1
|
Es'hagi M, Farbodi M, Gharbani P, Ghasemi E, Jamshidi S, Majdan-Cegincara R, Mehrizad A, Seyyedi K, Shahverdizadeh GH. A comparative review on the mitigation of metronidazole residues in aqueous media using various physico-chemical technologies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7294-7310. [PMID: 39469862 DOI: 10.1039/d4ay01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In the last few decades, pharmaceuticals have emerged as a new class of serious environmental pollutants. The presence of these emerging contaminants even in minimal amounts (micro- to nanograms) has side effects, and they can cause chronic toxicity to health and the environment. Furthermore, the presence of pharmaceutical contaminants in water resources leads to significant antibiotic resistance in bacteria. Hence, the removal of antibiotics from water resources is essential. Thus far, a wide range of methods, including adsorption, photodegradation, oxidation, photolysis, micro-/nanofiltration, and reverse osmosis, has been used to remove pharmaceutical contaminants from water systems. In this article, research related to the processes for the removal of metronidazole antibiotics from water and wastewater, including adsorption (carbon nanotubes (CNTs), magnetic nanocomposites, magnetic molecularly imprinted polymer (MMIP), and metal-organic frameworks), filtration, advanced oxidation processes (photocatalytic process, electrochemical advanced oxidation processes, sonolysis and sonocatalysis) and aqueous two-phase systems (ATPSs), was reviewed. Results reveal that advanced oxidation processes, especially photocatalytic and sonolysis processes, have high potential in removing MNZ (more than 90%).
Collapse
Affiliation(s)
- Moosa Es'hagi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Maryam Farbodi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Parvin Gharbani
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
- Department of Chemistry, Islamic Azad University, Ahar Branch, Ahar, Iran.
| | - Elnaz Ghasemi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Roghayeh Majdan-Cegincara
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Ali Mehrizad
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Kambiz Seyyedi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Gholam Hossein Shahverdizadeh
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| |
Collapse
|
2
|
Cadenbach T, Sanchez V, Vizuete K, Debut A, Reinoso C, Benitez MJ. Enhanced Visible-Light Photocatalytic Activity of Bismuth Ferrite Hollow Spheres Synthesized via Evaporation-Induced Self-Assembly. Molecules 2024; 29:3592. [PMID: 39124997 PMCID: PMC11314036 DOI: 10.3390/molecules29153592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Semiconductor hollow spheres have garnered significant attention in recent years due to their unique structural properties and enhanced surface area, which are advantageous for various applications in catalysis, energy storage, and sensing. The present study explores the surfactant-assisted synthesis of bismuth ferrite (BiFeO3) hollow spheres, emphasizing their enhanced visible-light photocatalytic activity. Utilizing a novel, facile, two-step evaporation-induced self-assembly (EISA) approach, monodisperse BiFeO3 hollow spheres were synthesized with a narrow particle size distribution. The synthesis involved Bi/Fe citrate complexes as precursors and the triblock copolymer Pluronic P123 as a soft template. The BiFeO3 hollow spheres demonstrated outstanding photocatalytic performance in degrading the emerging pollutants Rhodamine B and metronidazole under visible-light irradiation (100% degradation of Rhodamine B in <140 min and of metronidazole in 240 min). The active species in the photocatalytic process were identified through trapping experiments, providing crucial insights into the mechanisms and efficiency of semiconductor hollow spheres. The findings suggest that the unique structural features of BiFeO3 hollow spheres, combined with their excellent optical properties, make them promising candidates for photocatalytic applications.
Collapse
Affiliation(s)
- Thomas Cadenbach
- Departamento de Ingeniería Ambiental, Instituto de Energía y Materiales, Colegio Politécnico de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Valeria Sanchez
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171523, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171523, Ecuador
| | - Carlos Reinoso
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Maria J. Benitez
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| |
Collapse
|
3
|
Ahmad W, Kaur N, Parashar A. Algal organic matter induced photodegradation of tinidazole. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:607-618. [PMID: 38039281 DOI: 10.1080/15257770.2023.2289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Antibiotic pollution has become one of the most emerging problems of the modern era. Tinidazole (TDZ) is one the most important nitroimidazole derivative drugs whose use has tremendously increased in the last few years. The proposed research work provides a good alternative cost-effective method for wastewater treatment. In the present investigation, algae were used as a photosensitizer in the treatment of the wastewater that was contaminated with antibiotic residue. The proposed research also provides the probable mechanism involved in the photodegradation of tinidazole. The different factors like concentration and pH of the test solution which play a key role in the photodegradation of drug molecules are also discussed in the present investigation. The result of this study established that the maximum degradation of drug molecules was observed at the algal concentration of 1.6 × 108 Cell/L and approximately 58% of drug molecules were degraded. This study also established that in an acidic medium ie at pH 5 the degradation occurs more efficiently. Results of the current study indicated that the use of algae-induced photodegradation of drug residue became one of the most promising routes for wastewater treatment. The results of the present study provide a new way to treat wastewater contaminated with antibiotics residue.
Collapse
Affiliation(s)
- Waseem Ahmad
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Nikky Kaur
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Amit Parashar
- Department of Chemistry, GL Bajaj Group of Institutions, Mathura, Uttar Pradesh, India
| |
Collapse
|
4
|
Heidarinejad F, Kamani H, Khtibi A. Magnetic Fe-doped TiO 2@Fe 3O 4 for metronidazole degradation in aqueous solutions: Characteristics and efficacy assessment. Heliyon 2023; 9:e21414. [PMID: 38027846 PMCID: PMC10643255 DOI: 10.1016/j.heliyon.2023.e21414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics present in aquatic environments can contribute to the emergence of antibiotic-resistant bacterial strains, posing potential threats to public health. Therefore, efficient strategies to remove these compounds from water systems are essential to reduce both ecological and human health risks. This research aimed to assess the photocatalytic removal efficiency of metronidazole (MET) from an aqueous solution using a 15-W bare UVC lamp and magnetic nanocatalysts (Fe-doped TiO2@Fe3O4), which were synthesized using the sol-gel technique. Furthermore, scanning electron microscopy with integrated energy dispersive X-ray analysis (SEM/EDX), X-ray diffractometry (XRD), Differential reflectance spectroscopy (DRS), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR) analysis were carried out to characterize the synthesized nanocatalysts. The influence of several factors, such as pH, initial MET, and nanocatalysts concentrations during reaction times of 15-120 min, was studied. The characterization results confirmed that Fe and Ti were successfully integrated into the Fe- doped TiO2@Fe3O4 nanocomposite. Highest MET degradation efficiency (99.37 %) was observed at a pH of 3, with an initial MET concentration of 60 mg/L, nanoparticle dosage of 800 mg/L, and a reaction time of 90 min. The stability of the nanocatalyst was acceptable. The results suggest that OH ions may play a crucial role in the degradation of MET demonstrating photocatalytic degradation can be an effective way to remove MET from water resources. This research sets a precedent for future endeavors aimed at harnessing photocatalysis for environmental remediation of pharmaceutical pollutants.
Collapse
Affiliation(s)
- Farnaz Heidarinejad
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan,Iran
| | - Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan,Iran
| | - Aramdokht Khtibi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan,Iran
| |
Collapse
|
5
|
Parmanbek N, Sütekin SD, Barsbay M, Aimanova NA, Mashentseva AA, Alimkhanova AN, Zhumabayev AM, Yanevich A, Almanov AA, Zdorovets MV. Environmentally friendly loading of palladium nanoparticles on nanoporous PET track-etched membranes grafted by poly(1-vinyl-2-pyrrolidone) via RAFT polymerization for the photocatalytic degradation of metronidazole. RSC Adv 2023; 13:18700-18714. [PMID: 37346955 PMCID: PMC10281340 DOI: 10.1039/d3ra03226d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Nanoporous track-etched membranes (TeMs) are highly versatile materials that have shown promise in various applications such as filtration, separation, adsorption, and catalysis due to their mechanical integrity and high surface area. The performance of TeMs as catalysts for removing toxic pollutants is greatly influenced by the pore diameter, density, and functionalization of the nanochannels. In this study, the synthesis of functionalized poly(ethylene terephthalate) (PET) TeMs with Pd nanoparticles (NPs) as catalysts for the photodegradation of the antibiotic metronidazole (MTZ) was methodically investigated and their catalytic activity under UV irradiation was compared. Before loading of the Pd NPs, the surface and nanopore walls of the PET TeMs were grafted by poly(1-vinyl-2-pyrrolidone) (PVP) via UV-initiated reversible addition fragmentation chain transfer (RAFT)-mediated graft copolymerization. The use of RAFT polymerization allowed for precise control over the degree of grafting and graft lengths within the nanochannels of PVP grafted PET TeMs (PVP-g-PET). Pd NPs were then loaded onto PVP-g-PET using several environmentally friendly reducing agents such as ascorbic acid, sodium borohydride and a plant extract. In addition, a conventional thermal reduction technique was also applied for the reduction of the Pd NPs. The grafting process created a surface with high-sorption capacity for MTZ and also high stabilizing effect for Pd NPs due to the functional PVP chains on the PET substrate. The structure and composition of the composite membranes were elucidated by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, thermogravimetry, contact angle measurements and energy dispersive X-ray (EDX), X-ray photoelectron (XPS) and Fourier transform infra-red (FTIR) spectroscopies. The effects of different types of reducing agents, pH, the amount of loaded catalyst and MTZ concentration on the MTZ catalytic degradation efficiency of the obtained composites were investigated. The efficiency of the catalyst prepared in the presence of ascorbic acid was superior to the others (89.86% removal at 30 mg L-1 of MTZ). Maximum removal of MTZ was observed at the natural pH (6.5) of the MTZ solution at a concentration of 30 mg per L MTZ. The removal efficiency was decreased by increasing the catalyst dosage and the initial MTZ concentration. The reaction rate constant was reduced from 0.0144 to 0.0096 min-1 by increasing the MTZ concentration from 20 to 50 mg L-1. The photocatalyst revealed remarkable photocatalytic activity even after 10 consecutive cycles.
Collapse
Affiliation(s)
- Nursanat Parmanbek
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Chemistry, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - S Duygu Sütekin
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
- Polymer Science and Technology Division, Institute of Science, Hacettepe University Beytepe 06800 Ankara Turkey
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
- Polymer Science and Technology Division, Institute of Science, Hacettepe University Beytepe 06800 Ankara Turkey
| | - Nurgulim A Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Anastassiya A Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Assel N Alimkhanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Alisher M Zhumabayev
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Alyona Yanevich
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Alimzhan A Almanov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Maxim V Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
- Department of Intelligent Information Technologies, The Ural Federal University 620002 Yekaterinburg Russia
| |
Collapse
|
6
|
Al-Musawi TJ, Mengelizadeh N, Alwared AI, Balarak D, Sabaghi R. Photocatalytic degradation of ciprofloxacin by MMT/CuFe 2O 4 nanocomposite: characteristics, response surface methodology, and toxicity analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:70076-70093. [PMID: 37145364 DOI: 10.1007/s11356-023-27277-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The photocatalytic degradation of ciprofloxacin (CIP) was examined by loading spinel ferrite copper (CuFe2O4) nanoparticles onto montmorillonite (MMT) under irradiation using UV light. The laboratory parameters were optimized using response surface methodology (RSM), and maximum efficiency (83.75%) was achieved at a pH of 3, CIP concentration of 32.5 mg/L, MMT/CuFe2O4 dose of 0.78 g/L, and irradiation time of 47.50 min. During the photocatalysis process, the experiments on radical trapping demonstrated the generation of hydroxyls (•OH), superoxide (•O2-) radical, electrons (e-), and holes (h+). A low rate drop (below 10%) in the CIP degradation during the six consecutive reaction cycles corroborated the remarkable recyclability and stability of the MMT/CuFe2O4. The acute toxicity of the treated solution was determined using Daphnia Magna, by applying photocatalysis, which was indicative of a marked decline in the toxicity. Comparing the findings of the degradation using UV and the degradation process using visible light represented results with close resemblance to each other at the end of the reaction time. Besides, under UV and visible light, the particles in reactor are easily activated when the pollutant mineralization exceeded 80%.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Evas Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Abeer I Alwared
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Reza Sabaghi
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
7
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Lykos C, Kourkouta T, Konstantinou I. Study on the photocatalytic degradation of metronidazole antibiotic in aqueous media with TiO 2 under lab and pilot scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161877. [PMID: 36716886 DOI: 10.1016/j.scitotenv.2023.161877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, the increased consumption of antibiotics, such as metronidazole (MTZ), leads to their introduction in wastewater as well as in the receiving surface waters due to their incomplete removal by conventional wastewater treatment plants. Heterogeneous photocatalysis is a versatile technology that can efficiently degrade such organic contaminants. In the present research, the photocatalytic degradation of MTZ with TiO2 P25 was studied under lab and pilot (CPC reactor) conditions. The antibiotic was efficiently removed at high rates in both cases (100 % and 91 %) following pseudo-first order kinetics with rate constants equal to 0.0452 min-1 (±RSD% = 0.68 % - 2.57 %) and 0.0462 L KJ-1 (±RSD% = 8.94 % - 21.64 %) respectively. Also, by scavenging lab scale experiments, the contribution of the generated reactive species was investigated and hydroxy radicals (HO•) were proposed as the predominant species. By applying high resolution mass spectrometry techniques, the transformation products (TPs) were identified and possible transformation pathways were proposed. The ecotoxicity of the TPs was assessed in silico using the ECOSAR software with the results revealing that most of them were less toxic than the parent compound. Similarly, the mutagenicity, developmental toxicity and bioconcentration factors of the TPs were predicted by utilizing the T.E.S.T. software and in their majority, were found to be less mutagenic and developmentally toxic than MTZ. The ecotoxicity monitoring with the Vibrio fischeri bioassay in both laboratory and pilot scale experiments indicated that through heterogeneous photocatalysis it is possible to reduce the toxicity of wastewater containing MTZ. Finally, the stability and reusability of the photocatalyst was investigated through three consecutive catalytic cycles with the results showing that the performance of TiO2 decreased after each use. For the heterogeneous photocatalysis with TiO2 to be a "real life" applicable technique, further studies focusing on catalyst regeneration and optimization of the catalytic conditions must be conducted.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| |
Collapse
|
9
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen NH, Nguyen DH, Nguyen DTC, Tran TV. Green synthesis of ZnFe 2O 4@ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116746. [PMID: 36399883 DOI: 10.1016/j.jenvman.2022.116746] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of textile dyeing wastewater discharged into the environment has been recently increasing, resulting in harmful effects on living organisms and human health. The use of green nanoparticles for water decontamination has received much attention. Floral waste can be extracted with the release of natural compounds, which act as reducing and stabilizing agents during the biosynthesis of nanoparticles. Herein, we report the utilization of Chrysanthemum spp. floral waste extract to synthesize green ZnFe2O4@ZnO (ZFOZx) nanocomposites for the photocatalytic degradation of Congo red under solar light irradiation. The various molar ratio of ZnFe2O4 (0-50%) was incorporated into ZnO nanoparticles. The surface area of green ZFOZx nanocomposites was found to increase (7.41-42.66 m2 g-1) while their band gap energy decreased from 1.98 eV to 1.92 eV. Moreover, the results exhibited the highest Congo red dye degradation efficiency of 94.85% at a concentration of 5.0 mg L-1, and a catalyst dosage of 0.33 g L-1. The •O2- reactive species played a vital role in the photocatalytic degradation of Congo red dye. Green ZFOZ3 nanocomposites had good recyclability with at least three cycles, and an excellent stability. The germination results showed that wastewater treated by ZFOZ3 was safe enough for bean seed germination. We expect that this work contributes significantly to developing novel green bio-based nanomaterials for environmental remediation as well as reducing the harm caused by flower wastes.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Hoi Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
10
|
Yaacob NA, Khasri A, Mohd Salleh NH, Mohd Jamir MR. Optimization of AC/TiO 2-Cu ternary composite preparation with enhanced UV light activity for adsorption–photodegradation of metronidazole via RSM-CCD. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2143367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Azduwin Khasri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | | | - Mohd Ridzuan Mohd Jamir
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
11
|
Al-Musawi TJ, Mazari Moghaddam NS, Rahimi SM, Amarzadeh M, Nasseh N. Efficient photocatalytic degradation of metronidazole in wastewater under simulated sunlight using surfactant- and CuS-activated zeolite nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115697. [PMID: 35868191 DOI: 10.1016/j.jenvman.2022.115697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Hexadecyltrimethylammonium-bromide-activated zeolite nanoparticles coated with copper sulfide (ZEO/HDTMA-Br/CuS) was evaluated as a photocatalyst under sunlight for the degradation of metronidazole (MET). The surface and structural characteristics of ZEO/HDTMA-Br/CuS and other materials used in this study were analyzed using field emission-scanning electron microscopy, Fourier transform infrared and ultraviolet-visible diffuse reflectance spectroscopies, X-ray diffraction, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda pore size and volume analyses, and pH of zero charge test. ZEO/HDTMA-Br/CuS exhibited excellent surface and structural catalytic properties. For a comprehensive study of the degradation process, several parameters, such as the pH (3-11), MET concentration (10-30 mg/L), ZEO/HDTMA-Br/CuS dose (0.005-0.1 g/L), reaction time (5-200 min), and H2O2 concentration (50-200 mg/L), were optimized. ZEO/HDTMA-Br/CuS achieved 100% degradation efficiency when 10 mg/L MET was used under the optimum conditions: pH = 7, ZEO/HDTMA-Br/CuS dose = 0.01 g/L, and reaction time = 180 min. The degradation efficiency increased when the concentration of H2O2 was increased from 50 to 150 mg/L and decreased with further increase to 200 mg/L, indicating that the efficiency of MET degradation highly depends on the concentration of H2O2 in an aqueous solution. The degradation kinetics analysis revealed that the degradation is of the pseudo first-order. Thus, ZEO/HDTMA-Br/CuS proved to be an exceptional catalyst for the photodegradation of MET in aqueous media.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| | | | | | - Mohamadamin Amarzadeh
- Department of Safety Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
12
|
Mhemid RKS, Salman MS, Mohammed NA. Comparing the efficiency of N-doped TiO 2 and commercial TiO 2 as photo catalysts for amoxicillin and ciprofloxacin photo-degradation under solar irradiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:813-829. [PMID: 36073063 DOI: 10.1080/10934529.2022.2117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) have gained traction as alternative solutions for eliminating pollutants from pharmaceutical wastewater for reuse. In this research, the performance of two photo-catalysts (Commercial TiO2 and synthesis N-doped TiO2) were compared in terms of the degradation of amoxicillin and ciprofloxacin from an aqueous solution using a photo-catalytic batch system under solar irradiation. The influence of five operating factors is: pH (5-11), H2O2 concentrations (200-600) mg/L, catalyst concentrations (25-100 mg/L), Antibiotic concentration (25-100) mg/L and reaction time (30-120 min), on the oxidation of the listed above pollutants were investigated using the central composite design (CCD) of response surface methodology (RSM). The catalyst of N-doping TiO2 was synthesized by sol-gel method, using the urea (CH4N2O) as a nitrogen source. The resulting material was analyzed using Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Additionally, it can be observed from the analysis of the characteristics of N-doped TiO2 the homogenous dispersion of nitrogen molecules, small particle sizes, and energy-gap reduction, prompting a 6% increase in antibiotic degradation compared with Com. TiO2. In the RSM analysis, the ideal conditions were found to be a pH of 5, H2O2 conc. of 400 mg/L, catalyst conc. of 50 mg, and antibiotics conc. of 25 mg/L for an antibiotics reduction rate of 89.31% (AMOX/Com. TiO2/Solar), 90.2 (CFX/Com. TiO2/Solar), 95.8% (AMOX/N-TiO2/Solar) and 97.3% (CFX/N-TiO2/Solar). Experimental results were in good agreement with predictions because the predicted R2 matched well with the adjusted R2.
Collapse
Affiliation(s)
- Rasha Khalid Sabri Mhemid
- Department of Environmental Technology, College of Environmental Science and Technology, University of Mosul, Mosul, Iraq
| | | | - Noor A Mohammed
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
Lu Z, Ling Y, Sun W, Liu C, Mao T, Ao X, Huang T. Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119673. [PMID: 35760199 DOI: 10.1016/j.envpol.2022.119673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H2O2 < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanchen Ling
- School of Environment, Tsinghua University, Beijing, 100084, China; Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Chaoran Liu
- Beijing Waterworks Group Co., LTD, Beijing, 100031, China
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., London, Ontario, Canada
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianyin Huang
- Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
14
|
Study on Metronidazole Acid-Base Behavior and Speciation with Ca2+ for Potential Applications in Natural Waters. Molecules 2022; 27:molecules27175394. [PMID: 36080166 PMCID: PMC9457533 DOI: 10.3390/molecules27175394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Metronidazole (MNZ) is an antibiotic widely used for the treatment of various infectious diseases and as an effective pesticide agent for the cultivation of chickens and fish. Its high resistance to purification processes and biological activity has led to the classification of MNZ as an emerging contaminant. A speciation study, aimed to define the acid-base properties of MNZ and its interaction with Ca2+, commonly present in natural waters, is reported. The protonation constants of MNZ, as well as the formation constant value of Ca2+-MNZ species, were obtained by potentiometric titrations in an aqueous solution, using NaCl as background salt at different ionic strengths (0.15, 0.5, 1 mol L−1) and temperature (15, 25 and 37 °C) conditions. The acid-base behavior and the complexation with Ca2+ were also investigated by 1H NMR and UV-Vis titrations, with results in very good agreement with the potentiometric ones. The dependence of the formation constants on the ionic strength and temperature was also determined. The sequestering ability of MNZ towards Ca2+ was defined by the empirical parameter pL0.5 at different pH and temperature values. The speciation of MNZ simulating sea water conditions was calculated.
Collapse
|
15
|
Alsaidi M, Azeez FA, Al-Hajji LA, Ismail AA. Impact of reaction parameters for photodegradation pharmaceuticals in wastewater over gold/titania photocatalyst synthesized by pyrolysis of NH 2-MIL-125(Ti). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115047. [PMID: 35452879 DOI: 10.1016/j.jenvman.2022.115047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The efficient remediation of pharmaceuticals, including wastewater, remains a remarkably challenging issue for water regeneration. Herein, porous Au/TiO2 synthesized by pyrolysis of NH2-MIL-125(Ti) was utilized to be an efficient photocatalyst for mineralization of trimethoprim (TMP) and Metronidazole (MNZ) as the parent compound. The effects of different factors, including TMP and MNZ concentrations, light intensity, H2O2 concentration, Au/TiO2 dosage, and pH value of reaction solution on the degradation and mineralization performances during UV and visible light (VIS), were addressed. The porous Au/TiO2 photocatalyst exhibited superior photocatalytic degradation of TMP and MNZ under UV and VIS illumination. The optimum pH values were 4; the optimum dosage of Au/TiO2 was 1.5 g/L, H2O2 concentration was 9.8 mM, TMP and MNZ concentrations was 10 ppm, and their photodegradation efficiency was 100% after 30 min illumination time and mineralization efficiency 98.2% after 3 h illumination for TMP and MNZ, respectively under UV illumination, however, the photodegradation efficiency was 100% after 50 min illumination and mineralization efficiency 96.3% after 4.5 h illumination time for TMP and MNZ, respectively under VIS illumination. The real wastewater matrix with 10 mg/L of TMP and MNZ were subjected to 60 min of illumination under similar optimum conditions of synthetic solution. The results indicated that photodegradation efficiency was determined to be 100% after 70 min illumination time for removal of both TMP (k = 3.4 × 10-2 min-1) and MNZ (k = 2.87 × 10-2 min-1). This is ascribed to the incorporation of Au NPs onto TiO2, reducing the photoinduced electron-hole recombination, thus promoting the photocatalytic performance. The possible mechanism for photodegradation of antibiotics was also discussed. The demonstration of photocatalysis mechanism over Au/TiO2 photocatalyst can provide some directing in the enhancement of novel photocatalysts based on MOFs doped by noble metal.
Collapse
Affiliation(s)
- M Alsaidi
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| | - Fadhel A Azeez
- Chemical Engineering Department, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - L A Al-Hajji
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| | - Adel A Ismail
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| |
Collapse
|
16
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
17
|
Akter S, Islam S, Kabir H, Ali Shaikh A, Gafur A. UV/TiO2 photodegradation of metronidazole, ciprofloxacin and sulfamethoxazole in aqueous solution: An optimization and kinetic study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113617] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Design and Microwave-Assisted Synthesis of TiO2-Lanthanides Systems and Evaluation of Photocatalytic Activity under UV-LED Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal12010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The TiO2-Eu and TiO2-La systems were successfully synthesized using the microwave method. Based on the results of X-ray diffraction analysis, it was found that regardless of the analyzed systems, two crystal structures were noted for the obtained samples: anatase and rutile. The analysis, such as XPS and EDS, proved that the doped lanthanum and europium nano-particles are present only on the TiO2 surface without disturbing the crystal lattice. In the synthesized systems, there were no significant changes in the bandgap energy. Moreover, all the obtained systems were characterized by high thermal stability. One of the key objectives of the work, and a scientific novelty, was the introduction of UV-LED lamps into the metronidazole photo-oxidation pathway. The results of the photo-oxidation study showed that the obtained TiO2 systems doped with selected lanthanides (Eu or La) show high efficiency in the removal of metronidazole, and at the same consuming nearly 10 times less electricity compared to conventional UV lamps (high-pressure mercury lamp). Liquid-chromatography mass-spectrometry (LC-MS) analysis of an intermediate solution showed the presence of fragments of the degraded molecule by m/z 114, 83, and 60, prompting the formulation of a plausible photodegradation pathway for metronidazole.
Collapse
|
20
|
A low temperature synthesis of Ti/TiO2/Fatty Acid/GOx/ZnO and its evaluation for amoxicillin bio-photo-catalytic degradation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Niaki ZM, Ghorbani M, Ghoreishi SA. Synthesis of ZnFe 2O 4@Uio-66 nanocomposite for the photocatalytic degradation of metronidazole antibiotic under visible light irradiation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1583-1596. [PMID: 34900290 PMCID: PMC8617125 DOI: 10.1007/s40201-021-00713-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED In this study, the application of ZnFe2O4, Uio-66 nanoparticles and ZnFe2O4@Uio-66 photocatalytic nanocomposites, with different ratios of each component was synthesized and applied for the photocatalytic degradation of metronidazole (MNZ) antibiotic. The samples were characterized with (FTIR), (XRD), (SEM), (DLS), (VSM), and UV-Vis spectroscopy. The photocatalytic process was performed under visible light in an aqueous solution. The optical studies revealed that the addition of ZnFe2O4 nanoparticles could stimulate the activation wavelength of the nanocomposite, effectively shifting it to the visible light region, and correspondingly reduce the bandgap. To evaluate the ability of ZnFe2O4@Uio-66 magnetic nanocatalyst to degrade metronidazole, effective parameters such as the initial concentration of MNZ in aqueous solution(10-90 mg/L), pH(2-10), the illumination and darkness time and photocatalyst dosage(0.01-0.05 g) were investigated and optimized. It was observed that when ZnFe2O4 concentration was twice that of Uio-66, the degradation efficiency increased. The optimum degradation conditions, at which 93.7% degradation efficiency was achieved, were determined at 120 min brightness, 40 min darkness, pH = 8, initial concentration of 10 ppm, and photocatalyst content of 0.03 g. Based on the results of photocatalytic degradation kinetics, all the samples followed the Langmuir-Hinshelwood pseudo-first-order kinetics model. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00713-x.
Collapse
Affiliation(s)
- Zahra Mohammadi Niaki
- Faculty of Chemical Engineering, BabolNoshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| | - Mohsen Ghorbani
- Faculty of Chemical Engineering, BabolNoshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| | - Seyyed Aliasghar Ghoreishi
- Faculty of Chemical Engineering, BabolNoshirvani University of Technology, Shariati Ave, Babol, 47148-71167 Iran
| |
Collapse
|
22
|
Aoudjit L, Salazar H, Zioui D, Sebti A, Martins PM, Lanceros-Mendez S. Reusable Ag@TiO 2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers (Basel) 2021; 13:3718. [PMID: 34771275 PMCID: PMC8587559 DOI: 10.3390/polym13213718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/07/2022] Open
Abstract
Two significant limitations of using TiO2 nanoparticles for water treatment applications are reduced photocatalytic activity under visible radiation and difficulty recovering the particles after use. In this study, round-shaped Ag@TiO2 nanocomposites with a ≈21 nm diameter and a bandgap energy of 2.8 eV were synthesised by a deposition-precipitation method. These nanocomposites were immobilised into a porous poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix and well-distributed within the pores. The photocatalytic activity of Ag@TiO2/PVDF-HFP against metronidazole (MNZ) under solar radiation was evaluated. Further, an adaptive neuro-fuzzy inference system (ANFIS) was applied to predict the effect of four independent variables, including initial pollutant concentration, pH, light irradiation intensity, and reaction time, on the photocatalytic performance of the composite membrane on MNZ degradation. The 10% Ag@TiO2/PVDF-HFP composite membrane showed a maximum removal efficiency of 100% after 5 h under solar radiation. After three use cycles, this efficiency remained practically constant, demonstrating the membranes' reusability and suitability for water remediation applications.
Collapse
Affiliation(s)
- Lamine Aoudjit
- Unité de Développement des Équipementssolaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, W. Tipaza 42415, Algéria; (L.A.); (D.Z.); (A.S.)
| | - Hugo Salazar
- Centre/Department of Physics, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- Centre/Department of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Djamila Zioui
- Unité de Développement des Équipementssolaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, W. Tipaza 42415, Algéria; (L.A.); (D.Z.); (A.S.)
| | - Aicha Sebti
- Unité de Développement des Équipementssolaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, W. Tipaza 42415, Algéria; (L.A.); (D.Z.); (A.S.)
| | - Pedro Manuel Martins
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
23
|
Photocatalytic efficiency of CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel photocatalyst for ampicillin degradation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116470] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Yang W, Yang Z, Shao L, Li S, Liu Y, Xia X. Photocatalytic reduction of Cr(VI) over cinder-based nanoneedle in presence of tartaric acid: Synergistic performance and mechanism. J Environ Sci (China) 2021; 107:194-204. [PMID: 34412782 DOI: 10.1016/j.jes.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/13/2023]
Abstract
Cr(VI) is a common heavy metal ion, which will seriously harm human body and environment. Therefore, the removal of Cr(VI) has become an attractive topic. In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH) (γ-Al@Fe). The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(VI) was evaluated. The results showed that Cr(VI) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid (TA) under visible light. The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions (γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(VI) was completely reduced within 7 min. Besides, scavenger experiments and EPR proved that O2• - and CO2• - played a significant role in the photocatalytic reduction of Cr(VI). TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO2• -. Dissolving O2 could react with electrons to generate O2• -. This work discussed the performance and mechanism of photocatalytic reduction of Cr(VI) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.
Collapse
Affiliation(s)
- Wenwu Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenfei Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luhua Shao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sijian Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yutang Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
25
|
Pesaran Afsharian Y, Hedayatpour M, Jamshidi S. Amoxicillin separation from aqueous solution by negatively charged silica composite membrane. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:121-131. [PMID: 34150223 PMCID: PMC8172706 DOI: 10.1007/s40201-020-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Silica composite membranes were successfully prepared by acid/ base-catalyzed sol-gel method and characterized by SEM, FTIR, AFM and contact angle Low isoelectric point of the silica layers provided negatively charged composite membranes, resulting electrostatic repulsion forces between membrane surface and amoxicillin molecules at higher pHs. The rejection rate of amoxicillin was studied systematically at different pHs, solute concentrations, transmembrane pressures and temperatures. It was found that acid-catalyzed membrane has higher amoxicillin rejection ratio compared to base-catalyzed membrane. Especially, acid-catalyzed membrane achieved the highest rejection of 90% at the transmembrane pressure of 6 bar, 45 °C, pH = 10, and initial feed concentration of 50 ppm. Long term stability exhibit that the membrane performance in permeation flux was steady for up to 100 h. However, the AMX rejection of 89% was maintained for over 250 h in acid-catalyzed membrane. It was concluded that the use of negatively charged ceramic membranes is promising for removal of amoxicillin from water resources.
Collapse
Affiliation(s)
| | - Mehrab Hedayatpour
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
26
|
Azalok KA, Oladipo AA, Gazi M. Hybrid MnFe-LDO-biochar nanopowders for degradation of metronidazole via UV-light-driven photocatalysis: Characterization and mechanism studies. CHEMOSPHERE 2021; 268:128844. [PMID: 33187651 DOI: 10.1016/j.chemosphere.2020.128844] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 05/27/2023]
Abstract
A cost-competitive MnFe-LDO-biochar hybrid catalyst was successfully synthesized via a simple yet efficient technique for the decomposition of metronidazole (MZ). MnFe-LDO-biochar was characterized by various techniques and the results revealed that it has a bandgap of 2.85 eV, high photocurrent response of 3.8 μA cm-2 and can be separated rapidly from the bulk solution by an external magnet due to its saturation magnetization of 28.5 emu g-1. Initially, in the dark condition, 20% of MZ was removed after 30 min when 20 mg L-1 MZ solution was treated with 50 mg MnFe-LDO-biochar in the presence of 6 mM H2O2. The MZ degradation increased remarkably to ∼98% upon exposure to a UV light for 60 min. Under various processes, UV/MnFe-LDO-biochar/H2O2 presented high degradation rate constant of 0.226 min-1 and lowest energy consumption cost of 0.38$ at 7.56 kWh m-3 which is ∼13 times lower than the degradation of MZ by the photolytic process under similar conditions. The MZ photocatalytic decomposition trend revealed a multiprocess mechanism influenced majorly by •OH and partly by h+ and •O2-. Note that in MnFe-LDO-biochar/UV system; 5% of MZ degradation was observed after 120 min and reached 13% after 300 min. MnFe-LDO-biochar maintained ∼88% reuse efficiency after three consecutive recycling tests.
Collapse
Affiliation(s)
- Khawla Abdulmutalib Azalok
- Polymeric Materials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta TR North Cyprus, Via Mersin 10, Turkey
| | - Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta TR North Cyprus, Via Mersin 10, Turkey.
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta TR North Cyprus, Via Mersin 10, Turkey.
| |
Collapse
|
27
|
Davari N, Farhadian M, Solaimany Nazar AR. Synthesis and characterization of Fe 2O 3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole. ENVIRONMENTAL TECHNOLOGY 2021; 42:1734-1746. [PMID: 31621507 DOI: 10.1080/09593330.2019.1680738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
ZnO/Fe2O3/Clinoptilolite photocatalyst was synthesized through sol-gel method. The photocatalyst was characterized by XRD, XRF, EDX, FE-SEM, FT-IR, BET and UV-VIS DRS analyses. According to the XRD, FT-IR, and EDX results, the presence of ZnO and Fe2O3 was confirmed on the clinoptilolite surface. Based on the XRF results, the molar ratio of Fe3+/ZnO in the photocatalyst was obtained as 0.06. The FE-SEM results confirmed stabilization of ZnO/Fe2O3 on the clinoptilolite surface. Based on the BET results, the surface area and pore volume for the photocatalyst were obtained as 291.35 m2/g and 0.23 cm3/g, respectively. According to the UV-VIS DRS results, the band gap energy of the photocatalyst was measured as 3.38 eV. The performance of the synthesized photocatalyst in degrading metronidazole from contaminated water, as one of the most widely used antibiotics in pharmaceutical industries, was evaluated by response surface methodology. Operational factors including pH (4-10), metronidazole concentration (1-100 mg/l), irradiation time (45-180 min), photocatalyst concentration (0.5-2 g/l), and H2O2 concentration (25-100 mg/l) were investigated. The optimal values of the factors in degrading 99% of the contaminant were as follows: irradiation time = 90 min, photocatalyst concentration = 1 g/l, pH = 10, H2O2 concentration = 40 mg/l, and MNZ concentration = 60 mg/l.
Collapse
Affiliation(s)
- Nila Davari
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
28
|
Huang C, Peng B. Photocatalytic degradation of patulin in apple juice based on nitrogen-doped chitosan-TiO2 nanocomposite prepared by a new approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Forouzesh M, Ebadi A, Abedini F. Thermocatalytic persulfate activation for metronidazole removal in the continuous operation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Bonyadi Z, Noghani F, Dehghan A, der Hoek JPV, Giannakoudakis DA, Ghadiri SK, Anastopoulos I, Sarkhosh M, Colmenares JC, Shams M. Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Zia J, Farhat SM, Aazam ES, Riaz U. Highly efficient degradation of metronidazole drug using CaFe 2O 4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4125-4135. [PMID: 32926273 DOI: 10.1007/s11356-020-10694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Catalytic degradation based on microwave irradiation is an emerging technique which promises prompt and efficient catalytic degradation of organic pollutants. Calcium ferrite (CaFe2O4), poly(1-napththylamine) (PNA), and PNA/CaFe2O4 nanohybrids were synthesized via microwave-assisted technique. The properties of the as-prepared CaFe2O4, PNA, and PNA/CaFe2O4 nanohybrids were characterized by the thermogravimetric analysis (TGA), FTIR, XRD, SEM, and ultraviolet-visible spectrophotometry (UV-vis) analyses. The formation of inorganic-organic hybrids was confirmed by the FTIR and XRD studies. Loading of PNA was confirmed to be 8%, 16%, 32%, and 40% in CaFe2O4 which was established by TGA studies and the thermal stability was found to follow the order: CaFe2O4 > 8-PNA/CaFe2O4 > 16-PNA/CaFe2O4 > 32-PNA/CaFe2O4 > 40-PNA/CaFe2O4 > PNA. CaFe2O4 and PNA revealed band gap values of 3.42 eV and 2.60 eV respectively while for the PNA/CaFe2O4 nanohybrids, the values were found to be ranging between 2.46 and 3.00 eV. The PNA modified CaFe2O4 nanohybrids showed higher degradation efficiency towards metronidazole (MTZ) drug as compared with PNA and pure CaFe2O4. MTZ drug showed around 94% degradation within 21 min of microwave irradiation using 40-PNA/CaFe2O4 as catalyst. The enhanced catalytic activity was attributed to the high surface area of the nanohybrid catalyst as well as improved microwave catalytic activity of PNA. The reactive species responsible for degradation were confirmed by scavenger studies which formation of ·OH and O2·- radicals. Recyclability tests showed that the 40-PNA/CaFe2O4 nanohybrid exhibited 86% degradation of MTZ (90 mg/l) even after the third cycle, which reflected higher reusability of the catalyst. The MTZ fragments were identified using liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Jannatun Zia
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahzada Misbah Farhat
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, 23622, Saudi Arabia
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
32
|
Aoudjit F, Touahra F, Aoudjit L, Cherifi O, Halliche D. Efficient solar heterogeneous photocatalytic degradation of metronidazole using heterojunction semiconductors hybrid nanocomposite, layered double hydroxides. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2837-2846. [PMID: 33341774 DOI: 10.2166/wst.2020.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study focuses on the synthesis of various nanocomposites with heterojunction structures, MgAl-LDH (LDH = layered double hydroxides) hybrid with semiconductor such as MoO3 and CuO. These solids were synthesized by co-precipitation method at constant pH and have been characterized extensively using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy-energy dispersive X-ray (TEM-EDX) methods. The catalytic activity of nanocomposites was tested in the photocatalytic degradation under solar irradiation of emerging pollutants as the pharmaceutical metronidazole (MNZ). The experimental parameters, including initial MNZ concentration, the nature of oxide incorporate in the photocatalyst, catalyst loading were explored. All the synthesized samples showed high photocatalytic performances; the highest photocatalysis efficiency was achieved with the photocatalyst dose 1.5 g/L and initial MNZ concentration of 10 mg/L at neutral pH. The photocatalytic experimental results were fitted very well to the Langmuir-Hinshelwood model. From the obtained results the calcined LDH/semiconductors could be efficient for the photocatalytic process under solar irradiation of pharmaceuticals and may contribute in environmental remediation.
Collapse
Affiliation(s)
- Farid Aoudjit
- Laboratory of Petrochemical Synthesis, Faculty of Hydrocarbons and Chemistry, University of M'Hamed Bougara, Boumerdes 35000, Algeria E-mail: ; Process Engineering Department, Universiy of Akli Mohand Oulhadj, Bouira, Algeria; Laboratory of Natural Gas Chemistry, Faculty of Chemistry, University of Sciences and Technology, Houari Boumediene, Algiers 16 111, Algeria
| | - Fouzia Touahra
- Laboratory of Natural Gas Chemistry, Faculty of Chemistry, University of Sciences and Technology, Houari Boumediene, Algiers 16 111, Algeria; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria
| | - Lamine Aoudjit
- Laboratory of Natural Gas Chemistry, Faculty of Chemistry, University of Sciences and Technology, Houari Boumediene, Algiers 16 111, Algeria; Unité de Développement des équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, 42415, W. Tipaza, Algeria
| | - Ouiza Cherifi
- Laboratory of Petrochemical Synthesis, Faculty of Hydrocarbons and Chemistry, University of M'Hamed Bougara, Boumerdes 35000, Algeria E-mail: ; Laboratory of Natural Gas Chemistry, Faculty of Chemistry, University of Sciences and Technology, Houari Boumediene, Algiers 16 111, Algeria
| | - Djamilla Halliche
- Laboratory of Natural Gas Chemistry, Faculty of Chemistry, University of Sciences and Technology, Houari Boumediene, Algiers 16 111, Algeria
| |
Collapse
|
33
|
Asgari E, Sheikhmohammadi A, Yeganeh J. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol 2020; 164:694-706. [DOI: 10.1016/j.ijbiomac.2020.07.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
|
34
|
Amir Azizi. Green Synthesized Fe3O4/Cellulose Nanocomposite Suitable Adsorbent for Metronidazole Removal. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
El Bouraie M, Ibrahim S. Differentiation Between Metronidazole Residues Disposal by Using Adsorption and Photodegradation Processes Onto MgO Nanoparticles. Int J Nanomedicine 2020; 15:7117-7141. [PMID: 33061371 PMCID: PMC7533914 DOI: 10.2147/ijn.s265739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
Background Metronidazole (MNZ) is an antibiotic form that is considered as a dangerous environmental pollutant due to its widespread use as growth promoters in livestock and aquaculture operations along with its therapeutic application for humans. Purpose The objective of this work was to conduct a comparative study between the efficiency of the adsorption and photocatalytic degradation of MNZ in an aqueous solution by using magnesium oxide nanoparticles (MgO NP) under different effects, as well as evaluate the performance, reusability and cost study. Materials and Methods Several instruments such as XRD, EDX, SEM, and TEM were used to characterize the chemical composition and morphological properties of the synthesized MgO NP, while the GC-MS analysis was used to monitor the degradation pathway of MNZ particles within 180 min. The simple photo-batch reactor was used to investigate the degradation of MNZ under the effect of UV radiation, initial concentration of MNZ, pH, catalyst loading, inorganic salts addition, time, and temperature. Results The degradation efficiency is mainly divided into two steps: 35.7% for maximum adsorption and 57.5% for photodegradation. Adsorption isotherm models confirmed that the process nature is chemisorption and appropriate Langmuir model, as well as to be a nonspontaneous and endothermic reaction according to the thermodynamic study. Adsorption constant during dark condition is smaller than typical adsorption equilibrium constant derived from the Langmuir-Hinshelwood kinetic model through photodegradation of MNZ that follows pseudo-first-order kinetics. Toxicity rates were reduced considerably after the photodegradation process to 88.21%, 79.84%, and 67.32% and 57.45%, 51.98%, and 43.87% by heamolytic and brine shrimp assays, respectively, for initial MNZ concentrations (20, 60, and 100 mg/L). Conclusion We significantly recommend using MgO NP as a promising catalyst in the photodegradation applications for other organic pollutants in visible light.
Collapse
Affiliation(s)
- Mohamed El Bouraie
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El Qanater El Khayria, Egypt
| | - Sabah Ibrahim
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El Qanater El Khayria, Egypt
| |
Collapse
|
36
|
Comparative Study Between Metronidazole Residues Disposal by Using Adsorption and Photodegradation Processes onto MgO Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices. MATERIALS 2020; 13:ma13163468. [PMID: 32781645 PMCID: PMC7475861 DOI: 10.3390/ma13163468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Hybrid polymeric materials, due to the unique combination of properties that can be obtained by the convenient variation of organic and inorganic components, represent an attractive alternative for many applications, especially photocatalysis. Herein, we report the preparation of nanocomposite films containing functionalized ZnO nanoparticles, as well as in situ photogenerated noble metal nanoparticles (Ag, Au, Pd), for the achieving of materials with enhanced photocatalytic activity under visible light. The flexible free-standing nanocomposite films were synthesized by photopolymerization of a monomer mixture (silane castor oil urethane dimethacrylate and polypropylene oxide urethane dimethacrylate) in the presence of a Irgacure 819 photoinitiator. The efficiency of ZnO NPs functionalization was established by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis, while the polymer composites were characterized by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy to evidence the formation, size and distribution of the nanoparticles inside the photocrosslinked matrix. To establish the photocatalytic capacity of nanocomposite films, the decomposition of various pollutants (methyl orange, phenol, metronidazole) was monitored under visible light irradiation, the best results being obtained for Au/ZnO film. Also, the advantage of immobilizing the catalysts in a polymeric support and its recycling ability without a significant decrease in photocatalytic efficiency was analysed.
Collapse
|
38
|
Pakzad K, Alinezhad H, Nasrollahzadeh M. Euphorbia polygonifolia
extract assisted biosynthesis of Fe
3
O
4
@CuO nanoparticles: Applications in the removal of metronidazole, ciprofloxacin and cephalexin antibiotics from aqueous solutions under UV irradiation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khatereh Pakzad
- Faculty of Chemistry University of Mazandaran Babolsar 47416‐13534 Iran
| | | | | |
Collapse
|
39
|
Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A. Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 2020; 154:1036-1049. [DOI: 10.1016/j.ijbiomac.2020.03.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
40
|
Ghribi F, Sehailia M, Aoudjit L, Touahra F, Zioui D, Boumechhour A, Halliche D, Bachari K, Benmaamar Z. Solar-light promoted photodegradation of metronidazole over ZnO-ZnAl2O4 heterojunction derived from 2D-layered double hydroxide structure. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112510] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Qiu K, Elhassan A, Tian T, Yin X, Yu J, Li Z, Ding B. Highly Flexible, Efficient, and Sandwich-Structured Infrared Radiation Heating Fabric. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11016-11025. [PMID: 32037798 DOI: 10.1021/acsami.9b23099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Controlling thermal energy is one of the biggest concerns along with the progress of human civilization for thousands of years. Current thermal comfort devices are mainly based on materials that are bulky, rigid, and heavy, largely limiting their widespread practical applications. It still remains a challenge to develop highly lightweight, flexible, and efficient electrical heaters for personal thermal management and local climate control. In this work, we present a high-performance composite infrared radiation heating fabric (IRHF), which mainly consists of two layers of poly(ethylene terephthalate) (PET) fabrics and one sandwiched layer of carbon nanofibers embedded with different inorganic nanoparticles. A copper electrode sheet was connected with the carbon nanofibers to form a conductive heating circuit. The permanent spontaneous polarization of both carbon nanofibers and infrared radiation nanoparticles can facilitate an enhanced current in the heater by creating an additional electrical field, which results in a fast electrothermal response and favorable heat preservation. The constructed IRHF could achieve an increase in the temperature to 43 °C from room temperature in 1 min under a voltage of 30 V, with an electrothermal conversion efficiency up to 78.99%. With a collection of compelling features such as good thermal stability, excellent flexibility and breathability, and high electrical conductivity and energy conversion efficiency, the fabricated sandwich-structured IRHF can open up new opportunities to develop smart heating textiles and wearable heating clothes in many fields.
Collapse
Affiliation(s)
- Kaili Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ahmed Elhassan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tianhe Tian
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Zhaoling Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
42
|
Removal of COD and SO42− from Oil Refinery Wastewater Using a Photo-Catalytic System—Comparing TiO2 and Zeolite Efficiencies. WATER 2020. [DOI: 10.3390/w12010214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced oxidation processes (AOPs) have many prospects in water and wastewater treatment. In recent years, AOPs are gaining attention as having potentials for the removal of different ranges of contaminants from industrial wastewater towards water reclamation. In this study, the treatability efficiencies of two photo-catalysts (TiO2 and zeolite) were compared on the basis of the removal of chemical oxygen demand (COD) and SO42− from oil refinery wastewater (ORW) using photo-catalytic system. The effects of three operating parameters: catalyst dosage (0.5–1.5 g/L), reaction time (15–45 min), mixing rate (30–90 rpm) and their interactive effects on the removal of the aforementioned contaminants were studied using the Box–Behnken design (BBD) of response surface methodology (RSM). Statistical models were developed and used to optimize the operating conditions. An 18 W UV light was incident on the system to excite the catalysts to trigger a reaction that led to the degradation and subsequent removal of contaminants. The results obtained showed that for almost the same desirability (92% for zeolite and 91% for TiO2), TiO2 exhibited more efficiency in terms of mixing rate and reaction time requirements. At the 95% confidence level, the model’s predicted results were in good agreement with experimental data obtained.
Collapse
|
43
|
Qin Q, Qin H, Li K, Tan R, Liu X, Li L. The adsorption characteristics and degradation mechanism of tinidazole on an anatase TiO 2 surface: a DFT study. RSC Adv 2020; 10:2104-2112. [PMID: 35494564 PMCID: PMC9048433 DOI: 10.1039/c9ra06665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/05/2020] [Indexed: 12/31/2022] Open
Abstract
The adsorption characteristics and degradation mechanism of tinidazole on TiO2(101) and (001) surfaces under vacuum and aqueous solution conditions were studied by density functional theory (DFT). The results show that tinidazole can adsorb on the surfaces of TiO2(101) and (001) under different conditions. The hydrogen bond generated during the adsorption process can enhance the stability of the adsorption configuration, which makes the bond length of C-N of tinidazole longer and finally facilitates the ring-opening degradation reaction. As for the mechanism of the ring-opening degradation reaction, it was found that ring-opening can be carried out along reaction route II on both crystal surfaces, and the reaction activation energy is lower on (101) surface. Under the conditions of aqueous solution, the decrease of the activation energy of the ring-opening degradation reaction indicates that the solvent conditions can promote the degradation reaction.
Collapse
Affiliation(s)
- Qiaoqiao Qin
- College of Chemistry and Material Science, Sichuan Normal University Chengdu 610068 China
| | - Haichuan Qin
- College of Chemistry and Material Science, Sichuan Normal University Chengdu 610068 China
| | - Kai Li
- College of Chemistry and Material Science, Sichuan Normal University Chengdu 610068 China
| | - Ruolan Tan
- College of Pharmacy, Southwestern Medical University Luzhou 646000 China
| | - Xiangyang Liu
- College of Chemistry and Material Science, Sichuan Normal University Chengdu 610068 China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University Chengdu 610068 China
| |
Collapse
|
44
|
Biodegradation of antibiotics: The new resistance determinants – part II. N Biotechnol 2020; 54:13-27. [DOI: 10.1016/j.nbt.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
|
45
|
Wang D, Qin H, Qin Q, Liu XY, Li L. Theoretical study on degradation mechanism of ornidazole on anatase TiO2(101) and (001) surfaces. NEW J CHEM 2020. [DOI: 10.1039/c9nj05659a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The degradation mechanism of one new emerging pollutant ornidazole (ONZ) on TiO2surface is explored using DFT calculations.
Collapse
Affiliation(s)
- Danyang Wang
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Haichuan Qin
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Qiaoqiao Qin
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Laicai Li
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610068
- China
| |
Collapse
|
46
|
Ahmadifard T, Heydari R, Tarrahi MJ, Khorramabadi GS. Photocatalytic Degradation of Diazinon in Aqueous Solutions Using Immobilized MgO Nanoparticles on Concrete. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Photocatalytic degradation of diazinon in the aqueous solution using UV light and MgO nanoparticle (NPs) immobilized on the concrete was investigated. Prepared catalyst was characterized using TEM, XRD, SEM, and EDX techniques. The results showed that the average particle size of immobilized MgO NPs was 38.3 nm and NPs appropriately was coated on the concrete surface. The performance of degradation and mineralization of diazinon was evaluated by HPLC and TOC techniques, respectively. The effect of operational parameters including pH value, initial pesticide concentration, and contact time were studied on the removal and mineralization of diazinon by a photocatalytic process. The results showed that the MgO NPs and UV light had little effect in removing pesticide when used individually. On the other hand, diazinon can be effectively degraded by immobilized MgO NPs in the presence of UV light. Degradation products of diazinon using the proposed photocatalytic technique were identified by the GC-MS analysis. The maximum diazinon removal (99.46 %) was obtained under the conditions; pH 7, diazinon concentration of 5 mg/L, and contact time of 120 minutes. Also, the lowest energy consumption conditions were as follow; pH 7, diazinon concentration of 5 mg/L, and contact time of 30 minutes.
Collapse
|
47
|
Bo L, Liu H, Han H. Photocatalytic degradation of trace carbamazepine in river water under solar irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:131-137. [PMID: 30991285 DOI: 10.1016/j.jenvman.2019.03.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
An interesting ZnIn2S4/TiO2 composite catalyst was prepared by a hydrothermal method and thoroughly characterized. The photocatalytic degradation of trace carbamazepine (CBZ) in two river waters was primarily investigated through a batch experiment under solar irradiation, and the effects of dissolved organic matter (DOM), inorganic salt (IS), suspended solids (SS) and ultraviolet (UV) on CBZ degradation were researched. The influential degree was DOM ≈ IS » SS and CBZ with an initial concentration of 100 μg/L in the Bahe River water was completely degraded under a catalyst dosage of 75 mg/L and solar irradiation of 240 min. Compared with direct photolysis, the reaction rate constant enhanced 45 times and the half-life reduced to 1/82 in photocatalysis after the removal of all SS, IS and DOM. A certain adsorption capacity of composite catalyst with a specific surface area of 91.9 m2/g and a strong interaction between TiO2 and ZnIn2S4 effectively improved the photocatalytic degradation of CBZ. The increase of light intensity was confirmed to be of benefit to CBZ photocatalysis. Most of CBZ was degraded by visible light and UV effect was negligible. Although photo-etching and acidic corrosion by course products had negative effect on ZnIn2S4/TiO2, the removal of CBZ was mainly kept at 86% after five times usage of the catalyst.
Collapse
Affiliation(s)
- Longli Bo
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| | - Heng Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haixia Han
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Tran ML, Fu CC, Juang RS. Removal of metronidazole and amoxicillin mixtures by UV/TiO 2 photocatalysis: an insight into degradation pathways and performance improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11846-11855. [PMID: 30820920 DOI: 10.1007/s11356-019-04683-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
The degradation efficiencies and pathways of metronidazole (MNZ) and amoxicillin (AMX) in binary mixtures by UV/TiO2 photocatalysis were studied. The presence of AMX significantly decreased the degradation of MNZ, whereas the existence of MNZ slightly reduced the degradation of AMX. This is basically due to the difference in attack ability of oxidizing agents present during TiO2 photocatalysis. All oxidizing agents (hydroxyl radicals, superoxide radicals, and holes) could attack AMX molecules, but hydroxyl radicals showed insignificant attack ability in MNZ degradation. In TiO2 photocatalysis of binary mixture, six transformation products were recognized by a high-resolution LC-QTof/MS. Because of competitive effect, only one product was sourced from MNZ degradation and four others were formed due to AMX degradation. The remaining one was a new product of the side reaction. This work indicated that the molecular structure of AMX determined its preferred degradation in a mixture. It not only affected the removal of antibiotics but also figured out the appearance of transformation products. In contrast to single systems, the extent of degradation reduced for each antibiotic in the presence of the second antibiotic was related to the availability of degradation pathways of each antibiotic. Moreover, suitable pH programming was applied to enhance the mineralization of the mixtures.
Collapse
Affiliation(s)
- Mai Lien Tran
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua First Road, Guishan, Taoyuan, 33302, Taiwan
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Chun-Chieh Fu
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua First Road, Guishan, Taoyuan, 33302, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, 259 Wenhua First Road, Guishan, Taoyuan, 33302, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan.
| |
Collapse
|
49
|
Kamranifar M, Allahresani A, Naghizadeh A. Synthesis and characterizations of a novel CoFe 2O 4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:545-555. [PMID: 30572294 DOI: 10.1016/j.jhazmat.2018.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
In the present study, efficiency of a new magnetic nanocomposite (CoFe2O4@CuS) for photocatalytic degradation of PG in aqueous solutions was investigated. Structural characteristics of synthesized magnetic nanoparticles were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), Thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Energy-dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. Also, the effect of important parameters such as pH (3-11), nanoparticle dosage (0.1-0.8 g/L), PG concentration (10-100 mg/L) and contact time (10-120 min) were investigated. Results of FT-IR, XRD, EDX and Raman analyses showed successful synthesis of CoFe2O4@CuS magnetic nanocomposite. SEM and TEM images showed that the size of CoFe2O4@CuS magnetic nanocomposite was below 100 nm. Also, results of VSM analyses showed that CoFe2O4@CuS magnetic nanocomposite still has magnetic properties (Ms = 7.76 emu/g). According to the results of study, in photocatalytic degradation process of PG by CoFe2O4@CuS magnetic nanocomposite by UV light and in optimum condition (pH = 5, nanocomposite dose: 0.2 g/L, PG concentration: 10 mg/L and contact time: 120 min), maximum degradation of PG was 70.7%. Also the photocatalytic reaction almost followed the pseudo-first order kinetics. In addition, after five consecutive runs, the catalyst efficiency wasn't reduced significantly.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, Student Research Committee, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ali Allahresani
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran.
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
50
|
Qin Q, Qin H, Luo H, Wei W, Liu L, Li L. Theoretical study of adsorption characteristics and the environmental influence for metronidazole on photocatalytic TiO 2 anatase surfaces. J Mol Model 2019; 25:73. [PMID: 30793237 DOI: 10.1007/s00894-019-3967-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/07/2019] [Indexed: 11/24/2022]
Abstract
The adsorption characteristics of metronidazole on anatase TiO2(101) and (001) surfaces were studied by density functional theory (DFT). The adsorption structure of metronidazole on anatase TiO2(101) and (001) surfaces has been optimized under vacuum, water, acidic, and alkaline conditions, respectively. The optimum adsorption site, adsorption energy, and electronic structure of the stable adsorption model were calculated. The adsorption characteristics of metronidazole on two different surfaces of TiO2 were studied under acidic and alkaline conditions. Our calculated results found that the adsorption energy range is -0.95 ~ -3.11 eV on the TiO2 (101) surface, and the adsorption energy range is -0.84 ~ -3.29 eV on the TiO2 (001) surface. The adsorption wavelengths of electron transition between valence band and conduction band of metronidazole on the anatase TiO2(101) surface is in the range of visible wavelength, indicating that the TiO2(101) surface can effectively utilize visible light. However, the photocatalytic effect of the TiO2(001) surface is greatly affected by the environment. The results reveal the adsorption characteristics and the environmental influence for metronidazole on photocatalytic anatase TiO2 surfaces. Graphical abstract The adsorption characteristics of metronidazole on anatase TiO2(101) and (001) crystal surfaces were studied by density functional theory (DFT).
Collapse
Affiliation(s)
- Qiaoqiao Qin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Haichuan Qin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Hui Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wei Wei
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Liuxie Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|