1
|
Ciesielski TH, Sirugo G, Iyengar SK, Williams SM. Characterizing the pathogenicity of genetic variants: the consequences of context. NPJ Genom Med 2024; 9:3. [PMID: 38195641 PMCID: PMC10776585 DOI: 10.1038/s41525-023-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Ronin Institute, Montclair, NJ, USA.
| | - Giorgio Sirugo
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K Iyengar
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| |
Collapse
|
2
|
Ciesielski TH, Zhang X, Tacconelli A, Lutsar I, de Cabre VM, Roilides E, Ciccacci C, Borgiani P, Scott WK, Williams SM, Sirugo G. Late-onset neonatal sepsis: genetic differences by sex and involvement of the NOTCH pathway. Pediatr Res 2023; 93:1085-1095. [PMID: 35835848 DOI: 10.1038/s41390-022-02114-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Late-Onset Neonatal Sepsis (LOS) is a rare condition, involving widespread infection, immune disruption, organ dysfunction, and often death. Because exposure to pathogens is not completely preventable, identifying susceptibility factors is critical to characterizing the pathophysiology and developing interventions. Prior studies demonstrated both genetics and infant sex influence susceptibility. Our study was designed to identify LOS associated genetic variants. METHODS We performed an exploratory genome wide association study (GWAS) with 224 LOS cases and 273 controls from six European countries. LOS was defined as sepsis presenting from 3 to 90 days of age; diagnosis was established by clinical criteria consensus guidelines. We tested for association with both autosomal and X-chromosome variants in the total sample and in sex-stratified analyses. RESULTS In total, 71 SNPs associated with neonatal sepsis at p < 1 × 10-4 in at least one analysis. Most importantly, sex-stratified analyses revealed associations with multiple SNPs (28 in males and 16 in females), but no variants from single-sex analyses associated with sepsis in the other sex. Pathway analyses showed NOTCH signaling is over-represented among genes linked to these SNPS. CONCLUSION Our results indicate genetic susceptibility to LOS is sexually dimorphic and corroborate that NOTCH signaling plays a role in determining risk. IMPACT Genes associate with late onset neonatal sepsis. Notch pathway genes are overrepresented in associations with sepsis. Genes associating with sepsis do not overlap between males and females. Sexual dimorphism can lead to sex specific treatment of sepsis.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xueyi Zhang
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Irja Lutsar
- Department of Microbiology, School of Medicine, University of Tartu, Tartu, Estonia
| | | | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Paediatrics, School of Medicine, Aristotle University, Thessaloniki, Greece
| | - Cinzia Ciccacci
- Dipartimento di Biomedicina e Prevenzione, Facolta' di Medicina e Chirurgia, Universita' di Tor Vergata, Rome, Italy
- Unicamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Borgiani
- Dipartimento di Biomedicina e Prevenzione, Facolta' di Medicina e Chirurgia, Universita' di Tor Vergata, Rome, Italy
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA.
- 10900 Euclid Ave, Cleveland Institute for Computational Biology, Cleveland, USA.
| | - Giorgio Sirugo
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Division of Translational Medicine and Human Genetics, Perelman SPerelman School of Medicine, University of Pennsylvaniachool of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
3
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
4
|
Chenoweth MJ, Peng AR, Zhu AZX, Cox LS, Nollen NL, Ahluwalia JS, Benowitz NL, Knight J, Swardfager W, Tyndale RF. Does sex alter the relationship between CYP2B6 variation, hydroxybupropion concentration and bupropion-aided smoking cessation in African Americans? A moderated mediation analysis. Addiction 2022; 117:1715-1724. [PMID: 34791718 DOI: 10.1111/add.15742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS CYP2B6, a genetically variable enzyme, converts bupropion to its active metabolite hydroxybupropion. CYP2B6 activity and bupropion-aided cessation differ between women and men. The aim of this study was to determine whether genetically normal (versus reduced) CYP2B6 activity increases bupropion-aided cessation in African American smokers via higher hydroxybupropion concentration, and whether this differs by sex. DESIGN AND SETTING Secondary analysis of a smoking cessation clinical trial (NCT00666978). PARTICIPANTS/CASES African American light smokers (≤ 10 cigarettes/day). INTERVENTIONS Participants were treated with bupropion for 7 weeks. MEASUREMENTS Participants with detectable bupropion and/or hydroxybupropion concentrations were divided into normal (n = 64) and reduced (n = 109) CYP2B6 activity groups based on the presence of decreased-function CYP2B6*6 and CYP2B6*18 alleles. Biochemically verified smoking cessation was assessed at week 3, end of treatment (7 weeks) and follow-up (26 weeks). FINDINGS Normal (versus reduced) CYP2B6 activity was associated with increased cessation at week 7, which was mediated by higher hydroxybupropion concentration [odds ratio (OR) = 1.25, 95% confidence interval (CI) = 1.03, 1.78]; this mediation effect persisted at week 26 (OR = 1.23, 95% CI = 1.02, 1.70). The mediation effect was similar in women (n = 116; OR = 1.33, 95% CI = 1.01, 2.30) and men (n = 57; OR = 1.33, 95% CI = 0.92, 3.87). Moreover, sex did not appear to moderate the mediation effect, although this should be tested in a larger sample. CONCLUSIONS In African American light smokers with verified early bupropion use, genetically normal CYP2B6 activity appears to be indirectly associated with greater smoking cessation success in a relationship mediated by higher hydroxybupropion concentration. The mediating effect of higher hydroxybupropion concentration on smoking cessation persists beyond the active treatment phase and does not appear to differ by sex.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Annie R Peng
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andy Z X Zhu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, RI, USA
| | - Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jo Knight
- Data Science Institute, Lancaster University Medical School, Lancaster, UK.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Chenoweth MJ, Cox LS, Nollen NL, Ahluwalia JS, Benowitz NL, Lerman C, Knight J, Tyndale RF. Analyses of nicotine metabolism biomarker genetics stratified by sex in African and European Americans. Sci Rep 2021; 11:19572. [PMID: 34599228 PMCID: PMC8486765 DOI: 10.1038/s41598-021-98883-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/08/2021] [Indexed: 12/01/2022] Open
Abstract
Nicotine is inactivated by the polymorphic CYP2A6 enzyme to cotinine and then to 3'hydroxycotinine. The Nicotine Metabolite Ratio (NMR; 3'hydroxycotinine/cotinine) is a heritable nicotine metabolism biomarker, varies with sex and ancestry, and influences smoking cessation and disease risk. We conducted sex-stratified genome-wide association studies of the NMR in European American (EA) and African American (AA) smokers (NCT01314001, NCT00666978). In EA females (n = 389) and males (n = 541), one significant (P < 5e-8) chromosome 19 locus was found (top variant: rs56113850, CYP2A6 (intronic), for C vs. T: females: beta = 0.67, P = 7.5e-22, 21.8% variation explained; males: beta = 0.75, P = 1.2e-37, 26.1% variation explained). In AA females (n = 503) and males (n = 352), the top variant was found on chromosome 19 but differed by sex (females: rs11878604, CYP2A6 (~ 16 kb 3'), for C vs. T: beta = - 0.71, P = 6.6e-26, 16.2% variation explained; males: rs3865454, CYP2A6 (~ 7 kb 3'), for G vs. T: beta = 0.64, P = 1.9e-19, 18.9% variation explained). In AA females, a significant region was found on chromosome 12 (top variant: rs12425845: P = 5.0e-9, TMEM132C (~ 1 Mb 5'), 6.1% variation explained) which was not significant in AA males. In AA males, significant regions were found on chromosomes 6 (top variant: rs9379805: P = 4.8e-9, SLC17A2 (~ 8 kb 5'), 8.0% variation explained) and 16 (top variant: rs77368288: P = 3.5e-8, ZNF469 (~ 92 kb 5'), 7.1% variation explained) which were not significant in AA females. Further investigation of these associations outside of chromosome 19 is required, as they did not replicate. Understanding how sex and ancestry influence nicotine metabolism genetics may improve personalized approaches for smoking cessation and risk prediction for tobacco-related diseases.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, Rhode Island, USA
| | - Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Caryn Lerman
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jo Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building Room 4326, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Merikangas AK, Almasy L. Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12660. [PMID: 32348611 PMCID: PMC7507200 DOI: 10.1111/gbb.12660] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X- or Y-linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome-wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large-scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome-wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alison K. Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura Almasy
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Mapes BM, Foster CS, Kusnoor SV, Epelbaum MI, AuYoung M, Jenkins G, Lopez-Class M, Richardson-Heron D, Elmi A, Surkan K, Cronin RM, Wilkins CH, Pérez-Stable EJ, Dishman E, Denny JC, Rutter JL. Diversity and inclusion for the All of Us research program: A scoping review. PLoS One 2020; 15:e0234962. [PMID: 32609747 PMCID: PMC7329113 DOI: 10.1371/journal.pone.0234962] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
The All of Us Research Program (All of Us) is a national effort to accelerate health research by exploring the relationship between lifestyle, environment, and genetics. It is set to become one of the largest research efforts in U.S. history, aiming to build a national resource of data from at least one million participants. All of Us aims to address the need for more diversity in research and set the stage for that diversity to be leveraged in precision medicine research to come. This paper describes how the program assessed demographic characteristics of participants who have enrolled in other U.S. biomedical research cohorts to better understand which groups are traditionally represented or underrepresented in biomedical research. We 1) reviewed the enrollment characteristics of national cohort studies like All of Us, and 2) surveyed the literature, focusing on key diversity categories essential to the program's enrollment aims. Based on these efforts, All of Us emphasizes enrollment of racial and ethnic minorities, and has formally designated the following additional groups as historically underrepresented: individuals-with inadequate access to medical care; under the age of 18 or over 65; with an annual household income at or below 200% of the federal poverty level; who have a cognitive or physical disability; have less than a high school education or equivalent; are intersex; identify as a sexual or gender minority; or live in rural or non-metropolitan areas. Research accounting for wider demographic variability is critical. Only by ensuring diversity and by addressing the very barriers that limit it, can we position All of Us to better understand and tackle health disparities.
Collapse
Affiliation(s)
- Brandy M. Mapes
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher S. Foster
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheila V. Kusnoor
- Center for Knowledge Management, Vanderbilt University Medical Center, Nashville, TN, United States of American
| | - Marcia I. Epelbaum
- Center for Knowledge Management, Vanderbilt University Medical Center, Nashville, TN, United States of American
| | - Mona AuYoung
- Scripps Whittier Diabetes Institute, Scripps Health, San Diego, California, United States of American
| | - Gwynne Jenkins
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria Lopez-Class
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dara Richardson-Heron
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ahmed Elmi
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karl Surkan
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America and All of Us Research Program Participant Representative
| | - Robert M. Cronin
- Department of Biomedical Informatics, Medicine, and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Consuelo H. Wilkins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eliseo J. Pérez-Stable
- National Institute on Minority Health and Health Disparities, Bethesda, Maryland, United States of America
| | - Eric Dishman
- Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua C. Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joni L. Rutter
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
8
|
Ostrom QT, Kinnersley B, Armstrong G, Rice T, Chen Y, Wiencke JK, McCoy LS, Hansen HM, Amos CI, Bernstein JL, Claus EB, Eckel-Passow JE, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Rubin JB, Andersson U, Rajaraman P, Chanock SJ, Linet MS, Wang Z, Yeager M, Houlston RS, Jenkins RB, Wrensch MR, Melin B, Bondy ML, Barnholtz-Sloan JS. Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 2018; 143:2359-2366. [PMID: 30152087 PMCID: PMC6205887 DOI: 10.1002/ijc.31759] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in the United States. Incidence of GBM increases with age, and younger age-at-diagnosis is significantly associated with improved prognosis. While the relationship between candidate GBM risk SNPs and age-at-diagnosis has been explored, genome-wide association studies (GWAS) have not previously been stratified by age. Potential age-specific genetic effects were assessed in autosomal SNPs for GBM patients using data from four previous GWAS. Using age distribution tertiles (18-53, 54-64, 65+) datasets were analyzed using age-stratified logistic regression to generate p values, odds ratios (OR), and 95% confidence intervals (95%CI), and then combined using meta-analysis. There were 4,512 total GBM cases, and 10,582 controls used for analysis. Significant associations were detected at two previously identified SNPs in 7p11.2 (rs723527 [p54-63 = 1.50x10-9 , OR54-63 = 1.28, 95%CI54-63 = 1.18-1.39; p64+ = 2.14x10-11 , OR64+ = 1.32, 95%CI64+ = 1.21-1.43] and rs11979158 [p54-63 = 6.13x10-8 , OR54-63 = 1.35, 95%CI54-63 = 1.21-1.50; p64+ = 2.18x10-10 , OR64+ = 1.42, 95%CI64+ = 1.27-1.58]) but only in persons >54. There was also a significant association at the previously identified lower grade glioma (LGG) risk locus at 8q24.21 (rs55705857) in persons ages 18-53 (p18-53 = 9.30 × 10-11 , OR18-53 = 1.76, 95%CI18-53 = 1.49-2.10). Within The Cancer Genome Atlas (TCGA) there was higher prevalence of 'LGG'-like tumor characteristics in GBM samples in those 18-53, with IDH1/2 mutation frequency of 15%, as compared to 2.1% [54-63] and 0.8% [64+] (p = 0.0005). Age-specific differences in cancer susceptibility can provide important clues to etiology. The association of a SNP known to confer risk for IDH1/2 mutant glioma and higher prevalence of IDH1/2 mutation within younger individuals 18-53 suggests that more younger individuals may present initially with 'secondary glioblastoma.'
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Terri Rice
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - John K Wiencke
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Lucie S McCoy
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Christopher I Amos
- Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, Texas
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Christoffer Johansen
- Oncology clinic, Finsen Center, Rigshospitalet and Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Rose K Lai
- Departments of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, California, Los Angeles
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sanjay Shete
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua B Rubin
- Departments of Pediatrics and Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Ulrika Andersson
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Margaret R Wrensch
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Beatrice Melin
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
9
|
Dick DM, Barr PB, Cho SB, Cooke ME, Kuo SIC, Lewis TJ, Neale Z, Salvatore JE, Savage J, Su J. Post-GWAS in Psychiatric Genetics: A Developmental Perspective on the "Other" Next Steps. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12447. [PMID: 29227573 PMCID: PMC5876087 DOI: 10.1111/gbb.12447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
As psychiatric genetics enters an era where gene identification is finally yielding robust, replicable genetic associations and polygenic risk scores, it is important to consider next steps and delineate how that knowledge will be applied to ultimately ameliorate suffering associated with substance use and psychiatric disorders. Much of the post-genome-wide association study discussion has focused on the potential of genetic information to elucidate the underlying biology and use this information for the development of more effective pharmaceutical treatments. In this review we focus on additional areas of research that should follow gene identification. By taking genetic findings into longitudinal, developmental studies, we can map the pathways by which genetic risk manifests across development, elucidating the early behavioral manifestations of risk, and studying how various environments and interventions moderate that risk across developmental stages. The delineation of risk across development will advance our understanding of mechanism, sex differences and risk and resilience processes in different racial/ethnic groups. Here, we review how the extant twin study literature can be used to guide these efforts. Together, these new lines of research will enable us to develop more informed, tailored prevention and intervention efforts.
Collapse
Affiliation(s)
- Danielle M. Dick
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | | | - Peter B. Barr
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Seung Bin Cho
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Megan E. Cooke
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Sally I-Chun Kuo
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Tenesha J. Lewis
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Zoe Neale
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Jessica E. Salvatore
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Jeanne Savage
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| | - Jinni Su
- Department of Psychology, Developmental Program, Virginia Commonwealth University
| |
Collapse
|
10
|
Polimanti R, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Ancestry-specific and sex-specific risk alleles identified in a genome-wide gene-by-alcohol dependence interaction study of risky sexual behaviors. Am J Med Genet B Neuropsychiatr Genet 2017; 174:846-853. [PMID: 28990359 PMCID: PMC5861711 DOI: 10.1002/ajmg.b.32604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 01/26/2023]
Abstract
We previously mapped loci for the genome-wide association studies (GWAS) and genome-wide gene-by-alcohol dependence interaction (GW-GxAD) analyses of risky sexual behaviors (RSB). This study extends those findings by analyzing the ancestry- and sex-specific AD-stratified effects on RSB. We examined the concordance of findings for the AD-stratified GWAS and the GW-GxAD analysis of RSB, with concordance defined as genome-wide significance in one analysis and at least nominal significance in the second analysis. A total of 2,173 African-American (AA) and 1,751 European-American (EA) subjects were investigated. Information regarding RSB (lifetime experiences of unprotected sex and multiple sexual partners) and DSM-IV diagnosis of lifetime AD were derived from the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). In our ancestry- and sex-specific analyses, we identified four independent genome-wide significant (GWS) loci (p < 5*10-8 ) and one suggestive locus (p < 6*10-8 ). In men, we observed a GWS signal in FAM162A (rs2002594, p = 4.96*10-8 ). In women, there was a suggestive locus in PLGRKT (rs3824435, p = 5.52*10-8 ). In AAs, there was a GWS signal in GRK5 (rs1316543, p = 1.25*10-9 ). In AA men, we observed an intergenic GWS signal (rs12898370, p = 4.49*10-8 ) near LINGO1. In EA men, there was a GWS signal in CCSER1 (rs62313897; p = 7.93*10-10 ). The loci identified in this GWAS implicate molecular mechanisms related to psychiatric illness and personality features, suggesting that the interplay between AD and RSB is mediated by alleles associated with behavioral traits.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|