1
|
Ma J, To SKY, Fung KSW, Wang K, Zhang J, Ngan AHW, Yung S, Chan TM, Wong CCL, Ip PPC, Peng L, Guo HY, Chan CB, Wong AST. P-cadherin mechanoactivates tumor-mesothelium metabolic coupling to promote ovarian cancer metastasis. Cell Rep 2024; 44:115096. [PMID: 39700008 DOI: 10.1016/j.celrep.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/12/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer adhesion to the mesothelium is critical for peritoneal metastasis, but how metastatic cells adapt to the biomechanical microenvironment remains unclear. Our study demonstrates that highly metastatic (HM), but not non-metastatic, ovarian cancer cells selectively activate the peritoneal mesothelium. HM cells exert a stronger adhesive force on mesothelial cells via P-cadherin, an adhesion molecule abundant in late-stage tumors. Mechanical activation of P-cadherin enhances lipogenic gene expression and lipid content in HM cells through SREBP1. P-cadherin also induces glycolysis in the interacting mesothelium without affecting lipogenic activity, with the resulting lactate serving as a substrate for lipogenesis in HM cells. Nanodelivery of small interfering RNA (siRNA) targeting P-cadherin or MCT1/4 transporters significantly suppresses metastasis in mice. Moreover, increased fatty acid synthase levels in metastatic patient samples correlate with high P-cadherin expression, supporting enhanced de novo lipogenesis in the metastatic niche. This study reveals P-cadherin-mediated mechano-metabolic coupling as a promising target to restrain metastasis.
Collapse
Affiliation(s)
- Jing Ma
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China; Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Sally Kit Yan To
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China; Laboratory for Synthetic Chemistry and Chemical Biology Limited, 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| | - Katie Sze Wai Fung
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China; Laboratory for Synthetic Chemistry and Chemical Biology Limited, 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| | - Kun Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiangwen Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alfonso Hing Wan Ngan
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Susan Yung
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Queen Mary Hospital, Sassoon Road, Hong Kong, China
| | - Tak Mao Chan
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Queen Mary Hospital, Sassoon Road, Hong Kong, China
| | - Carmen Chak Lui Wong
- Department of Pathology, School of Clinical Medicine, University of Hong Kong, Queen Mary Hospital, Sassoon Road, Hong Kong, China
| | - Philip Pun Ching Ip
- Department of Pathology, School of Clinical Medicine, University of Hong Kong, Queen Mary Hospital, Sassoon Road, Hong Kong, China
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR, 13288 Marseille, France
| | - Hong-Yan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Chi Bun Chan
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
2
|
Cecchetti S, Federici C, Canese R, Iorio E, Huber V, Pisanu ME, Chirico M, Iessi E, Camerini S, Casella M, Matteucci A, Macchia D, Spada M, Lugini L. NK cells-derived extracellular vesicles potency in the B cell lymphoma biotherapy. Front Immunol 2024; 15:1503857. [PMID: 39712029 PMCID: PMC11659271 DOI: 10.3389/fimmu.2024.1503857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in in vitro and in vivo conditions. Methods We isolated extracellular vesicles from in vitro amplified healthy human NK cells and their treatment efficacy was monitored by cytometry analyses, in vivo MRI/MRS measurements, ex vivo MRS analyses and immunohistochemistry. Results We observed a remarkable NKEV cytotoxic effect, mainly by apoptosis, on B cell lymphoma in vitro when exosomes and microvesicles were administered simultaneously. In vivo results showed metabolic alterations in SCID mice xenografts after NKEV treatment, associated with a significant reduction of tumor growth (64%). In the in vivo 1H MR spectra we found a significant increase in the tumor lipid/lactate and in taurine signals, both considered as apotosis markers. Ex vivo lymphoma metabolomics revealed a significant increase in fatty acid (FA) pool and decrease in unsaturated and mono-unsaturated FA in treated groups, as compared to control one, thus suggesting an alteration of tumor homeostasis. Immunohistochemistry analyses confirmed the reduction of B-cell lymphoma proliferation rate, as well as the induction of apoptosis following the NKEV treatment. Conclusions This study underscore the importance of NKEV as a novel biological acellular tool for B-cell lymphoma treatment, probably having a greater effect on combined treatment regimens. These nanovesicles have an extraordinary potential in innovative cancer immunotherapy, representing a safe and efficient tool naturally circulating in healthy individuals and ready to maintain the immune homeostasis, and therefore a good organism healthy state.
Collapse
Affiliation(s)
- Serena Cecchetti
- Core Facilities, Confocal Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Federici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Canese
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Veronica Huber
- Unit of Immunotherapy of human tumors, Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Elena Pisanu
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, MRI and HR-NMR Units, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Camerini
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Marialuisa Casella
- Core Facilities, Mass Spectrometry Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Matteucci
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Centre for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Luana Lugini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Li J, Zhang Y, Fu T, Wang S, Cai H, Xu F, Xing G, Tong Y. Fatty acid traits mediate the effects of uric acid on cancers: a Mendelian randomization study. Front Genet 2024; 15:1449205. [PMID: 39687737 PMCID: PMC11646984 DOI: 10.3389/fgene.2024.1449205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Previous findings on the association between uric acid (UA) levels and cancer risk are conflicting. Moreover, the mechanisms underlying the interactions between UA levels, fatty acid traits, and cancer outcomes remain complex; it is still unclear whether elevated UA levels influence fatty acid traits and, thereby, contribute to an increased cancer risk. Therefore, we aimed to investigate the association between UA levels and cancer risk, with a specific focus on the potential mediating role of fatty acid traits. Methods We employed a Mendelian randomization (MR) analysis utilizing genetic data from large-scale genome-wide association studies to assess the causal relationships among UA levels, fatty acid traits, and cancer risk. The primary method used was the inverse variance-weighted approach alongside Bayesian-weighted Mendelian randomization. Other MR models were also applied for comparison. Sensitivity analyses, based on various statistical assumptions, were also performed to evaluate the robustness of the findings. A two-step MR analysis was conducted to explore the mediating effects of fatty acid traits on the relationship between UA levels and cancer risk. Results and Discussion Elevated UA levels were associated with an increased risk of in situ neoplasms, cervical cancer, and invasive mucinous ovarian cancer, while they were linked to a decreased risk of cancers of the eye and adnexa, small cell lung cancer, bronchus and lung cancer, respiratory system and intrathoracic organ cancers, as well as lung cancer. Mediation analysis revealed that fatty acid traits, particularly the docosahexaenoic acid/trans fatty acid ratio, mediated the relationship between UA levels and lung cancer risk. These findings underscore the potential of fatty acid traits to mediate the association between UA levels and cancer risk, offering new insights for targeted interventions and potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Jianing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Tong Fu
- Brandeis University, Waltham, MA, United States
| | - Songyan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongbo Cai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fenghua Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Ye J, Chen Y, Shao Z, Wu Y, Li Y, Fang S, Wu S. TRF-16 Inhibits Lung Cancer Progression by Hindering the N6-Methyladenosine Modification of CPT1A mRNA. J Cell Mol Med 2024; 28:e70291. [PMID: 39679845 DOI: 10.1111/jcmm.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs. Recent studies suggest that tRFs participate in some pathological processes. However, the biological activities and processes of tRFs in lung cancer cells remain mainly unclear. In the present investigation, we employed tRNA-derived small RNA (tsRNA) sequencing to predict differentially expressed tsRNAs in lung cancer cells, and nine tsRNAs with significant expression alterations were validated using qPCR. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16 on cell function. Western blotting evaluated the relationship between tRF-16 and the IGF2BP1 axis. Our findings demonstrated that tRF-16 expression was substantially downregulated in lung cancer cells. TRF-16 could inhibit lung cancer cells' ability to increase, migrate, invade and obtain radiation resistance. Furthermore, tRF-16 decreases the stability of CPT1A by impairing the binding of IGF2BP1 to CPT1A. As a result, the fatty acid metabolism in lung cancer cells was inhibited. Finally, tRF-16 also inhibits lung cancer cell proliferation in vivo. This study shows that tRF-16 plays a crucial regulatory role in the proliferation of lung cancer cells and may represent a novel avenue for their regulation.
Collapse
Affiliation(s)
- Jiankui Ye
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
- Health Science Center, Ningbo University, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Yili Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
- Health Science Center, Ningbo University, Zhejiang, China
| | - You Li
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| | - Shuai Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Zhejiang, China
| |
Collapse
|
5
|
Holbrook KL, Quaye GE, Noriega Landa E, Su X, Gao Q, Williams H, Young R, Badmos S, Habib A, Chacon AA, Lee WY. Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis. Metabolites 2024; 14:546. [PMID: 39452927 PMCID: PMC11509871 DOI: 10.3390/metabo14100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70-80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model. METHODS This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers. RESULTS The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity. CONCLUSIONS This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study's capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise.
Collapse
Affiliation(s)
- Kiana L. Holbrook
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| | - George E. Quaye
- Division of Health Services and Outcomes Research, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
| | - Elizabeth Noriega Landa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| | - Xiaogang Su
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Qin Gao
- Biologics Analytical Operations, Gilead Sciences Incorporated, Oceanside, CA 94404, USA;
| | - Heinric Williams
- Department Urology, Geisinger Clinic, Danville, PA 17822, USA; (H.W.); (R.Y.)
| | - Ryan Young
- Department Urology, Geisinger Clinic, Danville, PA 17822, USA; (H.W.); (R.Y.)
| | - Sabur Badmos
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| | - Ahsan Habib
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| | - Angelica A. Chacon
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA; (K.L.H.); (E.N.L.); (S.B.); (A.H.); (A.A.C.)
| |
Collapse
|
6
|
Sun Y, Wang Q, Zhang Z, Wang Q, Cen J, Zhu M, Pan J, Liu D, Shen H, Cai Y, Chen S. Distinct clinical profiles and patient outcomes in aCML and CNL. Ann Hematol 2024:10.1007/s00277-024-06032-z. [PMID: 39375227 DOI: 10.1007/s00277-024-06032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The classification of atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) as a single disease entity remains a topic of debate. To elucidate the characteristics of both entities, this retrospective cohort study was conducted, encompassing 36 cases of aCML and 18 cases of CNL. We discovered that aCML and CNL presented distinct blood counts, genetics, molecular profiles and outcomes. Specifically, hemoglobin levels (P < 0.001) and platelet counts (P < 0.001) were significantly lower in aCML cases than in CNL cases, with no significant difference in mean white blood cells (P = 0.637). The proportion of abnormal karyotypes was higher in aCML cases compared with CNL cases (P = 0.010). Notably, we found that aCML and CNL showed distinct gene expression profiles by transcriptome sequencing technology. The median follow-up duration for the entire cohort was 8 months (rang 0.4 to 36.6 months), and the median overall survival (OS) was significantly shorter in aCML cases (7.3 months, 95%CI 5.4 to 20.5 months) than in CNL cases (median OS not reached). The one-year OS rate for aCML patients was 31.0% (9/29), compared to 92.9% (13/14) for CNL patients. In conclusion, our study supports the notion that aCML and CNL are indeed distinct disease entities characterized by unique hematological features and clinical outcomes.
Collapse
Affiliation(s)
- Yingxin Sun
- Affiliated Hospital of Nantong University, Nantong, China
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qinrong Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Zhiyu Zhang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qian Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jiannong Cen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Mingqing Zhu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jinlan Pan
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Dandan Liu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Hongjie Shen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Yifeng Cai
- Affiliated Hospital of Nantong University, Nantong, China.
| | - Suning Chen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
| |
Collapse
|
7
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
AmeliMojarad M, AmeliMojarad M, Cui X. Weighted gene co-expression network analysis identified GBP2 connected to PPARα activity and liver cancer. Sci Rep 2024; 14:20745. [PMID: 39251636 PMCID: PMC11385240 DOI: 10.1038/s41598-024-70832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related deaths with a steadily increasing rate worldwide, as a well-known hallmark of liver cancer, metabolic alterations are related to liposomal changes, a common characteristic of primary liver cancers based on recent lipidomics studies. Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor with important lipid homeostasis function, therefore we aimed to understand the molecular mechanisms and pathways that activate PPARα after using PPAR-α agonist WY-14643 and identify candidate biomarkers related to PPARα activity and evaluate their effects in liver cancer. The data from differently expressed genes (DEGs) between liver cancer tissue from obese subjects alone and liver tissue after treatment were evaluated by DESeq2 and module genes were analyzed using weighted gene co-expression network analysis (WGCNA). Final candidate genes were identified by intersecting genes among highly ranked DEGs and the brown module, which demonstrated a significant negative correlation with drug treatments. We conducted a protein-protein interaction network, and KEGG enrichment analysis, and core hub genes (CD40, CXCL9, CXCL10, TNFSF14, GBP2, GBP3, APOL3, CLDN1) were identified using the cyto-hubba plugin, among them we focused on GBP2 that plays key roles in oncogenesis and evaluate its expressional with clinical outcomes. In conclusion, the WGCNA-based co-expression network identified GBP2 as one of the hub genes with a negative relation with PPARα agonist treatments. higher expression of GBP2 was closely associated with HCC progression. Therefore, GBP2 might be a potential candidate for the study of PPARα activity in HCC.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Arnone AA, Wilson AS, Soto-Pantoja DR, Cook KL. Diet Modulates the Gut Microbiome, Metabolism, and Mammary Gland Inflammation to Influence Breast Cancer Risk. Cancer Prev Res (Phila) 2024; 17:415-428. [PMID: 38701438 PMCID: PMC11372361 DOI: 10.1158/1940-6207.capr-24-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Several studies indicate a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes phyla proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. For ten weeks, female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard + flaxseed oil, and lard + safflower oil). Fecal 16S sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal-conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes and the gut microbiota, possibly contributing to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk. Prevention Relevance: Our study demonstrates the impact of diet on breast cancer risk, focusing on the interplay between diet, the gut microbiome, and mammary gland inflammation.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Atrium Health Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
10
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
12
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
13
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Lu L, Li J, Zheng Y, Luo L, Huang Y, Hu J, Chen Y. High expression of SLC27A2 predicts unfavorable prognosis and promotes inhibitory immune infiltration in acute lymphoblastic leukemia. Transl Oncol 2024; 45:101952. [PMID: 38640787 PMCID: PMC11053221 DOI: 10.1016/j.tranon.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
Solute carrier family 27 member 2 (SLC27A2) is involved in fatty acid metabolism in tumors and represents a prospective target for cancer therapy. However, the role and mechanism of action of SLC27A2 in acute lymphoblastic leukemia (ALL) remain unclear. In this study, we aimed to explore the intrinsic associations between SLC27A2 and ALL and evaluate the prognostic significance, biological functions, and correlation with immune infiltration. We used the transcriptome and clinical data from the TARGET dataset. Differentially expressed genes (DEGs) in the SLC27A2 low- and high-expression groups were analyzed for prognostic implications and functional enrichment. Furthermore, we analyzed the relationship between SLC27A2 gene expression and immune cell infiltration using the ESTIMATE method, which was evaluated using the TIGER platform. Finally, we knocked down SLC27A2 in the Jurkat ALL cell line and conducted cell proliferation, western blotting, flow cytometry, and CCK-8 assays to elucidate the biological function of SLC27A2 in ALL. Patients with ALL who have higher expression levels of SLC27A2 have poorer overall survival and event-free survival. According to gene set enrichment analysis, the DEGs were primarily enriched with immune system processes and the PI3K-Akt signaling pathway. There was an inverse relationship between SLC27A2 expression and immune cell invasion, suggesting involvement of the former in tumor immune evasion. In vitro experiments showed that knockdown of SLC27A2 inhibited cell proliferation and protein expression and altered the Akt pathway, with a reduced proportion of B cells. In conclusion, SLC27A2 plays a vital role in the development of ALL.
Collapse
Affiliation(s)
- Lihua Lu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jiazheng Li
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yongzhi Zheng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Luting Luo
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yan Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Yanxin Chen
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
15
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Fan H, Tan Y. Lipid Droplet-Mitochondria Contacts in Health and Disease. Int J Mol Sci 2024; 25:6878. [PMID: 38999988 PMCID: PMC11240910 DOI: 10.3390/ijms25136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD-mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD-mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD-mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Hongjun Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Riedel S, Abel S, Burger HM, Swanevelder S, Gelderblom WCA. Fumonisin B 1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells - implications for cancer promotion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184310. [PMID: 38479610 DOI: 10.1016/j.bbamem.2024.184310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fumonisin B1 (FB1), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB1-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB1-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB1 was evident in PUFA-enriched HepG2 cells which may be related to the FB1-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB1 in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Stefan Abel
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Unit of Research Integrity, Research Directorate, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Sonja Swanevelder
- Biostatistics Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - Wentzel C A Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
19
|
Sheeter DA, Garza S, Park HG, Benhamou LRE, Badi NR, Espinosa EC, Kothapalli KSD, Brenna JT, Powers JT. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers (Basel) 2024; 16:1590. [PMID: 38672672 PMCID: PMC11048984 DOI: 10.3390/cancers16081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.
Collapse
Affiliation(s)
- Dennis A. Sheeter
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Secilia Garza
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Lorraine-Rana E. Benhamou
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Niharika R. Badi
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Erika C. Espinosa
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Kumar S. D. Kothapalli
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - John T. Powers
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Szász I, Koroknai V, Várvölgyi T, Pál L, Szűcs S, Pikó P, Emri G, Janka E, Szabó IL, Ádány R, Balázs M. Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis. Int J Mol Sci 2024; 25:4251. [PMID: 38673837 PMCID: PMC11050015 DOI: 10.3390/ijms25084251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Collapse
Affiliation(s)
- István Szász
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Róza Ádány
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| |
Collapse
|
21
|
Li X, Sun T, Jiang C. Intelligent Delivery Systems in Tumor Metabolism Regulation: Exploring the Path Ahead. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309582. [PMID: 38105387 DOI: 10.1002/adma.202309582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Indexed: 12/19/2023]
Abstract
Cancer metabolism plays multifaceted roles in the initiation and progression of tumors, and interventions in metabolism are considered fundamental approaches for cancer control. Within the vast metabolic networks of tumors, there exist numerous potential therapeutic targets, intricately interconnected with each other and with signaling networks related to immunity, metastasis, drug resistance, and more. Based on the characteristics of the tumor microenvironment, constructing drug delivery systems for multi-level modulation of the tumor microenvironment is proven as an effective strategy for achieving multidimensional control of cancer. Consequently, this article summarizes several features of tumor metabolism to provide insights into recent advancements in intelligent drug delivery systems for achieving multi-level regulation of the metabolic microenvironment in cancer, with the aim of offering a novel paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| |
Collapse
|
22
|
Liang C, Murray S, Li Y, Lee R, Low A, Sasaki S, Chiang AWT, Lin WJ, Mathews J, Barnes W, Lewis NE. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab Eng 2024; 82:110-122. [PMID: 38311182 PMCID: PMC11163374 DOI: 10.1016/j.ymben.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.
Collapse
Affiliation(s)
- Chenguang Liang
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Yang Li
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Shruti Sasaki
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, La Jolla, CA, 92093, USA
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Joel Mathews
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Will Barnes
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
24
|
Zhang L, Ren S, Sang Y, Hu Y, Wang C, Wang X, Li Y. miR-30d-5p inhibits proliferation, invasion and migration of breast cancer cells by targeting SERPINE1 and promoting fatty acid β-oxidation. Aging (Albany NY) 2024; 16:5856-5865. [PMID: 38393683 PMCID: PMC11042962 DOI: 10.18632/aging.205587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/12/2023] [Indexed: 02/25/2024]
Abstract
Breast cancer (BC) is among the top three most prevalent cancers across the world, especially in women, and its pathogenesis is still unknown. Fatty acid β-oxidation is highly associated with breast cancer. Serpin family E member 1 (SERPINE1)-induced down-regulation of fatty acid β-oxidation can facilitate BC cell proliferation, invasion, and metastasis. In this paper, the difference of miR-30d-5p expressions in both cancerous tissues and para-carcinoma tissues was first detected. Next, the expressions of SERPINE1, long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) in the aforementioned tissues were analyzed. Finally, miR-30d-5p mimics were supplemented to breast cancer cells to observe the miR-30d-5p effect upon breast cancer cells. Via immunofluorescence assay and Western blotting, it was found that cancerous tissues had lower expressions of miR-30d-5p, MCAD and LCAD and a higher expression of SERPINE1 than para-carcinoma tissues. The miR-30d-5p mimic group had a decreased SERPINE1 expression and increased MCAD and LCAD expressions compared with the NC group, thus inhibiting BC cell proliferation, invasion, and metastasis. To sum up, miR-30d-5p blocks the cell proliferation, invasion and metastasis by targeting SERPINE1 and promoting fatty acid β-oxidation. Preclinical studies are further required to establish a fatty acid β-oxidation-targeting therapy for breast cancer.
Collapse
Affiliation(s)
- Lina Zhang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Shuguang Ren
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yang Sang
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yueyang Hu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Cong Wang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xinrui Wang
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yuntao Li
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
25
|
Zhou X, Guo Z, Liu S, Chen Z, Wang Y, Yang R, Li X, Ma K. Transcriptomics and molecular docking reveal the potential mechanism of lycorine against pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155128. [PMID: 37839227 DOI: 10.1016/j.phymed.2023.155128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Pancreatic cancer is an extremely malignant digestive tumor, however, owing to its high drug resistance of pancreatic cancer, the search for more effective anti-pancreatic cancer drugs is urgently needed. Lycorine, an alkaloid of natural plant origin, exerts antitumor effects on a variety of tumors. PURPOSE This study aimed to investigate the therapeutic effect of lycorine on pancreatic cancer and elucidate its potential molecular mechanism. METHODS Two pancreatic cancer cell lines, PANC-1 and BxPC-3, were used to investigate the therapeutic effects of lycorine on pancreatic cancer in vitro using the CCK8 assay, colony formation assay, 5-Ethynyl-2'- deoxyuridine (EdU) incorporation assay, flow cytometry, and western blotting. Transcriptome sequencing and gene set enrichment analysis (GSEA) were used to analyze the differentially expressed genes and pathways after lycorine treatment. Molecular docking, quantitative real-time PCR (qRT-PCR), oil red O staining, small interfering RNA (siRNA) transfection, and other experiments were performed to further validate the differentially expressed genes and pathways. In vivo experiments were conducted to investigate lycorine's inhibitory effects and toxicity on pancreatic cancer using a tumor-bearing mouse model. RESULTS Lycorine inhibited the proliferation of pancreatic cancer cells, caused G2/M phase cycle arrest and induced apoptosis. Transcriptome sequencing and GSEA showed that lycorine inhibition of pancreatic cancer was associated with fatty acid metabolism, and aldehyde dehydrogenase 3A1 (ALDH3A1) was a significantly enriched target in the fatty acid metabolism process. ALDH3A1 expression was significantly upregulated in pancreatic cancer and was closely associated with prognosis. Molecular docking showed that lycorine binds strongly to ALDH3A1. Further studies revealed that lycorine inhibited the fatty acid oxidation (FAO) process in pancreatic cancer cells and induced cell growth inhibition and apoptosis through ALDH3A1. Lycorine also showed significant suppressive effects in tumor-bearing mice. Importantly, it did not result in significant toxicity to liver and kidney of mice, demonstrating its therapeutic potential as a safe antitumor agent. CONCLUSION Lycorine inhibited pancreatic cancer cell proliferation, blocked the cell cycle, and induced apoptosis by targeting ALDH3A1. FAO inhibition was identified for the first time as a possible mechanism for the anticancer effects of lycorine. These findings enrich the theory of targeted therapy for pancreatic cancer, expand our understanding of the pharmacological targets of lycorine, and provide a reference for exploring its natural components.
Collapse
Affiliation(s)
- Xin Zhou
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Zhenli Guo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Shizhong Liu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China
| | - Zhijian Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Pathophysiology, Shihezi University Medical College, Shihezi 832002, China
| | - Yan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China
| | - Rui Yang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China.
| | - Xinzhi Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Pathophysiology, Shihezi University Medical College, Shihezi 832002, China.
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi 832002, China.
| |
Collapse
|
26
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
Youssef R, Maniar R, Khan J, Mesa H. Metabolic Interplay in the Tumor Microenvironment: Implications for Immune Function and Anticancer Response. Curr Issues Mol Biol 2023; 45:9753-9767. [PMID: 38132455 PMCID: PMC10742411 DOI: 10.3390/cimb45120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant tumors exhibit rapid growth and high metabolic rates, similar to embryonic stem cells, and depend on aerobic glycolysis, known as the "Warburg effect". This understanding has enabled the use of radiolabeled glucose analogs in tumor staging and therapeutic response assessment via PET scans. Traditional treatments like chemotherapy and radiotherapy target rapidly dividing cells, causing significant toxicity. Despite immunotherapy's impact on solid tumor treatment, gaps remain, leading to research on cancer cell evasion of immune response and immune tolerance induction via interactions with the tumor microenvironment (TME). The TME, consisting of immune cells, fibroblasts, vessels, and the extracellular matrix, regulates tumor progression and therapy responses. TME-targeted therapies aim to transform this environment from supporting tumor growth to impeding it and fostering an effective immune response. This review examines the metabolic disparities between immune cells and cancer cells, their impact on immune function and therapeutic targeting, the TME components, and the complex interplay between cancer cells and nontumoral cells. The success of TME-targeted therapies highlights their potential to achieve better cancer control or even a cure.
Collapse
Affiliation(s)
- Reem Youssef
- Department of Laboratory Medicine and Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rohan Maniar
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jaffar Khan
- Department of Laboratory Medicine and Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hector Mesa
- Department of Laboratory Medicine and Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
29
|
Estrada-Pérez AR, García-Vázquez JB, Mendoza-Figueroa HL, Rosales-Hernández MC, Fernández-Pomares C, Correa-Basurto J. Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:14543. [PMID: 37833990 PMCID: PMC10572250 DOI: 10.3390/ijms241914543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is one of the biggest health problems worldwide, characterized by intricate metabolic and biochemical complexities stemming from pronounced variations across dysregulated molecular pathways. If BC is not diagnosed early, complications may lead to death. Thus, the pursuit of novel therapeutic avenues persists, notably focusing on epigenetic pathways such as histone deacetylases (HDACs). The compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has emerged as a promising candidate warranting pre-clinical investigation. HO-AAVPA is an HDAC inhibitor with antiproliferative effects on BC, but its molecular mechanism has yet to be deciphered. Furthermore, in the present study, we determined the metabolomic effects of HO-AAVPA and VPA on cells of luminal breast cancer (MCF-7) and triple-negative breast cancer (MDA-MB-231) subtypes. The LC-MS untargeted metabolomic study allowed for the simultaneous measurement of multiple metabolites and pathways, identifying that both compounds affect glycerophospholipid and sphingolipid metabolism in the MCF-7 and MDA-MB-231 cell lines, suggesting that other biological targets were different from HDACs. In addition, there are different dysregulate metabolites, possibly due to the physicochemical differences between HO-AAVPA and VPA.
Collapse
Affiliation(s)
- Alan Rubén Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
30
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
31
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
32
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
33
|
Zhou T, Yang K, Ma Y, Huang J, Fu W, Yan C, Li X, Wang Y. GC/MS-Based Analysis of Fatty Acids and Amino Acids in H460 Cells Treated with Short-Chain and Polyunsaturated Fatty Acids: A Highly Sensitive Approach. Nutrients 2023; 15:nu15102342. [PMID: 37242225 DOI: 10.3390/nu15102342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The important metabolic characteristics of cancer cells include increased fat production and changes in amino acid metabolism. Based on the category of tumor, tumor cells are capable of synthesizing as much as 95% of saturated and monounsaturated fatty acids through de novo synthesis, even in the presence of sufficient dietary lipid intake. This fat transformation starts early when cell cancerization and further spread along with the tumor cells grow more malignant. In addition, local catabolism of tryptophan, a common feature, can weaken anti-tumor immunity in primary tumor lesions and TDLN. Arginine catabolism is likewise related with the inhibition of anti-tumor immunity. Due to the crucial role of amino acids in tumor growth, increasing tryptophan along with arginine catabolism will promote tumor growth. However, immune cells also require amino acids to expand and distinguish into effector cells that can kill tumor cells. Therefore, it is necessary to have a deeper understanding of the metabolism of amino acids and fatty acids within cells. In this study, we established a method for the simultaneous analysis of 64 metabolites consisting of fatty acids and amino acids, covering biosynthesis of unsaturated fatty acids, aminoacyl-tRNA biosynthesis, and fatty acid biosynthesis using the Agilent GC-MS system. We selected linoleic acid, linolenic acid, sodium acetate, and sodium butyrate to treat H460 cells to validate the current method. The differential metabolites observed in the four fatty acid groups in comparison with the control group indicate the metabolic effects of various fatty acids on H460 cells. These differential metabolites could potentially become biomarkers for the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Tianxiao Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinjie Ma
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenchang Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Chistyakov DV, Kovalenko LV, Donnikov MY, Sergeeva MG. Blood Oxylipin Profiles as Markers of Oncological Diseases. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:621-629. [PMID: 37331708 DOI: 10.1134/s000629792305005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/20/2023]
Abstract
Oxylipins are signal lipid molecules formed from polyunsaturated fatty acids (PUFAs) in several multienzymatic metabolic pathways, such as cyclooxygenase (COX), lipoxygenase (LOX), epoxygenase (CYP), and anandamide pathways, as well as non-enzymatically. The pathways of PUFA transformation are activated in parallel, yielding a mixture of physiologically active substances. Although the association of oxylipins with carcinogenesis had been established a long time ago, only recently analytical methods have advanced to a degree allowing detection and quantification of oxylipins from different classes (oxylipin profiles). The review describes current approaches to the HPLC-MS/MS analysis of oxylipin profiles and compares oxylipin profiles from patients with oncological diseases (breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, liver cancer). The possibility of using blood oxylipin profiles as biomarkers in oncological diseases is discussed. Understanding the patterns of PUFA metabolism and physiological activity of combinations of oxylipins will improve early diagnostics of oncological diseases and evaluation of disease prognosis.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | - Maxim Y Donnikov
- Medical Institute, Surgut State University, Surgut, 628416, Russia
| | | |
Collapse
|
35
|
Kumar S, Sengupta S, Ali I, Gupta MK, Lalhlenmawia H, Azizov S, Kumar D. Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer. J Biomol Struct Dyn 2023; 41:11353-11372. [PMID: 37114510 DOI: 10.1080/07391102.2023.2204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/17/2022] [Indexed: 04/29/2023]
Abstract
Epidermal growth factor receptor (EGFR) enhances lung cancer development, due to their inability to permeate the cell membrane, secreted growth factors work through specialized signal transduction pathways. The purpose of this study is to find out a novel anticancer agent that inhibits EGFR and reduces the chances of lung cancer. A series of triazole-substituted quinazoline hybrid compounds were designed by Chemdraw software and docked against five different crystallographic EGFR tyrosine kinase domain (TKD). For docking and visualization PyRx, Autodock vina, and Discovery studio visualizer were used. Molecule-14, Molecule-16, Molecule-19, Molecule-20, and Molecule-38 showed significant affinity but Molecule-19 showed excellent binding affinity (-12.4 kcal/mol) with crystallographic EGFR tyrosine kinase. The superimposition of the co-crystalized ligand with the hit compound shows similar conformation at the active site of EGFR (PDB ID: 4HJO) indicating excellent coupling and pharmaceutically active. The hit compound showed a good bioavailability score (0.55) with no sign of carcinogenesis, mutagenesis, or reproductive toxicity properties. MD simulation and MMGBSA represent good stability and binding free energy demonstrating that the hit (Molecule-19) may be used as a lead compound. Molecule-19 also showed good ADME properties, bioavailability scores, and synthetic accessibility with fewer signs of toxicity. It was observed that Molecule-19 may be a novel and potential inhibitor against EGFR with fewer side effects than the reference molecule. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about the amino acid residues involved in binding. Overall, this study led to the identification of potential EGFR inhibitors with favorable pharmacokinetic properties. We believe that the outcome of this study can help to develop more potent drug-like molecules to tackle human lung cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, Uzbekistan
- Department of Pharmaceutical Chemistry, Tashkent Pharmaceutical Institute, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
36
|
Shang K, Ma N, Che J, Li H, Hu J, Sun H, Cao B. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway. BMC Cancer 2023; 23:335. [PMID: 37041476 PMCID: PMC10091540 DOI: 10.1186/s12885-023-10816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for CRC treatment. METHODS Biological information analysis was applied to detect the expression and the correlation of PPARs and SLC27A2 in CRC. The protein-protein interaction (PPI) interaction networks were explored by using the STRING database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed to explore the mechanisms. RESULTS SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG was significantly highly expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and p-GSK3β/GSK3β were elevated through nongenic crosstalk regulation of the PPARs pathway. CONCLUSIONS SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.
Collapse
Affiliation(s)
- Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Nina Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Haolin Sun
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
37
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
38
|
Nguyen HP, Sheng R, Murray E, Ito Y, Bruck M, Biellak C, An K, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Esserman L, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes that outcompete tumors for resources suppresses cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534564. [PMID: 37034710 PMCID: PMC10081280 DOI: 10.1101/2023.03.28.534564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tumors acquire an increased ability to obtain and metabolize nutrients. Here, we engineered and implanted adipocytes to outcompete tumors for nutrients and show that they can substantially reduce cancer progression. Growing cells or xenografts from several cancers (breast, colon, pancreas, prostate) alongside engineered human adipocytes or adipose organoids significantly suppresses cancer progression and reduces hypoxia and angiogenesis. Transplanting modulated adipocyte organoids in pancreatic or breast cancer mouse models nearby or distal from the tumor significantly suppresses its growth. To further showcase therapeutic potential, we demonstrate that co-culturing tumor organoids derived from human breast cancers with engineered patient-derived adipocytes significantly reduces cancer growth. Combined, our results introduce a novel cancer therapeutic approach, termed adipose modulation transplantation (AMT), that can be utilized for a broad range of cancers.
Collapse
Affiliation(s)
- Hai P. Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cassidy Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA
| | - Deborah A. Dillon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 04158, USA
| | - Laura A. Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer M. Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Choudhary V, Goodman JM. Editorial: The evolving role of lipid droplets: Advancements and future directions. Front Cell Dev Biol 2023; 11:1175083. [PMID: 37025181 PMCID: PMC10070960 DOI: 10.3389/fcell.2023.1175083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Vineet Choudhary
- All India Institute of Medical Sciences (AIIMS), Department of Biotechnology, New Delhi, India
| | - Joel M. Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, United States
| |
Collapse
|
40
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Frost CJ, Ramirez-Mata A, Khattri RB, Merritt ME, Frost SC. Effects of β-caryophyllene and oxygen availability on cholesterol and fatty acids in breast cancer cells. PLoS One 2023; 18:e0281396. [PMID: 36893152 PMCID: PMC9997903 DOI: 10.1371/journal.pone.0281396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/21/2023] [Indexed: 03/10/2023] Open
Abstract
Hypoxia is a common feature of most solid tumors, one that favors tumor progression and limits treatment effectiveness. Targeting hypoxia has long been a goal in cancer therapy, by identifying factors that reverse or ameliorate the effects of hypoxia on cancer cells. We, and others, have shown that β-caryophyllene (BCP) exhibits anti-proliferative properties in cancer cells. We have further shown that non-cytotoxic concentrations of BCP affect cholesterol and lipid biosynthesis in hypoxic hBrC cells at both transcriptional and translational levels. This led us to hypothesize that BCP may reverse the hypoxic phenotype in hBrC cells. To test this, we determined the effect of BCP on hypoxic sensitive pathways, including oxygen consumption, glycolysis, oxidative stress, cholesterol and fatty acid biosynthesis, and ERK activation. While each of these studies revealed new information on the regulation by hypoxia and BCP, only the lipidomic studies showed reversal of hypoxic-dependent effects by BCP. These later studies showed that hypoxia-treated samples lowered monounsaturated fatty acid levels, shifting the saturation ratios of the fatty acid pools. This signature was ameliorated by sub-lethal concentrations of BCP, possibly through an effect on the C:16 fatty acid saturation ratios. This is consistent with BCP-induced upregulation of the stearoyl-CoA desaturase (SCD) gene, observed previously. This suggests that BCP may interfere with the lipid signature modulated by hypoxia which could have consequences for membrane biosynthesis or composition, both of which are important for cell replication.
Collapse
Affiliation(s)
- Christopher J. Frost
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Biology, University of Louisville, Louisville, KY, United States of America
| | - Andrea Ramirez-Mata
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Ram B. Khattri
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
42
|
Ren Z, Gao D, Luo Y, Song Z, Wu G, Qi N, Li A, Liu X. Identification of fatty acid metabolism-related clusters and immune infiltration features in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:1496-1523. [PMID: 36881382 PMCID: PMC10042688 DOI: 10.18632/aging.204557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Hepatocellular Carcinoma (HCC) is a type of liver cancer which is characterized by inflammation-associated tumor. The unique characteristics of tumor immune microenvironment in HCC contribute to hepatocarcinogenesis. It was also clarified that aberrant fatty acid metabolism (FAM) might accelerate tumor growth and metastasis of HCC. In this study, we aimed to identify fatty acid metabolism-related clusters and establish a novel prognostic risk model in HCC. Gene expression and corresponding clinical data were searched from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) portal. From the TCGA database, by unsupervised clustering method, we determined three FAM clusters and two gene clusters with distinct clinicopathological and immune characteristics. Based on 79 prognostic genes identified from 190 differentially expressed genes (DEGs) among three FAM clusters, five prognostic DEGs (CCDC112, TRNP1, CFL1, CYB5D2, and SLC22A1) were determined to construct risk model by least absolute shrinkage and selection operator (LASSO) and multivariate cox regression analysis. Furthermore, the ICGC dataset was used to validate the model. In conclusion, the prognostic risk model constructed in this study exhibited excellent indicator performance of overall survival, clinical feature, and immune cell infiltration, which has the potential to be an effective biomarker for HCC immunotherapy.
Collapse
Affiliation(s)
- Zhixuan Ren
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Duan Gao
- Department of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Zhenghui Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Guojing Wu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Na Qi
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Department of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
- Cancer Center, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
43
|
Zhou T, Yang K, Huang J, Fu W, Yan C, Wang Y. Effect of Short-Chain Fatty Acids and Polyunsaturated Fatty Acids on Metabolites in H460 Lung Cancer Cells. Molecules 2023; 28:molecules28052357. [PMID: 36903601 PMCID: PMC10005177 DOI: 10.3390/molecules28052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Lung cancer is the most common primary malignant lung tumor. However, the etiology of lung cancer is still unclear. Fatty acids include short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) as essential components of lipids. SCFAs can enter the nucleus of cancer cells, inhibit histone deacetylase activity, and upregulate histone acetylation and crotonylation. Meanwhile, PUFAs can inhibit lung cancer cells. Moreover, they also play an essential role in inhibiting migration and invasion. However, the mechanisms and different effects of SCFAs and PUFAs on lung cancer remain unclear. Sodium acetate, butyrate, linoleic acid, and linolenic acid were selected to treat H460 lung cancer cells. Through untargeted metabonomics, it was observed that the differential metabolites were concentrated in energy metabolites, phospholipids, and bile acids. Then, targeted metabonomics was conducted for these three target types. Three LC-MS/MS methods were established for 71 compounds, including energy metabolites, phospholipids, and bile acids. The subsequent methodology validation results were used to verify the validity of the method. The targeted metabonomics results show that, in H460 lung cancer cells incubated with linolenic acid and linoleic acid, while the content of PCs increased significantly, the content of Lyso PCs decreased significantly. This demonstrates that there are significant changes in LCAT content before and after administration. Through subsequent WB and RT-PCR experiments, the result was verified. We demonstrated a substantial metabolic disparity between the dosing and control groups, further verifying the reliability of the method.
Collapse
Affiliation(s)
| | | | | | | | - Chao Yan
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| | - Yan Wang
- Correspondence: (C.Y.); (Y.W.); Tel.: +86-21-3420-5673 (C.Y.); +86-21-3420-5673 (Y.W.)
| |
Collapse
|
44
|
Lee J, Shin D, Roh JL. Lipid metabolism alterations and ferroptosis in cancer: Paving the way for solving cancer resistance. Eur J Pharmacol 2023; 941:175497. [PMID: 36621602 DOI: 10.1016/j.ejphar.2023.175497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Cancer often perturbs lipid metabolism, which leads to the alteration of metabolism intermediates, contributing to their deregulated growth and metastasis. Alteration of lipid metabolism shifting to contain more polyunsaturated fatty acids (PUFAs) in membrane phospholipids (PLs) also leads to cancer therapy resistance. High amounts of PL-PUFAs render cancer cells more vulnerable to lipid peroxidation (LPO), predisposing them towards ferroptosis, a new form of iron-dependent oxidative regulated cell death. The commitment of cancer undergoing ferroptotic cell death depends on the adaptive lipidome remodeling, LPO patterns, and LPO scavenging ability in heterogeneous cancer cells. Ferroptosis is receiving attention in cancer research as treating cancers, altering membrane lipid homeostasis, and refractory from conventional therapies. Therefore, a better understanding of the molecular underpinning of lipid metabolism alterations may provide new opportunities for solving cancer resistance. This review intends to understand altered lipid metabolism in cancers and discuss lipid composition and metabolic processes associated with ferroptosis induction in cancers.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
45
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
46
|
Jovankić JV, Nikodijević DD, Milutinović MG, Nikezić AG, Kojić VV, Cvetković AM, Cvetković DM. Potential of Orlistat to induce apoptotic and antiangiogenic effects as well as inhibition of fatty acid synthesis in breast cancer cells. Eur J Pharmacol 2023; 939:175456. [PMID: 36528070 DOI: 10.1016/j.ejphar.2022.175456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer as most often women's cancer is the second cause of mortality worldwide. Research interest increased in testing non-standard drugs to suppress breast cancer progression and become significant supplements in anticancer therapy. The anti-obesity drug Orlistat showed significant ability for modulation of cancer cell metabolism via antiproliferative, proapoptotic, antiangiogenic, antimetastatic, and hypolipidemic effects. The anticancer potential of Orlistat was evaluated by cytotoxicity (MTT assay), type of cell death (AO/EB double staining), determination of redox status parameters (superoxide, hydrogen peroxide, lipid peroxidation, reduced glutathione), and total lipid levels with colorimetric methods, as well on angiogenesis-related (VEGF, MMP-9, CXCR4/CXCL12) and fatty acid synthesis-related (ACLY, ACC, FASN) parameters on gene and protein levels (immunocytochemistry and qPCR). Based on obtained results Orlistat induces significant cytotoxic, proapoptotic, and anti-angiogenic effects in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells, without significant cytotoxic effects on normal MRC-5 cells. It decreased total lipid levels and changed redox status parameters and cancer cell metabolism via suppression of genes and proteins involved and fatty acid synthesis. Based on showed, Orlistat may be an important supplement in antiangiogenic therapy against breast cancer with no side effects on normal cells, making it a good candidate for future clinical trials.
Collapse
Affiliation(s)
- Jovana V Jovankić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Aleksandra G Nikezić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put Dr Goldmana 4, Sremska Kamenica, 21204, Serbia
| | - Aleksandar M Cvetković
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela M Cvetković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| |
Collapse
|
47
|
Williams JL, Smith C, Hall C, Khaled Z, Maharaj A, Kwong R, Pittaway J, Casas J, Parvanta L, Abdel-Aziz TE, Palazzo F, Chung TT, Guasti L, Metherell L, Prasad R. Elevated sphingosine-1-phosphate lyase leads to increased metabolism and reduced survival in adrenocortical carcinoma. Eur J Endocrinol 2023; 188:lvac007. [PMID: 36651165 DOI: 10.1093/ejendo/lvac007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 12/01/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Adrenocortical carcinomas (ACCs) are invasive tumours arising in the adrenal cortex, and steroidogenic tumours are associated with worse prognostic outcomes. Loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1) cause primary adrenal insufficiency and as a key degradative enzyme in the sphingolipid pathway, SGPL1 also influences the balance of pro-proliferative and pro-apoptotic sphingolipids. We, therefore, hypothesized increased SGPL1 may be linked to increased disease severity in ACC. DESIGN Analyse SGPL1 expression impact on patient survival and adrenal cancer cell phenotype. We analysed two ACC cohorts with survival and corresponding transcriptomic data, focusing on SGPL1 and sphingolipid pathway genes. In vitro, we generated SGPL1-knockout and overexpressing H295R adrenocortical cells to investigate the role of SGPL1 in cell signalling in ACCs. RESULTS We found increased expression of several sphingolipid pathway receptors and enzymes, most notably SGPL1 correlated with reduced patient survival in both cohorts. Overexpression of SGPL1 in the H295R cell line increased proliferation and migration while reducing apoptosis, while SGPL1 knockout had the opposite effect. RNA-seq revealed a global increase in the expression of genes in the electron transport chain in overexpressing cells, correlating with increased aerobic respiration and glycolysis. Furthermore, the opposite phenotype was seen in cells lacking SGPL1. We subsequently found the increased proliferation is linked to metabolic substrate availability and increased capacity to use different fuel sources, but particularly glucose, in overexpressing cells. CONCLUSIONS We, therefore, propose that SGPL1-overexpressing ACC tumours reduce patient survival by increasing fuel usage for anabolism and energy production to facilitate growth and invasion.
Collapse
Affiliation(s)
- Jack L Williams
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Chris Smith
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Hall
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Zakaa Khaled
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Avinaash Maharaj
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Ruth Kwong
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - James Pittaway
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry IQAC-CSIC, Barcelona and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD). ISCIII. Madrid, Spain
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom
| | - Tarek Ezzat Abdel-Aziz
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, NW1 2PG London, United Kingdom
| | - Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, W12 0HS London, United Kingdom
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, NW1 2PG London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Lou Metherell
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
48
|
Xanthomicrol Activity in Cancer HeLa Cells: Comparison with Other Natural Methoxylated Flavones. Molecules 2023; 28:molecules28020558. [PMID: 36677614 PMCID: PMC9864045 DOI: 10.3390/molecules28020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
The methoxylated flavone xanthomicrol represents an uncommon active phenolic compound identified in herbs/plants with a long application in traditional medicine. It was isolated from a sample of Achillea erba-rotta subsp. moschata (musk yar-row) flowering tops. Xanthomicrol promising biological properties include antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. This study mainly focused on the evaluation of the xanthomicrol impact on lipid metabolism in cancer HeLa cells, together with the investigation of the treatment-induced changes in cell growth, morphology, and apoptosis. At the dose range of 5-100 μM, xanthomicrol (24 h of incubation) significantly reduced viability and modulated lipid profile in cancer Hela cells. It induced marked changes in the phospholipid/cholesterol ratio, significant decreases in the levels of oleic and palmitic acids, and a marked increase of stearic acid, involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, marked cell morphological alterations, signs of apoptosis, and cell cycle arrest at the G2/M phase were observed in cancer treated cells. The bioactivity profile of xanthomicrol was compared to that of the anticancer methoxylated flavones eupatilin and artemetin, and structure-activity relationships were underlined.
Collapse
|
49
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
50
|
Associations of selenoprotein expression and gene methylation with the outcome of clear cell renal carcinoma. Arch Biochem Biophys 2023; 733:109470. [PMID: 36442530 DOI: 10.1016/j.abb.2022.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Selenoproteins are a ubiquitous class of proteins defined by having a selenocysteine amino acid residue. While many of the selenoproteins have been well characterized with important roles in oxidation-reduction reactions and hormone synthesis among others, there exist some whose biological roles are not as well understood as denoted by the "SELENO" root. In this study, we explored associations between the reported RNA levels of "SELENO" proteins and clear cell renal cell carcinoma (ccRCC), the most common subtype of renal carcinoma in the US. Utilizing The Cancer Genome Atlas (TCGA) alongside other in silico tools, we discovered higher mRNA expression of Selenoprotein I, T, and P was associated with better overall survival outcomes and differential expression of other selenoproteins based on tumor stage. Additionally, we uncovered relative hypomethylation among selenoproteins in primary ccRCC tumor samples compared to normal tissue. Network and enrichment analysis showed numerous genes through which selenoproteins may modulate cancer progression and outcomes such as DERL1, PNPLA2/3, MIEN1, and FOXO1 which have been well-described in other cancers. In light of our findings highlighting an association of selenoprotein methylation and expression patterns with ccRCC outcome, further wet lab research is warranted.
Collapse
|