093/jme/tjac114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of yellow fever virus transmitted by Aedes aegypti has been of major concern in Nigeria, this mosquito also transmits several other arboviruses globally. The control of many vectors of mosquito-borne diseases relies heavily on the use of insecticides. Therefore, constant monitoring of insecticide resistance status and associated mechanisms is crucial within the local mosquito population. Here, we determined the resistance profile of adult Ae. aegypti from Majidun and Oke Ota communities, Ikorodu Local Government Area of Lagos State, Nigeria to different classes of insecticides using WHO procedures. The resistant phenotypes of Ae. aegypti were screened for the presence of kdr mutations F1534C, S989P, and V1016G, which have been implicated in insecticide resistance in yellow fever vectors. A high level of resistance to DDT and pyrethroids was recorded in Ae. aegypti in this study, although possible resistance to deltamethrin, one of the pyrethroids was reported in one of the locations. Resistance to bendiocarb was recorded in the Majidun community while Ae. aegypti in both locations were susceptible to malathion. The presence of F1534C mutation associated with DDT and deltamethrin resistance in Ae. aegypti population, and the presence of S989P mutation were detected singly and in co-occurrence with F1534C for the first time in Africa, while V1016G mutation was not detected in this study. The role of these mutations in resistance phenotype expressed in Ae. aegypti in larger populations needs to be established.
Collapse
Affiliation(s)
- Ifeoluwa Kayode Fagbohun
- Molecular Entomology and Vector Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Department of Zoology, University of Lagos, Yaba, Lagos State, Nigeria
| | - Tolulope Amos Oyeniyi
- Molecular Entomology and Vector Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | | | - Oge Nwanya
- Department of Zoology, University of Lagos, Yaba, Lagos State, Nigeria
| | - Felix Okonkwo
- Department of Zoology, University of Lagos, Yaba, Lagos State, Nigeria
| | - Kemi O Adesalu
- Molecular Entomology and Vector Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Romoke T Jimoh
- Molecular Entomology and Vector Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Yusuff Oladosu
- Institute of Tropical Agriculture and Food Security, Universiti Putra, Serdang, Selangor Daruf Ehsan, Malaysia
| | | | - Adedapo O Adeogun
- Molecular Entomology and Vector Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| |
Collapse
|
17
|
Zhorov BS, Dong K. Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel. INSECTS 2022; 13:745. [PMID: 36005370 PMCID: PMC9409284 DOI: 10.3390/insects13080745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Pyrethroid insecticides stabilize the open state of insect sodium channels. Previous mutational, electrophysiological, and computational analyses led to the development of homology models predicting two pyrethroid receptor sites, PyR1 and PyR2. Many of the naturally occurring sodium channel mutations, which confer knockdown resistance (kdr) to pyrethroids, are located within or close to these receptor sites, indicating that these mutations impair pyrethroid binding. However, the mechanism of the state-dependent action of pyrethroids and the mechanisms by which kdr mutations beyond the receptor sites confer resistance remain unclear. Recent advances in protein structure prediction using the AlphaFold2 (AF2) neural network allowed us to generate a new model of the mosquito sodium channel AaNav1-1, with the activated voltage-sensing domains (VSMs) and the presumably inactivated pore domain (PM). We further employed Monte Carlo energy minimizations to open PM and deactivate VSM-I and VSM-II to generate additional models. The docking of a Type II pyrethroid deltamethrin in the models predicted its interactions with many known pyrethroid-sensing residues in the PyR1 and PyR2 sites and revealed ligand-channel interactions that stabilized the open PM and activated VSMs. Our study confirms the predicted two pyrethroid receptor sites, explains the state-dependent action of pyrethroids, and proposes the mechanisms of the allosteric effects of various kdr mutations on pyrethroid action. The AF2-based models may assist in the structure-based design of new insecticides.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Akhir MAM, Wajidi MFF, Lavoué S, Azzam G, Jaafar IS, Awang Besar NAU, Ishak IH. Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G. Parasit Vectors 2022; 15:122. [PMID: 35387654 PMCID: PMC8988349 DOI: 10.1186/s13071-022-05192-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Improved understanding of the molecular basis of insecticide resistance may yield new opportunities for control of relevant disease vectors. In this current study, we investigated the quantification responses for the phenotypic and genotypic resistance of Aedes aegypti populations from different states in Malaysia. METHODS We tested the insecticide susceptibility status of adult Ae. aegypti from populations of three states, Penang, Selangor and Kelantan (Peninsular Malaysia), against 0.25% permethrin and 0.25% pirimiphos-methyl using the World Health Organisation (WHO) adult bioassay method. Permethrin-resistant and -susceptible samples were then genotyped for domains II and III in the voltage-gated sodium channel (vgsc) gene using allele-specific polymerase chain reaction (AS-PCR) for the presence of any diagnostic single-nucleotide mutations. To validate AS-PCR results and to identify any possible additional point mutations, these two domains were sequenced. RESULTS The bioassays revealed that populations of Ae. aegypti from these three states were highly resistant towards 0.25% permethrin and 0.25% pirimiphos-methyl. Genotyping results showed that three knockdown (kdr) mutations (S989P, V1016G and F1534C) were associated with pyrethroid resistance within these populations. The presence of a novel mutation, the A1007G mutation, was also detected. CONCLUSIONS This study revealed the high resistance level of Malaysian populations of Ae. aegypti to currently used insecticides. The resistance could be due to the widespread presence of four kdr mutations in the field and this could potentially impact the vector control programmes in Malaysia and alternative solutions should be sought.
Collapse
Affiliation(s)
- Mas Azlin M Akhir
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mustafa F F Wajidi
- School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.,Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Sébastien Lavoué
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ghows Azzam
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Izhan Shahrin Jaafar
- Kota Bharu Public Health Laboratory, Kelantan State Health Department, 16010, Kota Bharu, Kelantan, Malaysia
| | - Noor Aslinda Ummi Awang Besar
- Vector-Borne Disease Control Programme, Penang State Health Department, Anson Road, 10400, George Town, Penang, Malaysia
| | - Intan H Ishak
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. .,Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
19
|
Knockdown Resistance Mutations in the Voltage-Gated Sodium Channel of Aedes aegypti (Diptera: Culicidae) in Myanmar. INSECTS 2022; 13:insects13040322. [PMID: 35447764 PMCID: PMC9028491 DOI: 10.3390/insects13040322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to pyrethroid insecticides. Analysis of kdr mutations in Aedes aegypti mosquitoes collected from five different townships in the Mandalay area, Myanmar, revealed high levels of validated kdr mutations in domains II and III of vgsc. Moreover, high frequencies of concurrent kdr mutations were also detected. The results of this study suggest that kdr mutations associated with pyrethroid resistance are widespread in the Ae. aegypti population of the study area. Our results provide a valuable molecular basis to understand the pyrethroid resistance status of the Ae. aegypti population in the area and underscore the need for an effective vector control program in Myanmar. Abstract Aedes aegypti is an important mosquito vector transmitting diverse arboviral diseases in Myanmar. Pyrethroid insecticides have been widely used in Myanmar as the key mosquito control measure, but the efforts are constrained by increasing resistance. Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) are related to pyrethroid resistance in Ae. aegypti. We analyzed the patterns and distributions of the kdr mutations in Ae. aegypti in the Mandalay area of Myanmar. The segment 6 regions of domains II and III of vgsc were separately amplified from individual Ae. aegypti genomic DNA via polymerase chain reaction. The amplified gene fragments were sequenced. High proportions of three major kdr mutations, including S989P (54.8%), V1016G (73.6%), and F1534C (69.5%), were detected in the vgsc of Ae. aegypti from all studied areas. Other kdr mutations, T1520I and F1534L, were also found. These kdr mutations represent 11 distinct haplotypes of the vgsc population. The S989P/V1016G/F1534C was the most prevalent, followed by S989P/V1016V and V1016G/F1534C. A quadruple mutation, S989P/V1016G/T1520I/F1534C, was also identified. High frequencies of concurrent kdr mutations were observed in vgsc of Myanmar Ae. aegypti, suggesting a high level of pyrethroid resistance in the population. These findings underscore the need for an effective vector control program in Myanmar.
Collapse
|
20
|
Koç N, İnak E, Nalbantoğlu S, Alpkent YN, Dermauw W, Van Leeuwen T. Biochemical and molecular mechanisms of acaricide resistance in Dermanyssus gallinae populations from Turkey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104985. [PMID: 34955178 DOI: 10.1016/j.pestbp.2021.104985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The poultry red mite, Dermanyssus gallinae, is the most important blood sucking ectoparasite of egg laying hens and causes economic losses in poultry farms worldwide. Although various management methods exist, the control of poultry red mites (PRMs) mainly relies on acaricides such as pyrethroids and organophosphates (OPs) in many regions of the world. However, repeated use of these synthetic chemicals has resulted in resistance development causing control failure of PRM. In this study, we investigated acaricide resistance mechanisms of Turkish PRM populations. First, we obtained the COI sequence from 30 PRM populations from different regions in Turkey and identified four different COI haplotypes. Toxicity assays showed that four field-collected PRM populations were highly resistant to the pyrethroid alpha-cypermethrin, with resistance ratios (RRs) varying between 100- and 400-fold, while two of these populations had a RR of more than 24-fold against the OP acaricide phoxim. Biochemical assays showed a relatively higher activity of glutathione-S-transferases and carboxyl-cholinesterases, two well-known classes of detoxification enzymes, in one of these resistant populations. In addition, we also screened for mutations in the gene encoding the voltage-gated sodium channel (vgsc) and acetylcholinesterase 1 (ace-1), the target-site of pyrethroids and OPs, respectively. In all but two PRM populations, at least one vgsc mutation was detected. A total of four target-site mutations, previously associated with pyrethroid resistance, M918T, T929I, F1534L, F1538L were found in domain II and III of the VGSC. The T929I mutation was present in the vgsc of almost all PRM populations, while the other mutations were only found at low frequency. The G119S/A mutation in ace-1, previously associated with OP resistance, was found in PRM for the first time and present in fourteen populations. Last, both alive and dead PRMs were genotyped after pesticide exposure and supported the possible role of target-site mutations, T929I and G119S, in alpha-cypermethrin and phoxim resistance, respectively. To conclude, our study provides a current overview of resistance levels and resistance mutations in Turkish PRM populations and might aid in the design of an effective resistance management program of PRM in Turkey.
Collapse
Affiliation(s)
- Nafiye Koç
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Serpil Nalbantoğlu
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Yasin Nazım Alpkent
- Republic of Turkey Ministry of Agriculture and Forestry Directorate of Plant Protection Central Research Institute, Ministry of Agriculture and Forestry, Yenimahalle 06172, Ankara, Turkey
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 8920 Merelbeke, Belgium; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Sayono S, Anwar R, Sumanto D. Larvicidal Activity of Ethyl Acetate Extract of Derris elliptica Root against the Third-Instar Larvae of Cypermethrin-Resistant Aedes aegypti Offspring. J Arthropod Borne Dis 2020; 14:391-399. [PMID: 33954212 PMCID: PMC8053070 DOI: 10.18502/jad.v14i4.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Derris elliptica extracts have a high larvicidal potential against the laboratory strain of Aedes aegypti larvae, but the effect on offspring larvae of pyrethroid-resistant strains of the species is lack understood. This study aimed to determine the larvicidal activity of the ethyl acetate extract of tuba root against the third-instar larvae of the Cypermethrin-resistant Ae. aegypti offspring. Methods: The experimental study occupied four levels of ethyl acetate extract of D. elliptica namely 10, 25, 50, and 100 ppm, and each level was four times replicated. As many as twenty of healthy third-instar larvae, offspring of Cypermethrin-resistant Ae. aegypti were subjected to each experiment group. Larval mortality rate and lethal concentration 50% subject (LC50) were calculated after 24 and 48 hours of exposure time. Results: Mortality of larvae increased directly proportional to the increase of extract concentration. Larval mortality rates after 24 and 48 hours of exposure were 40–67.5% and 62.5–97.5%, and LC50 were 34.945 and 6.461ppm, respectively. Conclusion: The ethyl acetate extract of D. elliptica has the high effectiveness larvicidal potential against the third-instar larvae, offspring of the Cypermethrin-resistant Ae. aegypti. Isolation of the specific compound is necessarily done to obtain the active ingredient for larvicide formulation.
Collapse
Affiliation(s)
- Sayono Sayono
- Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Risyandi Anwar
- Herbal medicine research of Dentistry Faculty, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Didik Sumanto
- Laboratory of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| |
Collapse
|
22
|
Chen M, Du Y, Nomura Y, Zhorov BS, Dong K. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21686. [PMID: 32378259 PMCID: PMC8060125 DOI: 10.1002/arch.21686] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou, China
| | - Yuzhe Du
- USDA-ARS, Biological Control of Pest Research Unit, 59 Lee Road, Stoneville, MS 38776, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|