1
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Sun L, Xiao M, Chen L, Ni L, Chen X, Zhang L, Yao J, Shao Z, Zhao B, Chen X, Liu Y. Enhanced Tissue Regeneration Through Immunomodulatory Extracellular Vesicles Encapsulated in Diversified Silk-Based Injectable Hydrogels. Adv Healthc Mater 2024; 13:e2401460. [PMID: 39011805 DOI: 10.1002/adhm.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Mesenchymal stem cells (MSCs) immunologically trained using lipopolysaccharide (LPS) display enhanced immunomodulatory capabilities. Extracellular vesicles (EVs) derived from MSCs are widely used in regenerative medicine owing to their bioactive properties without the drawbacks of cell therapy. However, it remains unclear whether EVs derived from LPS-stimulated (trained) MSCs (L-EVs) inherit the enhanced reparative potential from their parent cells. Thus, this study first aims to explore the effect of immunological training on the bioactivity of L-EVs. LPS-trained bone marrow-derived MSCs (BMSCs) secrete more EVs, and these EVs significantly promote M2 macrophage polarization. Subsequently, hydrogel systems based on thixotropic injectable silk fibroin are prepared for in vivo EV delivery. These hydrogels have controllable gelation time and exhibit outstanding reparative effects on rat skin wounds and alveolar bone defects. Finally, it is revealed that L-EVs promote M2 macrophage polarization by inhibiting the nuclear translocation of PKM2. Overall, this study shows that the immunological training of BMSCs effectively improves the therapeutic effects of their EVs and provides a convenient and diversified EV delivery strategy using an injectable silk fibroin hydrogel. This strategy has broad clinical application prospects for tissue regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Menglin Xiao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Ling Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Lingyue Ni
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xiaoxuan Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Lina Zhang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinrong Yao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xin Chen
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Yuehua Liu
- Department of Orthodontics, Department of Macromolecular Science, Multidisciplinary Consultant Center, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
4
|
Beauregard MA, Bedford GC, Brenner DA, Sanchez Solis LD, Nishiguchi T, Abhimanyu, Longlax SC, Mahata B, Veiseh O, Wenzel PL, DiNardo AR, Hilton IB, Diehl MR. Persistent tailoring of MSC activation through genetic priming. Mol Ther Methods Clin Dev 2024; 32:101316. [PMID: 39282077 PMCID: PMC11396059 DOI: 10.1016/j.omtm.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.
Collapse
Affiliation(s)
| | - Guy C. Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael R. Diehl
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
5
|
Ko JH, Lee HJ, Yoon CH, Choi YR, Ryu JS, Oh JY. Activation of Toll-like receptor 2 promotes mesenchymal stem/stromal cell-mediated immunoregulation and angiostasis through AKR1C1. Theranostics 2024; 14:4713-4729. [PMID: 39239520 PMCID: PMC11373616 DOI: 10.7150/thno.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) maintain tissue homeostasis in response to microenvironmental perturbations. Toll-like receptors (TLRs) are key sensors for exogenous and endogenous signals produced during injury. In this study, we aimed to investigate whether TLRs affect the homeostatic functions of MSCs after injury. Methods: We examined the expression of TLR2, TLR3 and TLR4 in MSCs, and analyzed the functional significance of TLR2 activation using single-cell RNA sequencing. Additionally, we investigated the effects and mechanisms of TLR2 and its downstream activation in MSCs on the MSCs themselves, on monocytes/macrophages, and in a mouse model of sterile injury-induced inflammatory corneal angiogenesis. Results: MSCs expressed TLR2, which was upregulated by monocytes/macrophages. Activation of TLR2 in MSCs promoted their immunoregulatory and angiostatic functions in monocytes/macrophages and in mice with inflammatory corneal angiogenesis, whereas TLR2 inhibition attenuated these functions. Single-cell RNA sequencing revealed AKR1C1, a gene encoding aldo-keto reductase family 1 member C1, as the most significantly inducible gene in MSCs upon TLR2 stimulation, though its stimulation did not affect cell compositions. AKR1C1 protected MSCs against ferroptosis, increased secretion of anti-inflammatory cytokines, and enhanced their ability to drive monocytes/macrophages towards immunoregulatory phenotypes, leading to the amelioration of inflammatory corneal neovascularization in mice. Conclusion: Our findings suggest that activation of TLR2-AKR1C1 signaling in MSCs serves as an important pathway for the survival and homeostatic activities of MSCs during injury.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Yoo Rim Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
6
|
Ríos-Ríos WDJ, Sosa-Luis SA, Almaraz-Arreortua A, Vargas-Benitez P, Bernardino-Hernández HU, Vargas-Arzola J, Hernández-Osorio LA, Romero-Tlalolini MDLÁ, Aguilar-Ruiz SR, Torres-Aguilar H. IFN-γ-Preconditioned Human Gingival-Derived Mesenchymal Stromal Cells Inhibit Plasmacytoid Dendritic Cells via Adenosine. Biomolecules 2024; 14:658. [PMID: 38927060 PMCID: PMC11201757 DOI: 10.3390/biom14060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are vital players in antiviral immune responses because of their high levels of IFN-α secretion. However, this attribute has also implicated them as critical factors behind the immunopathogenesis of inflammatory diseases, and no currently available therapy can efficiently inhibit pDCs' aberrant activation. Mesenchymal stromal cells (MSCs) possess stromal immunomodulatory functionality, regulating immune cell activation through several mechanisms, including the adenosinergic (CD39/CD73/adenosine) pathway. The IFN-γ preconditioning of bone marrow MSCs improves their inhibitory properties for therapy applications; however, isolating human gingival tissue-derived MSCs (hGMSCs) is more accessible. These cells have shown better immunomodulatory effects, yet the outcome of IFN-γ preconditioning and its impact on the adenosinergic pathway has not been evaluated. This study first validated the immunoregulatory properties of primary-cultured hGMSCs, and the results showed that IFN-γ preconditioning strengthens CD39/CD73 coexpression, adenosine production, and the regulatory properties of hGMSC, which were confirmed by describing for the first time their ability to reduce pDC activation and their IFN-α secretion and to increase the frequency of CD73+ pDC. In addition, when CD73's enzymatic activity was neutralized in hGMSCs, adenosine production and the IFN-γ preconditioning effect were restrained. This evidence might be applied to design hGMSCs- and adenosine-based immunotherapeutic strategies for treating inflammatory disorders that are associated with pDC overactivation.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Sorely Adelina Sosa-Luis
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Alexia Almaraz-Arreortua
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Patricia Vargas-Benitez
- Dirección General de Asuntos Académicos, Coordinación General de Investigación, Universidad Regional del Sureste, Oaxaca 68150, Mexico;
| | - Héctor Ulises Bernardino-Hernández
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Jaime Vargas-Arzola
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | - Luis Alberto Hernández-Osorio
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| | | | | | - Honorio Torres-Aguilar
- Basic and Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Av. Universidad s/n. Cinco Señores, Oaxaca 68120, Mexico; (W.d.J.R.-R.); (S.A.S.-L.); (A.A.-A.); (H.U.B.-H.); (J.V.-A.); (L.A.H.-O.)
| |
Collapse
|
7
|
Huang Y, Li M, Liu Q, Song L, Wang Q, Ding P, Tian W, Guo S. Small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells inhibit cell apoptosis and alveolar bone loss in periodontitis. Arch Oral Biol 2024; 162:105964. [PMID: 38582010 DOI: 10.1016/j.archoralbio.2024.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE This study aimed to explore the effects of small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells (L-D-sEV) on periodontal ligament cells from periodontitis affected teeth (p-PDLCs) in vitro and experimental periodontitis in mice. DESIGN In vitro, the biological function of p-PDLCs and the underlying molecular mechanism were investigated by flow cytometry, Western blot, and quantitative real-time PCR (qRT-PCR) analysis. Eighteen-eight-week-old male C57BL/6 mice were randomly divided into three groups: control (Con), periodontitis (Peri), and L-D-sEV groups. Mice periodontitis model was induced by placing the 5-0 silk thread (around the maxillary second molar) and P.gingivalis (1 ×107 CFUs per mouse). In vivo, the alveolar bone loss, osteoclast activity, and macrophage polarization were measured by micro-computed tomography and histological analysis. RESULTS In vitro, the RANKL/OPG ratio and phosphorylation of JNK and P38 protein levels of p-PDLCs were significantly decreased after L-D-sEV administration. Besides, flow cytometry and qRT-PCR analysis showed that L-D-sEV reduced apoptosis of p-PDLCs, down-regulated apoptosis-related genes Caspase-3 and BCL-2-Associated X expression, and up-regulated B-cell lymphoma-2 gene levels. In vivo, L-D-sEV administration significantly reduced alveolar bone loss, inhibited osteoclast activity, and induced M2 polarization. The histological analysis showed that iNOS/CD206, RANKL/OPG, p-JNK/JNK, and p-P38/P38 ratios were significantly lower in the L-D-sEV group than in the Peri group. CONCLUSIONS L-D-sEV administration alleviated alveolar bone loss by mediating RANKL/OPG-related osteoclast activity and M2 macrophage polarization, alleviating p-PDLCs apoptosis and proliferation via the JNK and P38 pathways.
Collapse
Affiliation(s)
- Yanli Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Mujia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qian Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Lu Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Peihui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
8
|
Wan Z, Wang X, Fu Z, Ma Y, Dai G, Gong X, Chen G, Yang L. Toll-like receptor activation regulates the paracrine effect of adipose-derived mesenchymal stem cells on reversing osteoarthritic phenotype of chondrocytes. Mol Biol Rep 2024; 51:550. [PMID: 38642183 DOI: 10.1007/s11033-024-09499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1β-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1β-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1β-treated chondrocytes. CONCLUSIONS TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.
Collapse
Affiliation(s)
- Zu Wan
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gang Dai
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
9
|
van Griensven M, Balmayor ER. Extracellular vesicles are key players in mesenchymal stem cells' dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev 2024; 207:115203. [PMID: 38342242 DOI: 10.1016/j.addr.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
MSCs are used for treatment of inflammatory conditions or for regenerative purposes. MSCs are complete cells and allogenic transplantation is in principle possible, but mostly autologous use is preferred. In recent years, it was discovered that cells secrete extracellular vesicles. These are active budded off vesicles that carry a cargo. The cargo can be miRNA, protein, lipids etc. The extracellular vesicles can be transported through the body and fuse with target cells. Thereby, they influence the phenotype and modulate the disease. The extracellular vesicles have, like the MSCs, immunomodulatory or regenerative capacities. This review will focus on those features of extracellular vesicles and discuss their dual role. Besides the immunomodulation, the regeneration will concentrate on bone, cartilage, tendon, vessels and nerves. Current clinical trials with extracellular vesicles for immunomodulation and regeneration that started in the last five years are highlighted as well. In summary, extracellular vesicles have a great potential as disease modulating entity and treatment. Their dual characteristics need to be taken into account and often are both important for having the best effect.
Collapse
Affiliation(s)
- Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, 6229 ER Maastricht, the Netherlands; Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | - Elizabeth R Balmayor
- Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
10
|
Szűcs D, Monostori T, Miklós V, Páhi ZG, Póliska S, Kemény L, Veréb Z. Licensing effects of inflammatory factors and TLR ligands on the regenerative capacity of adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1367242. [PMID: 38606318 PMCID: PMC11007080 DOI: 10.3389/fcell.2024.1367242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1β, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.
Collapse
Affiliation(s)
- Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | | | - Zoltán G. Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Biobank, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
dos Santos CC, Lopes-Pacheco M, English K, Rolandsson Enes S, Krasnodembskaya A, Rocco PRM. The MSC-EV-microRNAome: A Perspective on Therapeutic Mechanisms of Action in Sepsis and ARDS. Cells 2024; 13:122. [PMID: 38247814 PMCID: PMC10813908 DOI: 10.3390/cells13020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) have emerged as innovative therapeutic agents for the treatment of sepsis and acute respiratory distress syndrome (ARDS). Although their potential remains undisputed in pre-clinical models, this has yet to be translated to the clinic. In this review, we focused on the role of microRNAs contained in MSC-derived EVs, the EV microRNAome, and their potential contribution to therapeutic mechanisms of action. The evidence that miRNA transfer in MSC-derived EVs has a role in the overall therapeutic effects is compelling. However, several questions remain regarding how to reconcile the stochiometric issue of the low copy numbers of the miRNAs present in the EV particles, how different miRNAs delivered simultaneously interact with their targets within recipient cells, and the best miRNA or combination of miRNAs to use as therapy, potency markers, and biomarkers of efficacy in the clinic. Here, we offer a molecular genetics and systems biology perspective on the function of EV microRNAs, their contribution to mechanisms of action, and their therapeutic potential.
Collapse
Affiliation(s)
- Claudia C. dos Santos
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Keenan Center for Biomedical Research, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT9 7BL, UK;
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-599, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
12
|
Chaudhary JK, Ahamad N, Rath PC. Mesenchymal stem cells (MSCs) from the mouse bone marrow show differential expression of interferon regulatory factors IRF-1 and IRF-2. Mol Biol Rep 2024; 51:97. [PMID: 38194130 DOI: 10.1007/s11033-023-09025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors widely implicated in various cellular processes, including regulation of inflammatory responses to pathogens, cell proliferation, oncogenesis, differentiation, autophagy, and apoptosis. METHODS We have studied the expression of IRF-1, IRF-2 mRNAs by RT-PCR, cellular localization of the proteins by immunofluorescence, and expression of mRNAs of genes regulated by IRF-1, IRF-2 by RT-PCR in mouse bone marrow cells (BMCs) and mesenchymal stem cells (MSCs). RESULTS Higher level of IRF-1 mRNA was observed in BMCs and MSCs compared to that of IRF-2. Similarly, differential expression of IRF-1 and IRF-2 proteins was observed in BMCs and MSCs. IRF-1 was predominantly localized in the cytoplasm, whereas IRF-2 was localized in the nuclei of BMCs. MSCs showed nucleo-cytoplasmic distribution of IRF-1 and nuclear localization of IRF-2. Constitutive expression of IRF-1 and IRF-2 target genes: monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and caspase-1 was observed in both BMCs and MSCs. MSCs showed constitutive expression of the pluripotency-associated factors, Oct3/4 and Sox-2. Lipopolysaccharide (LPS)-treatment of MSCs induced prominent cellular localization of IRF-1 and IRF-2. CONCLUSIONS Our results suggest that IRF-1 and IRF-2 exhibit differential expression of their mRNAs and subcellular localization of the proteins in BMCs and MSCs. These cells also show differential levels of constitutive expression of IRF-1 and IRF-2 target genes. This may regulate immune-responsive properties of BMCs and MSCs through IRF-1, IRF-2-dependent gene expression and protein-protein interaction. Regulating IRF-1 and IRF-2 may be helpful for immunomodulatory functions of MSCs for cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naseem Ahamad
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Haddouti EM, Reinhardt N, Ossendorff R, Burger C, Wirtz DC, de la Fuente M, Schildberg FA. Effects of single and repeated shock wave application on the osteogenic differentiation potential of human primary mesenchymal stromal cells and the osteoblastic cell line MG63 in vitro. Front Bioeng Biotechnol 2023; 11:1207655. [PMID: 37901841 PMCID: PMC10602737 DOI: 10.3389/fbioe.2023.1207655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Extracorporeal shock wave therapy is a non-invasive and effective option for treating various musculoskeletal disorders. Recent literature indicates that the parameters for extracorporeal shock wave therapy, such as the optimal intensity, treatment frequency, and localization, are yet to be determined. Studies reporting on the effects of shock wave application on primary mesenchymal stromal cells (MSCs) as well as osteoblastic cell lines in vitro are barely available and not standardized. Methods: In this study, we designed a special setup to precisely expose primary MSCs and the osteoblastic cell line MG63 to shock waves and subsequently analyzed the resulting cellular responses using standardized protocols to investigate their viability, proliferation behavior, cytokine secretion, and osteogenic differentiation potential in vitro. The shock wave transducer was coupled to a specifically designed water bath containing a 5 mL tube holder. Primary human MSCs and MG63 cells were trypsinated and centrifuged in a 5 mL tube and exposed to single and repeated shock wave application using different intensities and numbers of pulses. Results: Single treatment of MSCs using intensities 5, 10, 15, and 20 and pulse numbers 100, 250, 500, 750, and 1,000 at a constant pulse repetition frequency of 1 Hz resulted in a decreased viability and proliferation of both cell types with an increase in the intensity and number of pulses compared to controls. No significant difference in the osteogenic differentiation was observed at different time intervals in both cell types when a single shock wave application was performed. However, repeated shock wave sessions over three consecutive days of primary MSCs using low intensity levels 0.1 and 1 showed significant osteogenic differentiation 4-fold higher than that of the extracted Alizarin Red S at day 14, whereas MG63 cells showed no significant osteogenic differentiation compared to their corresponding controls. More specifically, repeated shock wave application triggered a significant downregulation of COL1A1, upregulation of RUNX2, and sustained increase of OCN in primary MSCs but not in the cell line MG63 when induced toward the osteogenic differentiation. Discussion: The effects of shock wave application on MSCs make it an effective therapy in regenerative medicine. We established a protocol to analyze a standardized shock wave application on MSCs and were able to determine conditions that enhance the osteogenic differentiation of MSCs in vitro.
Collapse
Affiliation(s)
- El-Mustapha Haddouti
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Nina Reinhardt
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Matias de la Fuente
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
Li D, Ou Q, Shen Q, Lu MM, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li J, Lu L, Xu GT, Tian H. Subconjunctival injection of human umbilical cord mesenchymal stem cells alleviates experimental allergic conjunctivitis via regulating T cell response. Stem Cell Res Ther 2023; 14:281. [PMID: 37784129 PMCID: PMC10546642 DOI: 10.1186/s13287-023-03484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Michael Mingze Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
| |
Collapse
|
17
|
Szűcs D, Miklós V, Monostori T, Guba M, Kun-Varga A, Póliska S, Kis E, Bende B, Kemény L, Veréb Z. Effect of Inflammatory Microenvironment on the Regenerative Capacity of Adipose-Derived Mesenchymal Stem Cells. Cells 2023; 12:1966. [PMID: 37566046 PMCID: PMC10416993 DOI: 10.3390/cells12151966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Adipose-derived mesenchymal stem cells are increasingly being used in regenerative medicine as cell therapy targets, including in the treatment of burns and ulcers. The regenerative potential of AD-MSCs and some of their immunological properties are known from in vitro studies; however, in clinical applications, cells are used in non-ideal conditions and can behave differently in inflammatory environments, affecting the efficacy and outcome of therapy. Our aim was to investigate and map the pathways that the inflammatory microenvironment can induce in these cells. High-throughput gene expression assays were performed on AD-MSCs activated with LPS and TNFα. Analysis of RNA-Seq data showed that control, LPS-treated and TNFα-treated samples exhibited distinct gene expression patterns. LPS treatment increased the expression of 926 genes and decreased the expression of 770 genes involved in cell division, DNA repair, the cell cycle, and several metabolic processes. TNFα treatment increased the expression of 174 genes and decreased the expression of 383 genes, which are related to cell division, the immune response, cell proliferation, and differentiation. We also map the biological pathways by further investigating the most altered genes using the Gene Ontology and KEGG databases. Secreted cytokines, which are important in the immunological response, were also examined at the protein level, and a functional assay was performed to assess wound healing. Activated AD-MSC increased the secretion of IL-6, IL-8 and CXCL-10, and also the closure of wounds. AD-MSCs presented accelerated wound healing under inflammation conditions, suggesting that we could use this cell in clinical application.
Collapse
Affiliation(s)
- Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
- Doctoral School of Clinical Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Vanda Miklós
- Biobank, University of Szeged, 6720 Szeged, Hungary;
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Melinda Guba
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Anikó Kun-Varga
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Erika Kis
- Dermatosurgery and Plastic Surgery, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (E.K.); (B.B.)
| | - Balázs Bende
- Dermatosurgery and Plastic Surgery, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (E.K.); (B.B.)
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.S.); (T.M.); (M.G.); (A.K.-V.); (L.K.)
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
18
|
Phyo H, Aburza A, Mellanby K, Esteves CL. Characterization of canine adipose- and endometrium-derived Mesenchymal Stem/Stromal Cells and response to lipopolysaccharide. Front Vet Sci 2023; 10:1180760. [PMID: 37275605 PMCID: PMC10237321 DOI: 10.3389/fvets.2023.1180760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are used for regenerative therapy in companion animals. Their potential was initially attributed to multipotency, but subsequent studies in rodents, humans and veterinary species evidenced that MSCs produce factors that are key mediators of immune, anti-infective and angiogenic responses, which are essential in tissue repair. MSCs preparations have been classically obtained from bone marrow and adipose tissue (AT) in live animals, what requires the use of surgical procedures. In contrast, the uterus, which is naturally exposed to external insult and infection, can be accessed nonsurgically to obtain samples, or tissues can be taken after neutering. In this study, we explored the endometrium (EM) as an alternative source of MSCs, which we compared with AT obtained from canine paired samples. Canine AT- and EM-MSCs, formed CFUs when seeded at low density, underwent tri-lineage differentiation into adipocytes, osteocytes and chondrocytes, and expressed the CD markers CD73, CD90 and CD105, at equivalent levels. The immune genes IL8, CCL2 and CCL5 were equally expressed at basal levels by both cell types. However, in the presence of the inflammatory stimulus lipopolysaccharide (LPS), expression of IL8 was higher in EM- than in AT-MSCs (p < 0.04) while the other genes were equally elevated in both cell types (p < 0.03). This contrasted with the results for CD markers, where the expression was unaltered by exposing the MSCs to LPS. Overall, the results indicate that canine EM-MSCs could serve as an alternative cell source to AT-MSCs in therapeutic applications.
Collapse
|
19
|
Giacomini C, Granéli C, Hicks R, Dazzi F. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cell Mol Immunol 2023; 20:570-582. [PMID: 37185486 DOI: 10.1038/s41423-023-01018-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively tested for the treatment of numerous clinical conditions and have demonstrated good safety but mixed efficacy. Although this outcome can be attributed in part to the heterogeneity of cell preparations, the lack of mechanistic understanding and tools to establish cell pharmacokinetics and pharmacodynamics, as well as the poorly defined criteria for patient stratification, have hampered the design of informative clinical trials. We and others have demonstrated that MSCs can rapidly undergo apoptosis after their infusion. Apoptotic MSCs are phagocytosed by monocytes/macrophages that are then reprogrammed to become anti-inflammatory cells. MSC apoptosis occurs when the cells are injected into patients who harbor activated cytotoxic T or NK cells. Therefore, the activation state of cytotoxic T or NK cells can be used as a biomarker to predict clinical responses to MSC treatment. Building on a large body of preexisting data, an alternative view on the mechanism of MSCs is that an inflammation-dependent MSC secretome is largely responsible for their immunomodulatory activity. We will discuss how these different mechanisms can coexist and are instructed by two different types of MSC "licensing": one that is cell-contact dependent and the second that is mediated by inflammatory cytokines. The varied and complex mechanisms by which MSCs can orchestrate inflammatory responses and how this function is specifically driven by inflammation support a physiological role for tissue stroma in tissue homeostasis, and it acts as a sensor of damage and initiator of tissue repair by reprogramming the inflammatory environment.
Collapse
Affiliation(s)
- Chiara Giacomini
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| | - Cecilia Granéli
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
20
|
Su Y, Ai S, Shen Y, Cheng W, Xu C, Sui L, Zhao Y. Regulatory Effects of Three-Dimensional Cultured Lipopolysaccharide-Pretreated Periodontal Ligament Stem Cell-Derived Secretome on Macrophages. Int J Mol Sci 2023; 24:ijms24086981. [PMID: 37108145 PMCID: PMC10139044 DOI: 10.3390/ijms24086981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Phenotypic transformation of macrophages plays important immune response roles in the occurrence, development and regression of periodontitis. Under inflammation or other environmental stimulation, mesenchymal stem cells (MSCs) exert immunomodulatory effects through their secretome. It has been found that secretome derived from lipopolysaccharide (LPS)-pretreated or three-dimensional (3D)-cultured MSCs significantly reduced inflammatory responses in inflammatory diseases, including periodontitis, by inducing M2 macrophage polarization. In this study, periodontal ligament stem cells (PDLSCs) pretreated with LPS were 3D cultured in hydrogel (termed SupraGel) for a certain period of time and the secretome was collected to explore its regulatory effects on macrophages. Expression changes of immune cytokines in the secretome were also examined to speculate on the regulatory mechanisms in macrophages. The results indicated that PDLSCs showed good viability in SupraGel and could be separated from the gel by adding PBS and centrifuging. The secretome derived from LPS-pretreated and/or 3D-cultured PDLSCs all inhibited the polarization of M1 macrophages, while the secretome derived from LPS-pretreated PDLSCs (regardless of 3D culture) had the ability to promote the polarization of M1 to M2 macrophages and the migration of macrophages. Cytokines involved in the production, migration and polarization of macrophages, as well as multiple growth factors, increased in the PDLSC-derived secretome after LPS pretreatment and/or 3D culture, which suggested that the secretome had the potential to regulate macrophages and promote tissue regeneration, and that it could be used in the treatment of inflammation-related diseases such as periodontitis in the future.
Collapse
Affiliation(s)
- Yuran Su
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
21
|
Zhao C, Li J, Cai H, Wu D, Tao S, Pi C, Zhu L, Xu N, Zhang T. An injectable hydrogel scaffold with IL-1β-activated MSC-derived exosomes for the treatment of endometritis. Biomater Sci 2023; 11:1422-1436. [PMID: 36602019 DOI: 10.1039/d2bm01586b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic endometritis is a common gynecological disease resulting from various long-term recurrent infections, and is closely related to myositis, miscarriage, and even infertility. There is still no satisfactory treatment method currently in clinical therapy. Mesenchymal stem cell (MSC)-derived exosomes, an important kind of paracrine product, have been used to treat inflammatory diseases due to their promising immunomodulatory function and tissue repair ability similar to MSCs. Considering that the exosome contents and functions are regulated by the MSC status and the MSC status is significantly influenced by its surrounding microenvironment, we propose a hypothesis that exosomes derived from inflammation-simulated MSCs will possess stronger inhibition ability for inflammation. Herein, we used IL-1β to activate rat bone MSCs for obtaining β-exo and constructed an injectable polypeptide hydrogel scaffold by loading β-exo (β-exo@pep) for an in situ slow release of β-exo. The results showed that the polypeptide hydrogel can provide a sustained release of exosomes in 14 days. The β-exo@pep composite hydrogel can more effectively inhibit the production of inflammatory factors such as TNF-α, IL-1β, and IFN-γ, while it can promote the production of anti-inflammatory factors such as Arg-1, IL-6, and IL-10. The β-exo@pep composite hydrogel significantly promoted cell migration, invasion, and vessel tube formation in vitro. The experiments in a rat model of endometritis proved that the β-exo@pep composite scaffold possessed excellent ability towards anti-inflammation and endometrial regeneration. The research studies on the molecular mechanism revealed that the protein expressions of HMGB1 and phosphorylated IKB-α and p65 are down-regulated in the cells treated with β-exo@pep, indicating the involvement of the NF-κB signaling pathway. This study provides an effective method for the treatment of chronic endometritis, which is promising for clinical use.
Collapse
Affiliation(s)
- Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jianping Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Huihua Cai
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Dingwei Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Suwan Tao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chaoran Pi
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
22
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
23
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
24
|
Sheikholeslami A, Fazaeli H, Kalhor N, Khoshandam M, Eshagh Hoseini SJ, Sheykhhasan M. Use of Mesenchymal Stem Cells in Crohn's Disease and Perianal Fistulas: A Narrative Review. Curr Stem Cell Res Ther 2023; 18:76-92. [PMID: 34530720 DOI: 10.2174/1574888x16666210916145717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Crohn's Disease (CD), which usually leads to anal fistulas among patients, is the most important inflammatory bowel disease that causes morbidity in many people around the world. This review article proposes using MSCs as a hopeful therapeutic strategy for CD and anal fistula treatment in both preclinical and clinical conditions. Finally, darvadstrocel, a cell-based medication to treat complex anal fistulas in adults, as the only European Medicines Agency (EMA)-approved product for the treatment of anal fistulas in CD is addressed. Although several common therapies, such as surgery and anti-tumor necrosis factor-alpha (TNF-α) drugs as well as a combination of these methods is used to improve this disease, however, due to the low effectiveness of these treatments, the use of new strategies with higher efficiency is still recommended. Cell therapy is among the new emerging therapeutic strategies that have attracted great attention from clinicians due to its unique capabilities. One of the most widely used cell sources administrated in cell therapy is mesenchymal stem cell (MSC). This review article will discuss preclinical and clinical studies about MSCs as a potent and promising therapeutic option in the treatment of CD and anal fistula.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom,Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohadeseh Khoshandam
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | | | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran.,Department of Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Wang K, Chen Z, Jin L, Zhao L, Meng L, Kong F, He C, Kong F, Zheng L, Liang F. LPS-pretreatment adipose-derived mesenchymal stromal cells promote wound healing in diabetic rats by improving angiogenesis. Injury 2022; 53:3920-3929. [PMID: 36357245 DOI: 10.1016/j.injury.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) play a key role in wound healing, and the advantages of pretreated MSCs in wound healing have previously been reported. In the present study, we investigated the impact of LPS pretreated human adipose-derived MSCs on skin wound healing in diabetic rats. We found that some improvements occurred through improving angiogenesis. Then, we scrutinized the impact of lipopolysaccharide (LPS) treatment on human adipose-derived MSCs in a high-glucose (HG) medium, as an in vitro diabetic model. In vivo findings revealed significant improvements in epithelialization and angiogenesis of diabetic wounds which received LPS pre-MSCs. Particularly, LPS pre-MSCs-treated diabetic wounds reached considerably higher percentages of wound closure. Also, the granulation tissue of these wounds had higher pronounced epithelialization and more vascularization compared with PBS-treated and MSCs-treated diabetic ones by CD31, VEGF, CD90, collagen 1, and collagen 3 immunostaining. Western-blots analyses indicated that LPS pre-MSCs led to the upregulation of vascular endothelial growth factor (VEGF) and DNMT1. In addition, significantly higher cell viability (proliferation/colonie), and elevated VEGF and DNMT1 protein expression were observed when MSCs were treated with LPS (10 ng/ml, 6 h) in HG culture media. Based on these findings, it is suggested that LPS pre-MSCs could promote wound repair and skin regeneration, in some major processes, via the improvement of cellular behaviors of MSCs in the diabetic microenvironment. The beneficial advantages of LPS treated with mesenchymal stem cells on wound healing may lead to establishing a novel approach as an alternative therapeutic procedure to cure chronic wounds in diabetic conditions.
Collapse
Affiliation(s)
- Kuixiang Wang
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Ziying Chen
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lili Zhao
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Libin Meng
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanting Kong
- Department of Oncology Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Chenxin He
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanlei Kong
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lingtao Zheng
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fang Liang
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China.
| |
Collapse
|
26
|
Wang D, Xie Y, Peng HQ, Wen ZM, Ying ZY, Geng C, Wu J, Lv HY, Xu B. LPS preconditioning of MSC-CM improves protection against hypoxia/reoxygenation-induced damage in H9c2 cells partly via HMGB1/Bach1 signalling. Clin Exp Pharmacol Physiol 2022; 49:1319-1333. [PMID: 36052438 DOI: 10.1111/1440-1681.13714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 01/31/2023]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function after myocardial infarction; however, this cardioprotective effect is moderate and transient. Lipopolysaccharide (LPS) pretreatment partially improves MSC-CM-mediated cardioprotective effects owing to the presence of paracrine factors. However, the mechanism underlying these improved effects remains unknown. To study the effect of LPS-pretreated MSC-CM on hypoxia/reoxygenation (H/R)-induced injury, MSCs were treated with or without LPS (400 ng/mL) for 48 h, and the supernatant was collected (MSC-CM). Subsequently, H9c2 cells were co-cultured with Nor-CM (CM derived from LPS-untreated MSCs) and LPS-CM (CM derived from LPS-pretreated MSCs) for 24 h and subjected to H/R. MSC-CM inhibited the progression of H/R-induced injury in H9c2 cells, and this protective effect was enhanced via LPS pretreatment as evidenced by the improved apoptosis assessment index (i.e. caspase-3 and B-cell lymphoma-2 [Bcl-2] expression) and decreased levels of lactic dehydrogenase (LDH) and cardiac troponin (cTn). In addition, the results of haematoxylin-eosin staining (H&E), transmission electron microscopy (TEM) and TdT-mediated dUTP nick-end labelling (TUNEL) validated that MSC-CM inhibited H/R-induced injury in H9c2 cardiomyocytes. LPS pretreatment downregulated the expression of high mobility group box-1 (HMGB1) and BTB and CNC homology-1 (Bach1) proteins in MSCs but upregulated the expression of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth factor (IGF). HMGB1 knockdown (MSC/siHMGB1-CM) significantly decreased the expression of Bach1 and increased the expression of VEGF, HGF and IGF. Bach1 knockdown (MSC/siBach1-CM) did not alter the production of HMGB1 but increased the expression of VEGF and IGF. LPS pretreatment did not alter the expression of the paracrine factors VEGF and HGF in the MSC/siHMGB1 group but increased their expression in the MSC/siBach1 group. The myocyte anti-apoptotic effects of MSCs/siBach1-CM were similar to those of untreated MSCs, which were not enhanced by LPS. LPS-pretreated MSC-CM protects H9c2 cells against H/R-induced injury partly through the HMGB1/Bach1 signalling pathway.
Collapse
Affiliation(s)
- Dan Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, Ordos Central Hospital, Ordos, China
| | - Yu Xie
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Qian Peng
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Min Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zi-Yue Ying
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Wu
- Department of Echocardiography, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Yi Lv
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Xu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Pezzanite LM, Chow L, Strumpf A, Johnson V, Dow SW. Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine. Vet Sci 2022; 9:610. [PMID: 36356087 PMCID: PMC9695672 DOI: 10.3390/vetsci9110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antimicrobial resistance and biofilm formation both present challenges to treatment of bacterial infections with conventional antibiotic therapy and serve as the impetus for development of improved therapeutic approaches. Mesenchymal stromal cell (MSC) therapy exerts an antimicrobial effect as demonstrated in multiple acute bacterial infection models. This effect can be enhanced by pre-conditioning the MSC with Toll or Nod-like receptor stimulation, termed activated cellular therapy (ACT). The purpose of this review is to summarize the current literature on mechanisms of antimicrobial activity of MSC with emphasis on enhanced effects through receptor agonism, and data supporting use of ACT in treatment of bacterial infections in veterinary species including dogs, cats, and horses with implications for further treatment applications. This review will advance the field's understanding of the use of activated antimicrobial cellular therapy to treat infection, including mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alyssa Strumpf
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Michigan State University, Lansing, MI 48824, USA
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
28
|
Chen X, Chen M, Yang Y, Xu C, Lu H, Xu Y, Li X, Wei Y, Zhu Z, Ding Y, Yu W. LIPOPOLYSACCHARIDE-PRECONDITIONED MESENCHYMAL STEM CELL TRANSPLANTATION ATTENUATES CRITICAL PERSISTENT INFLAMMATION IMMUNE SUPPRESSION AND CATABOLISM SYNDROME IN MICE. Shock 2022; 58:417-425. [PMID: 36155397 DOI: 10.1097/shk.0000000000001993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Background: Persistent inflammation, immunosuppression, and catabolism syndrome (PIICS) is associated with high mortality and high health care costs, and there is currently no effective target treatment. Mesenchymal stem cells (MSCs) possess multipotent immunomodulatory properties. LPS-preconditioned type 1 MSCs (MSC1s) are potentially beneficial for PIICS treatment because of their proinflammatory, anti-infective, and healing properties. Here, we investigated the therapeutic efficacy and mechanisms of action of MSC1s in PIICS. Methods: We previously optimized a reaggravated PIICS mouse model, which was used in this study. PIICS mice were subjected to cecal ligation and puncture on day 1 and LPS injection on day 11. Subsequently, the mice were treated with or without MSC1s. Animal survival and phenotypes, along with the levels of catabolism, inflammation, and immunosuppression, were evaluated. MSC1s were cocultured with CD8 + T cells in vitro , and inflammatory cytokine levels and CD8 + T-cell function were assessed. Results: MSC1 transplantation alleviated weight loss and muscle wasting, inhibited catabolism and inflammation, and considerably improved the proportion and function of CD8 + T cells in the PIICS mice. After coculture with MSC1s, the expression levels of CD107a and interferon γ increased, whereas the expression level of programmed death 1 decreased significantly in CD8 + T cells. MSC1s also promoted proinflammatory cytokine secretion and reduced the concentration of soluble PD-L1 in vitro . Conclusions: MSC1s can protect mice against critical PIICS, partly by enhancing CD8 + T-cell function. Therefore, MSC1 transplantation is a novel therapeutic candidate for PIICS.
Collapse
Affiliation(s)
- Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Can Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yali Xu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu Wei
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhanghua Zhu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
30
|
Development of an In Vitro Model of SARS-CoV-Induced Acute Lung Injury for Studying New Therapeutic Approaches. Antioxidants (Basel) 2022; 11:antiox11101910. [PMID: 36290634 PMCID: PMC9598130 DOI: 10.3390/antiox11101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called “cytokine storm”, leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.
Collapse
|
31
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
32
|
Zhou C, Bai XY. Strategies for the induction of anti-inflammatory mesenchymal stem cells and their application in the treatment of immune-related nephropathy. Front Med (Lausanne) 2022; 9:891065. [PMID: 36059816 PMCID: PMC9437354 DOI: 10.3389/fmed.2022.891065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potent immunomodulatory functions. Animal studies and clinical trials have demonstrated that MSCs can inhibit immune/inflammatory response in tissues and have good therapeutic effects on a variety of immune-related diseases. However, MSCs currently used for treatment are a mixed, undefined, and heterogeneous cell population, resulting in inconsistent clinical treatment effects. MSCs have dual pro-inflammatory/anti-inflammatory regulatory functions in different environments. In different microenvironments, the immunomodulatory function of MSCs has plasticity; therefore, MSCs can transform into pro-inflammatory MSC1 or anti-inflammatory MSC2 phenotypes. There is an urgent need to elucidate the molecular mechanism that induces the phenotypic transition of MSCs to pro-inflammatory or anti-inflammatory MSCs and to develop technical strategies that can induce the transformation of MSCs to the anti-inflammatory MSC2 phenotype to provide a theoretical basis for the future clinical use of MSCs in the treatment of immune-related nephropathy. In this paper, we summarize the relevant strategies and mechanisms for inducing the transformation of MSCs into the anti-inflammatory MSC2 phenotype and enhancing the immunosuppressive function of MSCs.
Collapse
|
33
|
Skibber MA, Olson SD, Prabhakara KS, Gill BS, Cox CS. Enhancing Mesenchymal Stromal Cell Potency: Inflammatory Licensing via Mechanotransduction. Front Immunol 2022; 13:874698. [PMID: 35874742 PMCID: PMC9297916 DOI: 10.3389/fimmu.2022.874698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) undergo functional maturation upon their migration from bone marrow and introduction to a site of injury. This inflammatory licensing leads to heightened immune regulation via cell-to-cell interaction and the secretion of immunomodulatory molecules, such as anti-inflammatory mediators and antioxidants. Pro-inflammatory cytokines are a recognized catalyst of inflammatory licensing; however, biomechanical forces, such as fluid shear stress, are a second, distinct class of stimuli that incite functional maturation. Here we show mechanotransduction, achieved by exposing MSC to various grades of wall shear stress (WSS) within a scalable conditioning platform, enhances the immunomodulatory potential of MSC independent of classical pro-inflammatory cytokines. A dose-dependent effect of WSS on potency is evidenced by production of prostaglandin E2 (PGE2) and indoleamine 2,3 dioxygenase 1 (IDO1), as well as suppression of tumor necrosis factor-α (TNF- α) and interferon-γ (IFN-γ) production by activated immune cells. Consistent, reproducible licensing is demonstrated in adipose tissue and bone marrow human derived MSC without significant impact on cell viability, cellular yield, or identity. Transcriptome analysis of WSS-conditioned BM-MSC elucidates the broader phenotypic implications on the differential expression of immunomodulatory factors. These results suggest mechanotransduction as a viable, scalable pre-conditioning alternative to pro-inflammatory cytokines. Enhancing the immunomodulatory capacity of MSC via biomechanical conditioning represents a novel cell therapy manufacturing approach.
Collapse
Affiliation(s)
- Max A. Skibber
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brijesh S. Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center At Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Scott D. Olson, ; Brijesh S. Gill, ; Charles S. Cox Jr,
| |
Collapse
|
34
|
Li YE, Ajoolabady A, Dhanasekaran M, Ren J. Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacol Res 2022; 182:106334. [PMID: 35779816 PMCID: PMC9242686 DOI: 10.1016/j.phrs.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.
Collapse
Affiliation(s)
- Yiran E Li
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Creamer DG, Schmiedt CW, Bullington AC, Caster CM, Schmiedt JM, Hurley DJ, Berghaus RD. Influence of exposure to microbial ligands, immunosuppressive drugs and chronic kidney disease on endogenous immunomodulatory gene expression in feline adipose-derived mesenchymal stem cells. J Feline Med Surg 2022; 24:e43-e56. [PMID: 35302413 PMCID: PMC11104253 DOI: 10.1177/1098612x221083074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Feline autologous mesenchymal stem cells (MSCs) show promise for immunomodulatory activity, but the functional impact of chronic kidney disease (CKD), concurrent immunosuppressive drug administration or infection is unknown. The study objectives compare endogenous cytokine gene expression (interleukin [IL]-6, IL-10, IL-12p40, IL-18 and transforming growth factor beta [TGF-β]) in adipose-derived MSCs (aMSCs) from cats with and without CKD, following in vitro exposure to microbial ligands and treatment with common immunosuppressive drugs. METHODS Previously obtained aMSCs, phenotype CD44+, CD90+, CD105+ and MHCII-, from cats with (n = 6) and without (n = 6) CKD were compared via real-time PCR (RT-PCR) for immunomodulatory gene expression. aMSCs were exposed in vitro to lipopolysaccharide (LPS), peptidoglycan or polyinosinic:polycytidylic acid (Poly I:C), simulating bacterial or viral exposure, respectively. aMSCs were also exposed to ciclosporin, dexamethasone or methotrexate. Gene expression was measured using RT-PCR, and Cq was utilized after each run to calculate the delta cycle threshold. RESULTS aMSCs isolated from healthy and CKD cats showed no significant differences in gene expression in the five measured cytokines. No significant changes in measured gene expression after drug treatment or microbial ligand stimulation were observed between normal or CKD affected cats. Proinflammatory genes (IL-6, IL-12p40 and IL-18) showed altered expression in aMSCs from both groups when compared with the same cells in standard culture after exposure to methotrexate. Poly I:C altered IL-6 and TGF-β gene expression in aMSCs from both healthy and CKD cats when compared with the same cells in standard culture. CONCLUSIONS AND RELEVANCE The five genes tested showed no statistical differences between aMSCs from healthy or CKD cats. There was altered cytokine gene expression between the control and treatment groups of both healthy and CKD cats suggesting feline aMSCs have altered function with immunosuppressive treatment or microbial ligand exposure. Although the current clinical relevance of this pilot study comparing brief exposure to select agents in vitro in aMSCs from a small number of cats is unknown, the study highlights a need for continued investigation into the effects of disease and concurrent therapies on use of cell-based therapies in feline patients.
Collapse
Affiliation(s)
- Danielle G Creamer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna Claire Bullington
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Courtney M Caster
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jennifer M Schmiedt
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Roy D Berghaus
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Wang D, Wen JY, Wu D, Ying ZY, Wen ZM, Peng HQ, Geng C, Feng YB, Sui ZG, Lv HY, Wu J, Xu B. LPS-pretreated MSC-conditioned medium optimized with 10-kDa filter attenuates the injury of H9c2 cardiomyocytes in a model of hypoxia/reoxygenation. Can J Physiol Pharmacol 2022; 100:651-664. [PMID: 35533248 DOI: 10.1139/cjpp-2021-0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function, which is partly attributed to released paracrine factors. Since such cardioprotection is moderate and transient, it's essential to optimize MSC-CM effective components to alleviate myocardial injury. To optimize MSC-CM, MSCs were treated with or without lipopolysaccharides (LPSs) for 48 h (serum-free), and the supernatant was collected. Then, LPS-CM (MSC stimulated by LPS) was further treated with LPS remover (LPS Re-CM) or was concentrated with a 10-kDa cutoff filter (10 kDa-CM). ELISA showed that all pretreatments increased levels of VEGF, HGF, and IGF except LPS remover; 10 kDa-CM was superior to other-CM. CCK-8 displayed that viability of injured H9c2 cells enhanced with the increase of MSC-CM concentration. We also found 10 kDa-CM significantly alleviated H9c2 hypoxia/reoxygenation (H/R) injury, as evidenced by increased Bcl-2/Bax ratio, decreased the levels of LDH and cTn. TEM, TUNEL, and H&E staining confirmed 10 kDa-CM inhibited H/R-induced H9c2 morphological changes. Proteomic analysis identified 41 differentially expressed proteins in 10 kDa-CM, among which anti-inflammation, pro-angiogenesis, and anti-apoptosis were related to cardiac protection. This study indicates that 10 kDa-CM protects H9c2 cardiomyocytes from H/R injury by preserving most of the protective factors, such as VEGF, HGF, and IGF, in MSC-CM.
Collapse
Affiliation(s)
- Dan Wang
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China.,Ordos Central Hospital, 586048, Department of Pharmacy, Ordos, Inner Mongolia, China;
| | - Jing-Yi Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Di Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zi-Yue Ying
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Zhi-Min Wen
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Hui-Qian Peng
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Cong Geng
- The Second Affiliated Hospital of Dalian Medical University, Department of Clinical Laboratory, Dalian, Liaoning, China;
| | - Yuan-Bo Feng
- KU Leuven University Hospitals Leuven, 60182, Leuven, Flanders, Belgium;
| | - Zhi-Gang Sui
- Chinese Academy of Science, Dalian, Liaoning, China;
| | - Hui-Yi Lv
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China;
| | - Jun Wu
- The Second Affiliated Hospital of Dalian Medical University, Department of Echocardiography, Dalian, Liaoning, China;
| | - Bing Xu
- The Second Affiliated Hospital of Dalian Medical University, Department of Pharmacy, Dalian, Liaoning, China, 116023;
| |
Collapse
|
37
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
38
|
Huang Y, Liu Q, Liu L, Huo F, Guo S, Tian W. Lipopolysaccharide-Preconditioned Dental Follicle Stem Cells Derived Small Extracellular Vesicles Treating Periodontitis via Reactive Oxygen Species/Mitogen-Activated Protein Kinase Signaling-Mediated Antioxidant Effect. Int J Nanomedicine 2022; 17:799-819. [PMID: 35228798 PMCID: PMC8882029 DOI: 10.2147/ijn.s350869] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Lipopolysaccharide (LPS) pretreatment can enhance the therapeutic effect of dental follicle stem cells-derived small extracellular vesicles (DFC-sEV) for periodontitis, and this study aimed to investigate the underlying mechanisms and clinical application Of LPS-preconditioned DFC-sEV in periodontitis. Methods The protein spectrum of DFC-sEV before and after LPS pretreatment was determined by liquid chromatography-tandem mass spectrometry and bioinformatic analysis. Their effects on inflammatory periodontal ligament stem cells (PDLSCs) and macrophages were investigated for cell proliferation, migration, type 2 macrophage (M2) polarization, and intracellular reactive oxygen species (ROS) levels separately. In addition, the regulation of ROS/Jun amino-terminal kinases (JNK) and ROS/extracellular signal-related kinases (ERK) signaling by LPS-preconditioned DFC-sEV was also studied to reveal the antioxidant mechanism. In vivo, two kinds of DFC-sEV loaded with 0.2% hyaluronic acid (HA) gel were applied for canine periodontitis to evaluate the therapeutic potential. Results The proteomic analysis showed that thirty-eight proteins were differentially expressed in LPS-preconditioned DFC-sEV, and interestingly, the highly expressed proteins were mainly involved in antioxidant and enzyme-regulating activities. In addition to promoting PDLSCs and macrophage proliferation, LPS-preconditioned DFC-sEV inhibited intracellular ROS as an antioxidant. It reduced the RANKL/OPG ratio of PDLSCs by inhibiting ROS/JNK signaling under inflammatory conditions and promoted macrophages to polarize toward the M2 phenotype via ROS/ERK signaling. Furthermore, LPS-preconditioned DFC-sEV loaded with the HA injectable system could sustainably release sEV and enhance the therapeutic efficacy for periodontitis in canines. Conclusion LPS-preconditioned DFC-sEV could be effectively used as an auxiliary method for periodontitis treatment via antioxidant effects in a subgingival environment, and loading it with HA is feasible and effective for clinical applications.
Collapse
Affiliation(s)
- Yanli Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Qian Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Li Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Correspondence: Shujuan Guo; Weidong Tian, Tel/Fax +86 028 8550 3499, Email ;
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
39
|
Li YX, Liu T, Liang YW, Huang JJ, Huang JS, Liu XG, Cheng ZY, Lu SX, Li M, Huang L. Integrative analysis of long non-coding RNA and messenger RNA expression in toll-like receptor 4-primed mesenchymal stem cells of ankylosing spondylitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1563. [PMID: 34790769 PMCID: PMC8576702 DOI: 10.21037/atm-21-5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
Background The precise pathogenesis of ankylosing spondylitis (AS) is still largely unknown at present. Our previous study found that toll-like receptor 4 (TLR4) downregulated and performed immunoregulatory dysfunction in mesenchymal stem cells from AS patients (AS-MSCs). The aim of this study was to explore the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in TLR4-primed AS-MSCs, and to clarify the potential mechanisms. Methods The immunoregulatory effects of MSCs were determined after TLR4 activation. Next, the differentially-expressed (DE) lncRNAs and mRNAs between AS-MSCs and TLR4-primed AS-MSCs [stimulated by lipopolysaccharide (LPS)] were identified via high-throughput sequencing followed by quantitative real-time PCR (qRT-PCR) confirmation. Finally, bioinformatics analyses were performed to identify the critical biological functions, signaling pathways, and associated functional networks involved in the TLR4-primed immunoregulatory function of AS-MSCs. Results A total of 147 DE lncRNAs and 698 DE mRNAs were identified between TLR4-primed AS-MSCs and unstimulated AS-MSCs. Of these, 107 lncRNAs were upregulated and 40 were downregulated (fold change ≥2, P<0.05), while 504 mRNAs were upregulated and 194 were downregulated (fold change ≥2, P<0.05). Five lncRNAs and five mRNAs with the largest fold changes were respectively verified by qRT-PCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that the DE mRNAs and lncRNAs were highly associated with the inflammatory response, such as NOD-like receptor (NLR) signaling pathway, the TNF signaling pathway and the NF-κB signaling pathway. Cis-regulation prediction revealed eight novel lncRNAs, while trans-regulation prediction revealed 15 lncRNAs, respectively. Eight core pairs of lncRNA and target mRNA in the lncRNA-transcription factor (TF)-mRNA network were as follows: PACERR-PTGS2, LOC105378085-SOD2, LOC107986655-HIVEP2, MICB-DT-MICB, LOC105373925-SP140L, LOC107984251-IFIT5, LOC112268267-GBP2, and LOC101926887-IFIT3, respectively. Conclusions TLR4 activation in AS can enhance the immunoregulatory ability of MSCs. Eight core pairs of lncRNA and target mRNA were observed in TLR4-primed AS-MSCs, which could contribute to understanding the potential mechanism of AS-MSC immunoregulatory dysfunction.
Collapse
Affiliation(s)
- Yu-Xi Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Department of Anaesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wei Liang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Shen Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Ge Liu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Ying Cheng
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi-Xin Lu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Loke XY, Imran SAM, Tye GJ, Wan Kamarul Zaman WS, Nordin F. Immunomodulation and Regenerative Capacity of MSCs for Long-COVID. Int J Mol Sci 2021; 22:ijms222212421. [PMID: 34830303 PMCID: PMC8625432 DOI: 10.3390/ijms222212421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid mutation of the SARS-CoV-2 virus is now a major concern with no effective drugs and treatments. The severity of the disease is linked to the induction of a cytokine storm that promotes extensive inflammation in the lung, leading to many acute lung injuries, pulmonary edema, and eventually death. Mesenchymal stem cells (MSCs) might prove to be a treatment option as they have immunomodulation and regenerative properties. Clinical trials utilizing MSCs in treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) have provided a basis in treating post-COVID-19 patients. In this review, we discussed the effects of MSCs as an immunomodulator to reduce the severity and death in patients with COVID-19, including the usage of MSCs as an alternative regenerative therapy in post-COVID-19 patients. This review also includes the current clinical trials in utilizing MSCs and their potential future utilization for long-COVID treatments.
Collapse
Affiliation(s)
- Xin Ya Loke
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (X.Y.L.); (S.A.M.I.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (X.Y.L.); (S.A.M.I.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (X.Y.L.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-38921-5555
| |
Collapse
|
41
|
Alshareef GH, Mohammed AE, Abumaree M, Basmaeil YS. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:51-69. [PMID: 34754198 PMCID: PMC8572118 DOI: 10.2147/sccaa.s332952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Introduction Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS). Methods DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined. Furthermore, DBMSCs’ expression of 84 genes associated with their functional activities in the presence of LPS was investigated. Results Results indicated that LPS had no significant effect on DBMSCs’ adhesion, migration, and proliferation (24 h and 72 h) (p > 0.05). However, DBMSCs’ proliferation was significantly reduced at 10 µg/mL of LPS at 48 h (p < 0.05). In addition, inflammatory cytokines and receptors related to adhesion, proliferation, migration, and differentiation were significantly overexpressed when DBMSCs were treated with 10 µg/mL of LPS (p < 0.05). Conclusion These results indicated that DBMSCs maintained their functional activities (proliferation, adhesion, and migration) in the presence of LPS as there was no variation between the treated DBMSCs and the control group. This study will lay the foundation for future preclinical and clinical studies to confirm the appropriateness of DBMSCs as a potential medication to cure inflammatory diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Ghofran Hasan Alshareef
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Afrah E Mohammed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Mohammed Abumaree
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
43
|
Dunbar H, Weiss DJ, Rolandsson Enes S, Laffey JG, English K. The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells 2021; 10:cells10112982. [PMID: 34831203 PMCID: PMC8616504 DOI: 10.3390/cells10112982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden;
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
| | - Karen English
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
- Correspondence: ; Tel.: +353-1-7086290
| |
Collapse
|
44
|
Becerra J, Duran I. Inflammation, a common mechanism in frailty and COVID-19, and stem cells as a therapeutic approach. Stem Cells Transl Med 2021; 10:1482-1490. [PMID: 34164948 PMCID: PMC8550702 DOI: 10.1002/sctm.21-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022] Open
Abstract
As our life expectancy increases, specific medical conditions appear, and new challenges are met in terms of global health. Frailty has become a medical and scientific concept to define pathologies where inflammation, depressed immune system, cellular senescence, and molecular aging converge. But more importantly, frailty is the ultimate cause of death that limits our life span and deteriorates health in an increasing proportion of the world population. The difficulty of tackling this problem is the combination of factors that influence frailty appearance, such as stem cells exhaustion, inflammation, loss of regeneration capability, and impaired immunomodulation. To date, multiple research fields have found mechanisms participating in this health condition, but to make progress, science will need to investigate frailty with an interdisciplinary approach. This article summarizes the current efforts to understand frailty from their processes mediated by inflammation, aging, and stem cells to provide a new perspective that unifies the efforts in producing advanced therapies against medical conditions in the context of frailty. We believe this approach against frailty is particularly relevant to COVID-19, since people in a state of frailty die more frequently due to the hyperinflammatory process associated with this infection.
Collapse
Affiliation(s)
- José Becerra
- Department of Cell Biology, Genetics, and PhysiologyFaculty of Sciences, University of Málaga, IBIMAMálagaSpain
- Networking Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
| | - Ivan Duran
- Department of Cell Biology, Genetics, and PhysiologyFaculty of Sciences, University of Málaga, IBIMAMálagaSpain
- Networking Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Andalusian Centre for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
| |
Collapse
|
45
|
Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021. [DOI: 10.3390/ijms22158121
expr 825321411 + 858242883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
|
46
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121&set/a 880446214+990577611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
- Correspondence: ; Tel.: +7-499-190-30-49
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
47
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
48
|
Banavar SR, Rawal SY, Pulikkotil SJ, Daood U, Paterson IC, Davamani FA, Kajiya M, Kurihara H, Khoo SP, Tan EL. 3D Clumps/Extracellular Matrix Complexes of Periodontal Ligament Stem Cells Ameliorate the Attenuating Effects of LPS on Proliferation and Osteogenic Potential. J Pers Med 2021; 11:528. [PMID: 34207600 PMCID: PMC8227185 DOI: 10.3390/jpm11060528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. OBJECTIVE to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. METHODS The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. RESULTS The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P-O bond at 960 cm-1 of the mineral component, 785 cm-1, and 855 cm-1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. CONCLUSIONS These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.
Collapse
Affiliation(s)
- Spoorthi Ravi Banavar
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Swati Yeshwant Rawal
- Department of Surgical Sciences, Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, USA;
| | - Shaju Jacob Pulikkotil
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Umer Daood
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Ian C. Paterson
- Department of Oral Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia
| | | | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Hidemi Kurihara
- Dental Academy, 1-6-2 Higashiyanagi, Kudamatsu City 744-0017, Japan;
| | - Suan Phaik Khoo
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Eng Lai Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
49
|
Figueroa-Valdés AI, de la Fuente C, Hidalgo Y, Vega-Letter AM, Tapia-Limonchi R, Khoury M, Alcayaga-Miranda F. A Chemically Defined, Xeno- and Blood-Free Culture Medium Sustains Increased Production of Small Extracellular Vesicles From Mesenchymal Stem Cells. Front Bioeng Biotechnol 2021; 9:619930. [PMID: 34124014 PMCID: PMC8187876 DOI: 10.3389/fbioe.2021.619930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is witnessing a notable shift toward cell-free treatments based on paracrine factors, in particular, towards small extracellular vesicles (sEV), that mimic the functional effect of the parental cells. While numerous sEV-based applications are currently in advanced preclinical stages, their promised translation depends on overcoming the manufacturing hurdles posed by the large-scale production of purified sEV. Unquestionably, the culture medium used with the parental cells plays a key role in the sEV's secretion rate and content. An essential requisite is the use of a serum-, xeno-, and blood-free medium to meet the regulatory entity requirements of clinical-grade sEV's production. Here, we evaluated OxiumTMEXO, a regulatory complying medium, with respect to production capacity and conservation of the EV's characteristics and functionality and the parental cell's phenotype and viability. A comparative study was established with standard DMEM and a commercially available culture medium developed specifically for sEV production. Under similar conditions, OxiumTMEXO displayed a three-fold increase of sEV secretion, with an enrichment of particles ranging between 51 and 200 nm. These results were obtained through direct quantification from the conditioned medium to avoid the isolation method's interference and variability and were compared to the two culture media under evaluation. The higher yield obtained was consistent with several harvest time points (2, 4, and 6 days) and different cell sources, incluiding umbilical cord-, menstrual blood-derived mesenchymal stromal cells and fibroblasts. Additionally, the stem cell phenotype and viability of the parental cell remained unchanged. Furthermore, OxiumTMEXO-sEV showed a similar expression pattern of the vesicular markers CD63, CD9, and CD81, with respect to sEV derived from the other conditions. The in vitro internalization assays in different target cell types and the pharmacokinetic profile of intraperitoneally administered sEV in vivo indicated that the higher EV production rate did not affect the uptake kinetics or the systemic biodistribution in healthy mice. In conclusion, the OxiumTMEXO medium sustains an efficient and robust production of large quantities of sEV, conserving the classic functional properties of internalization into acceptor target cells and biodistribution in vivo, supplying the amount and quality of EVs for the development of cell-free therapies.
Collapse
Affiliation(s)
- Aliosha I Figueroa-Valdés
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Catalina de la Fuente
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Yessia Hidalgo
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | | | - Maroun Khoury
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
50
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|