1
|
Dhakal S, Wolfe BW, Pantha S, Vijayakumar S. Sex Differences during Influenza A Virus Infection and Vaccination and Comparison of Cytokine and Antibody Responses between Plasma and Serum Samples. Pathogens 2024; 13:468. [PMID: 38921766 PMCID: PMC11206404 DOI: 10.3390/pathogens13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we evaluated sex differences during infection with mouse-adapted H1N1 and H3N2 influenza A viruses (IAVs) in the C57BL/6J mouse model and compared the cytokine and antibody responses between plasma and serum samples during IAV infection and vaccination. Lethal doses for both H1N1 and H3N2 IAVs were lower for adult females and they suffered with greater morbidity than adult males when infected with sublethal doses. In influenza virus-infected mice, cytokine responses differed between plasma and serum samples. After inactivated influenza virus vaccination and drift variant challenge, adult female mice had greater antibody responses and were better protected. In influenza-vaccinated and challenged mice, binding antibodies were unaffected between paired plasma or serum samples. However, functional antibody assays, including hemagglutination inhibition, microneutralization, and antibody-dependent cellular cytotoxicity assays, were affected by the use of plasma and serum sample types. Our results indicate that careful consideration is required while selecting plasma versus serum samples to measure cytokine and antibody responses during IAV infection and vaccination.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; (B.W.W.); (S.P.); (S.V.)
| | | | | | | |
Collapse
|
2
|
Wang B, Zheng H, Dong X, Zhang W, Wu J, Chen H, Zhang J, Zhou A. The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection. Int J Microbiol 2024; 2024:6631882. [PMID: 38229736 PMCID: PMC10791480 DOI: 10.1155/2024/6631882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and "cytokine storm," leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment.
Collapse
Affiliation(s)
- Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Hao Zheng
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Xia Dong
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hongbo Chen
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Jing Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| |
Collapse
|
3
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
4
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Miller RAJ, Williams AP, Kovats S. Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection. Front Pharmacol 2023; 14:1150282. [PMID: 37063266 PMCID: PMC10097973 DOI: 10.3389/fphar.2023.1150282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.
Collapse
Affiliation(s)
- Reegan A. J. Miller
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Abigael P. Williams
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Heires AJ, Samuelson D, Villageliu D, Nordgren TM, Romberger DJ. Agricultural dust derived bacterial extracellular vesicle mediated inflammation is attenuated by DHA. Sci Rep 2023; 13:2767. [PMID: 36797300 PMCID: PMC9933036 DOI: 10.1038/s41598-023-29781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) and their pro-resolving metabolites are protective against atherosclerotic disease, and ameliorate systemic inflammatory conditions including lupus erythematosus, psoriasis, and bronchial asthma. Organic bioaerosol inhalation is a common and injurious hazard associated with agricultural occupations such as work in swine concentrated animal feeding operations (CAFOs) and is known to increase the risk for developing respiratory conditions such as asthma and COPD. Nearly all cells secrete membrane-bound vesicles (extracellular vesicles, EVs) that have the capacity to transmit protein, nucleic acid, and lipid signaling mediators between cells. Using a polymer-based isolation technique (ExoQuick, PEG) followed by ultracentrifugation, EVs were isolated from CAFO dust extracts, and were quantified and partially characterized. Here, we investigated the role of the n-3 PUFA docosahexaenoic acid (DHA) as a component of n-6 to n-3 PUFA mixtures used to recapitulate physiologically relevant dietary ratios in the resolution of inflammatory injury caused by exposure to EVs carried by agricultural organic dust in vitro. Primary human bronchial epithelial cells, fibroblasts and monocyte-derived macrophages were exposed to EVs isolated from swine CAFO dust. Cells were treated with mixtures of n-6 and n-3 PUFA during recovery from the EV-induced injury. CAFO dust extract (DE) was found to contain EVs that contributed significantly to the overall consequences of exposure to complete DE. DHA-rich PUFA ratios inhibited DE-derived EV-induced proinflammatory cytokine release dose-dependently. DHA-rich PUFA ratios also reversed the damaging effects of EVs on recellularization of lung matrix scaffolds, accelerated wound healing, and stimulated the release of pro-resolution mediators. These results underscore the importance of n-3 PUFA as anti-inflammatory compounds during recovery from EV-laden environmental dust exposure in the context of cellular responses in vitro, warranting future translational studies.
Collapse
Affiliation(s)
- Art J Heires
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Derrick Samuelson
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Villageliu
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tara M Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Debra J Romberger
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Creisher PS, Seddu K, Mueller AL, Klein SL. Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination. Curr Top Microbiol Immunol 2023; 441:111-137. [PMID: 37695427 DOI: 10.1007/978-3-031-35139-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Kumba Seddu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Alice L Mueller
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States.
| |
Collapse
|
8
|
Creisher PS, Campbell AD, Perry JL, Roznik K, Burd I, Klein SL. Influenza subtype-specific maternal antibodies protect offspring against infection but inhibit vaccine-induced immunity and protection in mice. Vaccine 2022; 40:6818-6829. [PMID: 36253217 PMCID: PMC10024894 DOI: 10.1016/j.vaccine.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Following influenza A virus (IAV) infection or vaccination during pregnancy, maternal antibodies are transferred to offspring in utero and during lactation. The age and sex of offspring may differentially impact the transfer and effects of maternal immunity on offspring. To evaluate the effects of maternal IAV infection on immunity in offspring, we intranasally inoculated pregnant mice with sublethal doses of mouse-adapted (ma) H1N1, maH3N2, or media (mock) at embryonic day 10. In offspring of IAV-infected dams, maternal subtype-specific antibodies peaked at postnatal day (PND) 23, remained detectable through PND 50, and were undetectable by PND 105 in both sexes. When offspring were challenged with homologous IAV at PND 23, both male and female offspring had greater clearance of pulmonary virus and less morbidity and mortality than offspring from mock-inoculated dams. Inactivated influenza vaccination (IIV) against homologous IAV at PND 23 caused lower vaccine-induced antibody responses and protection following live virus challenge in offspring from IAV than mock-infected dams, with this effect being more pronounced among female than male offspring. At PND 105, there was no impact of maternal infection status, but vaccination induced greater antibody responses and protection against challenge in female than male offspring of both IAV-infected and mock-inoculated dams. To determine if maternal antibody or infection interfered with vaccine-induced immunity and protection in early life, offspring were vaccinated and challenged against a heterosubtypic IAV (i.e., different IAV group than dam) at PND 23 or 105. Heterosubtypic IAV maternal immunity did not affect antibody responses after IIV or protection after live IAV challenge of vaccinated offspring at either age. Subtype-specific maternal IAV antibodies, therefore, provide protection independent of offspring sex but interfere with vaccine-induced immunity and protection in offspring with more pronounced effects among females than males.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ariana D Campbell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jamie L Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katerina Roznik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Sex Differences in the Relation between Comorbidities and Prognosis in Hospitalized Patients with COVID-19. Interdiscip Perspect Infect Dis 2022; 2022:8267056. [PMID: 36033355 PMCID: PMC9410950 DOI: 10.1155/2022/8267056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose. There is a lack of information of the difference in sex-aggregated prevalence of comorbid noncommunicable disease (NCD) in patients hospitalized with COVID-19 in Iran. This study aimed to evaluate sex differences in the relation between medical comorbidities and subsequent death in patients hospitalized with COVID-19. Methods. All subsequently hospitalized patients with a diagnosis of moderate to severe COVID-19 since February 19th to June 14th, 2020, in Isfahan, Iran, were recruited in the ongoing I-CORE Registry. Real-time reverse-transcription polymerase chain reaction (RT-PCR) testing was done upon admission. Data on preexisting comorbid NCDs including hypertension, coronary heart disease (CHD), diabetes mellitus (DM), cancers, chronic renal disease (CRD), and chronic respiratory disease were collected through self-reported questionnaires. Results. Overall, 12,620 individuals were enrolled in this registry of which 4,356 were positive for the COVID-19 RT-PCR test. In the whole population, in women, DM, hypertension, and CHD, and in men, DM, CHD, and hypertension were, respectively, the most frequent comorbidities. The frequency of at least one NCD did not differ between men and women, but a greater proportion of women had two or more NCDs. Increasing the number of comorbidities was associated with higher death frequency and mortality risk in the unadjusted model but remained no longer significant after adjustment for age. There was no statistically significant difference in this regard between men and women. Conclusion. Overall, we found that DM, hypertension, and CHD were the most frequent comorbidities. Although comorbidities were more frequent among women, mortality risk did not significantly differ between men and women.
Collapse
|
10
|
Abstract
Reporting the distribution and inclusion of both males and females in immunology and infectious diseases research is improving, but rigorous analyses of differential outcomes between males and females, including mechanistic inquiries into the causes of sex differences, still lags behind.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sabal Chaulagain
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
11
|
Retout S, De Buck S, Jolivet S, Duval V, Cosson V. A Pharmacokinetics-Time to Alleviation of Symptoms Model to Support Extrapolation of Baloxavir Marboxil Clinical Efficacy in Different Ethnic Groups with Influenza A or B. Clin Pharmacol Ther 2022; 112:372-381. [PMID: 35585696 DOI: 10.1002/cpt.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
Baloxavir marboxil, the prodrug of baloxavir acid, is an anti-influenza antiviral. Here, a pharmacokinetics-time to alleviation of symptoms (PK-TTAS) model was developed and used to (I) characterize the PK-TTAS relationship, (II) quantify the impact of covariates, and (III) predict TTAS in different ethnic groups. Data from 1781 otherwise-healthy (OwH) or high-risk (HR) patients included in phase II (JapicCTI-153090) and III studies (NCT02954354 and NCT02949011) were used; patients received either placebo or oral baloxavir marboxil. The natural distribution of TTAS in placebo-treated patients was modeled, then TTAS data from the baloxavir marboxil arms were added to model the impact of baloxavir acid concentration on TTAS. PK parameters estimated by a population PK model and informed by phase I data (NCT03959332 and KCT0003535) were included to simulate TTAS in Chinese and South Korean patients. Composite symptom score at baseline (TSS0), ethnicity, sex, and patient type (OwH or HR) significantly impacted the natural TTAS distribution. TTAS reduced with increasing baloxavir acid concentrations. Compared with placebo, high and low baloxavir acid exposures (AUC0-inf 5.13-16.65 and 0.72-5.13 μg.hr/mL, respectively) significantly reduced TTAS; no covariates affected the drug effect on TTAS. Simulated TTAS was similar between OwH or HR Chinese, South Korean, and other Asian patients, with median reductions from placebo between 18.3-18.8 hours and 21.2-22.0 hours in OwH and HR patients, respectively, assuming TSS0 > 10. Ethnicity (Asian vs. non-Asian) did not significantly impact the drug effect on TTAS; predicted TTAS was similar across different Asian populations. This suggests Chinese and South Korean patients may benefit from similar efficacy as other Asian patients.
Collapse
Affiliation(s)
- Sylvie Retout
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Stefan De Buck
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Sébastien Jolivet
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Valérie Cosson
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
12
|
D’Agnillo F, Walters KA, Xiao Y, Sheng ZM, Scherler K, Park J, Gygli S, Rosas LA, Sadtler K, Kalish H, Blatti CA, Zhu R, Gatzke L, Bushell C, Memoli MJ, O’Day SJ, Fischer TD, Hammond TC, Lee RC, Cash JC, Powers ME, O’Keefe GE, Butnor KJ, Rapkiewicz AV, Travis WD, Layne SP, Kash JC, Taubenberger JK. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med 2021; 13:eabj7790. [PMID: 34648357 PMCID: PMC11000440 DOI: 10.1126/scitranslmed.abj7790] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jaekeun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Gygli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kalish
- Bioengineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Charles A. Blatti
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruoqing Zhu
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lisa Gatzke
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen Bushell
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Raymond C. Lee
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - J. Christian Cash
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Matthew E. Powers
- Division of Cardiothoracic Surgery, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Grant E. O’Keefe
- Department of Surgery, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Kelly J. Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Amy V. Rapkiewicz
- Department of Pathology, New York University Long Island School of Medicine, Mineola, NY, USA
| | - William D. Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Critical Care Workers Have Lower Seroprevalence of SARS-CoV-2 IgG Compared with Non-patient Facing Staff in First Wave of COVID19. J Crit Care Med (Targu Mures) 2021; 7:199-210. [PMID: 34722923 PMCID: PMC8519390 DOI: 10.2478/jccm-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction In early 2020, at first surge of the coronavirus disease 2019 (COVID-19) pandemic, many health care workers (HCW) were re-deployed to critical care environments to support intensive care teams looking after patients with severe COVID-19. There was considerable anxiety of increased risk of COVID-19 for these staff. To determine whether critical care HCW were at increased risk of hospital acquired infection, we explored the relationship between workplace, patient facing role and evidence of immune exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a quaternary hospital providing a regional critical care response. Routine viral surveillance was not available at this time. Methods We screened over 500 HCW (25% of the total workforce) for history of clinical symptoms of possible COVID19, assigning a symptom severity score, and quantified SARS-CoV-2 serum antibodies as evidence of immune exposure to the virus. Results Whilst 45% of the cohort reported symptoms that they consider may have represented COVID-19, 14% had evidence of immune exposure. Staffs in patient facing critical care roles were least likely to be seropositive (9%) and staff working in non-patient facing roles most likely to be seropositive (22%). Anosmia and fever were the most discriminating symptoms for seropositive status. Older males presented with more severe symptoms. Of the 12 staff screened positive by nasal swab (10 symptomatic), 3 showed no evidence of seroconversion in convalescence. Conclusions Patient facing staff working in critical care do not appear to be at increased risk of hospital acquired infection however the risk of nosocomial infection from non-patient facing staff may be more significant than previous recognised. Most symptoms ascribed to possible COVID-19 were found to have no evidence of immune exposure however seroprevalence may underrepresent infection frequency. Older male staff were at the greatest risk of more severe symptoms.
Collapse
|
14
|
Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Ni Lochlainn M, Capdevila Pujol J, Macfarlane H, Kenny LC, Buchan I, Wolf J, Rymer J, Ourselin S, Steves CJ, Spector TD, Newson LR, Bell JT. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS One 2021; 16:e0257051. [PMID: 34506535 PMCID: PMC8432854 DOI: 10.1371/journal.pone.0257051] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022] Open
Abstract
It has been widely observed that adult men of all ages are at higher risk of developing serious complications from COVID-19 when compared with women. This study aimed to investigate the association of COVID-19 positivity and severity with estrogen exposure in women, in a population based matched cohort study of female users of the COVID Symptom Study application in the UK. Analyses included 152,637 women for menopausal status, 295,689 women for exogenous estrogen intake in the form of the combined oral contraceptive pill (COCP), and 151,193 menopausal women for hormone replacement therapy (HRT). Data were collected using the COVID Symptom Study in May-June 2020. Analyses investigated associations between predicted or tested COVID-19 status and menopausal status, COCP use, and HRT use, adjusting for age, smoking and BMI, with follow-up age sensitivity analysis, and validation in a subset of participants from the TwinsUK cohort. Menopausal women had higher rates of predicted COVID-19 (P = 0.003). COCP-users had lower rates of predicted COVID-19 (P = 8.03E-05), with reduction in hospital attendance (P = 0.023). Menopausal women using HRT or hormonal therapies did not exhibit consistent associations, including increased rates of predicted COVID-19 (P = 2.22E-05) for HRT users alone. The findings support a protective effect of estrogen exposure on COVID-19, based on positive association between predicted COVID-19 with menopausal status, and negative association with COCP use. HRT use was positively associated with COVID-19, but the results should be considered with caution due to lack of data on HRT type, route of administration, duration of treatment, and potential unaccounted for confounders and comorbidities.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Karla A. Lee
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Benjamin Murray
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Juan Castillo-Fernandez
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | | | | | - Louise C. Kenny
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool, United Kingdom
| | - Iain Buchan
- Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | | | - Janice Rymer
- Department of Women’s Health, King’s College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Louise R. Newson
- Newson Health Menopause & Wellbeing Centre, Stratford-Upon-Avon, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Giurgea LT, Cervantes-Medina A, Walters KA, Scherler K, Han A, Czajkowski LM, Baus HA, Hunsberger S, Klein SL, Kash JC, Taubenberger JK, Memoli MJ. Sex Differences in Influenza: The Challenge Study Experience. J Infect Dis 2021; 225:715-722. [PMID: 34423369 DOI: 10.1093/infdis/jiab422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing. METHODS Data from 164 healthy volunteers who underwent Influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes. Baseline characteristics, including hormone levels, hemagglutination-inhibition (HAI) titers, neuraminidase-inhibition titers (NAI), and outcomes after challenge were compared. Linear and logistic regression models were built to determine significant predictor variables with respect to outcomes of interest. RESULTS Hemagglutination-inhibition (HAI) titers were similar between the sexes, but neuraminidase-inhibition titers (NAI) were higher in males than females at 4-weeks and 8-weeks post-challenge. Females were more likely to have symptoms (mean 0.96 vs 0.80, p=.003) and to have a higher number of symptoms (median 3 vs 4, p=.011) than males. Linear and logistic regression models showed that pre-challenge NAI titers, but not HAI titers or sex hormone levels, were predictive of all shedding and symptom outcomes of interest. CONCLUSIONS Females in our cohorts were more likely to be symptomatic and to have a higher number of symptoms than males. NAI titers predicted all outcomes of interest and may explain differential outcomes between the sexes.
Collapse
Affiliation(s)
- Luca T Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | | | | | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Lindsay M Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Holly Ann Baus
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894 USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| |
Collapse
|
16
|
Alamri FF, Khan A, Alshehri AO, Assiri A, Khan SI, Aldwihi LA, Alkathiri MA, Almohammed OA, Salamatullah AM, Alali AS, Badoghaish W, Alshamrani AA, AlRuthia Y, Alqahtani F. Association of Healthy Diet with Recovery Time from COVID-19: Results from a Nationwide Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168248. [PMID: 34443997 PMCID: PMC8394364 DOI: 10.3390/ijerph18168248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
The world is still in need of an effective therapy to treat coronavirus disease-19 (COVID-19). This cross-sectional study was conducted on COVID-19 survivors in Saudi Arabia to investigate the influence of a healthy diet on the recovery time from COVID-19. A questionnaire was developed to assess participants' dietary habits, based on the 2015 Dutch food-based dietary guidelines. A total of 738 COVID-19 survivors participated in the study, of whom 237 (32.1%) were hospitalized for COVID-19 treatment while 501 (76.9%) were not hospitalized, and 320 (43.4%) were females and 418 (56.6%) were males. Overall, no significant difference was noted in healthy diet score between males and females; however, this score was significantly lower for Saudis compared to non-Saudis. Among the non-hospitalized patients, eating a more healthy diet was associated with a shorter duration of recovery (p < 0.05) and was significantly affected by gender (15.8 ± 9.3 male vs. 12.1 ± 8.9 female; p < 0.001) and marital status (12.1 ± 8.4 singles vs. 13.7 ± 9.3 married vs. 16.1 ± 11.8 divorced; p < 0.05). In contrast, no significant correlation was found with age or BMI. In this study, a more healthy diet was associated with a shorter duration of recovery from COVID-19. However, further studies are needed to thoroughly investigate the relationship between diet and recovery time from COVID-19.
Collapse
Affiliation(s)
- Faisal F. Alamri
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia; (F.F.A.); (A.K.)
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia; (F.F.A.); (A.K.)
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Abdulaziz O. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Assiri
- General Directorate of Clinical Excellence, Ministry of Health, Riyadh 11176, Saudi Arabia;
| | - Shahd I. Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.K.); (L.A.A.); (M.A.A.); (Y.A.)
- Pharmaceutical Care Department, AlNoor Specialist Hospital, Ministry of Health, Makkah 24241, Saudi Arabia
| | - Leen A. Aldwihi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.K.); (L.A.A.); (M.A.A.); (Y.A.)
| | - Munirah A. Alkathiri
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.K.); (L.A.A.); (M.A.A.); (Y.A.)
| | - Omar A. Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.K.); (L.A.A.); (M.A.A.); (Y.A.)
- Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (O.A.A.); (F.A.); Tel.: +966-555-10-4065 (O.A.A.); +966-114-69-7749 (F.A.)
| | - Ahmad M. Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Waleed Badoghaish
- Department of Internal Medicine, College of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Abdulmajeed A. Alshamrani
- Clinical Nutrition Department, Eradah Hospital and Mental Health, Ministry of Health, Alkharj 16259, Saudi Arabia;
| | - Yazed AlRuthia
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.K.); (L.A.A.); (M.A.A.); (Y.A.)
- Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (O.A.A.); (F.A.); Tel.: +966-555-10-4065 (O.A.A.); +966-114-69-7749 (F.A.)
| |
Collapse
|
17
|
Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021; 19:425-441. [PMID: 33824495 PMCID: PMC8023351 DOI: 10.1038/s41579-021-00542-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 01/31/2023]
Abstract
Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host's response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Abstract
Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205;
| | - Sabra L Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205; .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Maryland, USA 21205
| |
Collapse
|
19
|
Sex and Gender Differences in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:227-258. [PMID: 34019273 DOI: 10.1007/978-3-030-68748-9_14] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex differences in the anatomy and physiology of the respiratory system have been widely reported. These intrinsic sex differences have also been shown to modulate the pathophysiology, incidence, morbidity, and mortality of several lung diseases across the life span. In this chapter, we describe the epidemiology of sex differences in respiratory diseases including neonatal lung disease (respiratory distress syndrome, bronchopulmonary dysplasia) and pediatric and adult disease (including asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, lymphangioleiomyomatosis, obstructive sleep apnea, pulmonary arterial hypertension, and respiratory viral infections such as respiratory syncytial virus, influenza, and SARS-CoV-2). We also discuss the current state of research on the mechanisms underlying the observed sex differences in lung disease susceptibility and severity and the importance of considering both sex and gender variables in research studies' design and analysis.
Collapse
|
20
|
Dufailu OA, Afriyie-Asante A, Gyan B, Kwabena DA, Yeboah H, Ntiakoh F, Asare-Werehene M. COVID-19 in Africa: an ovarian victory? J Ovarian Res 2021; 14:70. [PMID: 34020688 PMCID: PMC8138090 DOI: 10.1186/s13048-021-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mainly attacks the respiratory system and is characterized by pneumonia, cytokine storm, coagulation disorders and severe immune downregulation. Although public health experts predicted worst outcomes in Africa, the incidence, hospitalization and mortality rates have been lower in Africa compared to other continents. Interestingly, lower incidence and mortality rates have been observed in women from Africa compared to their cohorts from other continents. Also, in the US non-Hispanic Black females have lower COVID-19 and death rates compared to their white counterparts. It's unclear why this significant difference exists; however, the ovarian function, genetics and immunological statuses could play a major role. Women of African descent have elevated levels of estrogen compared with Caucasians hence we anticipate that estrogen might offer some protection against the SARS-CoV-2 infections. The racial differences in lifestyle, age and inaccessibility to contraceptive usage might also play a role. Here, we provide insight on how the high levels of estrogen in African women might contribute to the lower cases and fatalities in Africa. Specifically, estrogen might offer protection against COVID-19 by suppressing hyper-production of cytokines, promoting anti-inflammatory cytokines, stimulating antibody production and suppressing endoplasmic reticulum (ER) stress. This will as well provide useful information on how future pandemics could be managed using Africa as a case study.
Collapse
Affiliation(s)
- Osman A Dufailu
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Box 1882, Nyankpala Campus, Tamale, Ghana
| | - Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Bernard Gyan
- Department of Medical Diagnostics, College of Health and Well-Being, Kintampo, Ghana
| | - David Adu Kwabena
- Department of Medical Diagnostics, College of Health and Well-Being, Kintampo, Ghana
- School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Helena Yeboah
- School of International Development and Global Studies, University of Ottawa, Ottawa, Ontario, Canada
| | - Frank Ntiakoh
- Department of Medical Laboratory, Effia-Nkwanta Regional Hospital, Sekondi, Western Region, Ghana
| | - Meshach Asare-Werehene
- Departments of Cellular and Molecular Medicine and Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, K1H 8L6, Canada.
| |
Collapse
|
21
|
da Cruz DG, de Magalhães RF, Padilha GA, da Silva MC, Braga CL, Silva AR, Gonçalves de Albuquerque CF, Capelozzi VL, Samary CS, Pelosi P, Rocco PRM, Silva PL. Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia. PLoS One 2021; 16:e0246891. [PMID: 33577592 PMCID: PMC7880436 DOI: 10.1371/journal.pone.0246891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND During pneumonia, normal alveolar areas coexist adjacently with consolidated areas, and high inspiratory efforts may predispose to lung damage. To date, no study has evaluated different degrees of effort during Biphasic positive airway pressure (BIVENT) on lung and diaphragm damage in experimental pneumonia, though largely used in clinical setting. We aimed to evaluate lung damage, genes associated with ventilator-induced lung injury (VILI) and diaphragmatic injury, and blood bacteria in pressure-support ventilation (PSV), BIVENT with low and high inspiratory efforts in experimental pneumonia. MATERIAL AND METHODS Twenty-eight male Wistar rats (mean ± SD weight, 333±78g) were submitted Pseudomonas aeruginosa-induced pneumonia. After 24-h, animals were ventilated for 1h in: 1) PSV; 2) BIVENT with low (BIVENTLow-Effort); and 3) BIVENT with high inspiratory effort (BIVENTHigh-Effort). BIVENT was set at Phigh to achieve VT = 6 ml/kg and Plow at 5 cmH2O (n = 7/group). High- and low-effort conditions were obtained through anaesthetic infusion modulation based on neuromuscular drive (P0.1). Lung mechanics, histological damage score, blood bacteria, and expression of genes related to VILI in lung tissue, and inflammation in diaphragm tissue. RESULTS Transpulmonary peak pressure and histological damage score were higher in BIVENTHigh-Effort compared to BIVENTLow-Effort and PSV [16.1 ± 1.9cmH2O vs 12.8 ± 1.5cmH2O and 12.5 ± 1.6cmH2O, p = 0.015, and p = 0.010; median (interquartile range) 11 (9-13) vs 7 (6-9) and 7 (6-9), p = 0.021, and p = 0.029, respectively]. BIVENTHigh-Effort increased interleukin-6 expression compared to BIVENTLow-Effort (p = 0.035) as well as expressions of cytokine-induced neutrophil chemoattractant-1, amphiregulin, and type III procollagen compared to PSV (p = 0.001, p = 0.001, p = 0.004, respectively). Tumour necrosis factor-α expression in diaphragm tissue and blood bacteria were higher in BIVENTHigh-Effort than BIVENTLow-Effort (p = 0.002, p = 0.009, respectively). CONCLUSION BIVENT requires careful control of inspiratory effort to avoid lung and diaphragm damage, as well as blood bacteria. P0.1 might be considered a helpful parameter to optimize inspiratory effort.
Collapse
Affiliation(s)
- Daniela G. da Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel F. de Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele A. Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C. da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassia L. Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana R. Silva
- Laboratory of Immunopharmacology, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Vera L. Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cynthia S. Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Forsyth KS, Anguera MC. Time to get ill: the intersection of viral infections, sex, and the X chromosome. CURRENT OPINION IN PHYSIOLOGY 2021; 19:62-72. [PMID: 33073073 PMCID: PMC7553007 DOI: 10.1016/j.cophys.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Females have more robust immune responses than males, and viral infections are more severe for males. Hormones and genetic sex, namely the X chromosome, influence sex differences with immune responses. Here, we review recent findings underlying sexual dimorphism of disease susceptibility for two prevalent viral infections, influenza and SARS-CoV-2, which exhibit male-biased disease severity. Viral infections are proposed to be an initiating event for autoimmunity, which exhibits a female bias. We also review recent work elucidating the epigenetic and genetic contribution of X-Chromosome Inactivation maintenance, and X-linked gene expression, for the autoimmune disorder Systemic Lupus Erythematosus, and highlight the complex considerations required for identifying underlying hormonal and genetic contributions responsible for sex differences in immune responses.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Dept. of Biomedical Sciences, University of Pennsylvania, Philadelphia PA 19104, United States
| | - Montserrat C Anguera
- Dept. of Biomedical Sciences, University of Pennsylvania, Philadelphia PA 19104, United States
| |
Collapse
|
23
|
Honce R, Wohlgemuth N, Meliopoulos VA, Short KR, Schultz-Cherry S. Influenza in High-Risk Hosts-Lessons Learned from Animal Models. Cold Spring Harb Perspect Med 2020; 10:a038604. [PMID: 31871227 PMCID: PMC7706577 DOI: 10.1101/cshperspect.a038604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Factoring significantly into the global burden of influenza disease are high-risk populations that suffer the bulk of infections. Classically, the very young, very old, and pregnant women have been identified as high-risk populations; however, recent research has uncovered several other conditions that contribute to severe infection. By using varied animal models, researchers have identified molecular mechanisms underpinning the increased likelihood for infection due to obesity and malnourishment, as well as insight into the role sex hormones play in antiviral immunity in males, in females, and across the life span. Additionally, novel comorbidity models have helped elucidate the role of chronic infectious and genetic diseases in influenza virus pathogenesis. Animal models play a vital role in understanding the contribution of host factors to influenza severity and immunity. An in-depth understanding of these host factors represents an important step in reducing the burden of influenza among the growing number of people living with one or more chronic medical conditions.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
24
|
Słowińska M, Paukszto Ł, Paweł Jastrzębski J, Bukowska J, Kozłowski K, Jankowski J, Ciereszko A. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult Sci 2020; 99:6094-6118. [PMID: 33142529 PMCID: PMC7647744 DOI: 10.1016/j.psj.2020.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
The application of transcriptomics to the study of the reproductive tract in male turkeys can significantly increase our current knowledge regarding the specifics of bird reproduction. To characterize the complex transcriptomic changes that occur in the testis, epididymis, and ductus deferens, deep sequencing of male turkey RNA samples (n = 6) was performed, using Illumina RNA-Seq. The obtained sequence reads were mapped to the turkey genome, and relative expression values were calculated to analyze differentially expressed genes (DEGs). Statistical analysis revealed 1,682; 2,150; and 340 DEGs in testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparisons, respectively. The expression of selected genes was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. Bioinformatics analysis revealed several potential candidate genes involved in spermatogenesis, spermiogenesis and flagellum formation in the testis, and in post-testicular sperm maturation in the epididymis and ductus deferens. In the testis, genes were linked with the mitotic proliferation of spermatogonia and the meiotic division of spermatocytes. Histone ubiquitination and protamine phosphorylation were shown to be regulatory mechanisms for nuclear condensation during spermiogenesis. The characterization of testicular transcripts allowed a better understanding of acrosome formation and development and flagellum formation, including axoneme structures and functions. Spermatozoa motility during post-testicular maturation was linked to the development of flagellar actin filaments and biochemical processes, including Ca2+ influx and protein phosphorylation/dephosphorylation. Spermatozoa quality appeared to be controlled by apoptosis and antioxidant systems in the epididymis and ductus deferens. Finally, genes associated with reproductive system development and morphogenesis were identified. To the best of our knowledge, this is the first genome-wide functional investigation of genes associated with tissue-specific processes in turkey reproductive tract. A catalog of genes worthy of further studies to understand the avian reproductive physiology and regulation was provided.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Bukowska
- In Vitro and Cell Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| |
Collapse
|
25
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Halwani R, Hamid Q, Hamoudi R. Blood and Salivary Amphiregulin Levels as Biomarkers for Asthma. Front Med (Lausanne) 2020; 7:561866. [PMID: 33195308 PMCID: PMC7659399 DOI: 10.3389/fmed.2020.561866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Amphiregulin (AREG) expression in asthmatic airways and sputum was shown to increase and correlate with asthma. However, no studies were carried out to evaluate the AREG level in blood and saliva of asthmatic patients. Objective: To measure circulating AREG mRNA and protein concentrations in blood, saliva, and bronchial biopsies samples from asthmatic patients. Methods: Plasma and Saliva AREG protein concentrations were measured using ELISA while PBMCs, and Saliva mRNA expression was measured by RT qPCR in non-severe, and severe asthmatic patients compared to healthy controls. Primary asthmatic bronchial epithelial cells and fibroblasts were assessed for AREG mRNA expression and released soluble AREG in their conditioned media. Tissue expression of AREG was evaluated using immunohistochemistry of bronchial biopsies from asthmatic patients and healthy controls. Publicly available transcriptomic databases were explored for the global transcriptomic profile of bronchial epithelium, and PBMCs were explored for AREG expression in asthmatic vs. healthy controls. Results: Asthmatic patients had higher AREG protein levels in blood and saliva compared to control subjects. Higher mRNA expression in saliva and primary bronchial epithelial cells plus higher AREG immunoreactivity in bronchial biopsies were also observed. Both blood and saliva AREG levels showed positive correlations with allergic rhinitis status, atopy status, eczema status, plasma periostin, neutrophilia, Montelukast sodium use, ACT score, FEV1, and FEV1/FVC. In silico analysis showed that severe asthmatic bronchial epithelium with high AREG gene expression is associated with higher neutrophils infiltration. Conclusion: AREG levels measured in a minimally invasive blood sample and a non-invasive saliva sample are higher in non-allergic severe asthma. CLINICAL IMPLICATIONS This is the first report to show the higher level of AREG levels in blood and saliva of non-allergic severe asthma.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| |
Collapse
|
26
|
Bunders MJ, Altfeld M. Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity 2020; 53:487-495. [PMID: 32853545 PMCID: PMC7430299 DOI: 10.1016/j.immuni.2020.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Men present more frequently with severe manifestations of coronavirus disease 2019 (COVID-19) and are at higher risk for death. The underlying mechanisms for these differences between female and male individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are insufficiently understood. However, studies from other viral infections have shown that females can mount stronger immune responses against viruses than males. Emerging knowledge on the basic biological pathways that underlie differences in immune responses between women and men needs to be incorporated into research efforts on SARS-CoV-2 pathogenesis and pathology to identify targets for therapeutic interventions aimed at enhancing antiviral immune function and lung airway resilience while reducing pathogenic inflammation in COVID-19.
Collapse
Affiliation(s)
- Madeleine J Bunders
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Institute for Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
27
|
Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020; 396:565-582. [PMID: 32828189 PMCID: PMC7440877 DOI: 10.1016/s0140-6736(20)31561-0] [Citation(s) in RCA: 1004] [Impact Index Per Article: 251.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/09/2023]
Abstract
Clinicians can encounter sex and gender disparities in diagnostic and therapeutic responses. These disparities are noted in epidemiology, pathophysiology, clinical manifestations, disease progression, and response to treatment. This Review discusses the fundamental influences of sex and gender as modifiers of the major causes of death and morbidity. We articulate how the genetic, epigenetic, and hormonal influences of biological sex influence physiology and disease, and how the social constructs of gender affect the behaviour of the community, clinicians, and patients in the health-care system and interact with pathobiology. We aim to guide clinicians and researchers to consider sex and gender in their approach to diagnosis, prevention, and treatment of diseases as a necessary and fundamental step towards precision medicine, which will benefit men's and women's health.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Diabetes Discovery & Sex-Based Medicine Laboratory, Section of Endocrinology, John W Deming Department of Medicine, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, LA, USA.
| | - Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Roberta D Brinton
- Department of Pharmacology and Department of Neurology, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics and Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geert J De Vries
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sabra L Klein
- W Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amedeo Lonardo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - Pauline M Maki
- Department of Psychiatry, Department of Psychology, and Department of Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Cardiology, University Hospital Zürich, University of Zürich, Switzerland
| | - Judith G Regensteiner
- Center for Women's Health Research, Divisions of General Internal Medicine and Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Rubin
- Department of Medicine, Department of Paediatrics, and Department of Neuroscience, Washington University School of Medicine St Louis, MO, USA
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center Durham, NC, USA; Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathog 2020; 16:e1008506. [PMID: 32645119 PMCID: PMC7373319 DOI: 10.1371/journal.ppat.1008506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/21/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.
Collapse
|
29
|
Abstract
It has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection. Infection with influenza viruses is associated with a wide spectrum of disease, from mild symptoms to severe complications including respiratory failure, and the severity of influenza disease is driven by a complex interplay of viral and host factors. This chapter will discuss mechanisms of infection severity using concepts of disease resistance and tolerance as a framework for understanding the balance between viral clearance and immunopathology. We review mechanistic studies in animal models of infection and correlational studies in humans that have begun to define these factors and discuss promising host therapeutic targets to improve outcomes from severe influenza disease.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
30
|
Abstract
The current novel coronavirus disease 2019 (COVID-19) pandemic is revealing profound differences between men and women in disease outcomes worldwide. In the United States, there has been inconsistent reporting and analyses of male-female differences in COVID-19 cases, hospitalizations, and deaths. We seek to raise awareness about the male-biased severe outcomes from COVID-19, highlighting the mechanistic differences including in the expression and activity of angiotensin-converting enzyme 2 (ACE2) as well as in antiviral immunity. We also highlight how sex differences in comorbidities, which can be associated with both age and race, impact male-biased outcomes from COVID-19.
Collapse
Affiliation(s)
- Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sharvari Deshpande
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kathryn Sandberg
- Departments of Medicine and Nephrology & Hypertension, Georgetown University, Washington, DC, United States of America
| | - Franck Mauvais-Jarvis
- Diabetes Discovery & Sex-Based Medicine Laboratory, Section of Endocrinology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
31
|
Hoffmann JP, Friedman JK, Wang Y, McLachlan JB, Sammarco MC, Morici LA, Roy CJ. In situ Treatment With Novel Microbiocide Inhibits Methicillin Resistant Staphylococcus aureus in a Murine Wound Infection Model. Front Microbiol 2020; 10:3106. [PMID: 32038549 PMCID: PMC6990143 DOI: 10.3389/fmicb.2019.03106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023] Open
Abstract
Increased prevalence of antibiotic resistance in skin and soft tissue infections is a concerning public health challenge currently facing medical science. A combinatory, broad spectrum biocidal antiseptic has been developed (“ASP”) as a topically applied solution to potential resistant and polymicrobial infected wounds that may be encountered in this context. The ASP-105 designate was evaluated in vitro by determining the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), against different strains of methicillin-resistant Staphylococcus aureus (MRSA), resulting estimates of which approximated the positive control (bacitracin). To evaluate in vivo microbicide efficacy, we utilized a murine full thickness wound model to study bacterial infection and wound healing kinetics. Mice were experimentally wounded dorsally and infected with bioluminescent MRSA. The infected wound was splinted, dressed and treated topically with either ASP-105, vehicle (-control), or bacitracin. Bacterial burden and wound healing was monitored using an in vivo imaging system and evaluation of biofilm formation using scanning electron microscopy of wound dressing. Treatment with ASP-105 significantly reduced bacterial burdens in the first 3 days of infection and inhibited MRSA biofilm formation on the surgical dressing. Notably, treatment with ASP-105 resulted in a sterilizing effect of any detectable MRSA in nearly all (80%; 4/5) of treatment group. All mice receiving vehicle control developed highly MRSA-luminescent and purulent wound beds as a result of experimental infection. The ASP-105 therapy facilitated natural healing in the absence of MRSA infection. Results of this study suggests that that the novel “ASP” combinatory topical antiseptic can be used directly in wounds as a potent, broad-spectrum microbicide against drug resistant S. aureus without injury to the wound bed and impediment of natural restorative processes associated with wound healing. Further studies are warranted to test the effectiveness of this biocidal formulation against other recalcitrant bacterial and fungal pathogens in the context of serious wound infections, and to assess utility of use in both clinical and self-treat scenarios.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jessica K Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yihui Wang
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mimi C Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
32
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
33
|
Bongen E, Lucian H, Khatri A, Fragiadakis GK, Bjornson ZB, Nolan GP, Utz PJ, Khatri P. Sex Differences in the Blood Transcriptome Identify Robust Changes in Immune Cell Proportions with Aging and Influenza Infection. Cell Rep 2019; 29:1961-1973.e4. [PMID: 31722210 PMCID: PMC6856718 DOI: 10.1016/j.celrep.2019.10.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 02/09/2023] Open
Abstract
Sex differences in autoimmunity and infection suggest that a better understanding of molecular sex differences will improve the diagnosis and treatment of immune-related disease. We identified 144 differentially expressed genes, referred to as immune sex expression signature (iSEXS), between human males and females using an integrated multi-cohort analysis of blood transcriptome profiles from six discovery cohorts from five continents with 458 healthy individuals. We validated iSEXS in 11 additional cohorts of 524 peripheral blood samples. When we separated iSEXS into genes located on sex chromosomes (XY-iSEXS) or autosomes (autosomal-iSEXS), both modules distinguished males and females. iSEXS reflects sex differences in immune cell proportions, with female-associated genes showing higher expression by CD4+ T cells and male-associated genes showing higher expression by myeloid cells. Autosomal-iSEXS detected an increase in monocytes with age in females, reflected sex-differential immune cell dynamics during influenza infection, and predicted antibody response in males, but not females.
Collapse
Affiliation(s)
- Erika Bongen
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Lucian
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriela K Fragiadakis
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zachary B Bjornson
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Vom Steeg LG, Attreed SE, Zirkin B, Klein SL. Testosterone treatment of aged male mice improves some but not all aspects of age-associated increases in influenza severity. Cell Immunol 2019; 345:103988. [PMID: 31540670 PMCID: PMC6876866 DOI: 10.1016/j.cellimm.2019.103988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
The severity of influenza increases with age, with worse disease in aged males than females. Testosterone concentrations decline with age in males, which may impact influenza pathogenesis. Aged male mice were treated with testosterone or placebo and outcomes during influenza A virus (IAV) infection were compared with adult male mice. Aged males experienced greater morbidity and mortality than adult males, which was partially improved by testosterone treatment of aged males. Aged males cleared IAV from lungs slower than adult males, regardless of testosterone treatment. As compared with adult males, aged males experienced pulmonary, but not systemic, cytokine dysregulation, and delayed influx and contraction of IAV-specific CD8+ T cells in the lungs. Testosterone treatment in aged males partially restored pulmonary cytokine responses to levels consistent with adult males but did not alter the age-associated changes in IAV-specific CD8+ T cells. Testosterone only modestly improves outcomes of influenza in aged males.
Collapse
Affiliation(s)
- Landon G Vom Steeg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
35
|
Morgan R, Klein SL. The intersection of sex and gender in the treatment of influenza. Curr Opin Virol 2019; 35:35-41. [PMID: 30901632 DOI: 10.1016/j.coviro.2019.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Males/men and females/women differ in the outcome of influenza A virus (IAV) infections, vaccination, and antiviral treatments. Both sex (i.e. biological factors) and gender (i.e. sociocultural factors) can impact exposure and severity of IAV infections as well as responses and outcomes of treatments for IAV. Greater consideration of the combined effects of sex and gender in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
36
|
Vom Steeg LG, Klein SL. Sex and sex steroids impact influenza pathogenesis across the life course. Semin Immunopathol 2019; 41:189-194. [PMID: 30298431 PMCID: PMC6370518 DOI: 10.1007/s00281-018-0718-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During a typical seasonal influenza epidemic, young children (< 10 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with either pandemic or outbreak strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza, although it is not the sole factor explaining the female-preponderance of severe disease. Small animal models of influenza virus infection illustrate that inflammatory immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There also is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection to alter outcomes. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Landon G Vom Steeg
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|