1
|
Demirkan A, van Dongen J, Finnicum CT, Westra HJ, Jankipersadsing S, Willemsen G, Ijzerman RG, Boomsma DI, Ehli EA, Bonder MJ, Fu J, Franke L, Wijmenga C, de Geus EJC, Kurilshikov A, Zhernakova A. Linking the gut microbiome to host DNA methylation by a discovery and replication epigenome-wide association study. BMC Genomics 2024; 25:1224. [PMID: 39702006 DOI: 10.1186/s12864-024-11136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome influences multiple human systems, but its effects on gene methylation is unknown. We investigated the relations between gene methylation in blood and the abundance of common gut bacteria profiled by 16s rRNA gene sequencing in two population-based Dutch cohorts: LifeLines-Deep (LLD, n = 616, discovery) and the Netherlands Twin Register (NTR, n = 296, replication). In LLD, we also explored microbial pathways using data generated by shotgun metagenomic sequencing (n = 683). Methylation in both cohorts was profiled in blood samples using the Illumina 450K array. Discovery and replication analysis identified two independent CpGs associated with the genus Eggerthella: cg16586104 (Pmeta-analysis = 3.21 × 10-11) and cg12234533 (Pmeta-analysis = 4.29 × 10-10). We also show that microbiome can mediate the effect of environmental factors on host gene methylation. In this first association study linking epigenome to microbiome, we found and replicated the associations of two CpGs to the abundance of genus Eggerthella and identified microbiome as a mediator of the exposome. These associations are observational and suggest further investigation in larger and longitudinal set-ups.
Collapse
Affiliation(s)
- Ayşe Demirkan
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- Department of Clinical and Experimental Medicine, Section of Statistical Multi-omics, School of Biosciences and Medicine & People-Centered AI institute University of Surrey, Guildford, United Kingdom.
| | - Jenny van Dongen
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Casey T Finnicum
- Avera Institute of Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, Sioux Falls, SD, USA
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Soesma Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gonneke Willemsen
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Richard G Ijzerman
- Department of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute of Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, Sioux Falls, SD, USA
| | - Marc Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eco J C de Geus
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Ushida T, Nosaka R, Nakatochi M, Kobayashi Y, Tano S, Fuma K, Matsuo S, Imai K, Sato Y, Hayakawa M, Kajiyama H, Kotani T. Effect of chorioamnionitis on postnatal growth in very preterm infants: a population-based study in Japan. Arch Gynecol Obstet 2024:10.1007/s00404-024-07757-y. [PMID: 39354115 DOI: 10.1007/s00404-024-07757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE There is growing evidence that preterm infants born to mothers with chorioamnionitis (CAM) have increased risk of various neonatal morbidities and long-term neurological disorders; however, the effect of CAM on postnatal growth remains insufficiently investigated. This study evaluated the effect of histological CAM on postnatal growth trajectories in very preterm infants using a nationwide neonatal database in Japan. METHOD A multicenter retrospective study was conducted using clinical data of 4220 preterm neonates who weighed ≤ 1500 g and were born at < 32 weeks of gestation between 2003-2017 (CAM group: n = 2110; non-CAM group: n = 2110). Z-scores for height and weight were evaluated at birth and 3 years of age. Univariable and multivariable analyses were conducted to evaluate the effect of histological CAM on ΔZ-scores of height and weight during the first three years with a stratification by infant sex and the stage of histological CAM. RESULTS Multivariable analyses showed that histological CAM was associated with accelerated postnatal increase (ΔZ-score) in weight (β coefficient [95% confidence interval]; 0.10 [0.00 to 0.20]), but not in height among females (0.06 [- 0.04 to 0.15]) and not in height and weight among males (0.04 [- 0.04 to 0.12] and 0.02 [- 0.07 to 0.11], respectively). An interaction analysis demonstrated no significant difference in the effect of histological CAM on the ΔZ-scores of height and weight during the first three years between male and female infants (height, p = 0.81; weight p = 0.25). CONCLUSIONS Intrauterine exposure to maternal CAM contributes to accelerated postnatal weight gain in female preterm infants during the first three years.
Collapse
Affiliation(s)
- Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Rena Nosaka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Anne Women's Clinic, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kobayashi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Fuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
3
|
Li W, Xia M, Zeng H, Lin H, Teschendorff AE, Gao X, Wang S. Longitudinal analysis of epigenome-wide DNA methylation reveals novel loci associated with BMI change in East Asians. Clin Epigenetics 2024; 16:70. [PMID: 38802969 PMCID: PMC11131215 DOI: 10.1186/s13148-024-01679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI has not been well-explored, especially in East Asian populations. METHODS This study performed a longitudinal epigenome-wide association analysis of DNA methylation to uncover novel loci associated with BMI change in 533 individuals across two Chinese cohorts with repeated DNA methylation and BMI measurements over four years. RESULTS We identified three novel CpG sites (cg14671384, cg25540824, and cg10848724) significantly associated with BMI change. Two of the identified CpG sites were located in regions previously associated with body shape and basal metabolic rate. Annotation of the top 20 BMI change-associated CpGs revealed strong connections to obesity and T2D. Notably, these CpGs exhibited active regulatory roles and located in genes with high expression in the liver and digestive tract, suggesting a potential regulatory pathway from genome to phenotypes of energy metabolism and absorption via DNA methylation. Cross-sectional and longitudinal EWAS comparisons indicated different mechanisms between CpGs related to BMI and BMI change. CONCLUSION This study enhances our understanding of the epigenetic dynamics underlying BMI change and emphasizes the value of longitudinal analyses in deciphering the complex interplay between epigenetics and obesity.
Collapse
Affiliation(s)
- Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
4
|
Nicolaou M, Toumba M, Kythreotis A, Daher H, Skordis N. Obesogens in Adolescence: Challenging Aspects and Prevention Strategies. CHILDREN (BASEL, SWITZERLAND) 2024; 11:602. [PMID: 38790597 PMCID: PMC11120186 DOI: 10.3390/children11050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Childhood obesity has become a global epidemic, with significant increases in prevalence over recent decades. While excessive calorie consumption and physical inactivity are known factors, emerging research highlights the role of endocrine-disrupting chemicals (EDCs), particularly obesogens, in obesity's pathogenesis. This review explores the historical context of the environmental obesogens hypothesis, their sources, mechanism of action, impact on prenatal and postnatal development, and epigenetics. Additionally, it discusses the long-term consequences of childhood obesity and proposes prevention strategies that will mitigate negative health effects. Obesogens were found to disrupt hormonal balance and metabolic processes through various mechanisms such as altering gene expression, hormonal interference, and inflammation. Especially significant was exposure during critical windows of development, which correlates with an increased risk of obesity in childhood or adolescence. Long-term effects of childhood obesity include chronic health conditions and psychosocial issues. A comprehensive approach is necessary to address childhood obesity encompassing genetic, environmental, and lifestyle factors. Prevention strategies should focus on reducing obesogen exposure, promoting healthy lifestyles, and implementing regulatory policies. Future research should investigate obesogens-diet interactions, microbiome impacts, and combined obesogens effects. Long-term human studies are also crucial for validating findings from animal models and allowing for informed decision-making to combat the obesity pandemic.
Collapse
Affiliation(s)
- Marina Nicolaou
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK; (M.N.); (A.K.)
| | - Meropi Toumba
- Paediatric Endocrinology Clinic, Department of Paediatrics, Aretaeio Hospital, 2024 Nicosia, Cyprus;
- School of Medicine, University of Nicosia, 2414 Nicosia, Cyprus;
| | - Alexandros Kythreotis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK; (M.N.); (A.K.)
| | - Habib Daher
- School of Medicine, University of Nicosia, 2414 Nicosia, Cyprus;
| | - Nicos Skordis
- School of Medicine, University of Nicosia, 2414 Nicosia, Cyprus;
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, 2025 Nicosia, Cyprus
| |
Collapse
|
5
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. J Dev Orig Health Dis 2024; 15:e7. [PMID: 38660759 PMCID: PMC11268442 DOI: 10.1017/s2040174424000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
- Nutrition Department, Penn State University, University Park, PA, USA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
| |
Collapse
|
6
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301172. [PMID: 38260407 PMCID: PMC10802761 DOI: 10.1101/2024.01.12.24301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying risk factors is crucial for developing intervention programs. Many 'omics' factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA
- Center for Medical Genomics, Penn State University, University Park, PA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA
- Nutrition Department, Penn State University, University Park, PA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Statistics, Penn State University, University Park, PA
- EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA
- Center for Medical Genomics, Penn State University, University Park, PA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Statistics, Penn State University, University Park, PA
| |
Collapse
|
7
|
Núñez-Sánchez MÁ, Jiménez-Méndez A, Suárez-Cortés M, Martínez-Sánchez MA, Sánchez-Solís M, Blanco-Carnero JE, Ruiz-Alcaraz AJ, Ramos-Molina B. Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20064711. [PMID: 36981620 PMCID: PMC10048338 DOI: 10.3390/ijerph20064711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Childhood obesity has reached epidemic levels in developed countries and is becoming a major cause for concern in the developing world. The causes of childhood obesity are complex and multifactorial, involving the interaction between individual genetics and environmental and developmental factors. Among the environmental factors, there is a growing interest in understanding the possible relationship between the so-called environmental obesogens and the development of obesity in children. Exposure to these obesogens such as phthalates, bisphenol A, or parabens, has been identified as a promoter of obesity through different mechanisms such as the alteration of adipocyte development from mesenchymal progenitors, the interference with hormone receptors, and induced inflammation. However, less attention has been paid to the inheritance of epigenetic modifications due to maternal exposure to these compounds during pregnancy. Thus, the aim of this review is to summarize the current knowledge of epigenetic modifications due to maternal exposure to those obesogens during pregnancy as well as their potential implication on long-term obesity development in the offspring and transgenerational inheritance of epiphenotypes.
Collapse
Affiliation(s)
- María Á Núñez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Almudena Jiménez-Méndez
- Department of Obstetrics and Gynecology, 'Virgen de la Arrixaca' University Clinical Hospital, 30120 Murcia, Spain
| | - María Suárez-Cortés
- Department of Nursing, Faculty of Nursing, University of Murcia, El Palmar, 30120 Murcia, Spain
| | - María A Martínez-Sánchez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Manuel Sánchez-Solís
- Group of Pediatric Research, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, 30120 Murcia, Spain
| | - José E Blanco-Carnero
- Department of Obstetrics and Gynecology, 'Virgen de la Arrixaca' University Clinical Hospital, 30120 Murcia, Spain
- Gynecology, Reproduction and Maternal-Fetal Medicine Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
8
|
Lussier AA, Zhu Y, Smith BJ, Simpkin AJ, Smith AD, Suderman MJ, Walton E, Ressler KJ, Dunn EC. Updates to data versions and analytic methods influence the reproducibility of results from epigenome-wide association studies. Epigenetics 2022; 17:1373-1388. [PMID: 35156895 PMCID: PMC9601563 DOI: 10.1080/15592294.2022.2028072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
Biomedical research has grown increasingly cooperative through the sharing of consortia-level epigenetic data. Since consortia preprocess data prior to distribution, new processing pipelines can lead to different versions of the same dataset. Similarly, analytic frameworks evolve to incorporate cutting-edge methods and best practices. However, it remains unknown how different data and analytic versions alter the results of epigenome-wide analyses, which could influence the replicability of epigenetic associations. Thus, we assessed the impact of these changes using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We analysed DNA methylation from two data versions, processed using separate preprocessing and analytic pipelines, examining associations between seven childhood adversities or prenatal smoking exposure and DNA methylation at age 7. We performed two sets of analyses: (1) epigenome-wide association studies (EWAS); (2) Structured Life Course Modelling Approach (SLCMA), a two-stage method that models time-dependent effects. SLCMA results were also compared across two analytic versions. Data version changes impacted both EWAS and SLCMA analyses, yielding different associations at conventional p-value thresholds. However, the magnitude and direction of associations was generally consistent between data versions, regardless of p-values. Differences were especially apparent in analyses of childhood adversity, while smoking associations were more consistent using significance thresholds. SLCMA analytic versions similarly altered top associations, but time-dependent effects remained concordant. Alterations to data and analytic versions influenced the results of epigenome-wide analyses. Our findings highlight that magnitude and direction are better measures for replication and stability than p-value thresholds.
Collapse
Affiliation(s)
- Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yiwen Zhu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brooke J. Smith
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J. Simpkin
- School of Mathematics,Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center on the Developing Child, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Zhang Y, Jia Z, Zhou Q, Zhang Y, Li D, Qi Y, Xu F. A bibliometric analysis of DNA methylation in cardiovascular diseases from 2001 to 2021. Medicine (Baltimore) 2022; 101:e30029. [PMID: 35984203 PMCID: PMC9388003 DOI: 10.1097/md.0000000000030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a dynamically reversible form of epigenetics. Dynamic regulation plays an important role in cardiovascular diseases (CVDs). However, there have been few bibliometric studies in this field. We aimed to visualize the research results and hotspots of DNA methylation in CVDs using a bibliometric analysis to provide a scientific direction for future research. METHODS Publications related to DNA methylation in CVDs from January 1, 2001, to September 15, 2021, were searched and confirmed from the Web of Science Core Collection. CiteSpace 5.7 and VOSviewer 1.6.15 were used for bibliometric and knowledge-map analyses. RESULTS A total of 2617 publications were included in 912 academic journals by 15,584 authors from 963 institutions from 85 countries/regions. Among them, the United States of America, China, and England were the top 3 countries contributing to the field of DNA methylation. Harvard University, Columbia University, and University of Cambridge were the top 3 contributing institutions in terms of publications and were closely linked. PLoS One was the most published and co-cited journal. Baccarelli Andrea A published the most content, while Barker DJP had the highest frequency of co-citations. The keyword cluster focused on the mechanism, methyl-containing substance, exposure/risk factor, and biomarker. In terms of research hotspots, references with strong bursts, which are still ongoing, recently included "epigenetic clock" (2017-2021), "obesity, smoking, aging, and DNA methylation" (2017-2021), and "biomarker and epigenome-wide association study" (2019-2021). CONCLUSIONS We used bibliometric and visual methods to identify research hotspots and trends in DNA methylation in CVDs. Epigenetic clocks, biomarkers, environmental exposure, and lifestyle may become the focus and frontier of future research.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qingbing Zhou
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Li
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Qi
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengqin Xu, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China (e-mail: )
| |
Collapse
|
10
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Sarni ROS, Kochi C, Suano-Souza FI. Childhood obesity: an ecological perspective. J Pediatr (Rio J) 2022; 98 Suppl 1:S38-S46. [PMID: 34780713 PMCID: PMC9510906 DOI: 10.1016/j.jped.2021.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To describe the participation of the environment in the childhood obesity epidemic, since childhood obesity currently represents a great challenge, with high prevalence worldwide, including in Brazil. DATA SOURCE Survey of articles published in the last 10 years in PubMed, evaluating the interface between the environment and childhood obesity. DATA SYNTHESIS Recent studies show that the environment is very important in the etiopathogenesis of obesity and its comorbidities. Therefore, factors such as air pollution, exposure to chemical substances that interfere with the metabolism, excessive consumption of ultra-processed foods, changes in the intestinal microbiota, and sedentary lifestyle are associated with increased obesity, insulin resistance, type 2 diabetes, and changes in lipid metabolism. These factors have a greater impact on some stages of life, such as the first thousand days, as they affect the expression of genes that control the adipogenesis, energy expenditure, and the mechanisms for hunger/satiety control. CONCLUSIONS Environmental aspects must be taken into account in the prevention and treatment of childhood obesity, both from the individual and the population point of view, with adequate and comprehensive public health policies.
Collapse
Affiliation(s)
- Roseli Oselka Saccardo Sarni
- Centro Universitário Faculdade de Medicina do ABC (FMABC), Departamento de Pediatria, Santo André, SP, Brazil; Universidade Federal de São Paulo - Escola Paulista de Medicina, Departamento de Pediatria, São Paulo, SP, Brazil
| | - Cristiane Kochi
- Santa Casa de São Paulo, Faculdade de Ciências Médicas, Departamento de Medicina Interna-Pediatria, São Paulo, SP, Brazil
| | - Fabiola Isabel Suano-Souza
- Centro Universitário Faculdade de Medicina do ABC (FMABC), Departamento de Pediatria, Santo André, SP, Brazil; Universidade Federal de São Paulo - Escola Paulista de Medicina, Departamento de Pediatria, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
13
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
14
|
Park YJ, Han SM, Huh JY, Kim JB. Emerging roles of epigenetic regulation in obesity and metabolic disease. J Biol Chem 2021; 297:101296. [PMID: 34637788 PMCID: PMC8561000 DOI: 10.1016/j.jbc.2021.101296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue dysfunction is a hallmark of obesity and contributes to obesity-related sequelae such as metabolic complications and insulin resistance. Compelling evidence indicates that adipose-tissue-specific gene expression is influenced by gene interactions with proximal and distal cis-regulatory elements; the latter exert regulatory effects via three-dimensional (3D) chromosome conformation. Recent advances in determining the regulatory mechanisms reveal that compromised epigenomes are molecularly interlinked to altered cis-regulatory element activity and chromosome architecture in the adipose tissue. This review summarizes the roles of epigenomic components, particularly DNA methylation, in transcriptional rewiring in adipose tissue. In addition, we discuss the emerging roles of DNA methylation in the maintenance of 3D chromosome conformation and its pathophysiological significance concerning adipose tissue function.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
15
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|