1
|
Hofer M, Duque-Correa MA, Lutolf MP. Patterned gastrointestinal monolayers with bilateral access as observable models of parasite gut infection. Nat Biomed Eng 2024:10.1038/s41551-024-01313-4. [PMID: 39633029 DOI: 10.1038/s41551-024-01313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Organoids for modelling the physiology and pathology of gastrointestinal tissues are constrained by a poorly accessible lumen. Here we report the development and applicability of bilaterally accessible organoid-derived patterned epithelial monolayers that allow the independent manipulation of their apical and basal sides. We constructed gastric, small-intestinal, caecal and colonic epithelial models that faithfully reproduced their respective tissue geometries and that exhibited stem cell regionalization and transcriptional resemblance to in vivo epithelia. The models' enhanced observability allowed single-cell tracking and studies of the motility of cells in immersion culture and at the air-liquid interface. Models mimicking infection of the caecal epithelium by the parasite Trichuris muris allowed us to live image syncytial tunnel formation. The enhanced observability of bilaterally accessible organoid-derived gastrointestinal tissue will facilitate the study of the dynamics of epithelial cells and their interactions with pathogens.
Collapse
Affiliation(s)
- Moritz Hofer
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria A Duque-Correa
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Dupuy J, Cogo E, Fouché E, Guéraud F, Pierre F, Plaisancié P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS One 2024; 19:e0302932. [PMID: 38669265 PMCID: PMC11051638 DOI: 10.1371/journal.pone.0302932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 μM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.
Collapse
Affiliation(s)
- Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emma Cogo
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
5
|
Wang Y, Tan R, Chen YG. Organoid Culture of Different Intestinal Segments from Human and Mouse. Methods Mol Biol 2024. [PMID: 38647862 DOI: 10.1007/7651_2024_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The intestine comprises distinct segments, each characterized by unique cell populations and functions. Intestinal organoids faithfully replicate the cellular composition and functions of the intestine. Over the past decade, the organoid model has garnered considerable attention for its application in investigation of organ development, renewal and functional performance. While the organoid culture systems for mouse small intestine and human large intestine have widely adopted, a comparison summary for different segments of the human or mouse intestine is lacking. In this study, we present a systematically detailed culture methodology for intestinal organoids, encompassing both the small intestine and the large intestine from humans or mice. This method provides a robust in vitro tool for intestinal research, and expands the possible clinical application of organoids.
Collapse
Affiliation(s)
- Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Ronghui Tan
- Guangzhou National Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, China.
- The State Key Laboratory of Membrane Biology Tsinghua-Peking Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, China.
- Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Qiu D, Xu S, Ji K, Tang C. Myeloid Cell-Derived IL-1 Signaling Damps Neuregulin-1 from Fibroblasts to Suppress Colitis-Induced Early Repair of the Intestinal Epithelium. Int J Mol Sci 2024; 25:4469. [PMID: 38674054 PMCID: PMC11050633 DOI: 10.3390/ijms25084469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Neuregulin-1 (Nrg1, gene symbol: Nrg1), a ligand of the ErbB receptor family, promotes intestinal epithelial cell proliferation and repair. However, the dynamics and accurate derivation of Nrg1 expression during colitis remain unclear. By analyzing the public single-cell RNA-sequencing datasets and employing a dextran sulfate sodium (DSS)-induced colitis model, we investigated the cell source of Nrg1 expression and its potential regulator in the process of epithelial healing. Nrg1 was majorly expressed in stem-like fibroblasts arising early in mouse colon after DSS administration, and Nrg1-Erbb3 signaling was identified as a potential mediator of interaction between stem-like fibroblasts and colonic epithelial cells. During the ongoing colitis phase, a significant infiltration of macrophages and neutrophils secreting IL-1β emerged, accompanied by the rise in stem-like fibroblasts that co-expressed Nrg1 and IL-1 receptor 1. By stimulating intestinal or lung fibroblasts with IL-1β in the context of inflammation, we observed a downregulation of Nrg1 expression. Patients with inflammatory bowel disease also exhibited an increase in NRG1+IL1R1+ fibroblasts and an interaction of NRG1-ERBB between IL1R1+ fibroblasts and colonic epithelial cells. This study reveals a novel potential mechanism for mucosal healing after inflammation-induced epithelial injury, in which inflammatory myeloid cell-derived IL-1β suppresses the early regeneration of intestinal tissue by interfering with the secretion of reparative neuregulin-1 by stem-like fibroblasts.
Collapse
Affiliation(s)
- Ding Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou 510080, China;
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Shaoting Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Kaile Ji
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Ce Tang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou 510080, China;
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Kumar N, Prakash PG, Wentland C, Kurian SM, Jethva G, Brinkmann V, Mollenkopf HJ, Krammer T, Toussaint C, Saliba AE, Biebl M, Jürgensen C, Wiedenmann B, Meyer TF, Gurumurthy RK, Chumduri C. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis. Nat Commun 2024; 15:3064. [PMID: 38594232 PMCID: PMC11004180 DOI: 10.1038/s41467-024-47173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-β, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-β signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | - Gaurav Jethva
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Matthias Biebl
- Surgical Clinic Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Department of Microbiology, University of Würzburg, Würzburg, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
8
|
Liu J, Liu K, Wang Y, Shi Z, Xu R, Zhang Y, Li J, Liu C, Xue B. Death receptor 5 is required for intestinal stem cell activity during intestinal epithelial renewal at homoeostasis. Cell Death Dis 2024; 15:27. [PMID: 38199990 PMCID: PMC10782029 DOI: 10.1038/s41419-023-06409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Intestinal epithelial renewal, which depends on the proliferation and differentiation of intestinal stem cells (ISCs), is essential for epithelial homoeostasis. Understanding the mechanism controlling ISC activity is important. We found that death receptor 5 (DR5) gene deletion (DR5-/-) mice had impaired epithelial absorption and barrier function, resulting in delayed weight gain, which might be related to the general reduction of differentiated epithelial cells. In DR5-/- mice, the expression of ISC marker genes, the number of Olfm4+ ISCs, and the number of Ki67+ and BrdU+ cells in crypt were reduced. Furthermore, DR5 deletion inhibited the expression of lineage differentiation genes driving ISC differentiation into enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Therefore, DR5 gene loss may inhibit the intestinal epithelial renewal by dampening ISC activity. The ability of crypts from DR5-/- mice to form organoids decreased, and selective DR5 activation by Bioymifi promoted organoid growth and the expression of ISC and intestinal epithelial cell marker genes. Silencing of endogenous DR5 ligand TRAIL in organoids down-regulated the expression of ISC and intestinal epithelial cell marker genes. So, DR5 expressed in intestinal crypts was involved in the regulation of ISC activity. DR5 deletion in vivo or activation in organoids inhibited or enhanced the activity of Wnt, Notch, and BMP signalling through regulating the production of Paneth cell-derived ISC niche factors. DR5 gene deletion caused apoptosis and DNA damage in transit amplifying cells by inhibiting ERK1/2 activity in intestinal crypts. Inhibition of ERK1/2 with PD0325901 dampened the ISC activity and epithelial regeneration. In organoids, when Bioymifi's effect in activating ERK1/2 activity was completely blocked by PD0325901, its role in stimulating ISC activity and promoting epithelial regeneration was also eliminated. In summary, DR5 in intestinal crypts is essential for ISC activity during epithelial renewal under homoeostasis.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaixuan Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziru Shi
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yundi Zhang
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Wang X, Ding C, Li HB. The crosstalk between enteric nervous system and immune system in intestinal development, homeostasis and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:41-50. [PMID: 37672184 DOI: 10.1007/s11427-023-2376-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 09/07/2023]
Abstract
The gut is the largest digestive and absorptive organ, which is essential for induction of mucosal and systemic immune responses, and maintenance of metabolic-immune homeostasis. The intestinal components contain the epithelium, stromal cells, immune cells, and enteric nervous system (ENS), as well as the outers, such as gut microbiota, metabolites, and nutrients. The dyshomeostasis of intestinal microenvironment induces abnormal intestinal development and functions, even colon diseases including dysplasia, inflammation and tumor. Several recent studies have identified that ENS plays a crucial role in maintaining the immune homeostasis of gastrointestinal (GI) microenvironment. The crosstalk between ENS and immune cells, mainly macrophages, T cells, and innate lymphoid cells (ILCs), has been found to exert important regulatory roles in intestinal tissue programming, homeostasis, function, and inflammation. In this review, we mainly summarize the critical roles of the interactions between ENS and immune cells in intestinal homeostasis during intestinal development and diseases progression, to provide theoretical bases and ideas for the exploration of immunotherapy for gastrointestinal diseases with the ENS as potential novel targets.
Collapse
Affiliation(s)
- Xindi Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
11
|
Wang Y, Lou R, Zhang Z, Xiao C, Yu S, Wei S, Liu Y, Fu W, Li B, Chen YG. Stromal BMP signaling regulates mucin production in the large intestine via interleukin-1/17. SCIENCE ADVANCES 2023; 9:eadi1827. [PMID: 37889976 PMCID: PMC10610902 DOI: 10.1126/sciadv.adi1827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Bone morphogenic protein (BMP) signaling is critical for intestinal development, homeostasis, and function performance. Although the function of BMP signaling in the intestinal epithelium is well appreciated, the direct effect of BMP on intestinal stromal cells is poorly understood. Here, we show that disruption of BMP signaling by genetic ablation of Alk3 or Smad4 expands the stromal cell pool, the mucosa tumefaction, and colonic polyposis in the large intestine. Interleukin (IL) secretion by stromal cells is notably increased, including IL-1, IL-11, and IL-17. Specifically, IL-1 and IL-17a hyperactivate the mucin production by goblet cells through nuclear factor κB signaling, and abnormal mucin accumulation results in the morphological changes, epithelial barrier destruction, and polyposis development. Together, our results provide an insight into the role of BMP signaling in intestinal stromal cells to regulate epithelium function. This study further highlights the role of mucin-producing goblet cells in intestinal homeostasis and colitis development.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Ruoyu Lou
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chuyu Xiao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Siting Wei
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Ortiz-Carpena JF, Inclan-Rico JM, Pastore CF, Hung LY, Wilkerson WB, Weiner MB, Lin C, Gentile ME, Cohen NA, Saboor IA, Vaughan AE, Rossi HL, Herbert DR. [WITHDRAWN] Neuron-dependent tuft cell expansion initiates sinonasal allergic Type 2 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547596. [PMID: 37461610 PMCID: PMC10349937 DOI: 10.1101/2023.07.04.547596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
13
|
Xiang J, Guo J, Zhang S, Wu H, Chen YG, Wang J, Li B, Liu H. A stromal lineage maintains crypt structure and villus homeostasis in the intestinal stem cell niche. BMC Biol 2023; 21:169. [PMID: 37553612 PMCID: PMC10408166 DOI: 10.1186/s12915-023-01667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The nutrient-absorbing villi of small intestines are renewed and repaired by intestinal stem cells (ISCs), which reside in a well-organized crypt structure. Genetic studies have shown that Wnt molecules secreted by telocytes, Gli1+ stromal cells, and epithelial cells are required for ISC proliferation and villus homeostasis. Intestinal stromal cells are heterogeneous and single-cell profiling has divided them into telocytes/subepithelial myofibroblasts, myocytes, pericytes, trophocytes, and Pdgfralow stromal cells. Yet, the niche function of these stromal populations remains incompletely understood. RESULTS We show here that a Twist2 stromal lineage, which constitutes the Pdgfralow stromal cell and trophocyte subpopulations, maintains the crypt structure to provide an inflammation-restricting niche for regenerating ISCs. Ablating Twist2 lineage cells or deletion of one Wntless allele in these cells disturbs the crypt structure and impairs villus homeostasis. Upon radiation, Wntless haplo-deficiency caused decreased production of anti-microbial peptides and increased inflammation, leading to defective ISC proliferation and crypt regeneration, which were partially rescued by eradication of commensal bacteria. In addition, we show that Wnts secreted by Acta2+ subpopulations also play a role in crypt regeneration but not homeostasis. CONCLUSIONS These findings suggest that ISCs may require different niches for villus homeostasis and regeneration and that the Twist2 lineage cells may help to maintain a microbe-restricted environment to allow ISC-mediated crypt regeneration.
Collapse
Affiliation(s)
- Jinnan Xiang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Jigang Guo
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Shaoyang Zhang
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Hongguang Wu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junping Wang
- Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Baojie Li
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| | - Huijuan Liu
- The Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200024, China.
| |
Collapse
|
14
|
Liu L, Wang Y, Yu S, Liu H, Li Y, Hua S, Chen Y. Transforming Growth Factor Beta Promotes Inflammation and Tumorigenesis in Smad4-Deficient Intestinal Epithelium in a YAP-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300708. [PMID: 37261975 PMCID: PMC10427365 DOI: 10.1002/advs.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, plays critical roles in immune responses. However, the precise role of TGF-β in colitis and colitis-associated cancer remains poorly defined. Here, it is demonstrated that TGF-β promotes the colonic inflammation and related tumorigenesis in the absence of Smad family member 4 (Smad4). Smad4 loss in intestinal epithelium aggravates colitis and colitis-associated neoplasia induced by dextran sulfate sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS), leading to over-activated immune responses and increased TGF-β1 levels. In Smad4-deficient organoids, TGF-β1 stimulates spheroid formation and impairs intestinal stem cell proliferation and lineage specification. YAP, whose expression is directly upregulated by TGF-β1 after Smad4 deletion, mediates the effect of TGF-β1 by interacting with Smad2/3. Attenuation of YAP/TAZ prevents TGF-β1-induced spheroid formation in Smad4-/- organoids and alleviates colitis and colitis-associated cancer in Smad4-deficient mice. Collectively, these results highlight an integral role of the TGF-β/Smad4 axis in restraining intestinal inflammation and tumorigenesis and suggest TGF-β or YAP signaling as therapeutic targets for these gastrointestinal diseases intervention.
Collapse
Affiliation(s)
- Liansheng Liu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Yalong Wang
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhou510530China
- Guangzhou LaboratoryGuangzhou510700China
| | - Huidong Liu
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Yehua Li
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Shan Hua
- Guangzhou LaboratoryGuangzhou510700China
- Center for Life SciencesSchool of Life SciencesYunnan UniversityKunming650500China
| | - Ye‐Guang Chen
- Guangzhou LaboratoryGuangzhou510700China
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| |
Collapse
|
15
|
Tomkinson S, Triscott C, Schenk E, Foey A. The Potential of Probiotics as Ingestible Adjuvants and Immune Modulators for Antiviral Immunity and Management of SARS-CoV-2 Infection and COVID-19. Pathogens 2023; 12:928. [PMID: 37513775 PMCID: PMC10384479 DOI: 10.3390/pathogens12070928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotic bacteria are able to modulate general antiviral responsiveness, including barrier functionality and innate and adaptive immune responses. The COVID-19 pandemic, resulting from SARS-CoV-2 infection, has created a need to control and treat this viral infection and its ensuing immunopathology with a variety of approaches; one such approach may involve the administration of probiotic bacteria. As with most viral infections, its pathological responses are not fully driven by the virus, but are significantly contributed to by the host's immune response to viral infection. The potential adoption of probiotics in the treatment of COVID-19 will have to appreciate the fine line between inducing antiviral immunity without over-provoking immune inflammatory responses resulting in host-derived immunopathological tissue damage. Additionally, the effect exerted on the immune system by SARS-CoV-2 evasion strategies will also have to be considered when developing a robust response to this virus. This review will introduce the immunopathology of COVID-19 and the immunomodulatory effects of probiotic strains, and through their effects on a range of respiratory pathogens (IAV, SARS-CoV, RSV), as well as SARS-CoV-2, will culminate in a focus on how these bacteria can potentially manipulate both infectivity and immune responsiveness via barrier functionality and both innate and adaptive immunity. In conclusion, the harnessing of induction and augmentation of antiviral immunity via probiotics may not only act as an ingestible adjuvant, boosting immune responsiveness to SARS-CoV-2 infection at the level of barrier integrity and innate and adaptive immunity, but also act prophylactically to prevent infection and enhance protection afforded by current vaccine regimens.
Collapse
Affiliation(s)
- Sophie Tomkinson
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Cloe Triscott
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Emily Schenk
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Peninsula Medical School, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Foey
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Gong J, Nirala NK, Chen J, Wang F, Gu P, Wen Q, Ip YT, Xiang Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. SCIENCE ADVANCES 2023; 9:eadc9660. [PMID: 37224252 PMCID: PMC10208578 DOI: 10.1126/sciadv.adc9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Liu Y, Huang M, Wang X, Liu Z, Li S, Chen YG. Segregation of the stemness program from the proliferation program in intestinal stem cells. Stem Cell Reports 2023; 18:1196-1210. [PMID: 37028424 DOI: 10.1016/j.stemcr.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Stem cells can undergo continuous self-renewal and meanwhile retain the stemness capability to differentiate to mature functional cells. However, it is unclear whether the proliferation property can be segregated from the stemness in stem cells. The intestinal epithelium undergoes fast renewal, and the Lgr5+ intestinal stem cells (ISCs) are essential to maintain homeostasis. Here, we report that methyltransferase-like 3 (Mettl3), a critical enzyme for N6-methyladenosine (m6A) methylation, is required for ISCs maintenance as its deletion results in fast loss of stemness markers but has no effect on cell proliferation. We further identify four m6A-modified transcriptional factors, whose ectopic expression can restore stemness gene expression in Mettl3-/- organoids, while their silencing leads to stemness loss. In addition, transcriptomic profiling analysis discerns 23 genes that can be segregated from the genes responsible for cell proliferation. Together, these data reveal that m6A modification sustains ISC stemness, which can be uncoupled from cell proliferation.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zinan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Li
- Guangzhou Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Guangzhou Laboratory, Guangzhou, China; School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Ageeli RY, Sharma S, Puppa M, Bloomer RJ, Buddington RK, van der Merwe M. Fasting Protocols Do Not Improve Intestinal Architecture and Immune Parameters in C57BL/6 Male Mice Fed a High Fat Diet. MEDICINES (BASEL, SWITZERLAND) 2023; 10:18. [PMID: 36827218 PMCID: PMC9961949 DOI: 10.3390/medicines10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The intestinal ecosystem, including epithelium, immune cells, and microbiota, are influenced by diet and timing of food consumption. The purpose of this study was to evaluate various dietary protocols after ad libitum high fat diet (HFD) consumption on intestinal morphology and mucosal immunity. METHODS C57BL/6 male mice were fed a 45% high fat diet (HFD) for 6 weeks and then randomized to the following protocols; (1) chow, (2) a purified high fiber diet known as the Daniel Fast (DF), HFD consumed (3) ad libitum or in a restricted manner; (4) caloric-restricted, (5) time-restricted (six hours of fasting in each 24 h), or (6) alternate-day fasting (24 h fasting every other day). Intestinal morphology and gut-associated immune parameters were investigated after 2 months on respective protocols. RESULTS Consuming a HFD resulted in shortening of the intestine and reduction in villi and crypt size. Fasting, while consuming the HFD, did not restore these parameters to the extent seen with the chow and DF diet. Goblet cell number and regulatory T cells had improved recovery with high fiber diets, not seen with the HFD irrespective of fasting. CONCLUSION Nutritional content is a critical determinant of intestinal parameters associated with gut health.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie van der Merwe
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
19
|
Kim YK, Cho B, Cook DP, Trcka D, Wrana JL, Ramalho-Santos M. Absolute scaling of single-cell transcriptomes identifies pervasive hypertranscription in adult stem and progenitor cells. Cell Rep 2023; 42:111978. [PMID: 36640358 DOI: 10.1016/j.celrep.2022.111978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Hypertranscription supports biosynthetically demanding cellular states through global transcriptome upregulation. Despite its potential widespread relevance, documented examples of hypertranscription remain few and limited to early development. Here, we demonstrate that absolute scaling of single-cell RNA-sequencing data enables the estimation of total transcript abundances per cell. We validate absolute scaling in known cases of developmental hypertranscription and apply it to adult cell types, revealing a remarkable dynamic range in transcriptional output. In adult organs, hypertranscription marks activated stem/progenitor cells with multilineage potential and is redeployed in conditions of tissue injury, where it precedes bursts of proliferation during regeneration. Our analyses identify a common set of molecular pathways associated with both adult and embryonic hypertranscription, including chromatin remodeling, DNA repair, ribosome biogenesis, and translation. These shared features across diverse cell contexts support hypertranscription as a general and dynamic cellular program that is pervasively employed during development, organ maintenance, and regeneration.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - David P Cook
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Dan Trcka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
20
|
Kotas ME, O'Leary CE, Locksley RM. Tuft Cells: Context- and Tissue-Specific Programming for a Conserved Cell Lineage. ANNUAL REVIEW OF PATHOLOGY 2023; 18:311-335. [PMID: 36351364 PMCID: PMC10443898 DOI: 10.1146/annurev-pathol-042320-112212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California, USA
- Current affiliation: Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Chemotherapy suppresses SHH gene expression via a specific enhancer. J Genet Genomics 2023; 50:27-37. [PMID: 35998878 DOI: 10.1016/j.jgg.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (SHH) signaling is a key regulator of embryonic development and tissue homeostasis that is involved in gastrointestinal (GI) cancer progression. Regulation of SHH gene expression is a paradigm of long-range enhancer function. Using the classical chemotherapy drug 5-fluorouracil (5FU) as an example, here we show that SHH gene expression is suppressed by chemotherapy. SHH is downstream of immediate early genes (IEGs), including Early growth response 1 (Egr1). A specific 139 kb upstream enhancer is responsible for its down-regulation. Knocking down EGR1 expression or blocking its binding to this enhancer renders SHH unresponsive to chemotherapy. We further demonstrate that down-regulation of SHH expression does not depend on 5FU's impact on nucleotide metabolism or DNA damage; rather, a sustained oxidative stress response mediates this rapid suppression. This enhancer is present in a wide range of tumors and normal tissues, thus providing a target for cancer chemotherapy and its adverse effects on normal tissues. We propose that SHH is a stress-responsive gene downstream of IEGs, and that traditional chemotherapy targets a specific enhancer to suppress its expression.
Collapse
|
22
|
Luo Z, Li Z, Liang Z, Wang L, He G, Wang D, Shen L, Wang Z, Ma X, Geng F, Wang H, Liu W, Liu H, Li B. Berberine increases stromal production of Wnt molecules and activates Lgr5 + stem cells to promote epithelial restitution in experimental colitis. BMC Biol 2022; 20:287. [PMID: 36528592 PMCID: PMC9759859 DOI: 10.1186/s12915-022-01492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by sustained inflammation and/or ulcers along the lower digestive tract, and have complications such as colorectal cancer and inflammation in other organs. The current treatments for IBDs, which affect 0.3% of the global population, mainly target immune cells and inflammatory cytokines with a success rate of less than 40%. RESULTS Here we show that berberine, a natural plant product, is more effective than the frontline drug sulfasalazine in treating DSS (dextran sulfate sodium)-induced colitis in mice, and that berberine not only suppresses macrophage and granulocyte activation but also promotes epithelial restitution by activating Lgr5+ intestinal stem cells (ISCs). Mechanistically, berberine increases the expression of Wnt genes in resident mesenchymal stromal cells, an ISC niche, and inhibiting Wnt secretion diminishes the therapeutic effects of berberine. We further show that berberine controls the expression of many circadian rhythm genes in stromal cells, which in turn regulate the expression of Wnt molecules. CONCLUSIONS Our findings suggest that berberine acts on the resident stromal cells and ISCs to promote epithelial repair in experimental colitis and that Wnt-β-Catenin signaling may be a potential target for colitis treatment.
Collapse
Affiliation(s)
- Zecheng Luo
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Li
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Liang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanlin He
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Ma
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Funeng Geng
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Haozhong Wang
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Wenping Liu
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Huijuan Liu
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Li H, Wang X, Wang Y, Zhang M, Hong F, Wang H, Cui A, Zhao J, Ji W, Chen YG. Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. CELL REGENERATION 2022; 11:19. [PMID: 35511361 PMCID: PMC9072607 DOI: 10.1186/s13619-022-00118-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
AbstractAnimal models are widely used for biomedical studies and drug evaluation. The small intestine plays key roles in nutrient absorption, hormone secretion, microbiota defense and drug absorption and metabolism. Although the intestinal structure of mammals is conserved, the differences on epithelial cell composition, functional assignments and drug absorption among mammals are largely unknown. Here, cross-species analysis of single-cell transcriptomic atlas of the ileum epithelium from mouse, rat, pig, macaque and human reveals the conserved and differential cell types and functions among species, identifies a new CA7+ cell type in pig, macaque and human ileum, uncovers the distinct expression pattern in enterocytes, enteroendocrine cells and Paneth cells, and defines the conserved and species-specific intestinal stem cell signature genes. The examination of drug absorption across species suggests that drug metabolism in mouse ileum is closer to human while drug transport in macaque ileum is more similar to human. Together, our data provide the comprehensive information about cell composition and functional assignments in five species, and offer the valuable guidance for animal model selection and drug testing.
Collapse
|
24
|
Zhao L, Liao H, Wang X, Chen YG. DDB1 maintains intestinal homeostasis by preventing cell cycle arrest. CELL REGENERATION 2022; 11:18. [PMID: 35641707 PMCID: PMC9156607 DOI: 10.1186/s13619-022-00119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
25
|
Choo J, Glisovic N, Matic Vignjevic D. Gut homeostasis at a glance. J Cell Sci 2022; 135:281168. [DOI: 10.1242/jcs.260248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT
The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.
Collapse
Affiliation(s)
- Jieun Choo
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | - Neda Glisovic
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | | |
Collapse
|
26
|
Wang Y, Song W, Yu S, Liu Y, Chen YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology. CELL REGENERATION 2022; 11:26. [PMID: 36045190 PMCID: PMC9433512 DOI: 10.1186/s13619-022-00127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
The intestinal epithelium is responsible for food digestion and nutrient absorption and plays a critical role in hormone secretion, microorganism defense, and immune response. These functions depend on the integral single-layered intestinal epithelium, which shows diversified cell constitution and rapid self-renewal and presents powerful regeneration plasticity after injury. Derailment of homeostasis of the intestine epithelium leads to the development of diseases, most commonly including enteritis and colorectal cancer. Therefore, it is important to understand the cellular characterization of the intestinal epithelium at the molecular level and the mechanisms underlying its homeostatic maintenance. Single-cell technologies allow us to gain molecular insights at the single-cell level. In this review, we summarize the single-cell RNA sequencing applications to understand intestinal cell characteristics, spatiotemporal evolution, and intestinal disease development.
Collapse
|
27
|
Study of the colonic epithelial-mesenchymal dialogue through establishment of two activated or not mesenchymal cell lines: Activated and resting ones differentially modulate colonocytes in co-culture. PLoS One 2022; 17:e0273858. [PMID: 36040985 PMCID: PMC9426876 DOI: 10.1371/journal.pone.0273858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.
Collapse
|
28
|
Zhao L, Song W, Chen YG. Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Rep 2022; 40:111053. [PMID: 35830795 DOI: 10.1016/j.celrep.2022.111053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
After gut tube patterning in early embryos, the cellular and molecular changes of developing stomach and intestine remain largely unknown. Here, combining single-cell RNA sequencing and spatial RNA sequencing, we construct a spatiotemporal transcriptomic landscape of the mouse stomach and intestine during embryonic days E9.5-E15.5. Several subpopulations are identified, including Lox+ stomach mesenchyme, Aldh1a3+ small-intestinal mesenchyme, and Adamdec1+ large-intestinal mesenchyme. The regionalization and heterogeneity of both the epithelium and the mesenchyme can be traced back to E9.5. The spatiotemporal distributions of cell clusters and the mesenchymal-epithelial interaction analysis indicate that a coordinated development of the epithelium and mesenchyme contribute to the stomach regionalization, intestine segmentation, and villus formation. Using the gut tube-derived organoids, we find that the cell fate of the foregut and hindgut can be switched by the regional niche factors, including fibroblast growth factors (FGFs) and retinoic acid (RA). This work lays a foundation for further dissection of the mechanisms governing this process.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanlu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
29
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|
30
|
Palikuqi B, Rispal J, Klein O. Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040865. [PMID: 34580119 PMCID: PMC9159262 DOI: 10.1101/cshperspect.a040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where Lgr5 + ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located. Under stress conditions, epithelial cells in the intestine are quite plastic, with dedifferentiation, the reversal of cell fate from a differentiated cell to a more stem-like cell, allowing for most mature epithelial cell types to acquire stem cell-like properties. The ISC niche, mainly made up of mesenchymal, immune, enteric neuronal, and endothelial cells, plays a central role in maintaining the physiological function of the intestine. Additionally, the immune system and the microbiome play an essential role in regulating intestinal renewal. The development of various mouse models, organoid co-cultures and single-cell technologies has led to advances in understanding signals emanating from the mesenchymal niche. Here, we review how intestinal regeneration is driven by stem cell self-renewal and differentiation, with an emphasis on the niche that fine tunes these processes in both homeostasis and injury conditions.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Jérémie Rispal
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Ophir Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences
- Program in Craniofacial Biology and Department of Orofacial Sciences
| |
Collapse
|
31
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
32
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
33
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
34
|
Identifying key regulators of the intestinal stem cell niche. Biochem Soc Trans 2021; 49:2163-2176. [PMID: 34665221 PMCID: PMC8589435 DOI: 10.1042/bst20210223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The intestinal tract is lined by a single layer of epithelium that is one of the fastest regenerating tissues in the body and which therefore requires a very active and exquisitely controlled stem cell population. Rapid renewal of the epithelium is necessary to provide a continuous physical barrier from the intestinal luminal microenvironment that contains abundant microorganisms, whilst also ensuring an efficient surface for the absorption of dietary components. Specialised epithelial cell populations are important for the maintenance of intestinal homeostasis and are derived from adult intestinal stem cells (ISCs). Actively cycling ISCs divide by a neutral drift mechanism yielding either ISCs or transit-amplifying epithelial cells, the latter of which differentiate to become either absorptive lineages or to produce secretory factors that contribute further to intestinal barrier maintenance or signal to other cellular compartments. The mechanisms controlling ISC abundance, longevity and activity are regulated by several different cell populations and signalling pathways in the intestinal lamina propria which together form the ISC niche. However, the complexity of the ISC niche and communication mechanisms between its different components are only now starting to be unravelled with the assistance of intestinal organoid/enteroid/colonoid and single-cell imaging and sequencing technologies. This review explores the interaction between well-established and emerging ISC niche components, their impact on the intestinal epithelium in health and in the context of intestinal injury and highlights future directions and implications for this rapidly developing field.
Collapse
|
35
|
Li H, Wang Y, Zhang M, Wang H, Cui A, Zhao J, Ji W, Chen YG. Establishment of porcine and monkey colonic organoids for drug toxicity study. CELL REGENERATION 2021; 10:32. [PMID: 34599392 PMCID: PMC8486901 DOI: 10.1186/s13619-021-00094-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
Pig and monkey are widely used models for exploration of human diseases and evaluation of drug efficiency and toxicity, but high cost limits their uses. Organoids have been shown to be promising models for drug test as they reasonably preserve tissue structure and functions. However, colonic organoids of pig and monkey are not yet established. Here, we report a culture medium to support the growth of porcine and monkey colonic organoids. Wnt signaling and PGE2 are important for long-term expansion of the organoids, and their withdrawal results in lineage differentiation to mature cells. Furthermore, we observe that porcine colonic organoids are closer to human colonic organoids in terms of drug toxicity response. Successful establishment of porcine and monkey colonic organoids would facilitate the mechanistic investigation of the homeostatic regulation of the intestine of these animals and is useful for drug development and toxicity studies.
Collapse
Affiliation(s)
- Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Along Cui
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianguo Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510700, China.
| |
Collapse
|
36
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
38
|
Guo X, Lv J, Xi R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 2021; 289:4773-4796. [PMID: 34115929 DOI: 10.1111/febs.16067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals. Additionally, studies of genetic model organisms-especially Drosophila melanogaster-have also provided insights about the molecular processes underlying EEC specification from ISCs and about the establishment of diverse EEC subtypes. In this review, we compare the regulation of EEC specification and function in mammals and Drosophila, with a focus on EEC subtype characterization, on how internal and external regulators mediate EEC subtype specification, and on how EEC-mediated intra- and interorgan communications affect gastrointestinal physiology and pathology.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, Beijing, China
| | - Jiaying Lv
- National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Zhu G, Xi R. MRISCs protect colonic stem cells from inflammatory damage. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:24. [PMID: 34080092 PMCID: PMC8172814 DOI: 10.1186/s13619-021-00086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 11/10/2022]
Abstract
Increasing evidence suggest functional roles of subepithelial mesenchymal niche cells in maintaining intestinal stem cells and in modulating the pathogenesis of various intestinal diseases in mammals. A recent study reported the discovery of a new population of stromal cells in mice termed MAP3K2-Regulated Intestinal Stromal Cells (MRISCs); these cells reside at the base of colonic crypt and function to protect colonic stem cells during colonic inflammation by expressing the Wnt agonist R-spondin1 (Rspo1).
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Stages of Gut Development as a Useful Tool to Prevent Gut Alterations in Piglets. Animals (Basel) 2021; 11:ani11051412. [PMID: 34069190 PMCID: PMC8155857 DOI: 10.3390/ani11051412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
During the prenatal, neonatal, and weaning periods, the porcine gastrointestinal tract undergoes several morpho-functional, changes together with substantial modification of the microbial ecosystem. Modifications of the overall structure of the small intestine also occur, as well as a rapid increase of the volume, mainly in the last period of gestation: intestinal villi, starting from jejunum, appears shortly before the sixth week of gestation, and towards the end of the third month, epithelial cells diversify into enterocytes, goblet cells, endocrine, and Paneth cells. Moreover, in the neonatal period, colostrum induces an increase in intestinal weight, absorptive area, and brush border enzyme activities: intestine doubles its weight and increases the length by 30% within three days of birth. During weaning, intestinal environment modifies drastically due to a replacement of highly digestible sow milk by solid feed: profound changes in histological parameters and enzymatic activity are associated with the weaning period, such as the atrophy of the villi and consequent restorative hypertrophy of the crypts. All these modifications are the result of a delicate and precise balance between the proliferation and the death of the cells that form the intestinal mucosa (i.e., mitosis and apoptosis) and the health conditions of the piglet. An in-depth knowledge of these phenomena and of how they can interfere with the correct intestinal function can represent a valid support to predict strategies to improve gut health in the long-term and to prevent weaning gut alterations; thus, reducing antimicrobial use.
Collapse
|
41
|
Tamura Y, Takata K, Eguchi A, Maeda M, Kataoka Y. Age-related changes in NG2-expressing telocytes of rat stomach. PLoS One 2021; 16:e0249729. [PMID: 33822814 PMCID: PMC8023479 DOI: 10.1371/journal.pone.0249729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
NG2 immunoreactive cells (NG2 cells) are found in the brain and peripheral tissues including the skin, intestinal tracts, and bladder. In a previous study, we observed the presence of NG2 cells in the stomach using bioluminescence imaging techniques in NG2-firefly luciferase (fLuc) transgenic (Tg) rats. Here, we aimed to identify and characterize NG2 cells in the adult rat stomach. Immunohistochemical studies showed that NG2 cells were mainly present in the lamina propria and most of the cells were gastric telocytes, co-expressing CD34, and platelet-derived growth factor receptor alpha (PDGFRα), with a small oval-shaped cell body and extremely long and thin cellular prolongations. In the rat stomach, NG2-expressing telocytes comprised two subpopulations: NG2+/CD34+/PDGFRα+ and NG2+/CD34+/PDGFRα-. Furthermore, we showed that the expression of NG2 gene in the aged rat stomach decreased relative to that of the young rat stomach and the decline of NG2 expression in aged rats was mainly observed in NG2+/CD34+/PDGFRα+ telocytes. These findings suggested age-related alterations in NG2+/CD34+/PDGFRα+ telocytes of rat stomach.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Kumi Takata
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Asami Eguchi
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Mitsuyo Maeda
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| |
Collapse
|