1
|
Schwab K, Robinson L, Annschuetz A, Dreesen E, Magbagbeolu M, Melis V, Theuring F, Harrington CR, Wischik CM, Riedel G. Rivastigmine interferes with the pharmacological activity of hydromethylthionine on presynaptic proteins in the line 66 model of frontotemporal dementia. Brain Res Bull 2024; 220:111172. [PMID: 39694148 DOI: 10.1016/j.brainresbull.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses. We measured the abundance of tau and synaptic proteins (VAMP-2, SNAP-25, SNTX-1, SYNPY-1, SYN-1, A-SYN) immunohistochemically to reveal structural synaptic alterations in these mice. Tau and synaptic markers were also examined in L66 mice treated with hydromethylthionine mesylate (HMTM) (15 mg/kg) and rivastigmine (0.5 mg/kg) administered singly and in combination. Tau protein accumulated in L66 mouse brains, and the levels of synaptic proteins were also altered, most notably with decreased levels of SNAP-25 and SYN-1. A decrease in tau accumulation in L66 brains caused by HMTM was partially compromised by rivastigmine pretreatment. Differences in synaptic proteins induced by HMTM alone were not identical with those induced by HMTM pretreated with rivastigmine. The most prominent differences appeared in proteins of the SNARE complex (SNAP-25, VAMP-2, SNTX-1), but rivastigmine also interfered with the HMTM-dependent reduction in tau accumulation. These data extend our previous findings with L1 mice and provide evidence for a synaptic mechanism of interference between symptomatic and disease-modifying dementia therapies and an explanation for similar drug interactions observed in clinical trials.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lianne Robinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Annschuetz
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
2
|
Scarpa M, Vallera E, Ausellé-Bosch S, Rocha FM, Mercan BE, Roy A, Nordberg A, Kumar A. Post mortem validation and mechanistic study of UCB-J in progressive supranuclear palsy patients' brains. Alzheimers Dement 2024. [PMID: 39670533 DOI: 10.1002/alz.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) is a devastating 4R tauopathy affecting motor functions and is often misdiagnosed/underdiagnosed due to a lack of specific biomarkers. Synaptic loss is an eminent feature of tauopathies including PSP. Novel synaptic positron emission tomography tracer UCB-J holds great potential for early diagnosis; however, there is a substantial knowledge gap in terms of the mechanism and the extent and nature of synaptic loss in PSP. METHODS Here, we report an in-depth post mortem validation and mechanistic study of UCB-J in PSP and control brains using radioligand/autoradiography binding studies, alongside biochemical correlation analyses of synaptic markers. RESULTS AND DISCUSSION 3H-UCB-J targeted synaptic vesicle protein 2A protein with high specificity and demonstrated a distinct interrelation with synaptic markers in PSP patients' brain regions. The loss of UCB-J binding in the early and severely affected globus pallidus of PSP patients' brains revealed deficits of glutamate/GABAergic synaptic terminals. Cortical and subcortical 4R tau load differentially impacted synaptic marker profiles across PSP patients, warranting further investigation. HIGHLIGHTS UCB-J targeted synaptic vesicle protein 2A with high specificity in progressive supranuclear palsy (PSP) brains and demonstrated a conserved single nM binding site across different brain regions. UCB-J depicted prominent synaptic loss at the synaptosome levels and revealed deficits of glutamate/GABAergic synaptic terminals in the early affected globus pallidus of PSP brains as compared to the control. Cortical and subcortical 4R tau load distinctly influenced synaptic markers profile across PSP patients and highlighted that presynaptic "ubiquitous" markers individually might not be able to represent the complete state of synaptic deficits/loss in PSP brains.
Collapse
Affiliation(s)
- Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisavet Vallera
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sira Ausellé-Bosch
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Filipa M Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Buse Esra Mercan
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Avishek Roy
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Giannakopoulos P. In Vivo Imaging of Synaptic Loss and Plasma Biomarkers in Alzheimer Disease. Radiology 2024; 313:e242867. [PMID: 39560482 DOI: 10.1148/radiol.242867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Affiliation(s)
- Panteleimon Giannakopoulos
- From the Division of Institutional Measures, Medical Direction, Geneva University Hospitals, 12 bis avenue de Rosemont, 1208 Geneva, Switzerland
| |
Collapse
|
4
|
Ortiz-Vega N, Lobato AG, Canic T, Zhu Y, Lazopulo S, Syed S, Zhai RG. Regulation of proteostasis by sleep through autophagy in Drosophila models of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402681. [PMID: 39237365 PMCID: PMC11377308 DOI: 10.26508/lsa.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sleep and circadian rhythm dysfunctions are common clinical features of Alzheimer's disease (AD). Increasing evidence suggests that in addition to being a symptom, sleep disturbances can also drive the progression of neurodegeneration. Protein aggregation is a pathological hallmark of AD; however, the molecular pathways behind how sleep affects protein homeostasis remain elusive. Here we demonstrate that sleep modulation influences proteostasis and the progression of neurodegeneration in Drosophila models of tauopathy. We show that sleep deprivation enhanced Tau aggregational toxicity resulting in exacerbated synaptic degeneration. In contrast, sleep induction using gaboxadol led to reduced toxic Tau accumulation in neurons as a result of modulated autophagic flux and enhanced clearance of ubiquitinated Tau, suggesting altered protein processing and clearance that resulted in improved synaptic integrity and function. These findings highlight the complex relationship between sleep and regulation of protein homeostasis and the neuroprotective potential of sleep-enhancing therapeutics to slow the progression or delay the onset of neurodegeneration.
Collapse
Affiliation(s)
- Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Young JJ, O'Dell RS, Naganawa M, Toyonaga T, Chen MK, Nabulsi NB, Huang Y, Cooper E, Miller A, Lam J, Bates K, Ruan A, Nelsen K, Salardini E, Carson RE, van Dyck CH, Mecca AP. Validation of a Simplified Tissue-to-Reference Ratio Measurement Using SUVR to Assess Synaptic Density Alterations in Alzheimer Disease with [ 11C]UCB-J PET. J Nucl Med 2024; 65:1782-1785. [PMID: 39299782 PMCID: PMC11533916 DOI: 10.2967/jnumed.124.267419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Simplified methods of acquisition and quantification would facilitate the use of synaptic density imaging in multicenter and longitudinal studies of Alzheimer disease (AD). We validated a simplified tissue-to-reference ratio method using SUV ratios (SUVRs) for estimating synaptic density with [11C]UCB-J PET. Methods: Participants included 31 older adults with AD and 16 with normal cognition. The distribution volume ratio (DVR) using simplified reference tissue model 2 was compared with SUVR at short scan windows using a whole-cerebellum reference region. Results: Synaptic density was reduced in AD participants using DVR or SUVR. SUVR using later scan windows (60-90 or 70-90 min) was minimally biased, with the strongest correlation with DVR. Effect sizes using SUVR at these late time windows were minimally reduced compared with effect sizes with DVR. Conclusion: A simplified tissue-to-reference method may be useful for multicenter and longitudinal studies seeking to measure synaptic density in AD.
Collapse
Affiliation(s)
- Juan J Young
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare System, West Haven, Connecticut
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Emma Cooper
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Alyssa Miller
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Lam
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Kara Bates
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Audrey Ruan
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Kimberly Nelsen
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut;
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Wu J, Li B, Wang J, Huang Q, Chen X, You Z, He K, Guo Q, Li S, Huang YH, Guo T, Dai W, Xiang W, Chen W, Yang D, Zhao J, Guan Y, Xie F, Wolfe S. Plasma Glial Fibrillary Acid Protein and Phosphorated Tau 181 Association with Presynaptic Density-Dependent Tau Pathology at 18F-SynVesT-1 Brain PET Imaging. Radiology 2024; 313:e233019. [PMID: 39560478 PMCID: PMC11605102 DOI: 10.1148/radiol.233019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 11/20/2024]
Abstract
Background Synaptic loss is an important factor in Alzheimer disease (AD); however, blood assays that conveniently and rapidly reflect changes in synaptic density are lacking. Purpose To correlate multiple potential synaptic blood markers with synaptic density measured using 18F-SynVesT-1, a fluorine 18 (18F)-labeled radiotracer, brain PET and to explore the independent associations between these markers and synaptic density. Materials and Methods This prospective study included 50 cognitively unimpaired (mean age, 65.0 years ± 8.3 [SD]; 37 female) participants and 70 participants with cognitive impairment (mean age, 69.5 years ± 7.9; 43 female) from the Memory Clinic of Shanghai Jiao Tong University Affiliated Ruijin Hospital and communities in Shanghai. Amyloid-β (Aβ) and tau were assessed using 18F-florbetapir and 18F-MK6240 PET/CT. Synaptic density was evaluated with 18F-SynVesT-1 PET/MRI. Pearson correlation analysis was used to investigate relationships of plasma (Aβ42/40 ratio, phosphorylated tau 181 [p-tau-181], glial fibrillary acid protein [GFAP], neurofilament light) and serum (C-reactive protein, tumor necrosis factor-α, α-synuclein, neurogranin, active plasminogen activator inhibitor-1, tissue plasminogen activator) biomarkers with synaptic density. Linear regression models and mediation analysis were used to explore effects of other AD-related pathologies on these relationships. Results Correlations were observed between increased p-tau-181 and GFAP and decreased synaptic density in global cortex (rp-tau-181 = -0.352, rGFAP = -0.386; both P < .001) and hippocampus (rp-tau-181 = -0.361, rGFAP = -0.369; both P < .001) at 18F-SynVesT-1 PET/MRI. The relationships between p-tau-181 and GFAP with 18F-SynVesT-1 PET/MRI persisted after controlling for plasma Aβ42/40 ratio, Aβ PET, or cortical thickness (P value range, <.001-.01). This association disappeared after controlling for tau PET (P value range, .08-.83). Conclusion Plasma p-tau-181 and GFAP are closely associated with synaptic density measured using 18F-SynVesT-1 PET/MRI, with the relationship primarily influenced by tau accumulation rather than Aβ deposition or cortical thickness. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Giannakopoulos in this issue.
Collapse
Affiliation(s)
| | | | - Jie Wang
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Qi Huang
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Xing Chen
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Zhiwen You
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Kun He
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Qihao Guo
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Songye Li
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Yiyun Henry Huang
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Tengfei Guo
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Wenlin Dai
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Weiwei Xiang
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Weihuang Chen
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Dake Yang
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | - Jun Zhao
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| | | | | | - Shannyn Wolfe
- From the Department of Nuclear Medicine and PET Center, Huashan
Hospital, Fudan University, Shanghai, China (J. Wu, J. Wang, Q.H., K.H., Y.G.,
F.X.); Department of Neurology and Institute of Neurology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China (B.L.);
Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School
of Medicine, Shanghai, China (X.C., Z.Y., J.Z.); Department of Gerontology,
Shanghai Jiaotong University Affiliated Sixth People’s Hospital,
Shanghai, China (Q.G.); PET Center, Department of Radiology and Biomedical
Imaging, Yale University School of Medicine, New Haven, Conn (S.L., Y.H.H.);
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
(T.G.); Center for Applied Statistics, Institute of Statistics and Big Data,
Renmin University of China, Beijing, China (W.D.); and Shanghai Conlight Medical
Laboratory, Shanghai, China (W.X., W.C., D.Y.)
| |
Collapse
|
7
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
8
|
Solar KG, Ventresca M, Zamyadi R, Zhang J, Jetly R, Vartanian O, Rhind SG, Dunkley BT. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun 2024; 6:fcae348. [PMID: 39440300 PMCID: PMC11495223 DOI: 10.1093/braincomms/fcae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
Concussion is a public health crisis that results in a complex cascade of neurochemical changes that can have life-changing consequences. Subconcussions are generally considered less serious, but we now realize repetitive subconcussions can lead to serious neurological deficits. Subconcussions are common in contact sports and the military where certain personnel are exposed to repetitive occupational blast overpressure. Post-mortem studies show subconcussion is a better predictor than concussion for chronic traumatic encephalopathy-a progressive and fatal neurodegenerative tauopathy, only diagnosable post-mortem-thus, an in vivo biomarker would be transformative. Magnetoencephalography captures the dynamics of neuronal electrochemical action, and functional MRI shows that functional connectivity is associated with tauopathy patterns. Therefore, both imaging modalities could provide surrogate markers of tauopathy. In this cross-sectional study, we examined the effects of repetitive subconcussion on neuronal activity and functional connectivity using magnetoencephalography and functional MRI, and on neurological symptoms and mental health in a military sample. For magnetoencephalography and outcome analyses, 81 participants were split into 'high' and 'low' blast exposure groups using the generalized blast exposure value: n = 41 high blast (26.4-65.7 years; 4 females) and n = 40 low blast (28.0-63.3 years; 8 females). For functional MRI, two high blast male participants without data were excluded: n = 39 (29.6-65.7 years). Magnetoencephalography revealed disrupted neuronal activity in participants with a greater history of repetitive subconcussions, including neural slowing (higher delta activity) in right fronto-temporal lobes and subcortical regions (hippocampus, amygdala, caudate, pallidum and thalamus), and functional dysconnectivity in the posterior default mode network (lower connectivity at low and high gamma). These abnormalities were independent of concussion or traumatic stress history, and magnetoencephalography showed functional dysconnectivity not detected in functional MRI. Besides magnetoencephalography changes, those with higher blast exposure had poorer somatic and cognitive outcomes, with no blast-related differences in mental health or associations between neurological symptoms and neuronal activity. This study suggests that repetitive subconcussions have deleterious effects on brain function and that magnetoencephalography provides an avenue for both treatment targets by identifying affected brain regions and in prevention by identifying those at risk of cumulative subconcussive neurotrauma.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Matthew Ventresca
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Rouzbeh Zamyadi
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Rakesh Jetly
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1A 0K6
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada M5S 2W6
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5G 1X8
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
9
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
10
|
Salardini E, O'Dell RS, Tchorz E, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer's disease: a multi-tracer PET study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614277. [PMID: 39386453 PMCID: PMC11463661 DOI: 10.1101/2024.09.21.614277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background The pathological effects of amyloid β oligomers (Aβo) may be mediated through the metabotropic glutamate receptor subtype 5 (mGluR5), leading to synaptic loss in Alzheimer's disease (AD). Positron emission tomography (PET) studies of mGluR5 using [18F]FPEB indicate a reduction of receptor binding that is focused in the medial temporal lobe in AD. Synaptic loss due to AD measured through synaptic vesicle glycoprotein 2A (SV2A) quantification with [11C]UCB-J PET is also focused in the medial temporal lobe, but with clear widespread reductions is commonly AD-affected neocortical regions. In this study, we used [18F]FPEB and [11C]UCB-J PET to investigate the relationship between mGluR5 and synaptic density in early AD. Methods Fifteen amyloid positive participants with early AD and 12 amyloid negative, cognitively normal (CN) participants underwent PET scans with both [18F]FPEB to measure mGluR5 and [11C]UCB-J to measure synaptic density. Parametric DVR images using equilibrium methods were generated from dynamic. For [18F]FPEB PET, DVR was calculated using equilibrium methods and a cerebellum reference region. For [11C]UCB-J PET, DVR was calculated with a simplified reference tissue model - 2 and a whole cerebellum reference region.. Result A strong positive correlation between mGluR5 and synaptic density was present in the hippocampus for participants with AD (r = 0.81, p < 0.001) and in the CN group (r = 0.74, p = 0.005). In the entorhinal cortex, there was a strong positive correlation between mGluR5 and synaptic in the AD group (r = 0.85, p <0.001), but a weaker non-significant correlation in the CN group (r = 0.36, p = 0.245). Exploratory analyses within and between other brain regions suggested significant positive correlations between mGluR5 in the medial temporal lobe and synaptic density in a broader set of commonly AD-affected regions. Conclusion Medial temporal loss of mGluR5 in AD is associated with synaptic loss in both medial temporal regions and more broadly in association cortical regions, indicating that mGluR5 mediated Aβo toxicity may lead to early synaptic loss more broadly in AD-affected networks. In CN individuals, an isolated strong association between lower mGluR5 and lower synaptic density may indicate non-AD related synaptic loss.
Collapse
Affiliation(s)
- Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Em Tchorz
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Ji J, Hou Z, He Y, Liu L, Xue F, Chen H, Yuan Z. Differential network knockoff filter with application to brain connectivity analysis. Stat Med 2024; 43:3830-3861. [PMID: 38922944 DOI: 10.1002/sim.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
The brain functional connectivity can typically be represented as a brain functional network, where nodes represent regions of interest (ROIs) and edges symbolize their connections. Studying group differences in brain functional connectivity can help identify brain regions and recover the brain functional network linked to neurodegenerative diseases. This process, known as differential network analysis focuses on the differences between estimated precision matrices for two groups. Current methods struggle with individual heterogeneity in measuring the brain connectivity, false discovery rate (FDR) control, and accounting for confounding factors, resulting in biased estimates and diminished power. To address these issues, we present a two-stage FDR-controlled feature selection method for differential network analysis using functional magnetic resonance imaging (fMRI) data. First, we create individual brain connectivity measures using a high-dimensional precision matrix estimation technique. Next, we devise a penalized logistic regression model that employs individual brain connectivity data and integrates a new knockoff filter for FDR control when detecting significant differential edges. Through extensive simulations, we showcase the superiority of our approach compared to other methods. Additionally, we apply our technique to fMRI data to identify differential edges between Alzheimer's disease and control groups. Our results are consistent with prior experimental studies, emphasizing the practical applicability of our method.
Collapse
Affiliation(s)
- Jiadong Ji
- Institute for Financial Studies, Shandong University, Jinan, Shandong, China
| | - Zhendong Hou
- Institute for Financial Studies, Shandong University, Jinan, Shandong, China
| | - Yong He
- Institute for Financial Studies, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Wang J, Huang Q, Chen X, You Z, He K, Guo Q, Huang Y, Yang Y, Lin Z, Guo T, Zhao J, Guan Y, Li B, Xie F. Tau pathology is associated with synaptic density and longitudinal synaptic loss in Alzheimer's disease. Mol Psychiatry 2024; 29:2799-2809. [PMID: 38589563 DOI: 10.1038/s41380-024-02501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
The associations of synaptic loss with amyloid-β (Aβ) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aβ plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aβ42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aβ and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aβ deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aβ deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aβ42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aβ plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aβ plaques, and also can predict longitudinal synaptic loss.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, CT, 06520-8048, USA
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100089, China
| | - Zengping Lin
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
13
|
Li J, Huang Q, Qi N, He K, Li S, Huang L, Pan F, Ren S, Hua F, Huang Y, Guan Y, Guo Q, Zhao J, Xie F. The associations between synaptic density and "A/T/N" biomarkers in Alzheimer's disease: An 18F-SynVesT-1 PET/MR study. J Cereb Blood Flow Metab 2024; 44:1199-1207. [PMID: 38295871 PMCID: PMC11179616 DOI: 10.1177/0271678x241230733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 06/13/2024]
Abstract
A newly developed SV2A radiotracer, 18F-SynVesT-1, was used in this study to investigate synaptic density and its association with Alzheimer's disease (AD) "A/T/N" biomarkers. The study included a cohort of 97 subjects, consisting of 64 patients with cognitive impairment (CI) and 33 individuals with normal cognition (CU). All subjects underwent 18F-SynVesT-1 PET/MR and 18F-florbetapir PET/CT scans. Additionally, a subgroup of individuals also underwent 18F-MK-6240, 18F-FDG PET/CT, plasma Aβ42/Aβ40 and p-tau181 tests. The differences in synaptic density between the groups and the correlations between synaptic density and AD "A/T/N" biomarkers were analyzed. The results showed that compared to the CU group, the CI with Aβ+ (CI+) group exhibited the most pronounced synapse loss in the hippocampus, with some loss also observed in the neocortex. Furthermore, synaptic density in the hippocampus and parahippocampal gyrus showed associations with AD biomarkers detected by both imaging and plasma tests in the CI group. The associations between synaptic density and FDG uptake and hippocampal volume were also observed in the CI+ group. In conclusion, the study demonstrated significant synaptic density loss, as measured by the promising tracer 18F-SynVesT-1, and its close correlation with "A/T/N" biomarkers in patients with both Alzheimer's clinical syndrome and pathological changes.
Collapse
Affiliation(s)
- Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Qi
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Huang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
15
|
Kumar A, Scarpa M, Nordberg A. Tracing synaptic loss in Alzheimer's brain with SV2A PET-tracer UCB-J. Alzheimers Dement 2024; 20:2589-2605. [PMID: 38363009 PMCID: PMC11032538 DOI: 10.1002/alz.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Miriam Scarpa
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Agneta Nordberg
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Theme Inflammation and AgingKarolinska University HospitalStockholmSweden
| |
Collapse
|
16
|
Shahid SS, Dzemidzic M, Butch ER, Jarvis EE, Snyder SE, Wu YC. Estimating the synaptic density deficit in Alzheimer's disease using multi-contrast CEST imaging. PLoS One 2024; 19:e0299961. [PMID: 38483851 PMCID: PMC10939256 DOI: 10.1371/journal.pone.0299961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aβ) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 μT and 5.9 μT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aβ-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Elizabeth R. Butch
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Erin E. Jarvis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Scott E. Snyder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Weldon School of Biomedical Engineering at Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
17
|
Visser M, O'Brien JT, Mak E. In vivo imaging of synaptic density in neurodegenerative disorders with positron emission tomography: A systematic review. Ageing Res Rev 2024; 94:102197. [PMID: 38266660 DOI: 10.1016/j.arr.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2 A (SV2A) enables quantification of synaptic density in the living human brain. Assessing the regional distribution and severity of synaptic density loss will contribute to our understanding of the pathological processes that precede atrophy in neurodegeneration. In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer's disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson's disease and Dementia with Lewy bodies, Huntington's disease, and Spinocerebellar Ataxia. We discuss the main findings concerning group differences and clinical-cognitive correlations, and explore relations between SV2A PET and other markers of pathology. Additionally, we touch upon synaptic density in healthy ageing and outcomes of radiotracer validation studies. Studies were identified on PubMed and Embase between 2018 and 2023; last searched on the 3rd of July 2023. A total of 36 studies were included, comprising 5 on normal ageing, 21 clinical studies, and 10 validation studies. Extracted study characteristics were participant details, methodological aspects, and critical findings. In summary, the small but growing literature on in vivo SV2A PET has revealed different spatial patterns of synaptic density loss among various neurodegenerative disorders that correlate with cognitive functioning, supporting the potential role of SV2A PET imaging for differential diagnosis. SV2A PET imaging shows tremendous capability to provide novel insights into the aetiology of neurodegenerative disorders and great promise as a biomarker for synaptic density reduction. Novel directions for future synaptic density research are proposed, including (a) longitudinal imaging in larger patient cohorts of preclinical dementias, (b) multi-modal mapping of synaptic density loss onto other pathological processes, and (c) monitoring therapeutic responses and assessing drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Malouke Visser
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom; Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
18
|
Hoshi H, Hirata Y, Fukasawa K, Kobayashi M, Shigihara Y. Oscillatory characteristics of resting-state magnetoencephalography reflect pathological and symptomatic conditions of cognitive impairment. Front Aging Neurosci 2024; 16:1273738. [PMID: 38352236 PMCID: PMC10861731 DOI: 10.3389/fnagi.2024.1273738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Background Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets. Therefore, this study aimed to investigate the relationships among MEG oscillatory parameters, clinically validated biomarkers computed from rCBF, and NPAs using outpatient data retrieved from hospital records. Methods Clinical data from 64 individuals with mixed pathological backgrounds were retrieved and analysed. MEG oscillatory parameters, including relative power (RP) from delta to high gamma bands, mean frequency, individual alpha frequency, and Shannon's spectral entropy, were computed for each cortical region. For SPECT data, three pathological parameters-'severity', 'extent', and 'ratio'-were computed using an easy z-score imaging system (eZIS). As for NPAs, the MMSE and FAB scores were retrieved. Results MEG oscillatory parameters were correlated with eZIS parameters. The eZIS parameters associated with Alzheimer's disease pathology were reflected in theta power augmentation and slower shift of the alpha peak. Moreover, MEG oscillatory parameters were found to reflect NPAs. Global slowing and loss of diversity in neural oscillatory components correlated with MMSE and FAB scores, whereas the associations between eZIS parameters and NPAs were sparse. Conclusion MEG oscillatory parameters correlated with both SPECT (i.e. eZIS) parameters and NPAs, supporting the clinical validity of MEG oscillatory parameters as pathological and symptomatic indicators. The findings indicate that various components of MEG oscillatory characteristics can provide valuable pathological and symptomatic information, making MEG data a rich resource for clinical examinations of patients with cognitive impairments. SPECT (i.e. eZIS) parameters showed no correlations with NPAs. The results contributed to a better understanding of the characteristics of electrophysiological and pathological examinations for patients with cognitive impairments, which will help to facilitate their co-use in clinical application, thereby improving patient care.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Yoko Hirata
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya, Japan
| | | | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
19
|
Krishnamurthy K, Pradhan RK. Emerging perspectives of synaptic biomarkers in ALS and FTD. Front Mol Neurosci 2024; 16:1279999. [PMID: 38249293 PMCID: PMC10796791 DOI: 10.3389/fnmol.2023.1279999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are debilitating neurodegenerative diseases with shared pathological features like transactive response DNA-binding protein of 43 kDa (TDP-43) inclusions and genetic mutations. Both diseases involve synaptic dysfunction, contributing to their clinical features. Synaptic biomarkers, representing proteins associated with synaptic function or structure, offer insights into disease mechanisms, progression, and treatment responses. These biomarkers can detect disease early, track its progression, and evaluate therapeutic efficacy. ALS is characterized by elevated neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF) and blood, correlating with disease progression. TDP-43 is another key ALS biomarker, its mislocalization linked to synaptic dysfunction. In FTD, TDP-43 and tau proteins are studied as biomarkers. Synaptic biomarkers like neuronal pentraxins (NPs), including neuronal pentraxin 2 (NPTX2), and neuronal pentraxin receptor (NPTXR), offer insights into FTD pathology and cognitive decline. Advanced technologies, like machine learning (ML) and artificial intelligence (AI), aid biomarker discovery and drug development. Challenges in this research include technological limitations in detection, variability across patients, and translating findings from animal models. ML/AI can accelerate discovery by analyzing complex data and predicting disease outcomes. Synaptic biomarkers offer early disease detection, personalized treatment strategies, and insights into disease mechanisms. While challenges persist, technological advancements and interdisciplinary efforts promise to revolutionize the understanding and management of ALS and FTD. This review will explore the present comprehension of synaptic biomarkers in ALS and FTD and discuss their significance and emphasize the prospects and obstacles.
Collapse
Affiliation(s)
- Karrthik Krishnamurthy
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
20
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Flores-Sandoval AA, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CSY. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. Neurobiol Dis 2024; 190:106380. [PMID: 38114048 DOI: 10.1016/j.nbd.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK.
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK; Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Aimee Arely Flores-Sandoval
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain; Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States of America
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Silva-Rudberg JA, Salardini E, O'Dell RS, Chen MK, Ra J, Georgelos JK, Morehouse MR, Melino KP, Varma P, Toyonaga T, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer's Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am J Geriatr Psychiatry 2024; 32:17-28. [PMID: 37673749 PMCID: PMC10840732 DOI: 10.1016/j.jagp.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Collapse
Affiliation(s)
- Jason A Silva-Rudberg
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Jocelyn Ra
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Jamie K Georgelos
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Mackenzie R Morehouse
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Kaitlyn P Melino
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Pradeep Varma
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Neuroscience (CHvD), Yale University School of Medicine, New Haven, CT; Department of Neurology (CHvD), Yale University School of Medicine, New Haven, CT
| | - Adam P Mecca
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
22
|
Schoonhoven DN, Coomans EM, Millán AP, van Nifterick AM, Visser D, Ossenkoppele R, Tuncel H, van der Flier WM, Golla SSV, Scheltens P, Hillebrand A, van Berckel BNM, Stam CJ, Gouw AA. Tau protein spreads through functionally connected neurons in Alzheimer's disease: a combined MEG/PET study. Brain 2023; 146:4040-4054. [PMID: 37279597 PMCID: PMC10545627 DOI: 10.1093/brain/awad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-β pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-β pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anne M van Nifterick
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Denise Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 221 00 Lund, Sweden
| | - Hayel Tuncel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Wang YTT, Rosa-Neto P, Gauthier S. Advanced brain imaging for the diagnosis of Alzheimer disease. Curr Opin Neurol 2023; 36:481-490. [PMID: 37639461 DOI: 10.1097/wco.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW The purpose is to review the latest advances of brain imaging for the diagnosis of Alzheimer disease (AD). RECENT FINDINGS Brain imaging techniques provide valuable and complementary information to support the diagnosis of Alzheimer disease in clinical and research settings. The recent FDA accelerated approvals of aducanumab, lecanemab and donanemab made amyloid-PET critical in helping determine the optimal window for anti-amyloid therapeutic interventions. Tau-PET, on the other hand, is considered of key importance for the tracking of disease progression and for monitoring therapeutic interventions in clinical trials. PET imaging for microglial activation, astrocyte reactivity and synaptic degeneration are still new techniques only used in the research field, and more studies are needed to validate their use in the clinical diagnosis of AD. Finally, artificial intelligence has opened new prospective in the early detection of AD using MRI modalities. SUMMARY Brain imaging techniques using PET improve our understanding of the different AD-related pathologies and their relationship with each other along the course of disease. With more robust validation, machine learning and deep learning algorithms could be integrated with neuroimaging modalities to serve as valuable tools for clinicians to make early diagnosis and prognosis of AD.
Collapse
|
24
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. J Neuropathol Exp Neurol 2023; 82:836-844. [PMID: 37595576 PMCID: PMC10516464 DOI: 10.1093/jnen/nlad064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Abstract
Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss also occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared 12 cases of definite PART with 6 controls and 6 Alzheimer disease cases. In this study, the hippocampal CA2 region showed loss of synaptophysin puncta and intensity in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin was present in Alzheimer disease, but the pattern appeared distinct. These novel findings suggest the presence of synaptic loss associated with either a high hippocampal tau burden or a Braak stage IV in PART.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Stein-O’Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295440. [PMID: 37745408 PMCID: PMC10516095 DOI: 10.1101/2023.09.12.23295440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O’Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Single Cell Training and Analysis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Zhao Q, Du X, Chen W, Zhang T, Xu Z. Advances in diagnosing mild cognitive impairment and Alzheimer's disease using 11C-PIB- PET/CT and common neuropsychological tests. Front Neurosci 2023; 17:1216215. [PMID: 37492405 PMCID: PMC10363609 DOI: 10.3389/fnins.2023.1216215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Alzheimer's disease (AD) is a critical health issue worldwide that has a negative impact on patients' quality of life, as well as on caregivers, society, and the environment. Positron emission tomography (PET)/computed tomography (CT) and neuropsychological scales can be used to identify AD and mild cognitive impairment (MCI) early, provide a differential diagnosis, and offer early therapies to impede the course of the illness. However, there are few reports of large-scale 11C-PIB-PET/CT investigations that focus on the pathology of AD and MCI. Therefore, further research is needed to determine how neuropsychological test scales and PET/CT measurements of disease progression interact.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinxin Du
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenhong Chen
- Department of Sleep Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Rehabilitation Therapeutics, School of Nursing of Jilin University, Changchun, Jilin, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
O'Dell RS, Higgins-Chen A, Gupta D, Chen MK, Naganawa M, Toyonaga T, Lu Y, Ni G, Chupak A, Zhao W, Salardini E, Nabulsi NB, Huang Y, Arnsten AFT, Carson RE, van Dyck CH, Mecca AP. Principal component analysis of synaptic density measured with [ 11C]UCB-J PET in early Alzheimer's disease. Neuroimage Clin 2023; 39:103457. [PMID: 37422964 PMCID: PMC10338149 DOI: 10.1016/j.nicl.2023.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.
Collapse
Affiliation(s)
- Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| | - Albert Higgins-Chen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Pain Research, Informatics, Multi-morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dhruva Gupta
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Gessica Ni
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Anna Chupak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| |
Collapse
|
28
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Sandoval AAF, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CS. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544491. [PMID: 37398162 PMCID: PMC10312609 DOI: 10.1101/2023.06.11.544491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- School of Psychology, University of Kent, Kent, UK
| | - Aimee Arely Flores Sandoval
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S.Y. Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
29
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal Synaptic Alterations Associated with Tau Pathology in Primary Age-Related Tauopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.22.23286323. [PMID: 36865237 PMCID: PMC9980270 DOI: 10.1101/2023.02.22.23286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and a high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared twelve cases of definite PART with six young controls and six Alzheimer's disease cases. In this study, we identified loss of synaptophysin puncta and intensity in the CA2 region of the hippocampus in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin signal was present in AD, but the pattern was distinct from that seen in PART. These novel findings suggest the presence of synaptic loss in PART associated with either a high hippocampal tau burden or a Braak stage IV. These synaptic changes raise the possibility that synaptic loss in PART could contribute to cognitive impairment, though future studies including cognitive assessments are needed to address this question.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| |
Collapse
|
30
|
Mikkelsen JD, Kaad S, Aripaka SS, Finsen B. Synaptic vesicle glycoprotein 2A (SV2A) levels in the cerebral cortex in patients with Alzheimer's disease: a radioligand binding study in postmortem brains. Neurobiol Aging 2023; 129:50-57. [PMID: 37269646 DOI: 10.1016/j.neurobiolaging.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Histological and biochemical analyses in postmortem tissues have demonstrated neurodegenerative changes in the cerebral cortex in patients with Alzheimer's disease (AD), and it has been suggested that this represents a loss of synapses. PET imaging of the (pre)synaptic vesicular glycoprotein 2A (SV2A) has demonstrated a reduction in synapse density in AD in the hippocampus but not consistently in the neocortex. This investigation examines the level of [3H]UCB-J binding in postmortem cortical tissue from patients with AD and matched healthy controls using autoradiography. Among the neocortical areas examined, the binding was significantly lower only in the middle frontal gyrus in AD compared to matched controls. No differences were observed in the parietal, temporal, or occipital cortex. The binding levels in the frontal cortex in the AD cohort displayed large variability among subjects, and this revealed a highly significant negative association with the age of the patient. These results demonstrate low UCB-J binding in the frontal cortex of patients with AD, and this biomarker correlates negatively with age, which may further indicate that SV2A could be an important biomarker in AD patients.
Collapse
Affiliation(s)
- Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sif Kaad
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sanjay S Aripaka
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bente Finsen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
31
|
Chen XQ, Zuo X, Becker A, Head E, Mobley WC. Reduced synaptic proteins and SNARE complexes in Down syndrome with Alzheimer's disease and the Dp16 mouse Down syndrome model: Impact of APP gene dose. Alzheimers Dement 2023; 19:2095-2116. [PMID: 36370135 PMCID: PMC10175517 DOI: 10.1002/alz.12835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction. METHODS Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls. The same proteins were examined in the Dp16 model of DS. RESULTS A common subset of synaptic proteins were reduced in AD and AD-DS, but not in DS or a case of partial trisomy 21 lacking triplication of APP gene. Pointing to compromised synaptic function, the reductions in AD and AD-DS were correlated with reduced SNARE complexes. In Dp16 mice reductions in syntaxin 1A, SNAP25 and the SNARE complex recapitulated findings in AD-DS; reductions were impacted by both age and increased App gene dose. DISCUSSION Synaptic phenotypes shared between AD-DS and AD point to shared pathogenetic mechanisms.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Xinxin Zuo
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
33
|
Akwa Y, Di Malta C, Zallo F, Gondard E, Lunati A, Diaz-de-Grenu LZ, Zampelli A, Boiret A, Santamaria S, Martinez-Preciado M, Cortese K, Kordower JH, Matute C, Lozano AM, Capetillo-Zarate E, Vaccari T, Settembre C, Baulieu EE, Tampellini D. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy 2023; 19:660-677. [PMID: 35867714 PMCID: PMC9851246 DOI: 10.1080/15548627.2022.2095791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synapses represent an important target of Alzheimer disease (AD), and alterations of their excitability are among the earliest changes associated with AD development. Synaptic activation has been shown to be protective in models of AD, and deep brain stimulation (DBS), a surgical strategy that modulates neuronal activity to treat neurological and psychiatric disorders, produced positive effects in AD patients. However, the molecular mechanisms underlying the protective role(s) of brain stimulation are still elusive. We have previously demonstrated that induction of synaptic activity exerts protection in mouse models of AD and frontotemporal dementia (FTD) by enhancing the macroautophagy/autophagy flux and lysosomal degradation of pathological MAPT/Tau. We now provide evidence that TFEB (transcription factor EB), a master regulator of lysosomal biogenesis and autophagy, is a key mediator of this cellular response. In cultured primary neurons from FTD-transgenic mice, synaptic stimulation inhibits MTORC1 signaling, thus promoting nuclear translocation of TFEB, which, in turn, induces clearance of MAPT/Tau oligomers. Conversely, synaptic activation fails to promote clearance of toxic MAPT/Tau in neurons expressing constitutively active RRAG GTPases, which sequester TFEB in the cytosol, or upon TFEB depletion. Activation of TFEB is also confirmed in vivo in DBS-stimulated AD mice. We also demonstrate that DBS reduces pathological MAPT/Tau and promotes neuroprotection in Parkinson disease patients with tauopathy. Altogether our findings indicate that stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau. This mechanism, underlying the protective effect of DBS, provides encouraging support for the use of synaptic stimulation as a therapeutic treatment against tauopathies.Abbreviations: 3xTg-AD: triple transgenic AD mice; AD: Alzheimer disease; CSA: cyclosporine A; DBS: deep brain stimulation; DIV: days in vitro; EC: entorhinal cortex; FTD: frontotemporal dementia; gLTP: glycine-induced long-term potentiation; GPi: internal segment of the globus pallidus; PD: Parkinson disease; STN: subthalamic nucleus; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Yvette Akwa
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department. of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Fátima Zallo
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Adele Lunati
- Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Lara Z. Diaz-de-Grenu
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anne Boiret
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Sara Santamaria
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Maialen Martinez-Preciado
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Katia Cortese
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Andres M. Lozano
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Etienne E. Baulieu
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Davide Tampellini
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France,CONTACT Davide Tampellini CHU Bicêtre, U 1195 Inserm - Université Paris-Saclay. Secteur Marron, Bât. G. Pincus, door 47, 80, rue du General Leclerc 94276 Kremlin-Bicêtre CedexFrance
| |
Collapse
|
34
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Wan K, Yin W, Tang Y, Zhu W, Wang Z, Zhou X, Zhang W, Zhang C, Yu X, Zhao W, Li C, Zhu X, Sun Z. Brain Gray Matter Volume Mediated the Correlation Between Plasma P-Tau and Cognitive Function of Early Alzheimer's Disease in China: A Cross-Sectional Observational Study. J Alzheimers Dis 2023; 92:81-93. [PMID: 36710682 DOI: 10.3233/jad-221100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The primary manifestations of Alzheimer's disease (AD) include cognitive decline and brain gray matter volume (GMV) atrophy. Recent studies have found that plasma phosphorylated-tau (p-tau) concentrations perform better in diagnosing, differentiating, and monitoring the progression of AD. However, the correlation between plasma p-tau, GMV, and cognition remains unclear. OBJECTIVE To investigate whether GMV plays a mediating role in the association between plasma p-tau concentrations and cognition. METHODS In total, 99 participants (47 patients with AD and 52 cognitively unimpaired [CU] individuals) were included. All participants underwent neuropsychological assessments, laboratory examinations, and magnetic resonance imaging scans. Plasma p-tau217 and p-tau181 concentrations were measured using an enzyme-linked immunosorbent assay kit. Voxel-based morphometry was performed to assess participants' brain GMV. Partial correlation and mediation analyses were conducted in AD group. RESULTS Plasma p-tau concentrations were significantly higher in the AD group than in the CU group. Patients with AD had significant brain GMV atrophy in the right hippocampus, bilateral middle temporal gyrus, and right inferior temporal gyrus. In the AD group, there were significant correlations between plasma p-tau217 concentrations, GMV, and Mini-Mental State Examination (MMSE) scores. Brain GMV of the right hippocampus mediated the association between plasma p-tau217 concentrations and MMSE scores. A significant correlation between plasma p-tau181 and MMSE scores was not identified. CONCLUSION The findings indicate that p-tau217 is a promising biomarker for central processes affecting brain GMV and cognitive function. This may provide potential targets for future intervention and treatment of tau-targeting therapies in the early stages of AD.
Collapse
Affiliation(s)
- Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, Australia
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
36
|
Malpetti M, Jones PS, Cope TE, Holland N, Naessens M, Rouse MA, Rittman T, Savulich G, Whiteside DJ, Street D, Fryer TD, Hong YT, Milicevic Sephton S, Aigbirhio FI, O′Brien JT, Rowe JB. Synaptic Loss in Frontotemporal Dementia Revealed by [ 11 C]UCB-J Positron Emission Tomography. Ann Neurol 2023; 93:142-154. [PMID: 36321699 PMCID: PMC10099663 DOI: 10.1002/ana.26543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Synaptic loss is an early feature of neurodegenerative disease models, and is severe in post mortem clinical studies, including frontotemporal dementia. Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2A enables quantification of synaptic density in vivo. This study used [11 C]UCB-J PET in participants with behavioral variant frontotemporal dementia (bvFTD), testing the hypothesis that synaptic loss is severe and related to clinical severity. METHODS Eleven participants with clinically probable bvFTD and 25 age- and sex-matched healthy controls were included. Participants underwent dynamic [11 C]UCB-J PET, structural magnetic resonance imaging, and a neuropsychological battery, including the revised Addenbrooke Cognitive Examination, and INECO frontal screening. General linear models compared [11 C]UCB-J binding potential maps and gray matter volume between groups, and assessed associations between synaptic density and clinical severity in patients. Analyses were also performed using partial volume corrected [11 C]UCB-J binding potential from regions of interest (ROIs). RESULTS Patients with bvFTD showed severe synaptic loss compared to controls. [11 C]UCB-J binding was reduced bilaterally in medial and dorsolateral frontal regions, inferior frontal gyri, anterior and posterior cingulate gyrus, insular cortex, and medial temporal lobe. Synaptic loss in the frontal and cingulate regions correlated significantly with cognitive impairments. Synaptic loss was more severe than atrophy. Results from ROI-based analyses mirrored the voxelwise results. INTERPRETATION In accordance with preclinical models, and human postmortem evidence, there is widespread frontotemporal loss of synapses in symptomatic bvFTD, in proportion to severity. [11 C]UCB-J PET could support translational studies and experimental medicine strategies for new disease-modifying treatments for neurodegeneration. ANN NEUROL 2023;93:142-154.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
| | - P. Simon Jones
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Thomas E. Cope
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeUK
| | - Negin Holland
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
| | - Michelle Naessens
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Matthew A. Rouse
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeUK
| | - Timothy Rittman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
| | | | - David J. Whiteside
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
| | - Duncan Street
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
| | - Tim D. Fryer
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Young T. Hong
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Selena Milicevic Sephton
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Franklin I. Aigbirhio
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - John T. O′Brien
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals National Health Service Foundation TrustCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeUK
| |
Collapse
|
37
|
Gomes P, Tzouanou F, Skolariki K, Vamvaka-Iakovou A, Noguera-Ortiz C, Tsirtsaki K, Waites CL, Vlamos P, Sousa N, Costa-Silva B, Kapogiannis D, Sotiropoulos I. Extracellular vesicles and Alzheimer's disease in the novel era of Precision Medicine: implications for disease progression, diagnosis and treatment. Exp Neurol 2022; 358:114183. [PMID: 35952764 PMCID: PMC9985072 DOI: 10.1016/j.expneurol.2022.114183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), secreted membranous nano-sized particles, are critical intercellular messengers participating in nervous system homeostasis, while recent evidence implicates EVs in Alzheimer's disease (AD) pathogenesis. Specifically, small EVs have been shown to spread toxic proteins, induce neuronal loss, and contribute to neuroinflammation and AD progression. On the other hand, EVs can reduce amyloid-beta deposition and transfer neuroprotective substances between cells, mitigating disease mechanisms. In addition to their roles in AD pathogenesis, EVs also exhibit great potential for the diagnosis and treatment of other brain disorders, representing an advantageous tool for Precision Medicine. Herein, we summarize the contribution of small EVs to AD-related mechanisms and disease progression, as well as their potential as diagnostic and therapeutic agents for AD.
Collapse
Affiliation(s)
- Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Tzouanou
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Vamvaka-Iakovou
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Carlos Noguera-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Katerina Tsirtsaki
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece.
| |
Collapse
|
38
|
Mecca AP, O'Dell RS, Sharp ES, Banks ER, Bartlett HH, Zhao W, Lipior S, Diepenbrock NG, Chen M, Naganawa M, Toyonaga T, Nabulsi NB, Vander Wyk BC, Arnsten AFT, Huang Y, Carson RE, van Dyck CH. Synaptic density and cognitive performance in Alzheimer's disease: A PET imaging study with [ 11 C]UCB-J. Alzheimers Dement 2022; 18:2527-2536. [PMID: 35174954 PMCID: PMC9381645 DOI: 10.1002/alz.12582] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION For 30 years synapse loss has been referred to as the major pathological correlate of cognitive impairment in Alzheimer's disease (AD). However, this statement is based on remarkably few patients studied by autopsy or biopsy. With the recent advent of synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, we have begun to evaluate the consequences of synaptic alterations in vivo. METHODS We examined the relationship between synaptic density measured by [11 C]UCB-J PET and neuropsychological test performance in 45 participants with early AD. RESULTS Global synaptic density showed a significant positive association with global cognition and performance on five individual cognitive domains in participants with early AD. Synaptic density was a stronger predictor of cognitive performance than gray matter volume. CONCLUSION These results confirm neuropathologic studies demonstrating a significant association between synaptic density and cognitive performance, and suggest that this correlation extends to the early stages of AD.
Collapse
Affiliation(s)
- Adam P. Mecca
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Ryan S. O'Dell
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Emily S. Sharp
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
| | - Emmie R. Banks
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Hugh H. Bartlett
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Wenzhen Zhao
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Sylwia Lipior
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Nina G. Diepenbrock
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Ming‐Kai Chen
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Mika Naganawa
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Nabeel B. Nabulsi
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | | | - Amy F. T. Arnsten
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Yiyun Huang
- Program on AgingYale University School of MedicineNew HavenConnecticutUSA
| | - Richard E. Carson
- Program on AgingYale University School of MedicineNew HavenConnecticutUSA
| | - Christopher H. van Dyck
- Alzheimer's Disease Research UnitYale University School of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Department of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
39
|
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, Serdons K, Tournoy J, Koole M, Vandenbulcke M, Van Laere K. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry 2022; 27:4244-4251. [PMID: 35794185 DOI: 10.1038/s41380-022-01672-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Eric Triau
- Private Practice Neurology, Leuven, Belgium
| | - Kim Serdons
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Geriatric Medicine, University Hospitals UZ Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Wiesman AI, Murman DL, Losh RA, Schantell M, Christopher-Hayes NJ, Johnson HJ, Willett MP, Wolfson SL, Losh KL, Johnson CM, May PE, Wilson TW. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain 2022; 145:2177-2189. [PMID: 35088842 PMCID: PMC9246709 DOI: 10.1093/brain/awab430] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
An extensive electrophysiological literature has proposed a pathological 'slowing' of neuronal activity in patients on the Alzheimer's disease spectrum. Supported by numerous studies reporting increases in low-frequency and decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its relation to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially overlapping populations of neurons has not been empirically validated. In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoencephalography from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer's disease spectrum. Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer's disease spectrum exhibit robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices significantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language and processing speed) cognitive function. Further, regional amyloid-β accumulation, as measured by quantitative 18F florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this relationship between amyloid-β burden and neural slowing also predicted attentional impairments across patients. These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-confirmed patients on the Alzheimer's disease spectrum, and link this effect to both regional proteinopathy and cognitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing has also been extensively documented in other patient populations, most notably Parkinson's disease, with divergent spectral and spatial features.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Rebecca A Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Kathryn L Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
41
|
Chen YH, Lin RR, Huang HF, Xue YY, Tao QQ. Microglial Activation, Tau Pathology, and Neurodegeneration Biomarkers Predict Longitudinal Cognitive Decline in Alzheimer's Disease Continuum. Front Aging Neurosci 2022; 14:848180. [PMID: 35847667 PMCID: PMC9280990 DOI: 10.3389/fnagi.2022.848180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Purpose Biomarkers used for predicting longitudinal cognitive change in Alzheimer's disease (AD) continuum are still elusive. Tau pathology, neuroinflammation, and neurodegeneration are the leading candidate predictors. We aimed to determine these three aspects of biomarkers in cerebrospinal fluid (CSF) and plasma to predict longitudinal cognition status using Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Patients and Methods A total of 430 subjects including, 96 cognitive normal (CN) with amyloid β (Aβ)-negative, 54 CN with Aβ-positive, 195 mild cognitive impairment (MCI) with Aβ-positive, and 85 AD with amyloid-positive (Aβ-positive are identified by CSF Aβ42/Aβ40 < 0.138). Aβ burden was evaluated by CSF and plasma Aβ42/Aβ40 ratio; tau pathology was evaluated by CSF and plasma phosphorylated-tau (p-tau181); microglial activation was measured by CSF soluble TREM2 (sTREM2) and progranulin (PGRN); neurodegeneration was measured by CSF and plasma t-tau and structural magnetic resonance imaging (MRI); cognition was examined annually over the subsequent 8 years using the Alzheimer's Disease Assessment Scale Cognition 13-item scale (ADAS13) and Mini-Mental State Exam (MMSE). Linear mixed-effects models (LME) were applied to assess the correlation between biomarkers and longitudinal cognition decline, as well as their effect size on the prediction of longitudinal cognitive decline. Results Baseline CSF Aβ42/Aβ40 ratio was decreased in MCI and AD compared to CN, while CSF p-tau181 and t-tau increased. Baseline CSF sTREM2 and PGRN did not show any differences in MCI and AD compared to CN. Baseline brain volumes (including the hippocampal, entorhinal, middle temporal lobe, and whole-brain) decreased in MCI and AD groups. For the longitudinal study, there were significant interaction effects of CSF p-tau181 × time, plasma p-tau181 × time, CSF sTREM2 × time, and brain volumes × time, indicating CSF, and plasma p-tau181, CSF sTREM2, and brain volumes could predict longitudinal cognition deterioration rate. CSF sTREM2, CSF, and plasma p-tau181 had similar medium prediction effects, while brain volumes showed stronger effects in predicting cognition decline. Conclusion Our study reported that baseline CSF sTREM2, CSF, and plasma p-tau181, as well as structural MRI, could predict longitudinal cognitive decline in subjects with positive AD pathology. Plasma p-tau181 can be used as a relatively noninvasive reliable biomarker for AD longitudinal cognition decline prediction.
Collapse
Affiliation(s)
- Yi-He Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Feng Huang
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Yan-Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Wu H, Qiu W, Zhu X, Li X, Xie Z, Carreras I, Dedeoglu A, Van Dyke T, Han YW, Karimbux N, Tu Q, Cheng L, Chen J. The Periodontal Pathogen Fusobacterium nucleatum Exacerbates Alzheimer's Pathogenesis via Specific Pathways. Front Aging Neurosci 2022; 14:912709. [PMID: 35813949 PMCID: PMC9260256 DOI: 10.3389/fnagi.2022.912709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common form of dementia in older adults and has a devastating impact on the patient's quality of life, which creates a significant socio-economic burden for the affected individuals and their families. In recent years, studies have identified a relationship between periodontitis and AD. Periodontitis is an infectious/inflammatory disease that destroys the supporting periodontal structure leading to tooth loss. Dysbiosis of the oral microbiome plays a significant role in the onset and development of periodontitis exhibiting a shift to overgrowth of pathobionts in the normal microflora with increasing local inflammation. Fusobacterium nucleatum is a common pathogen that significantly overgrows in periodontitis and has also been linked to various systemic diseases. Earlier studies have reported that antibodies to F. nucleatum can be detected in the serum of patients with AD or cognitive impairment, but a causal relationship and a plausible mechanism linking the two diseases have not been identified. In this study, we conducted both in vivo and in vitro experiments and found that F. nucleatum activates microglial cells causing morphological changes, accelerated proliferation and enhanced expression of TNF-α and IL-1β in microglial cells. In our in vivo experiments, we found that F. nucleatum-induced periodontitis resulted in the exacerbation of Alzheimer's symptoms in 5XFAD mice including increased cognitive impairment, beta-amyloid accumulation and Tau protein phosphorylation in the mouse cerebrum. This study may suggest a possible link between a periodontal pathogen and AD and F. nucleatum could be a risk factor in the pathogenesis of AD. We are currently further identifying the pathways through which F. nucleatum modulates molecular elements in enhancing AD symptoms and signs. Data are available via ProteomeXchange with identifier PXD033147.
Collapse
Affiliation(s)
- Hongle Wu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiangfen Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Isabel Carreras
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology and Department of Biochemistry School of Medicine, Boston University, Boston, MA, United States
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology School of Medicine, Boston University, Boston, MA, United States
| | - Thomas Van Dyke
- The Forsyth Institute, Clinical and Translational Research, Cambridge, MA, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yiping W. Han
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, University Irvign Medical Center, New York, NY, United States
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irvign Medical Center, New York, NY, United States
| | - Nadeem Karimbux
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Lei Cheng
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| |
Collapse
|
43
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
44
|
Kara F, Joers JM, Deelchand DK, Park YW, Przybelski SA, Lesnick TG, Senjem ML, Zeydan B, Knopman DS, Lowe VJ, Vemuri P, Mielke MM, Machulda MM, Jack CR, Petersen RC, Öz G, Kantarci K. 1H MR spectroscopy biomarkers of neuronal and synaptic function are associated with tau deposition in cognitively unimpaired older adults. Neurobiol Aging 2022; 112:16-26. [PMID: 35038671 PMCID: PMC8976711 DOI: 10.1016/j.neurobiolaging.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H MRS) may provide information on pathophysiological changes associated with tau deposition in cognitively unimpaired older adults. In this study, the associations of posterior cingulate gyrus tau and amyloid beta (Aβ) deposition on PET with 1H MRS metabolite ratios acquired from bilateral posterior cingulate gyri were investigated in cognitively unimpaired older adults. Participants (n = 40) from the Mayo Clinic Study of Aging underwent single-voxel sLASER 1H MRS from the posterior cingulate gyrus at 3 Tesla, 18F-flortaucipir, and 11C- Pittsburgh Compound B (PiB) PET. An increase in posterior cingulate gyrus tau deposition, but not elevated Aβ, was associated with lower N-acetylaspartate/total creatine (tCr) and glutamate (Glu)/tCr ratios, and sex by tau interaction was observed in association with Glu/tCr. Higher tau levels in cognitively unimpaired older adults are associated with biomarkers of neural and synaptic injury even in the absence of cognitive impairment and these relationships appear to be stronger in women than in men.
Collapse
Affiliation(s)
- Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Burcu Zeydan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic-Minnesota, Rochester, MN, USA
| | | | | | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer's disease. Neurobiol Aging 2022; 111:44-53. [PMID: 34963063 PMCID: PMC8761170 DOI: 10.1016/j.neurobiolaging.2021.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 01/26/2023]
Abstract
Sites of early neuropathologic change provide important clues regarding the initial clinical features of Alzheimer's disease (AD). We have shown significant reductions in hippocampal synaptic density in participants with AD, consistent with the early degeneration of entorhinal cortical (ERC) cells that project to hippocampus via the perforant path. In this study, [11C]UCB-J binding to synaptic vesicle glycoprotein 2A (SV2A) and [18F]flortaucipir binding to tau were measured via PET in 10 participants with AD (5 mild cognitive impairment, 5 mild dementia) and 10 cognitively normal participants. In the overall sample, ERC tau was inversely associated with hippocampal synaptic density (r = -0.59, p = 0.009). After correction for partial volume effects, the association of ERC tau with hippocampal synaptic density was stronger in the overall sample (r = -0.61, p = 0.007) and in the AD group where the effect size was large, but not statistically significant (r = -0.58, p = 0.06). This inverse association of ERC tau and hippocampal synaptic density may reflect synaptic failure due to tau pathology in ERC neurons projecting to the hippocampus.
Collapse
|
46
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Kong Y, Zhang S, Huang L, Zhang C, Xie F, Zhang Z, Huang Q, Jiang D, Li J, Zhou W, Hua T, Sun B, Wang J, Guan Y. Positron Emission Computed Tomography Imaging of Synaptic Vesicle Glycoprotein 2A in Alzheimer's Disease. Front Aging Neurosci 2021; 13:731114. [PMID: 34795573 PMCID: PMC8593388 DOI: 10.3389/fnagi.2021.731114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Early diagnosis of AD is of great significance to control the development of the disease. Synaptic loss is an important pathology in the early stage of AD, therefore the measurement of synaptic density using molecular imaging technology may be an effective way to early diagnosis of AD. Synaptic vesicle glycoprotein 2A (SV2A) is located in the presynaptic vesicle membrane of virtually all synapses. SV2A Positron Emission Computed Tomography (PET) could provide a way to measure synaptic density quantitatively in living humans and to track changes in synaptic density in AD. In view of the fact that synaptic loss is the pathology of both epilepsy and AD, this review summarizes the potential role of SV2A in the pathogenesis of AD, and suggests that SV2A should be used as an important target molecule of PET imaging agent for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Ahmadi N, Steinberg A, Pynoos R, Mizutani S, Kashiwazaki H, Ni J, Wu Z. GSK3β is involved in promoting Alzheimer's disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor protein NL-F/NL-F knock-in mice. Brain Behav Immun 2021; 98:1-12. [PMID: 34391814 PMCID: PMC8849844 DOI: 10.1016/j.bbi.2021.08.213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the strong association between periodontitis and Alzheimer's disease (AD) clinically, preclinical studies have shown that systemic exposure to Porphyromonas gingivalis (Pg) initiates AD pathologies. However, the involvement of periodontitis in promoting AD pathologies is unclear. In the present study, we provided evidence that chronic systemic exposure to lipopolysaccharide derived from Pg (PgLPS, 1 mg/kg, daily, intraperitoneally) prompted neuroinflammation and tau hyperphosphorylation in 10-month-old of amyloid precursor protein (APP) knock-in mice, a model of AD, carrying the Swedish and Beyreuther/Iberian mutation (APPNL-F/NL-F). The learning and memory function were assessed using the passive avoidance test. The production of APP, Amyloid (A)β1-42, cytokines, synaptic proteins and the activation of glycogen synthase kinase (GSK)-3β as well as phosphorylation of tau were analyzed by immunohistochemistry, Western blotting or an enzyme-linked immunosorbent assay (ELISA) in the cortex of APPNL-F/NL-F mice. We found that systemic exposure of PgLPS for three consecutive weeks induced learning and memory deficits with significantly reduced postsynaptic density protein (PSD95). Increased hyperphosphorylation of tau in multiple residues, including Ser202, Thr231 and Ser396, but not the accumulation of Aβ1-42 was detected in the neurons of APPNL-F/NL-F mice. Furthermore, PgLPS increased the GSK3β activity by reducing its phosphorylation of the serine residue at position 9 (Ser9) and promoted neuroinflammation by increasing the expression of interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α) while decreasing that of interleukin-10 (IL-10) and transforming growth factor (TGFβ) in the cortex of APPNL-F/NL-F mice. Moreover, the PgLPS-increased GSK3β activity was detected in both microglia and neurons, while the PgLPS-increased TNF-α expression was mainly detected in the microglia in the cortex of APPNL-F/NL-F mice. In in vitro studies, PgLPS (1 µg/ml) stimulation increased the mRNA and protein level of TNF-α in MG6 microglia, which were significantly inhibited by the GSK3β-specific inhibitor TWS119. In contrast, the tau hyperphosphorylation and activation of GSK3β in N2a neurons were enhanced after treatment with conditioned medium from PgLPS-stimulated microglia, which was attenuated after pre-treatment with TNF-α inhibitor. Taken together, these findings indicate that GSK3β is involved in prompting microglia (TNF-α)-dependent tau hyperphosphorylation in neurons, resulting in learning and memory deficits in APPNL-F/NL-F mice without changes in the Aβ expression during chronic systemic exposure to PgLPS. We propose that dampening GSK3β activation may help delay the periodontitis-promoted pathological progression of AD.
Collapse
Affiliation(s)
| | | | | | - Shinsuke Mizutani
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
49
|
Wiesman AI, Murman DL, May PE, Schantell M, Wolfson SL, Johnson CM, Wilson TW. Visuospatial alpha and gamma oscillations scale with the severity of cognitive dysfunction in patients on the Alzheimer's disease spectrum. ALZHEIMERS RESEARCH & THERAPY 2021; 13:139. [PMID: 34404472 PMCID: PMC8369319 DOI: 10.1186/s13195-021-00881-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Background Entrainment of neural oscillations in occipital cortices by external rhythmic visual stimuli has been proposed as a novel therapy for patients with Alzheimer’s disease (AD). Despite this increased interest in visual neural oscillations in AD, little is known regarding their role in AD-related cognitive impairment and in particular during visuospatial processing. Methods We used source-imaged magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 35 biomarker-confirmed patients on the AD spectrum and 20 biomarker-negative older adults. Neuronal oscillatory responses were imaged to the level of the cortex, and group classifications and neurocognitive relationships were modeled using logistic and linear regression, respectively. Results Visuospatial neuronal oscillations in the theta, alpha, and gamma ranges significantly predicted the classification of patients on the AD spectrum. Importantly, the direction of these effects differed by response frequency, such that patients on the AD spectrum exhibited weaker alpha-frequency responses in lateral occipital regions, and stronger gamma-frequency responses in the primary visual cortex, as compared to biomarker-negative older adults. In addition, alpha and gamma, but not theta, oscillations robustly predicted cognitive status (i.e., MoCA and MMSE scores), such that patients with neural responses that deviated more from those of healthy older adults exhibited poorer cognitive performance. Conclusions We find that the multi-spectral neural dynamics supporting visuospatial processing differentiate patients on the AD spectrum from cognitively normal, biomarker-negative older adults. Oscillations in the alpha and gamma bands also relate to cognitive status in ways that are informative for emerging clinical interventions.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada. .,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
50
|
Holland N, Malpetti M, Rittman T, Mak EE, Passamonti L, Kaalund SS, Hezemans FH, Jones PS, Savulich G, Hong YT, Fryer TD, Aigbirhio FI, O'Brien JT, Rowe JB. Molecular pathology and synaptic loss in primary tauopathies: an 18F-AV-1451 and 11C-UCB-J PET study. Brain 2021; 145:340-348. [PMID: 34398211 PMCID: PMC8967099 DOI: 10.1093/brain/awab282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research ‘Join Dementia Research’ platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer’s pathology—we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (β = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (β = −0.02, t = −2.9, P = 0.007, R = −0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Elijah E Mak
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), 20090, Milano, Italy
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - John T O'Brien
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK
| |
Collapse
|