1
|
Luo J, He M, Liang C, Huang X, Zhu Y, Hu D, Yan J, Li M, Lin H, Liao W, Bin J, Guan Z, Zheng C, Liao Y. Canagliflozin reverses doxorubicin-induced cardiotoxicity via restoration of autophagic homeostasis. Toxicol Appl Pharmacol 2024; 495:117183. [PMID: 39631538 DOI: 10.1016/j.taap.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been reported as successful for preventing doxorubicin (DOX) -induced cardiotoxicity (DIC), but the underlying mechanisms are elusive. This study aimed to determine whether canagliflozin, an SGLT2i, protects against DIC by regulation of autophagic flux in cardiomyocytes through a mechanism independent of SGLT2. The differentially expressed autophagy-related genes (ARGs) in DIC were analyzed. Neonatal rat cardiomyocytes (NRCMs), H9C2 rat cardiomyocytes or C57BL/6 mice were treated with canagliflozin or vehicle. The effects on cellular apoptosis and autophagy were investigated using qRT-PCR, western blotting and immunofluorescence. Additionally, cardiac function, myocardial fibrosis, and apoptosis of cardiomyocytes were also assessed in mice. The potential molecular targets of canagliflozin were identified through molecular docking analysis. A total of 26 differentially expressed ARGs were identified. Canagliflozin significantly activated autophagic flux and inhibited apoptosis of cardiomyocytes in both DOX-treated H9C2 rat cardiomyocytes and NRCMs. In a murine model of DIC, canagliflozin improved cardiac dysfunction by suppressing cardiac remodeling, fibrosis, and apoptosis. Moreover, canagliflozin promoted autophagy by enhancing SIRT1 levels and inhibiting the PI3K/Akt/mTOR signaling pathway. Immunofluorescence assays revealed that canagliflozin promoted the translocation of LC3 from the nucleus to the cytoplasm. Molecular docking analysis confirmed that canagliflozin has high affinity for targets associated with DIC. These findings suggest that canagliflozin protects cardiomyocytes from DOX-induced cell death by activating SIRT1, inhibiting the PI3K/Akt/mTOR pathway, and enhancing autophagic flux.
Collapse
Affiliation(s)
- Jianping Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changzhu Liang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Huang
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Ziyun Guan
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Sanz RL, García Menéndez S, Inserra F, Ferder L, Manucha W. Sodium-glucose cotransporter-2 inhibitors protect tissues via cellular and mitochondrial pathways: Experimental and clinical evidence. World J Exp Med 2024; 14:91519. [PMID: 38948421 PMCID: PMC11212744 DOI: 10.5493/wjem.v14.i2.91519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Mitochondrial dysfunction is a key driver of cardiovascular disease (CVD) in metabolic syndrome and diabetes. This dysfunction promotes the production of reactive oxygen species (ROS), which cause oxidative stress and inflammation. Angiotensin II, the main mediator of the renin-angiotensin-aldosterone system, also contributes to CVD by promoting ROS production. Reduced activity of sirtuins (SIRTs), a family of proteins that regulate cellular metabolism, also worsens oxidative stress. Reduction of energy production by mitochondria is a common feature of all metabolic disorders. High SIRT levels and 5' adenosine monophosphate-activated protein kinase signaling stimulate hypoxia-inducible factor 1 beta, which promotes ketosis. Ketosis, in turn, increases autophagy and mitophagy, processes that clear cells of debris and protect against damage. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of drugs used to treat type 2 diabetes, have a beneficial effect on these mechanisms. Randomized clinical trials have shown that SGLT2i improves cardiac function and reduces the rate of cardiovascular and renal events. SGLT2i also increase mitochondrial efficiency, reduce oxidative stress and inflammation, and strengthen tissues. These findings suggest that SGLT2i hold great potential for the treatment of CVD. Furthermore, they are proposed as anti-aging drugs; however, rigorous research is needed to validate these preliminary findings.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| | - Felipe Inserra
- Department of Nephrology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Leon Ferder
- Department of Cardiology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Walter Manucha
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| |
Collapse
|
3
|
Kume S, Packer M. SGLT2 inhibitors act as metabolic transducers to restore healthy nutrient deprivation and surplus signaling in the kidney. Kidney Int 2024; 105:1172-1176. [PMID: 38777403 DOI: 10.1016/j.kint.2024.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Ostu, Shiga, Japan.
| | - Milton Packer
- Baylor University Medical Center, Dallas, Texas, USA; Imperial College, London, UK.
| |
Collapse
|
4
|
Preda A, Montecucco F, Carbone F, Camici GG, Lüscher TF, Kraler S, Liberale L. SGLT2 inhibitors: from glucose-lowering to cardiovascular benefits. Cardiovasc Res 2024; 120:443-460. [PMID: 38456601 DOI: 10.1093/cvr/cvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
An increasing number of individuals are at high risk of type 2 diabetes (T2D) and its cardiovascular complications, including heart failure (HF), chronic kidney disease (CKD), and eventually premature death. The sodium-glucose co-transporter-2 (SGLT2) protein sits in the proximal tubule of human nephrons to regulate glucose reabsorption and its inhibition by gliflozins represents the cornerstone of contemporary T2D and HF management. Herein, we aim to provide an updated overview of the pleiotropy of gliflozins, provide mechanistic insights and delineate related cardiovascular (CV) benefits. By discussing contemporary evidence obtained in preclinical models and landmark randomized controlled trials, we move from bench to bedside across the broad spectrum of cardio- and cerebrovascular diseases. With landmark randomized controlled trials confirming a reduction in major adverse CV events (MACE; composite endpoint of CV death, non-fatal myocardial infarction, and non-fatal stroke), SGLT2 inhibitors strongly mitigate the risk for heart failure hospitalization in diabetics and non-diabetics alike while conferring renoprotection in specific patient populations. Along four major pathophysiological axes (i.e. at systemic, vascular, cardiac, and renal levels), we provide insights into the key mechanisms that may underlie their beneficial effects, including gliflozins' role in the modulation of inflammation, oxidative stress, cellular energy metabolism, and housekeeping mechanisms. We also discuss how this drug class controls hyperglycaemia, ketogenesis, natriuresis, and hyperuricaemia, collectively contributing to their pleiotropic effects. Finally, evolving data in the setting of cerebrovascular diseases and arrhythmias are presented and potential implications for future research and clinical practice are comprehensively reviewed.
Collapse
Affiliation(s)
- Alberto Preda
- Department of Clinical Cardiology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College and King's College, London, United Kingdom
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
5
|
Wu S, Zou Y, Tan X, Yang S, Chen T, Zhang J, Xu X, Wang F, Li W. The molecular mechanisms of peptidyl-prolyl cis/trans isomerase Pin1 and its relevance to kidney disease. Front Pharmacol 2024; 15:1373446. [PMID: 38711994 PMCID: PMC11070514 DOI: 10.3389/fphar.2024.1373446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Shukun Wu
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurong Zou
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Liu Z, Hua W, Jin S, Wang Y, Pang Y, Wang B, Zhao N, Song Y, Qi J. Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor. Eur J Pharmacol 2024; 968:176381. [PMID: 38341077 DOI: 10.1016/j.ejphar.2024.176381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Wei Hua
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Sinan Jin
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yueying Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuxin Pang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Benshuai Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Nan Zhao
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| |
Collapse
|
7
|
Sanz RL, Menéndez SG, Inserra F, Ferder L, Manucha W. Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data. Curr Pharm Des 2024; 30:969-974. [PMID: 38551044 DOI: 10.2174/0113816128289350240320063045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 06/21/2024]
Abstract
In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia- inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Felipe Inserra
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - León Ferder
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - Walter Manucha
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
8
|
Mark PB, Sarafidis P, Ekart R, Ferro CJ, Balafa O, Fernandez-Fernandez B, Herrington WG, Rossignol P, Del Vecchio L, Valdivielso JM, Mallamaci F, Ortiz A, Nistor I, Cozzolino M. SGLT2i for evidence-based cardiorenal protection in diabetic and non-diabetic chronic kidney disease: a comprehensive review by EURECA-m and ERBP working groups of ERA. Nephrol Dial Transplant 2023; 38:2444-2455. [PMID: 37230946 PMCID: PMC10615631 DOI: 10.1093/ndt/gfad112] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 05/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health issue affecting an estimated 850 million people globally. The leading causes of CKD is diabetes and hypertension, which together account for >50% of patients with end-stage kidney disease. Progressive CKD leads to the requirement for kidney replacement therapy with transplantation or dialysis. In addition, CKD, is a risk factor for premature cardiovascular disease, particularly from structural heart disease and heart failure (HF). Until 2015, the mainstay of treatment to slow progression of both diabetic and many non-diabetic kidney diseases was blood pressure control and renin-angiotensin system inhibition; however, neither angiotensin-converting enzyme inhibitors (ACEIs) nor angiotensin receptor blockers (ARBs) reduced cardiovascular events and mortality in major trials in CKD. The emergence of cardiovascular and renal benefits observed with sodium-glucose cotransporter-2 inhibitors (SGLT2i) from clinical trials of their use as anti-hyperglycaemic agents has led to a revolution in cardiorenal protection for patients with diabetes. Subsequent clinical trials, notably DAPA-HF, EMPEROR, CREDENCE, DAPA-CKD and EMPA-KIDNEY have demonstrated their benefits in reducing risk of HF and progression to kidney failure in patients with HF and/or CKD. The cardiorenal benefits-on a relative scale-appear similar in patients with or without diabetes. Specialty societies' guidelines are continually adapting as trial data emerges to support increasingly wide use of SGLT2i. This consensus paper from EURECA-m and ERBP highlights the latest evidence and summarizes the guidelines for use of SGLT2i for cardiorenal protection focusing on benefits observed relevant to people with CKD.
Collapse
Affiliation(s)
- Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, Maribor, Slovenia
| | - Charles J Ferro
- Renal Unit, University Hospitals Birmingham and Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Beatriz Fernandez-Fernandez
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid. Spain, Spain
| | - William G Herrington
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Patrick Rossignol
- Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Service de Spécialités Médicales et de Néphrologie-Hémodialyse Centre Hospitalier Princesse Grace de Monaco, Monaco, Monaco
| | | | - Jose M Valdivielso
- Vascular and Renal Translational Research Group and UDETMA, IRBLleida, Lleida, Spain
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid. Spain, Spain
| | - Ionut Nistor
- Faculty of Medicine, University of Medicine and Pharmacy ‘Grigore T. Popa’, Iași, Romania
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Ishikane S, Arioka M, Takahashi-Yanaga F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem Pharmacol 2023; 214:115663. [PMID: 37336252 DOI: 10.1016/j.bcp.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-β, Wnt/β-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masaki Arioka
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
11
|
Liang Y, Liang Z, Huang J, Jia M, Liu D, Zhang P, Fang Z, Hu X, Li H. Identification and validation of aging-related gene signatures and their immune landscape in diabetic nephropathy. Front Med (Lausanne) 2023; 10:1158166. [PMID: 37404805 PMCID: PMC10316791 DOI: 10.3389/fmed.2023.1158166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Background Aging and immune infiltration have essential role in the physiopathological mechanisms of diabetic nephropathy (DN), but their relationship has not been systematically elucidated. We identified aging-related characteristic genes in DN and explored their immune landscape. Methods Four datasets from the Gene Expression Omnibus (GEO) database were screened for exploration and validation. Functional and pathway analysis was performed using Gene Set Enrichment Analysis (GSEA). Characteristic genes were obtained using a combination of Random Forest (RF) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm. We evaluated and validated the diagnostic performance of the characteristic genes using receiver operating characteristic (ROC) curve, and the expression pattern of the characteristic genes was evaluated and validated. Single-Sample Gene Set Enrichment Analysis (ssGSEA) was adopted to assess immune cell infiltration in samples. Based on the TarBase database and the JASPAR repository, potential microRNAs and transcription factors were predicted to further elucidate the molecular regulatory mechanisms of the characteristic genes. Results A total of 14 differentially expressed genes related to aging were obtained, of which 10 were up-regulated and 4 were down-regulated. Models were constructed by the RF and SVM-RFE algorithms, contracted to three signature genes: EGF-containing fibulin-like extracellular matrix (EFEMP1), Growth hormone receptor (GHR), and Vascular endothelial growth factor A (VEGFA). The three genes showed good efficacy in three tested cohorts and consistent expression patterns in the glomerular test cohorts. Most immune cells were more infiltrated in the DN samples compared to the controls, and there was a negative correlation between the characteristic genes and most immune cell infiltration. 24 microRNAs were involved in the transcriptional regulation of multiple genes simultaneously, and Endothelial transcription factor GATA-2 (GATA2) had a potential regulatory effect on both GHR and VEGFA. Conclusion We identified a novel aging-related signature allowing assessment of diagnosis for DN patients, and further can be used to predict immune infiltration sensitivity.
Collapse
Affiliation(s)
- Yingchao Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhiyi Liang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, China
| | - Jinxian Huang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjie Jia
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Pengxiang Zhang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zebin Fang
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyu Hu
- Graduate School of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
12
|
Yang W, Li X, He L, Zhu S, Lai S, Zhang X, Huang Z, Yu B, Cui C, Wang Q. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion. Cell Mol Biol Lett 2023; 28:42. [PMID: 37202752 DOI: 10.1186/s11658-023-00457-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is one reason for renal transplantation failure. Recent studies have shown that mitochondrial dynamics is closely related to IRI, and that inhibition or reversal of mitochondrial division protects organs against IRI. Optic atrophy protein 1 (OPA1), an important factor in mitochondrial fusion, has been shown to be upregulated by sodium-glucose cotransporter 2 inhibitor (SGLT2i). Also, the antiinflammatory effects of SGLT2i have been demonstrated in renal cells. Thus, we hypothesized that empagliflozin could prevent IRI through inhibiting mitochondrial division and reducing inflammation. METHODS Using hematoxylin-eosin staining, enzyme linked immunosorbent assay (ELISA), flow cytometry, immunofluorescent staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, real-time PCR, RNA-sequencing, and western blot, we analyzed renal tubular tissue from in vivo and in vitro experiments. RESULTS Through animal experiments and sequencing analysis, we first confirmed the protection against IRI and the regulation of mitochondrial dynamics-related factors and inflammatory factors by empagliflozin pretreatment. Then, through hypoxia/reoxygenation (H/R) cellular experiments, we confirmed that empagliflozin could inhibit mitochondrial shortening and division and upregulate OPA1 in human renal tubular epithelial cell line (HK-2) cells. Subsequently, we knocked down OPA1, and mitochondrial division and shortening were observed, which could be alleviated by empagliflozin treatment. Combined with the previous results, we concluded that OPA1 downregulation leads to mitochondrial division and shortening, and empagliflozin can alleviate the condition by upregulating OPA1. We further explored the pathway through which empagliflozin functions. Related studies have shown the activation of AMPK pathway by empagliflozin and the close correlation between the AMPK pathway and OPA1. In our study, we blocked the AMPK pathway, and OPA1 upregulation by empagliflozin was not observed, thus demonstrating the dependence of empagliflozin on the AMPK pathway. CONCLUSION The results indicated that empagliflozin could prevent or alleviate renal IRI through antiinflammatory effects and the AMPK-OPA1 pathway. Ischemia-reperfusion injury is an inevitable challenge in organ transplantation. It is necessary to develop a new therapeutic strategy for IRI prevention in addition to refining the transplantation process. In this study, we confirmed the preventive and protective effects of empagliflozin in renal ischemia-reperfusion injury. Based on these findings, empagliflozin is promising to be a preventive agent for renal ischemia-reperfusion injury and can be applied for preemptive administration in kidney transplantation.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoli Li
- Department of the Eighth Healthcare, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Liujie He
- Naval Medical University, Shanghai, 200433, China
| | - Shuyang Zhu
- Naval Medical University, Shanghai, 200433, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaopeng Zhang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Zixiong Huang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
13
|
Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease. Eur J Pharmacol 2023; 942:175521. [PMID: 36681317 DOI: 10.1016/j.ejphar.2023.175521] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.
Collapse
|
14
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
15
|
Sun X, Wang G. Renal outcomes with sodium-glucose cotransporters 2 inhibitors. Front Endocrinol (Lausanne) 2022; 13:1063341. [PMID: 36531469 PMCID: PMC9752889 DOI: 10.3389/fendo.2022.1063341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of diabetes. Therefore, delaying and preventing the progression of DN becomes an important goal in the clinical treatment of type 2 diabetes mellitus. Recent studies confirm that sodium-glucose cotransporters 2 inhibitors (SGLT2is) have been regarded as effective glucose-lowering drugs with renal protective effect. In this review, we summarize in detail the present knowledge of the effects of SGLT2is on renal outcomes by analyzing the experimental data in preclinical study, the effects of SGLT2is on estimated glomerular flitration rates (eGFRs) and urinary albumin-creatinine ratios (UACRs) from clinical trials and observational studies, and renal events (such as renal death or renal failure requiring renal replacement therapy) in some large prospective cardiovaslucar outcomes trials. The underlying mechanisms for renoprotective activity of SGLT2is have been demondtrated in multiple diabetic and nondiabetic animal models including kidney-specific effects and secondary kidney effects related to amelioration in blood glucose and blood pressure. In conclusion, these promising results show that SGLT2is act beneficially in terms of the kidney for diabetic patients.
Collapse
Affiliation(s)
| | - Guohong Wang
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomolecules 2022; 12:biom12091225. [PMID: 36139064 PMCID: PMC9496087 DOI: 10.3390/biom12091225] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus. While there has been a great advance in our understanding of the pathogenesis of DN, no effective managements of this chronic kidney disease are currently available. Therefore, continuing to elucidate the underlying biochemical and molecular mechanisms of DN remains a constant need. In this regard, animal models of diabetes are indispensable tools. This review article highlights a widely used rodent model of non-obese type 2 diabetes induced by nicotinamide (NA) and streptozotocin (STZ). The mechanism underlying diabetes induction by combining the two chemicals involves blunting the toxic effect of STZ by NA so that only a percentage of β cells are destroyed and the remaining viable β cells can still respond to glucose stimulation. This NA-STZ animal model, as a platform for the testing of numerous antidiabetic and renoprotective materials, is also discussed. In comparison with other type 2 diabetic animal models, such as high-fat-diet/STZ models and genetically engineered rodent models, the NA-STZ model is non-obese and is less time-consuming and less expensive to create. Given that this unique model mimics certain pathological features of human DN, this model should continue to find its applications in the field of diabetes research.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
18
|
Shen X, Shen X. Promise of sodium-glucose co-transporter-2 inhibitors in heart failure with mildly reduced ejection fraction. ESC Heart Fail 2022; 9:2239-2248. [PMID: 35642772 PMCID: PMC9288809 DOI: 10.1002/ehf2.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Heart failure with mildly reduced ejection fraction (HFmrEF) is associated with comparable poor outcomes as other subtypes of heart failure and remains a medical unmet need due to the paucity of effective therapies. According to large cardiovascular (CV) outcome trials in patients with heart failure, sodium-glucose co-transporter-2 inhibitors (SGLT2is) reduce CV mortality and hospitalizations for heart failure in patients with heart failure across the spectrum of left ventricular ejection fraction (LVEF). There has been a lack of dedicated trials in HFmrEF. However, several large outcome trials in heart failure that enrolled patients with HFmrEF could provide a hint on the role of SGLT2is in this subgroup. This review focuses on CV effects of three major SGLT2is-dapagliflozin, empagliflozin, and sotagliflozin-in patients with HFmrEF. A narrative review of trials investigating the efficacy of each medication in treating heart failure with LVEF > 40% is provided with a focus on their LVEF subgroup analyses. The purpose of this review is to discuss the current state of evidence regarding the potential of SGLT2is in HFmrEF management. Current limited evidence suggests that SGLT2is might be a favourable treatment modality for patients with HFmrEF to reduce hospitalization for heart failure and CV mortality. This conclusion needs to be further supported by clear HFmrEF subgroup analysis of the existing trials. Further outcome trials involving sufficient patients with different subtypes of HFmrEF are needed to confirm and assess CV benefits of SGLT2is in HFmrEF. Possible mechanisms by which SGLT2is exert their cardioprotective effect are also described briefly.
Collapse
Affiliation(s)
- Xizi Shen
- Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Xingping Shen
- Department of EndocrinologyZhongshan Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
19
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Amer RM, Eltokhy AK, Elesawy RO, Barakat AN, Basha E, Eldeeb OS, Aboalsoud A, Elgharabawy NM, Ismail R. The Ameliorative Effect of Empagliflozin in Vigabatrin-Induced Cerebellar/Neurobehavioral Deficits: Targeting mTOR/AMPK/SIRT-1 Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123659. [PMID: 35744783 PMCID: PMC9229258 DOI: 10.3390/molecules27123659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Introduction. Vigabatrin (VGB) is an antiepileptic drug that acts to irreversibly inhibit the γ-aminobutyric acid (GABA) transaminase enzyme, elevating GABA levels. Broad studies have established that long-term treatment and/or high doses of VGB lead to variable visual defects. However, little attention has been paid to its other side effects, especially those demonstrating cerebellar involvement. Sodium glucose-linked co-transporter 2 (SGLT2) inhibitors are antidiabetic agents with protective effects far greater than expected based on their anti-hyperglycemic effect. Method. Our study herein was designed to investigate the possible ameliorative effect of empagliflozin, the SGLT2 inhibitors, in VGB-induced cerebellar toxicity. A total of 40 male Wistar rats were allocated equally into 4 groups: Group I: control group; Group II: VGB group; Group III empagliflozin treated VGB group; and Group IV: empagliflozin treated group. All groups were subjected to the detection of cerebellar messenger RNA gene expression of silent mating type information regulation 2 homolog 1 (SIRT1) and Nucleoporin p62 (P62). Mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and beclin1 levels were assessed by the ELISA technique while malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected spectrophotometrically. Immuno-histochemical studies, focusing on glial fibrillary acidic protein (GFAP) and S100 were performed, and the optical color density and the mean area percentage of GFAP positive astrocytes and the number of S 100 positive cells were also counted. Results. Following empagliflozin treatment, we documented significant upregulation of both SIRT1 and P62 mRNA gene expression. Additionally, AMPK, Beclin1 levels, and SOD activity were significantly improved, while both mTOR and MDA levels were significantly reduced. Conclusions. We concluded for the first time that empagliflozin efficiently ameliorated the VGB-induced disrupted mTOR/AMPK/SIRT-1 signaling axis with subsequent improvement of the autophagy machinery and mitigation of the oxidative and inflammatory cellular environment, paving the way for an innovative therapeutic potential in managing VGB-induced neurotoxicity.
Collapse
Affiliation(s)
- Rabab M. Amer
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
- Correspondence: or
| | - Rasha Osama Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.N.B.); (N.M.E.)
| | - Eman Basha
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Omnia Safwat Eldeeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | | | - Radwa Ismail
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| |
Collapse
|
21
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
22
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Indapamide Increases IRS1 Expression and Modifies Adiponectin/NLRP3/PPARγ Crosstalk in Type 2 Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11040691. [PMID: 35453376 PMCID: PMC9026493 DOI: 10.3390/antiox11040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The current study aimed to evaluate the anti-diabetic effects of canagliflozin (CANA) and indapamide (INDA) and their impacts as adiponectin modulators in experimentally induced type 2 diabetes mellitus (T2DM). T2DM was associated with a significant rise in blood glucose level and HbA1C%, andreduced adiponectin and insulin secretions. Moreover, the malondialdehyde (MDA) contents in both the epididymal adipocytes and soleus muscle significantly escalated, while the total antioxidant capacity (TAC) and epididymal adipocyte Nrf2 expression significantly declined. Moreover, serum TNF-α, epididymal adipocyte’s NOD-like receptor protein 3, NLRP3, NF-κB and CD68 expressions markedly escalated, and serum IL-10 significantly declined. Furthermore, there was a significant escalation in PPARγ expression in epididymal adipocytes, with a significant reduction in soleus muscle’s expression of IRS1. CANA and INDA treatments markedly reduced blood glucose levels, increased adiponectin and insulin secretion, enhanced anti-oxidant defenses, and reduced oxidative burden, with marked anti-inflammatory impact. Interestingly, the impact of indapamide on DM indices and oxidative and inflammatory changes was comparable to that of canagliflozin. Nevertheless, indapamide had a superior effect compared to canagliflozin on HbA1c%, expression of IRS1 and reduction of NF-κB and CD68 expressions. INDA could be effective in regulating T2DM, with underlined anti-diabetic, antioxidant, and anti-inflammatory properties. INDA increased IRS1 expression and modified adiponectin/NLRP3/PPARγ crosstalk. The impacts of INDA are comparable to those of the standard anti-diabetic drug CANA.
Collapse
Affiliation(s)
- Mahmoud M. Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| | - Manar G. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh P.O. Box 71666, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
- Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt
- Correspondence:
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| |
Collapse
|
23
|
Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J Cardiovasc Transl Res 2022; 15:944-956. [PMID: 35290593 DOI: 10.1007/s12265-022-10220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have evident cardiovascular benefits in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease, heart failure with reduced ejection fraction, heart failure with preserved ejection fraction (only empagliflozin and dapagliflozin have been investigated in this group so far), and chronic kidney disease. Prevention and reversal of adverse cardiac remodeling is one of the mechanisms by which SGLT2 inhibitors may exert cardiovascular benefits, especially heart failure-related outcomes. Cardiac remodeling encompasses molecular, cellular, and interstitial changes that result in favorable changes in the mass, geometry, size, and function of the heart. The pathophysiological mechanisms of adverse cardiac remodeling are related to increased apoptosis and necrosis, decreased autophagy, impairments of myocardial oxygen supply and demand, and altered energy metabolism. Herein, the accumulating evidence from animal and human studies is reviewed investigating the effects of SGLT2 inhibitors on these mechanisms of cardiac remodeling.
Collapse
|
24
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
25
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
26
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Chatsudthipong V, Lungkaphin A. The combination of dapagliflozin and statins ameliorates renal injury through attenuating the activation of inflammasome-mediated autophagy in insulin-resistant rats. J Biochem Mol Toxicol 2021; 36:e22978. [PMID: 34939712 DOI: 10.1002/jbt.22978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Long-term use of a high-fat diet with high-fructose (HFF) intake could promote insulin resistance and induce lipid accumulation leading to kidney injury possibly via impairment of the autophagy process and enhancement of the inflammasome pathway. We investigated whether dapagliflozin as a monotherapy or combined with atorvastatin could restore kidney autophagy impairment and reduce inflammasome activation associated with kidney injury induced by HFF consumption. Male Wistar rats were given an HFF for 16 weeks and then treated with dapagliflozin with or without atorvastatin for 4 weeks. Impaired glucose tolerance, dyslipidemia, renal lipid accumulation along with impaired renal autophagy and activated inflammasome pathway promoted renal injury were exhibited in HFF rats. Dapagliflozin with or without atorvastatin treatment could partially restore disrupted metabolic parameters and reduce kidney injury. In particular, the combination treatment group showed significant amelioration of inflammasome activation and autophagy impairment. In conclusion, the combination therapy of dapagliflozin and atorvastatin has a positive effect on renal injury associated with autophagy and inflammasome activation induced by HFF in insulin-resistant rats. This study is the first report demonstrating the underlying mechanism associated with a combination treatment of dapagliflozin and atorvastatin on autophagy and inflammasome pathways in an insulin-resistant condition. Therefore, dapagliflozin in combination with atorvastatin may be a further preventive or therapeutic strategy for chronic kidney disease in an insulin-resistant or diabetic condition.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Gu LY, Tang HT, Xu ZX. Huangkui capsule in combination with metformin ameliorates diabetic nephropathy via the Klotho/TGF-β1/p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:113548. [PMID: 33152427 DOI: 10.1016/j.jep.2020.113548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui capsule (HKC), extracted from Abelmoschus manihot (L.) medic (AM), as a patent proprietary Chinese medicine on the market for approximately 20 years, has been clinically used to treat chronic glomerulonephritis. Renal fibrosis has been implicated in the onset and development of diabetic nephropathy (DN). However, the potential application of HKC for preventing DN has not been evaluated. AIM OF THE STUDY This study was designed to investigate the efficacy and underlying mechanisms of HKC combined with metformin (MET), the first-line medication for treating type 2 diabetes, in the treatment of renal interstitial fibrosis. MATERIALS AND METHODS A rat model of diabetes-associated renal fibrosis was established by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg) combined with a high-fat and high-glucose diet. The rats were randomly divided into five groups: normal control, DN, HKC (1.0 g/kg/day), MET (100 mg/kg/d), and HKC plus MET (1.0 g/kg/day + 100 mg/kg/d). Following drug administration for 8 weeks, we collected blood, urine, and kidney tissue for analysis. Biochemical markers and metabolic parameters were detected using commercial kits. Histopathological staining was performed to monitor morphological changes in the rat kidney. High-glucose-induced human kidney HK-2 cells were used to evaluate the renal protective effects of HKC combined with MET (100 μg/mL+10 mmol/L). MTT assay and acridine orange/ethidium bromide were used to examine cell proliferation inhibition rates and apoptosis. Immunofluorescence assay and Western blot analysis were performed to detect renal fibrosis-related proteins including Klotho, TGF-β1, and phosphorylated (p)-p38. RESULTS Combination therapy (HKC plus MET) significantly improved the weight, reduced blood glucose (BG), blood urea nitrogen (BUN), total cholesterol (T-CHO), triglycerides (TG), low-density lipoprotein (LDL) and increased the level of high-density lipoprotein (HDL) of DN rats. Combination therapy also significantly reduced urine serum creatinine (SCR) and urine protein (UP) levels as well as reduced the degrees of renal tubule damage and glomerulopathy in DN rats. Combination therapy ameliorated renal fibrosis, as evidenced by reduced levels of alpha-smooth muscle actin and fibronectin and increased expression of E-cadherin in the kidneys. Moreover, HKC plus MET alleviated the degree of DN in part via the Klotho/TGF-β1/p38MAPK signaling pathway. In vitro experiments showed that combination therapy significantly inhibited cell proliferation and apoptosis and regulated fibrosis-related proteins in high-glucose (HG)-induced HK-2 cells. Further studies revealed that combination therapy suppressed cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-β1/p38MAPK pathway. CONCLUSIONS HKC plus MET in combination suppressed abnormal renal cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-β1/p38MAPK pathway. Collectively, HKC combined with MET effectively improved DN by inhibiting renal fibrosis-associated proteins and blocking the Klotho/TGF-β1/p38MAPK signaling pathway. These findings improve the understanding of the pathogenesis of diabetes-associated complications and support that HKC plus MET combination therapy is a promising strategy for preventing DN.
Collapse
Affiliation(s)
- Li-Yuan Gu
- School of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, PR China.
| | - Hai-Tao Tang
- The Huangkui Research Institute of Suzhong Pharmaceutical Co, Ltd, Taizhou, 225500, Jiangsu, PR China.
| | - Zheng-Xin Xu
- School of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China.
| |
Collapse
|
28
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
29
|
Liu H, Sridhar VS, Montemayor D, Lovblom LE, Lytvyn Y, Ye H, Kim J, Ali MT, Scarr D, Lawler PR, Perkins BA, Sharma K, Cherney DZI. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes Obes Metab 2021; 23:2466-2475. [PMID: 34251085 DOI: 10.1111/dom.14489] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
AIM To examine the impact of the sodium-glucose co-transporter-2 inhibitor, empagliflozin, on plasma and urine metabolites in participants with type 1 diabetes. MATERIAL AND METHODS Participants (n = 40, 50% male, mean age 24.3 years) with type 1 diabetes and without overt evidence of diabetic kidney disease had baseline assessments performed under clamped euglycaemia and hyperglycaemia, on two consecutive days. Participants then proceeded to an 8-week, open-label treatment period with empagliflozin 25 mg/day, followed by repeat assessments under clamped euglycaemia and hyperglycaemia. Plasma and urine metabolites were first grouped into metabolic pathways using MetaboAnalyst software. Principal component analysis was performed to create a representative value for each sufficiently represented metabolic group (false discovery rate ≤ 0.1) for further analysis. RESULTS Of the plasma metabolite groups, tricarboxylic acid (TCA) cycle (P < .0001), biosynthesis of unsaturated fatty acids (P = .0045), butanoate (P < .0001), propanoate (P = .0053), and alanine, aspartate and glutamate (P < .0050) metabolites were increased after empagliflozin treatment under clamped euglycaemia. Of the urine metabolite groups, only butanoate metabolites (P = .0005) were significantly increased. Empagliflozin treatment also attenuated the increase in a number of urine metabolites observed with acute hyperglycaemia. CONCLUSIONS Empagliflozin was associated with increased lipid and TCA cycle metabolites in participants with type 1 diabetes, suggesting a shift in metabolic substrate use and improved mitochondrial function. These effects result in more efficient energy production and may contribute to end-organ protection by alleviating local hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Liu
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| | - Daniel Montemayor
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongping Ye
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jiwan Kim
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mir Tariq Ali
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Z I Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Ravindran S, Munusamy S. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol 2021; 237:1182-1205. [PMID: 34713897 DOI: 10.1002/jcp.30621] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2-Is) have emerged as a promising class of antidiabetic drugs with cardioprotective and renoprotective effects in patients with type 2 diabetes (T2D). The sodium-glucose co-transporters 1 and 2 (SGLT 1 and SGLT2) located in the renal proximal tubules are responsible for glucose reabsorption from the glomerular filtrate back into the systemic circulation. Inhibition of SGLT2, which accounts for about 90% of the glucose reabsorption, leads to a significant reduction in blood glucose levels and a concomitant increase in the urinary excretion of glucose (glycosuria). Multiple mechanisms contribute to the nephroprotective effects of SGLT2-Is in T2D patients. These include: (1) Restoration of the tubuloglomerular feedback by increasing sodium delivery at macula densa, leading to afferent arteriolar constriction and reduced glomerular hyperfiltration, (2) Decreased activation of the intra-renal renin-angiotensin-aldosterone system, which also contributes to reducing glomerular hyperfiltration, (3) Increased production of ketone bodies, which serves as an alternate fuel for adenosine triphosphate production in mitochondria, which helps in attenuating inflammation, and (4) Protection against hypoxia, oxidative stress, and fibrosis. This review elaborates on the key mechanisms that underlie the nephroprotective effects and the adverse effects of SGLT2-Is in T2D patients with progressive diabetic kidney disease.
Collapse
Affiliation(s)
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, Drake University College of Pharmacy and Health Sciences, Des Moines, Iowa, USA
| |
Collapse
|
31
|
Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021; 162:6226811. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors induce glycosuria, reduce insulin levels, and promote fatty acid oxidation and ketogenesis. By promoting a nutrient deprivation state, SGLT2 inhibitors upregulate the energy deprivation sensors AMPK and SIRT1, inhibit the nutrient sensors mTOR and insulin/IGF1, and modulate the closely linked hypoxia-inducible factor (HIF)-2α/HIF-1α pathways. Phosphorylation of AMPK and upregulation of adiponectin and PPAR-α favor a reversal of the metabolic syndrome which have been linked to suppression of chronic inflammation. Downregulation of insulin/IGF1 pathways and mTOR signaling from a reduction in glucose and circulating amino acids promote cellular repair mechanisms, including autophagy and proteostasis which confer cellular stress resistance and attenuate cellular senescence. SIRT1, another energy sensor activated by NAD+ in nutrient-deficient states, is reciprocally activated by AMPK, and can deacetylate and activate transcription factors, such as PCG-1α, mitochondrial transcription factor A (TFAM), and nuclear factor E2-related factor (NRF)-2, that regulate mitochondrial biogenesis. FOXO3 transcription factor which target genes in stress resistance, is also activated by AMPK and SIRT1. Modulation of these pathways by SGLT2 inhibitors have been shown to alleviate metabolic diseases, attenuate vascular inflammation and arterial stiffness, improve mitochondrial function and reduce oxidative stress-induced tissue damage. Compared with other calorie restriction mimetics such as metformin, rapamycin, resveratrol, and NAD+ precursors, SGLT2 inhibitors appear to be the most promising in the treatment of aging-related diseases, due to their regulation of multiple longevity pathways that closely resembles that achieved by calorie restriction and their established efficacy in reducing cardiovascular events and all-cause mortality. Evidence is compelling for the role of SGLT2 inhibitors as a calorie restriction mimetic in anti-aging therapeutics.
Collapse
Affiliation(s)
- Caroline W S Hoong
- Division of Endocrinology, Department of General Medicine, Woodlands Health Campus, National Healthcare Group Singapore, Woodlands Health Campus Singapore, 768024, Singapore
| | - Marvin W J Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, SingHealth Group Singapore, Sengkang General Hospital Singapore, 544886, Singapore
| |
Collapse
|
32
|
Tsai KF, Chen YL, Chiou TTY, Chu TH, Li LC, Ng HY, Lee WC, Lee CT. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel) 2021; 10:1166. [PMID: 34439414 PMCID: PMC8388972 DOI: 10.3390/antiox10081166] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents. Apart from their glucose-lowering effects, large clinical trials assessing certain SGLT2 inhibitors have revealed cardiac and renal protective effects in non-diabetic patients. These excellent outcomes motivated scientists and clinical professionals to revisit their underlying mechanisms. In addition to the heart and kidney, redox homeostasis is crucial in several human diseases, including liver diseases, neural disorders, and cancers, with accumulating preclinical studies demonstrating the therapeutic benefits of SGLT2 inhibitors. In the present review, we aimed to update recent advances in the antioxidant roles of SGLT2 inhibitors in common but debilitating human diseases. We anticipate that this review will guide new research directions and novel therapeutic strategies for diabetes, cardiovascular diseases, nephropathies, liver diseases, neural disorders, and cancers in the era of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Yung-Lung Chen
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Terry Ting-Yu Chiou
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tian-Huei Chu
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| |
Collapse
|
33
|
Wan S, Wan S, Jiao X, Cao H, Gu Y, Yan L, Zheng Y, Niu P, Shao F. Advances in understanding the innate immune-associated diabetic kidney disease. FASEB J 2021; 35:e21367. [PMID: 33508160 DOI: 10.1096/fj.202002334r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Millions of human deaths occur annually due to chronic kidney disease, caused by diabetic kidney disease (DKD). Despite having effective drugs controlling the hyperglycemia and high blood pressure, the incidence of DKD is increasing, which indicates the need for the development of novel therapies to control DKD. In this article, we discussed the recent advancements in the basic innate immune mechanisms in renal tissues triggered under the diabetes environment, leading to the pathogenesis and progression of DKD. We also summarized the currently available innate immune molecules-targeting therapies tested against DKD in clinical and preclinical settings, and highlighted additional drug targets that could potentially be employed for the treatment of DKD. The improved understanding of the disease pathogenesis may open avenues for the development of novel therapies to rein in DKD, which consequently, can reduce morbidity and mortality in humans in the future.
Collapse
Affiliation(s)
- Shengfeng Wan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Shengkai Wan
- Department of Operations Management, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yan Zheng
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Peiyuan Niu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
34
|
Zhang XL, Zhang G, Bai ZH. miR-34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin-1. Cell Biol Int 2021; 45:642-653. [PMID: 33289184 DOI: 10.1002/cbin.11512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by myocardial hypertrophy and fibrosis. This study aimed to investigate the effects of microRNA (miR)-34a on myocardial fibrosis in DCM and its potential mechanism of targeting Pin-1 signaling. Vimentin and Pin-1 proteins in mouse cardiac tissues were detected by immunohistochemical staining. Locked nucleic acid in situ hybridization was used to measure miR-34a expression in cardiac tissues. Primary mouse cardiac fibroblasts (CFs) were transfected with a mimics control/miR-34a mimics or Pin-1 plasmid and cultured in high-glucose (HG) Dulbecco's modified Eagle's medium. The miR-34a levels were measured by quantitative polymerase chain reaction. The apoptosis and viability of transfected cells were detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling and Cell Counting Kit-8 assays respectively. A cell migration experiment and dual-luciferase reporter assay were also performed. The body weight and fasting blood glucose of DCM mice were significantly higher than those in the control (CTL) group. In addition, DCM mice had decreased serum insulin levels and impaired cardiac function. The number of CFs in the DCM group was higher than in the CTL group and Pin-1 expression was upregulated. The expression level of miR-34a in the cardiac tissue of mice in the DCM group was obviously downregulated compared with the CTL group. The HG stimulation of CFs for 48 h significantly downregulated the expression level of miR-34a and was associated with increased Type I collagen expression, cell viability, and migration and decreased apoptosis. However, these effects could be reversed by overexpressing miR-34a in HG-induced CFs. Furthermore, we found that Pin-1 was a direct target of miR-34a. Our results suggest that miR-34a can attenuate myocardial fibrosis in DCM by reducing Type I collagen production, cell viability, and migration and increasing the apoptosis of CFs by targeting Pin-1 signaling.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Gang Zhang
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Ze-Hong Bai
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
35
|
Yu B, Dong C, Hu Z, Liu B. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24655. [PMID: 33663074 PMCID: PMC7909223 DOI: 10.1097/md.0000000000024655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Many studies have shown the effects of SGLT2 inhibitors on type 2 diabetes, but the effects in patients with type 2 diabetes with chronic kidney disease remains unclear. This study aims to evaluate the effects of SGLT2 inhibitors on renal outcomes in patients with type 2 diabetes mellitus with chronic kidney disease. METHODS We conducted systematic searches of PubMed, Embase, and Cochrane Central Register of Controlled Trials up to April 30, 2020 and included randomized controlled trials of SGLT2 inhibitors in adult type 2 diabetes mellitus (T2DM) patients with chronic kidney disease (CKD) reporting estimated glomerular filtration rate (eGFR) and/or urine albumin/creatinine ratio (UACR) changes and/or acute kidney injury or failure (AKI). Random effects models were adopted to measure the pooled outcomes. RESULTS Nine studies with 8826 participants were included. SGLT2 inhibitors were not associated with a significant change in eGFR (mean difference (MD), -0.75 ml/minutes per 1.73 m2, 95% CI -1.61 to 0.10, P = .09) in type 2 diabetic patients with CKD. UACR reduction after SGLT2 inhibitors was significant in type 2 diabetic patients with CKD (MD -24.27 mg/g, 95% CI -44.46 to -4.09, P = .02). SGLT2 inhibitors associated with AKI in the patients were significant (OR 0.80, 95% CI [0.66 to 0.98], P = .03). CONCLUSION SGLT2 inhibitors had no significant effect on kidney function (eGFR measured) in the pooled analysis. And SGLT2 inhibitors effectively reduced UACR in T2DM with CKD. Besides, SGLT2 inhibitors could reduce the incidence of AKI.
Collapse
|
36
|
Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020; 141:2095-2105. [DOI: 10.1161/circulationaha.119.045561] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors reduce the risk of serious heart failure and adverse renal events, but the mechanisms that underlie this benefit are not understood. Treatment with SGLT2 inhibitors is distinguished by 2 intriguing features: ketogenesis and erythrocytosis. Both reflect the induction of a fasting-like and hypoxia-like transcriptional paradigm that is capable of restoring and maintaining cellular homeostasis and survival. In the face of perceived nutrient and oxygen deprivation, cells activate low-energy sensors, which include sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia inducible factors (HIFs; especially HIF-2α); these enzymes and transcription factors are master regulators of hundreds of genes and proteins that maintain cellular homeostasis. The activation of SIRT1 (through its effects to promote gluconeogenesis and fatty acid oxidation) drives ketogenesis, and working in concert with AMPK, it can directly inhibit inflammasome activation and maintain mitochondrial capacity and stability. HIFs act to promote oxygen delivery (by stimulating erythropoietin and erythrocytosis) and decrease oxygen consumption. The activation of SIRT1, AMPK, and HIF-2α enhances autophagy, a lysosome-dependent degradative pathway that removes dangerous constituents, particularly damaged mitochondria and peroxisomes, which are major sources of oxidative stress and triggers of cellular dysfunction and death. SIRT1 and AMPK also act on sodium transport mechanisms to reduce intracellular sodium concentrations. It is interesting that type 2 diabetes mellitus, obesity, chronic heart failure, and chronic kidney failure are characterized by the accumulation of intracellular glucose and lipid intermediates that are perceived by cells as indicators of energy overabundance. The cells respond by downregulating SIRT1, AMPK, and HIF-2α, thus leading to an impairment of autophagic flux and acceleration of cardiomyopathy and nephropathy. SGLT2 inhibitors reverse this maladaptive signaling by triggering a state of fasting and hypoxia mimicry, which includes activation of SIRT1, AMPK, and HIF-2α, enhanced autophagic flux, reduced cellular stress, decreased sodium influx into cells, and restoration of mitochondrial homeostasis. This mechanistic framework clarifies the findings of large-scale randomized trials and the close association of ketogenesis and erythrocytosis with the cardioprotective and renoprotective benefits of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
37
|
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22:734-742. [PMID: 31916329 DOI: 10.1111/dom.13961] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Long-term treatment with sodium-glucose co-transporter-2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium-hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
- Imperial College, London, UK
| |
Collapse
|
38
|
Packer M. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors. J Am Soc Nephrol 2020; 31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation-sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)-can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas .,Imperial College, London, United Kingdom
| |
Collapse
|
39
|
Avogaro A, Fadini GP, Del Prato S. Reinterpreting Cardiorenal Protection of Renal Sodium-Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming. Diabetes Care 2020; 43:501-507. [PMID: 31843950 DOI: 10.2337/dc19-1410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/03/2019] [Indexed: 02/03/2023]
Abstract
Cardiovascular outcome trials have provided evidence that sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment is associated with remarkably favorable cardiovascular outcomes. Here, we offer a novel hypothesis that may encompass many of these hypothetical mechanisms, i.e., the ability of SGLT2i to modify the trajectory of cell response to a toxic environment through modifications of cellular life history programs, either the defense program or the dormancy program. The choice between these programs is mainly determined by the environment. Hyperglycemia can be considered a toxic determinant able to interfere with the basic programs of cell evolution. While the defense program is characterized by activation of the immune response and anabolic metabolism, the dormancy program is an energy-preserving state with high resistance to environmental stressors, and it has strong analogy with animal hibernation where fuel is stored, metabolic rate is suppressed, and insulin secretion is reduced. The metabolic changes that follow treatment with SGLT2i are reminiscent of the metabolic picture characteristic of the dormancy program. Therefore, we hypothesize that the beneficial cardioprotective effects of SGLT2i may be related to their ability to switch cell life programming from a defense to a dormancy state, thus lending additional benefit.
Collapse
Affiliation(s)
- Angelo Avogaro
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care 2020; 43:508-511. [PMID: 32079684 DOI: 10.2337/dci19-0074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Milton Packer
- Baylor Scott & White Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX .,Imperial College, London, U.K
| |
Collapse
|
41
|
Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail 2020; 22:618-628. [PMID: 32037659 DOI: 10.1002/ejhf.1732] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
In five large-scale trials involving >40 000 patients, sodium-glucose cotransporter 2 (SGLT2) inhibitors decreased the risk of serious heart failure events by 25-40%. This effect cannot be explained by control of hyperglycaemia, since it is not observed with antidiabetic drugs with greater glucose-lowering effects. It cannot be attributed to ketogenesis, since it is not causally linked to ketone body production, and the benefit is not enhanced in patients with diabetes. The effect cannot be ascribed to a natriuretic action, since SGLT2 inhibitors decrease natriuretic peptides only modestly, and they reduce cardiovascular death, a benefit that diuretics do not possess. Although SGLT2 inhibitors increase red blood cell mass, enhanced erythropoiesis does not favourably influence the course of heart failure. By contrast, experimental studies suggest that SGLT2 inhibitors may reduce intracellular sodium, thereby preventing oxidative stress and cardiomyocyte death. Additionally, SGLT2 inhibitors induce a transcriptional paradigm that mimics nutrient and oxygen deprivation, which includes activation of adenosine monophosphate-activated protein kinase, sirtuin-1, and/or hypoxia-inducible factors-1α/2α. The interplay of these mediators stimulates autophagy, a lysosomally-mediated degradative pathway that maintains cellular homeostasis. Autophagy-mediated clearance of damaged organelles reduces inflammasome activation, thus mitigating cardiomyocyte dysfunction and coronary microvascular injury. Interestingly, the action of hypoxia-inducible factors-1α/2α to both stimulate erythropoietin and induce autophagy may explain why erythrocytosis is strongly correlated with the reduction in heart failure events. Therefore, the benefits of SGLT2 inhibitors on heart failure may be mediated by a direct cardioprotective action related to modulation of pathways responsible for cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.,Imperial College, London, UK
| |
Collapse
|
42
|
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Sanajou D. Sodium-glucose co-transporters and diabetic nephropathy: Is there a link with toll-like receptors? Clin Exp Pharmacol Physiol 2020; 47:919-926. [PMID: 31968131 DOI: 10.1111/1440-1681.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
The incidence of diabetes mellitus (DM) has increased alarmingly over the last decades. Despite taking measures aimed at controlling hyperglycaemia and blood pressure, the rate of end-stage renal disease (ESRD) is continually growing. Upon increased amounts of advanced glycation end products (AGEs) and their correspondent receptors (RAGEs), AGE-RAGE axis is over-activated in DM, being the first step in the initiation and propagation of inflammatory cascades. Meanwhile, HMGB1, released from damaged cells in the diabetic kidneys, is the most notable ligand for the highly expressed toll-like receptors (TLRs) and RAGEs. TLRs play an indispensable role in the pathogenesis of diabetic nephropathy. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are hypoglycaemic agents acting on the renal proximal tubules to prevent glucose reabsorption and therefore increase urinary glucose excretion. Besides improving glycaemic control, these hypoglycaemic agents possess direct renoprotective properties. Here, therefore, we review the most recent findings regarding interrelationship between SGLT2 inhibitors and HMGB1-TLR4 axis.
Collapse
Affiliation(s)
- Zahra Ashrafi Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Centre, Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Ndibalema AR, Kabuye D, Wen S, Li L, Li X, Fan Q. Empagliflozin Protects Against Proximal Renal Tubular Cell Injury Induced by High Glucose via Regulation of Hypoxia-Inducible Factor 1-Alpha. Diabetes Metab Syndr Obes 2020; 13:1953-1967. [PMID: 32606855 PMCID: PMC7297363 DOI: 10.2147/dmso.s243170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Evidence from both animal and human studies clearly supports the renal beneficial effects of empagliflozin (emp), a sodium glucose co-transporter 2 (SGLT2) inhibitor, but the mechanism in which it exerts its effect is not well understood. In this study, we investigated the capability of emp on reducing hyperglycemia-induced renal proximal tubular epithelial cells injury and we evaluated if the renoprotective effect of emp associates with hypoxia-inducible factor-1α (HIF-1α). MATERIALS AND METHODS Human kidney cell lines (HK-2 cells) were incubated in normoxia, high glucose with or without emp treatment for 72 hours to evaluate the induction of HIF-1α, glucose transporter-1, SGLT2, the fibrosis signal pathway and epithelial-mesenchymal transition (EMT) markers. RESULTS High glucose (HG) increased expression of Collagen IV, Fibronectin, transforming growth factor-beta1 (TGF-β1). However, emp treatment remarkably decreased expression of TGF-β1, accumulation of extracellular matrix proteins (Fibronectin, Collagen IV), as well as (phosphorylated-smad3) P-smad3. HG increased SGLT2 protein expression compared to normal glucose (NG) while emp significantly decreased SGLT2 expression. Furthermore, emp decreased high glucose-induced alpha-smooth muscle actin (α-SMA) expression and reversed epithelial marker (E-catherin) suppression induced by high glucose. In addition, emp treatment for 72 h increased expression of HIF-1α protein (95% CI: -0.5918 to -0.002338, at 100nM, P < 0.05, 95% CI -0.6631 to -0.07367 at 500nM, P < 0.05) in hyperglycemic normoxic HK-2 cells. Furthermore, we observed increased expression of GLUT-1 protein after emp treatment and remarkably decreased cell proliferation. CONCLUSION Emp treatment protected proximal renal tubular cells injury induced by high glucose. Induction of HIF-1α expression by emp may play an essential role in the protection of high glucose-induced proximal renal tubular epithelial cells injury.
Collapse
Affiliation(s)
- Angelamellisy Revelian Ndibalema
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
- Kairuki Hospital, Dar es Salaam, Tanzania
| | - Deo Kabuye
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
- Kalisizo Hospital Uganda, Kalisizo, Uganda
| | - Si Wen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Lulu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Xin Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Qiuling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
- Correspondence: Qiuling Fan Tel +86 13904012680 Email
| |
Collapse
|