1
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
2
|
Katsumata Y, Wu X, Aung KZ, Fardo DW, Woodworth DC, Sajjadi SA, Tomé SO, Thal DR, Troncoso JC, Chang K, Mock C, Nelson PT. Pure LATE-NC: Frequency, clinical impact, and the importance of considering APOE genotype when assessing this and other subtypes of non-Alzheimer's pathologies. Acta Neuropathol 2024; 148:66. [PMID: 39546031 PMCID: PMC11568059 DOI: 10.1007/s00401-024-02821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Pure limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (pure LATE-NC) is a term used to describe brains with LATE-NC but lacking intermediate or severe levels of Alzheimer's disease neuropathologic changes (ADNC). Focusing on pure LATE-NC, we analyzed data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set, comprising clinical and pathological information aggregated from 32 NIH-funded Alzheimer's Disease Research Centers (ADRCs). After excluding subjects dying with unusual conditions, n = 1,926 autopsied subjects were included in the analyses. For > 90% of these participants, apolipoprotein E (APOE) allele status was known; 46.5% had at least one APOE 4 allele. In most human populations, only 15-25% of people are APOE ε4 carriers. ADRCs with higher documented AD risk allele (APOE or BIN1) rates had fewer participants lacking ADNC, and correspondingly low rates of pure LATE-NC. Among APOE ε4 non-carries, 5.3% had pure LATE-NC, 37.0% had pure ADNC, and 3.6% had pure neocortical Lewy body pathology. In terms of clinical impact, participants with pure LATE-NC tended to die after having received a diagnosis of dementia: 56% died with dementia among APOE ε4 non-carrier participants, comparable to 61% with pure ADNC. LATE-NC was associated with increased Clinical Dementia Rating Sum of Boxes (CDR-SOB) scores, i.e. worsened global cognitive impairments, in participants with no/low ADNC and no neocortical Lewy body pathology (p = 0.0023). Among pure LATE-NC cases, there was a trend for higher LATE-NC stages to be associated with worse CDR-SOB scores (p = 0.026 for linear trend of LATE-NC stages). Pure LATE-NC was not associated with clinical features of disinhibition or primary progressive aphasia. In summary, LATE-NC with no or low levels of ADNC was less frequent than pure ADNC but was not rare, particularly among individuals who lacked the APOE 4 allele, and in study cohorts with APOE 4 frequencies similar to those in most human populations.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Xian Wu
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Khine Zin Aung
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Davis C Woodworth
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
- Department of Pathology, University of California, Irvine, CA, 92,697, USA
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koping Chang
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Mock
- National Alzheimer's Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Pathology, Division of Neuropathology, University of Kentucky, Rm 575 Lee Todd Bldg, U. Kentucky, 789 S. Limestone Ave., Lexington, KY, 40536-0230, USA.
| |
Collapse
|
3
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
4
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Woodworth DC, Nguyen KM, Sordo L, Scambray KA, Head E, Kawas CH, Corrada MM, Nelson PT, Sajjadi SA. Comprehensive assessment of TDP-43 neuropathology data in the National Alzheimer's Coordinating Center database. Acta Neuropathol 2024; 147:103. [PMID: 38896163 PMCID: PMC11186885 DOI: 10.1007/s00401-024-02728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 06/21/2024]
Abstract
TDP-43 proteinopathy is a salient neuropathologic feature in a subset of frontotemporal lobar degeneration (FTLD-TDP), in amyotrophic lateral sclerosis (ALS-TDP), and in limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and is associated with hippocampal sclerosis of aging (HS-A). We examined TDP-43-related pathology data in the National Alzheimer's Coordinating Center (NACC) in two parts: (I) availability of assessments, and (II) associations with clinical diagnoses and other neuropathologies in those with all TDP-43 measures available. Part I: Of 4326 participants with neuropathology data collected using forms that included TDP-43 assessments, data availability was highest for HS-A (97%) and ALS (94%), followed by FTLD-TDP (83%). Regional TDP-43 pathologic assessment was available for 77% of participants, with hippocampus the most common region. Availability for the TDP-43-related measures increased over time, and was higher in centers with high proportions of participants with clinical FTLD. Part II: In 2142 participants with all TDP-43-related assessments available, 27% of participants had LATE-NC, whereas ALS-TDP or FTLD-TDP (ALS/FTLD-TDP) was present in 9% of participants, and 2% of participants had TDP-43 related to other pathologies ("Other TDP-43"). HS-A was present in 14% of participants, of whom 55% had LATE-NC, 20% ASL/FTLD-TDP, 3% Other TDP-43, and 23% no TDP-43. LATE-NC, ALS/FTLD-TDP, and Other TDP-43, were each associated with higher odds of dementia, HS-A, and hippocampal atrophy, compared to those without TDP-43 pathology. LATE-NC was associated with higher odds for Alzheimer's disease (AD) clinical diagnosis, AD neuropathologic change (ADNC), Lewy bodies, arteriolosclerosis, and cortical atrophy. ALS/FTLD-TDP was associated with higher odds of clinical diagnoses of primary progressive aphasia and behavioral-variant frontotemporal dementia, and cortical/frontotemporal lobar atrophy. When using NACC data for TDP-43-related analyses, researchers should carefully consider the incomplete availability of the different regional TDP-43 assessments, the high frequency of participants with ALS/FTLD-TDP, and the presence of other forms of TDP-43 pathology.
Collapse
Affiliation(s)
- Davis C Woodworth
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Kiana A Scambray
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Maldonado-Díaz C, Hiya S, Yokoda RT, Farrell K, Marx GA, Kauffman J, Daoud EV, Gonzales MM, Parker AS, Canbeldek L, Kulumani Mahadevan LS, Crary JF, White CL, Walker JM, Richardson TE. Disentangling and quantifying the relative cognitive impact of concurrent mixed neurodegenerative pathologies. Acta Neuropathol 2024; 147:58. [PMID: 38520489 PMCID: PMC10960766 DOI: 10.1007/s00401-024-02716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel A Marx
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Lakshmi Shree Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
10
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
11
|
Grothe MJ, Moscoso A, Silva-Rodríguez J, Lange C, Nho K, Saykin AJ, Nelson PT, Schöll M, Buchert R, Teipel S. Differential diagnosis of amnestic dementia patients based on an FDG-PET signature of autopsy-confirmed LATE-NC. Alzheimers Dement 2023; 19:1234-1244. [PMID: 35971593 PMCID: PMC9929029 DOI: 10.1002/alz.12763] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is common in advanced age and can underlie a clinical presentation mimicking Alzheimer's disease (AD). We studied whether an autopsy-derived fluorodeoxyglucose positron emission tomography (FDG-PET) signature of LATE-NC provides clinical utility for differential diagnosis of amnestic dementia patients. METHODS Ante mortem FDG-PET patterns from autopsy-confirmed LATE-NC (N = 7) and AD (N = 23) patients were used to stratify an independent cohort of clinically diagnosed AD dementia patients (N = 242) based on individual FDG-PET profiles. RESULTS Autopsy-confirmed LATE-NC and AD groups showed markedly distinct temporo-limbic and temporo-parietal FDG-PET patterns, respectively. Clinically diagnosed AD dementia patients showing a LATE-NC-like FDG-PET pattern (N = 25, 10%) were significantly older, showed less abnormal AD biomarker levels, lower APOE ε4, and higher TMEM106B risk allele load. Clinically, they exhibited a more memory-predominant profile and a generally slower disease course. DISCUSSION An autopsy-derived temporo-limbic FDG-PET signature identifies older amnestic patients whose clinical, genetic, and molecular biomarker features are consistent with underlying LATE-NC.
Collapse
Affiliation(s)
- Michel J. Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Alexis Moscoso
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Catharina Lange
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nuclear Medicine, Berlin, Germany
| | - Kwangsik Nho
- Indiana Alzheimer’s Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging and Department of Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Michael Schöll
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
12
|
Lyu X, Duong MT, Xie L, de Flores R, Richardson H, Hwang G, Wisse LEM, DiCalogero M, McMillan CT, Robinson JL, Xie SX, Grossman M, Lee EB, Irwin DJ, Dickerson BC, Davatzikos C, Nasrallah IM, Yushkevich PA, Wolk DA, Das SR. Tau-Neurodegeneration mismatch reveals vulnerability and resilience to comorbidities in Alzheimer's continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.12.23285594. [PMID: 36824762 PMCID: PMC9949174 DOI: 10.1101/2023.02.12.23285594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of neurodegeneration (N) in Alzheimer's Disease (AD) is likely attributable to the non-specific nature of N, which is also modulated by such factors as other co-pathologies, age-related changes, and developmental differences. We studied this variability by partitioning patients within the Alzheimer's continuum into data-driven groups based on their regional T-N dissociation, which reflects the residuals after the effect of tau pathology is "removed". We found six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups partitioned on the basis of z-scores of cortical thickness alone and were similarly associated with surrogates of non-AD factors. In an additional sample of individuals with antemortem imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N mismatch training was then applied to a separate cohort to determine the ability to classify individual patients within these groups. These findings suggest that T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability to Alzheimer's disease.
Collapse
|
13
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
14
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
15
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
16
|
Huie EZ, Escudero A, Saito N, Harvey D, Nguyen ML, Lucot KL, LaGrande J, Mungas D, DeCarli C, Lamar M, Schneider JA, Kapasi A, Rissman RA, Teich AF, Dugger BN. TDP-43 Pathology in the Setting of Intermediate and High Alzheimer's Disease Neuropathologic Changes: A Preliminary Evaluation Across Ethnoracial Groups. J Alzheimers Dis 2023; 91:1291-1301. [PMID: 36617779 PMCID: PMC9974776 DOI: 10.3233/jad-220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Transactive Response DNA Binding Protein 43 kDa (TDP-43) pathology is frequently found in cases with Alzheimer's disease (AD). TDP-43 pathology is associated with hippocampal atrophy and greater AD severity denoted by cognition and clinical representation. Current TDP-43 pathology studies are predominantly based on non-Hispanic White cohorts. OBJECTIVE We sought to evaluate the presence of TDP-43 pathology across ethnoracial groups utilizing the National Alzheimer's Coordinating Center; a database containing data from over 29 institutions across the United States. Cases (N = 1135: Hispanics/Latinos = 29, African Americans/Black Americans = 51, Asians/Asian Americans = 10, American Indians/Alaskan Natives = 2, non-Hispanic White = 1043) with intermediate/high AD having data on TDP-43 pathology in the amygdala, hippocampus, entorhinal cortex, and neocortex were included. METHODS TDP-43 pathology frequency in each neuroanatomic region among ethnoracial groups were compared using generalized linear mixed effects models with center as a random effect adjusting for age at death, education, and gender. RESULTS Although groups were imbalanced, there was no significant difference across ethnoracial groups based on TDP-43 pathology (p = 0.84). With respect to neuroanatomical regions evaluated, there were no significant differences across ethnoracial groups (p-values > 0.06). There were also no significant differences for age at death and gender ratios across ethnoracial groups based on TDP-43 pathology. Although not statistically significant, TDP-43 pathology was present less often in Hispanic/Latinos (34%) when compared to non-Hispanic Whites (46%). CONCLUSION While this is a preliminary evaluation, it highlights the need for diverse cohorts and on TDP-43 pathology research across ethnoracial groups. This is the first study to our knowledge having a focus on the neuroanatomical distribution of TDP-43 deposits in Hispanic/Latino decedents with AD.
Collapse
Affiliation(s)
- Emily Z. Huie
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Anthony Escudero
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - My-Le Nguyen
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Katherine L. Lucot
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
| | - Jayne LaGrande
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Dan Mungas
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Charles DeCarli
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| | - Melissa Lamar
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, Illinois
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Alifiya Kapasi
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, California
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Department of Neurology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California
- Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
17
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Wang SHJ, Guo Y, Ervin JF, Lusk JB, Luo S. Neuropathological associations of limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) differ between the oldest-old and younger-old. Acta Neuropathol 2022; 144:45-57. [PMID: 35551470 PMCID: PMC9997084 DOI: 10.1007/s00401-022-02432-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is most often seen in the oldest-old (≥ 90 years of age) but can also be present in the younger-old (< 90 years of age). In this study, we compared the neuropathological associations of LATE-NC and contribution of LATE-NC to cognitive impairment between the oldest-old and younger-old. We observed significant differences in the prevalence of LATE-NC and its association with other co-pathologies in these two age groups. LATE-NC was present in 30.9% (34/110) of the oldest-old but only 9.4% (19/203) of the younger-old. Participants of the oldest-old with LATE-NC were more likely to have hippocampal sclerosis (HS) (55.9% vs. 10.5%, p < 0.001) and moderate to severe arteriolosclerosis (82.4% vs. 50%, p = 0.007), but not intermediate to high Alzheimer's disease neuropathologic change (ADNC) (70.6% vs. 59.2%, p = 0.486) or Lewy body disease (LBD) (20.6% vs. 26.3%, p = 0.793). Participants of the younger-old with LATE-NC were more likely to have intermediate to high ADNC (94.7% vs. 55.4%, p < 0.001) and LBD (63.2% vs. 28.8%, p = 0.013) in addition to hippocampal sclerosis (42.1% vs. 6.5%, p < 0.001), and moderate to severe arteriolosclerosis (42.1% vs. 15.2%, p = 0.020). Of note, participants with LATE-NC and no to low ADNC were very rare in the younger-old (< 1%) but relatively common in the oldest-old (9.1%). Logistic regression modeling showed that in the oldest-old, both intermediate to high ADNC and LATE-NC were independently associated with higher odds of having dementia (OR: 5.09, 95% CI [1.99, 13.06], p < 0.001 for ADNC; OR: 3.28, 95% CI [1.25, 8.57], p = 0.015 for LATE-NC). In the younger-old, by contrast, intermediate to high ADNC and LBD were independently associated with higher odds of having dementia (OR: 4.43, 95% CI [2.27, 8.63], p < 0.001 for ADNC; OR: 2.55, 95% CI [1.21, 5.35], p < 0.014 for LBD), whereas LATE-NC did not show an independent association with dementia. Overall, LATE-NC is strongly associated with arteriolosclerosis and HS in both groups; however, in the younger-old, LATE-NC is associated with other neurodegenerative pathologies, such as ADNC and LBD; whereas in the oldest-old, LATE-NC can exist independent of significant ADNC.
Collapse
Affiliation(s)
- Shih-Hsiu J Wang
- Department of Pathology, Duke University Medical Center, 214MA Davison Bldg., 40 Duke Medicine Circle, Durham, NC, 27710, USA.
- Department of Neurology, Duke University Medical Center, Durham, USA.
| | - Yuanyuan Guo
- Department of Biostatics and Bioinformatics, Duke University Medical Center, Durham, USA
| | - John F Ervin
- Department of Neurology, Duke University Medical Center, Durham, USA
| | - Jay B Lusk
- Department of Pathology, Duke University Medical Center, 214MA Davison Bldg., 40 Duke Medicine Circle, Durham, NC, 27710, USA
- Department of Neurology, Duke University Medical Center, Durham, USA
| | - Sheng Luo
- Department of Biostatics and Bioinformatics, Duke University Medical Center, Durham, USA
| |
Collapse
|
19
|
Agrawal S, Schneider JA. Vascular pathology and pathogenesis of cognitive impairment and dementia in older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100148. [PMID: 36324408 PMCID: PMC9616381 DOI: 10.1016/j.cccb.2022.100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
It is well recognized that brains of older people often harbor cerebrovascular disease pathology including vessel disease and vascular-related tissue injuries and that this is associated with vascular cognitive impairment and contributes to dementia. Here we review vascular pathologies, cognitive impairment, and dementia. We highlight the importance of mixed co-morbid AD/non-AD neurodegenerative and vascular pathology that has been collected in multiple clinical pathologic studies, especially in community-based studies. We also provide an update of vascular pathologies from the Rush Memory and Aging Project and Religious Orders Study cohorts with special emphasis on the differences across age in persons with and without dementia. Finally, we discuss neuropathological perspectives on the interpretation of clinical-pathological studies and emerging data in community-based studies.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago 60612, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Rauskolb S, Andreska T, Fries S, von Collenberg CR, Blum R, Monoranu CM, Villmann C, Sendtner M. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun 2022; 10:68. [PMID: 35513854 PMCID: PMC9074221 DOI: 10.1186/s40478-022-01352-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Risk factors such as dysregulation of Insulin-like growth factor (IGF) signaling have been linked to Alzheimer's disease. Here we show that Insulin-like Growth Factor Binding Protein 5 (Igfbp5), an inhibitory binding protein for insulin-like growth factor 1 (Igf-1) accumulates in hippocampal pyramidal neurons and in amyloid plaques in brains of Alzheimer patients. We investigated the pathogenic relevance of this finding with transgenic mice overexpressing Igfbp5 in pyramidal neurons of the brain. Neuronal overexpression of Igfbp5 prevents the training-induced increase of hippocampal and cortical Bdnf expression and reduces the effects of exercise on memory retention, but not on learning acquisition. Hence, elevated IGFBP5 expression could be responsible for some of the early cognitive deficits that occur during the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefanie Rauskolb
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Sophie Fries
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Cora Ruedt von Collenberg
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
21
|
Cykowski MD, Arumanayagam AS, Powell SZ, Rivera AL, Abner EL, Roman GC, Masdeu JC, Nelson PT. Patterns of amygdala region pathology in LATE-NC: subtypes that differ with regard to TDP-43 histopathology, genetic risk factors, and comorbid pathologies. Acta Neuropathol 2022; 143:531-545. [PMID: 35366087 PMCID: PMC9038848 DOI: 10.1007/s00401-022-02416-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/12/2022]
Abstract
Transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) pathology is a hallmark of limbic-predominant age-related TDP-43 encephalopathy (LATE). The amygdala is affected early in the evolution of LATE neuropathologic change (LATE-NC), and heterogeneity of LATE-NC in amygdala has previously been observed. However, much remains to be learned about how LATE-NC originates and progresses in the brain. To address this, we assessed TDP-43 and other pathologies in the amygdala region of 184 autopsied subjects (median age = 85 years), blinded to clinical diagnoses, other neuropathologic diagnoses, and risk genotype information. As previously described, LATE-NC was associated with older age at death, cognitive impairment, and the TMEM106B risk allele. Pathologically, LATE-NC was associated with comorbid hippocampal sclerosis (HS), myelin loss, and vascular disease in white matter (WM). Unbiased hierarchical clustering of TDP-43 inclusion morphologies revealed discernable subtypes of LATE-NC with distinct clinical, genetic, and pathologic associations. The most common patterns were: Pattern 1, with lamina II TDP-43 + processes and preinclusion pathology in cortices of the amygdala region, and frequent LATE-NC Stage 3 with HS; Pattern 2, previously described as type-β, with neurofibrillary tangle-like TDP-43 neuronal cytoplasmic inclusions (NCIs), high Alzheimer's disease neuropathologic change (ADNC), frequent APOE ε4, and usually LATE-NC Stage 2; Pattern 3, with round NCIs and thick neurites in amygdala, younger age at death, and often comorbid Lewy body disease; and Pattern 4 (the most common pattern), with tortuous TDP-43 processes in subpial and WM regions, low ADNC, rare HS, and lower dementia probability. TDP-43 pathology with features of patterns 1 and 2 were often comorbid in the same brains. Early and mild TDP-43 pathology was often best described to be localized in the "amygdala region" rather than the amygdala proper. There were also important shared attributes across patterns. For example, all four patterns were associated with the TMEM106B risk allele. Each pattern also demonstrated the potential to progress to higher LATE-NC stages with confluent anatomical and pathological patterns, and to contribute to dementia. Although LATE-NC showed distinct patterns of initiation in amygdala region, there was also apparent shared genetic risk and convergent pathways of clinico-pathological evolution.
Collapse
Affiliation(s)
- Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA.
| | | | - Suzanne Z Powell
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Andreana L Rivera
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Erin L Abner
- Sanders-Brown Center On Aging, University of Kentucky, University of Kentucky, Lexington, KY, 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Gustavo C Roman
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA
- Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Joseph C Masdeu
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA
- Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
22
|
Gauthreaux KM, Teylan MA, Katsumata Y, Mock C, Culhane JE, Chen YC, Chan KCG, Fardo DW, Dugan AJ, Cykowski MD, Jicha GA, Kukull WA, Nelson PT. Limbic-Predominant Age-Related TDP-43 Encephalopathy: Medical and Pathologic Factors Associated With Comorbid Hippocampal Sclerosis. Neurology 2022; 98:e1422-e1433. [PMID: 35121671 PMCID: PMC8992604 DOI: 10.1212/wnl.0000000000200001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Limbic-predominant age-related Tar DNA binding protein 43 (TDP-43) encephalopathy neuropathologic change (LATE-NC) is present in ≈25% of older persons' brains and is strongly associated with cognitive impairment. Hippocampal sclerosis (HS) pathology is often comorbid with LATE-NC, but the clinical and pathologic correlates of HS in LATE-NC are not well understood. METHODS This retrospective autopsy cohort study used data derived from the National Alzheimer's Coordinating Center Neuropathology Data Set, which included neurologic status, medical histories, and neuropathologic results. All autopsies were performed in 2014 or later. Among participants with LATE-NC, those who also had HS pathology were compared with those without HS with regard to candidate risk factors or common underlying diseases. Statistical significance was set at nominal p < 0.05 in this exploratory study. RESULTS A total of 408 participants were included (n = 221 were LATE-NC+/HS-, n = 145 were LATE-NC+/HS+, and n = 42 were LATE-NC-/HS+). Most of the included LATE-NC+ participants were severely impaired cognitively (83.3% with dementia). Compared to HS- participants, LATE-NC+ participants with HS trended toward having worse cognitive status and scored lower on the Personal Care and Orientation domains (both p = 0.03). Among LATE-NC+ participants with Braak neurofibrillary tangle (NFT) stages 0 to IV (n = 88), HS+ participants were more impaired in the Memory and Orientation domains (both p = 0.02). There were no differences (HS+ compared with HS-) in the proportion with clinical histories of seizures, stroke, cardiac bypass procedures, diabetes, or hypertension. The HS+ group lacking TDP-43 proteinopathy (n = 42) was relatively likely to have had strokes (p = 0.03). When LATE-NC+ participants with or without HS were compared, there were no differences in Alzheimer disease neuropathologies (Thal β-amyloid phases or Braak NFT stages) or Lewy body pathologies. However, the HS+ group was less likely to have amygdala-restricted TDP-43 proteinopathy (LATE-NC stage 1) and more likely to have neocortical TDP-43 proteinopathy (LATE-NC stage 3) (p < 0.001). LATE-NC+ brains with HS also tended to have more severe circle of Willis atherosclerosis and arteriolosclerosis pathologies. DISCUSSION In this cohort skewed toward participants with severe dementia, LATE-NC+ HS pathology was not associated with seizures or with Alzheimer-type pathologies. Rather, the presence of comorbid HS pathology was associated with more widespread TDP-43 proteinopathy and with more severe non-β-amyloid vessel wall pathologies.
Collapse
Affiliation(s)
- Kathryn M Gauthreaux
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Merilee A Teylan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Yuriko Katsumata
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Charles Mock
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Jessica E Culhane
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Yen-Chi Chen
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Kwun C G Chan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - David W Fardo
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Adam J Dugan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Matthew D Cykowski
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Gregory A Jicha
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Walter A Kukull
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Peter T Nelson
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington.
| |
Collapse
|
23
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
24
|
Uemura MT, Robinson JL, Cousins KAQ, Tropea TF, Kargilis DC, McBride JD, Suh E, Xie SX, Xu Y, Porta S, Uemura N, Van Deerlin VM, Wolk DA, Irwin DJ, Brunden KR, Lee VMY, Lee EB, Trojanowski JQ. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol 2022; 143:15-31. [PMID: 34854996 PMCID: PMC9136643 DOI: 10.1007/s00401-021-02383-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.
Collapse
Affiliation(s)
- Maiko T Uemura
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - John L Robinson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A Q Cousins
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Kargilis
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer D McBride
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Norihito Uemura
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
- Penn Memory Center at the Penn Neuroscience Center, Perelman Center for Advanced Medicine, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4283, USA
- Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
- Penn Lewy Body Dementia Association Research Center of Excellence, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4283, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer’s Disease. Mol Neurodegener 2021; 16:84. [PMID: 34930382 PMCID: PMC8691026 DOI: 10.1186/s13024-021-00503-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/05/2022] Open
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression. Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43 inclusions have been found in up to 57% of Alzheimer’s disease (AD) cases, most often in a limbic distribution, with or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43 pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.
Collapse
|
26
|
Geerts H, van der Graaf P. Computational Approaches for Supporting Combination Therapy in the Post-Aducanumab Era in Alzheimer’s Disease. J Alzheimers Dis Rep 2021; 5:815-826. [PMID: 34966890 PMCID: PMC8673549 DOI: 10.3233/adr-210039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
With the approval of aducanumab on the “Accelerated Approval Pathway” and the recognition of amyloid load as a surrogate marker, new successful therapeutic approaches will be driven by combination therapy as was the case in oncology after the launch of immune checkpoint inhibitors. However, the sheer number of therapeutic combinations substantially complicates the search for optimal combinations. Data-driven approaches based on large databases or electronic health records can identify optimal combinations and often using artificial intelligence or machine learning to crunch through many possible combinations but are limited to the pharmacology of existing marketed drugs and are highly dependent upon the quality of the training sets. Knowledge-driven in silico modeling approaches use multi-scale biophysically realistic models of neuroanatomy, physiology, and pathology and can be personalized with individual patient comedications, disease state, and genotypes to create ‘virtual twin patients’. Such models simulate effects on action potential dynamics of anatomically informed neuronal circuits driving functional clinical readouts. Informed by data-driven approaches this knowledge-driven modeling could systematically and quantitatively simulate all possible target combinations for a maximal synergistic effect on a clinically relevant functional outcome. This approach seamlessly integrates pharmacokinetic modeling of different therapeutic modalities. A crucial requirement to constrain the parameters is the access to preferably anonymized individual patient data from completed clinical trials with various selective compounds. We believe that the combination of data- and knowledge driven modeling could be a game changer to find a cure for this devastating disease that affects the most complex organ of the universe.
Collapse
Affiliation(s)
- Hugo Geerts
- Certara UK-SimCyp, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | - Piet van der Graaf
- Certara UK-SimCyp, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| |
Collapse
|
27
|
Grothe MJ, Moscoso A, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Snellman A, Zetterberg H, Blennow K, Schöll M. Associations of Fully Automated CSF and Novel Plasma Biomarkers With Alzheimer Disease Neuropathology at Autopsy. Neurology 2021; 97:e1229-e1242. [PMID: 34266917 PMCID: PMC8480485 DOI: 10.1212/wnl.0000000000012513] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To study CSF biomarkers of Alzheimer disease (AD) analyzed by fully automated Elecsys immunoassays compared to neuropathologic gold standards and to compare their accuracy to plasma phosphorylated tau (p-tau181) measured with a novel single molecule array method. METHODS We studied antemortem Elecsys-derived CSF biomarkers in 45 individuals who underwent standardized postmortem assessments of AD and non-AD neuropathologic changes at autopsy. In a subset of 26 participants, we also analyzed antemortem levels of plasma p-tau181 and neurofilament light (NfL). Reference biomarker values were obtained from 146 amyloid-PET-negative healthy controls (HC). RESULTS All CSF biomarkers clearly distinguished pathology-confirmed AD dementia (n = 27) from HC (area under the curve [AUC] 0.86-1.00). CSF total tau (t-tau), p-tau181, and their ratios with β-amyloid1-42 (Aβ1-42) also accurately distinguished pathology-confirmed AD from non-AD dementia (n = 8; AUC 0.94-0.97). In pathology-specific analyses, intermediate to high Thal amyloid phases were best detected by CSF Aβ1-42 (AUC [95% confidence interval] 0.91 [0.81-1]), while intermediate to high scores for Consortium to Establish a Registry for Alzheimer's Disease neuritic plaques and Braak tau stages were best detected by CSF p-tau181 (AUC 0.89 [0.79-0.99] and 0.88 [0.77-0.99], respectively). Optimal Elecsys biomarker cutoffs were derived at 1,097, 229, and 19 pg/mL for Aβ1-42, t-tau, and p-tau181. In the plasma subsample, both plasma p-tau181 (AUC 0.91 [0.86-0.96]) and NfL (AUC 0.93 [0.87-0.99]) accurately distinguished those with pathology-confirmed AD (n = 14) from HC. However, only p-tau181 distinguished AD from non-AD dementia cases (n = 4; AUC 0.96 [0.88-1.00]) and showed a similar, although weaker, pathologic specificity for neuritic plaques (AUC 0.75 [0.52-0.98]) and Braak stage (AUC 0.71 [0.44-0.98]) as CSF p-tau181. CONCLUSION Elecsys-derived CSF biomarkers detect AD neuropathologic changes with very high discriminative accuracy in vivo. Preliminary findings support the use of plasma p-tau181 as an easily accessible and scalable biomarker of AD pathology. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that fully automated CSF t-tau and p-tau181 measurements discriminate between autopsy-confirmed AD and other dementias.
Collapse
Affiliation(s)
- Michel J Grothe
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| | - Alexis Moscoso
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Nicholas J Ashton
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Thomas K Karikari
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Juan Lantero-Rodriguez
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Anniina Snellman
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Henrik Zetterberg
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Kaj Blennow
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Michael Schöll
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| |
Collapse
|
28
|
Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Boehme KL, Teylan MA, Cykowski MD, Mukherjee S, Kauwe JSK, Hohman TJ, Schneider JA, Fardo DW. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun 2021; 9:152. [PMID: 34526147 PMCID: PMC8442328 DOI: 10.1186/s40478-021-01250-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer’s Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer’s pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer’s-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.
Collapse
|
29
|
Huangfu N, Wang Y, Xu Z, Zheng W, Tao C, Li Z, Hu Y, Chen X. TDP43 Exacerbates Atherosclerosis Progression by Promoting Inflammation and Lipid Uptake of Macrophages. Front Cell Dev Biol 2021; 9:687169. [PMID: 34291051 PMCID: PMC8287832 DOI: 10.3389/fcell.2021.687169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Atherosclerosis (AS), characterized by cholesterol overloaded-macrophages accumulation and plaque formation in blood vessels, is the major cause of cardiovascular disease. Transactive response DNA-binding protein∼43 kDa (TDP43) has recently been identified as an independent driver of neurodegenerative diseases through triggering inflammatory response. This study investigated whether TDP43 is involved in AS development, especially in macrophages-mediated-foam cell formation and inflammatory responses. Methods Transactive response DNA-binding protein∼43 kDa expressions in oxidized low-density lipoprotein (oxLDL)-treated macrophages and peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease (CAD) were detected by real time-polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence. Gene gain or loss of function was used to investigate the effects of TDP43 on macrophages-mediated lipid untake and inflammation with ELISA, protein immunoprecipitation, RT-PCR, Western blot, and immunofluorescence. Macrophage TDP43 specific knockout mice with ApoE-/- background were fed with western diet for 12 weeks to establish AS model, and used to explore the role of TDP43 on AS progression. Results Transactive response DNA-binding protein∼43 kDa expression increases in oxLDL-treated macrophages and PBMCs from patients with CAD. Furthermore, we find that TDP43 promotes activation of NF-κB to increase inflammatory factor expression in macrophages through triggering mitochondrial DNA release to activate cGAS-STING signaling. Moreover, TDP43 strengthens lipid uptake of macrophages through regulating β-catenin and PPAR-γ complex to promote scavenger receptor gene CD36 transcription. Finally, using macrophage TDP43 specific knockout mice with ApoE-/- background fed with western diet for 12 weeks to establish AS model, we find that specific knockout of TDP43 in macrophages obviously alleviates western diet-induced AS progression in mice. Conclusions Transactive response DNA-binding protein∼43 kDa exacerbates atherosclerosis progression by promoting inflammation and lipid uptake of macrophages, suggesting TDP43 as a potential target for developing atherosclerotic drug.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Zhenyu Xu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Wenyuan Zheng
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Chunlan Tao
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Yewen Hu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
30
|
Sieben A, Van Langenhove T, Vermeiren Y, Gossye H, Praet M, Vanhauwaert D, Cousaert C, Engelborghs S, Raedt R, Boon P, Santens P, De Deyn PP, Bracke KR, De Meulemeester K, Van Broeckhoven C, Martin JJ, Bjerke M. Hippocampal Sclerosis in Frontotemporal Dementia: When Vascular Pathology Meets Neurodegeneration. J Neuropathol Exp Neurol 2021; 80:313-324. [PMID: 33638350 DOI: 10.1093/jnen/nlab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal sclerosis (HS) is a common neuropathological finding and has been associated with advanced age, TDP-43 proteinopathy, and cerebrovascular pathology. We analyzed neuropathological data of an autopsy cohort of early-onset frontotemporal dementia patients. The study aimed to determine whether in this cohort HS was related to TDP-43 proteinopathy and whether additional factors could be identified. We examined the relationship between HS, proteinopathies in frontotemporal cortices and hippocampus, Alzheimer disease, cerebrovascular changes, and age. We confirmed a strong association between HS and hippocampal TDP-43, whereas there was a weaker association between HS and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Nearly all of the FTLD-TDP cases had TDP-43 pathology in the hippocampus. HS was present in all FTLD-TDP type D cases, in 50% of the FTLD-TDP A cohort and in 6% of the FTLD-TDP B cohort. Our data also showed a significant association between HS and vascular changes. We reviewed the literature on HS and discuss possible pathophysiological mechanisms between TDP-43 pathology, cerebrovascular disease, and HS. Additionally, we introduced a quantitative neuronal cell count in CA1 to objectify the semiquantitative visual appreciation of HS.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, AZ Jan Palfijn, Ghent, Belgium
| | - Tim Van Langenhove
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Yannick Vermeiren
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium.,Institute Born-Bunge, Laboratory of Neurogenetics, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Sebastiaan Engelborghs
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Jacques Martin
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurochemistry Laboratory, Department of Clinical Biology and Center for Neurosciences, University hospital Brussels and Free University of Brussels, Brussels, Belgium
| |
Collapse
|
31
|
Agrawal S, Yu L, Kapasi A, James BD, Arfanakis K, Barnes LL, Bennett DA, Nag S, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol 2021; 31:e12939. [PMID: 33624322 PMCID: PMC8363209 DOI: 10.1111/bpa.12939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic change (LATE-NC) and microvascular pathologies, including microinfarcts, cerebral amyloid angiopathy (CAA), and arteriolosclerosis are common in old age. A relationship between LATE-NC and arteriolosclerosis has been reported in some but not all studies. The objectives of this study were to investigate the frequency of co-occurring LATE-NC and microvascular pathologies and test the hypothesis that arteriolosclerosis, specifically, is related to LATE-NC in brains from community-dwelling older persons. Analyses included 749 deceased participants with completed data on LATE-NC and microvascular pathology from 3 longitudinal clinical pathologic studies of aging. Given the specific interest in arteriolosclerosis, we expanded the examination of arteriolosclerosis to include not only the basal ganglia but also two additional white matter regions from anterior and posterior watershed territories. Ordinal logistic regression models examined the association of microvascular pathology with LATE-NC. LATE-NC was present in 409 (54.6%) decedents, of which 354 (86.5%) had one or multiple microvascular pathologies including 132 (32.3%) with moderate-severe arteriolosclerosis in basal ganglia, 195 (47.6%) in anterior watershed, and 144 (35.2%) in posterior watershed; 170 (41.5%) with moderate-severe CAA, and 150 (36.6%) with microinfarcts. In logistic regression models, only posterior watershed arteriolosclerosis, but not other regions of arteriolosclerosis was associated with a higher odds of more advanced LATE-NC stages (Odds Ratio = 1.12; 95% Confidence Interval = 1.01-1.25) after controlling for demographics, AD, and other age-related pathologies. Capillary CAA, but not the severity of CAA was associated with an increased odds of LATE-NC burden (Odds Ratio = 1.71; 95% Confidence Interval = 1.13-2.58). Findings were unchanged in analyses controlling for APOE ε4, vascular risk factors, or vascular diseases. These findings suggest that LATE-NC with microvascular pathology is a very common mixed pathology and small vessel disease pathology may contribute to LATE-NC in the aging brain.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Bryan D James
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
32
|
Robinson JL, Porta S, Garrett FG, Zhang P, Xie SX, Suh E, Van Deerlin VM, Abner EL, Jicha GA, Barber JM, Lee VMY, Lee EB, Trojanowski JQ, Nelson PT. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 2021; 143:2844-2857. [PMID: 32830216 DOI: 10.1093/brain/awaa219] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.
Collapse
Affiliation(s)
- John L Robinson
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Filip G Garrett
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Panpan Zhang
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - EunRan Suh
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Justin M Barber
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Virginia M-Y Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Sharma MJ, Callahan BL. Cerebrovascular and Neurodegenerative Pathologies in Long-Term Stable Mild Cognitive Impairment. J Alzheimers Dis 2021; 79:1269-1283. [PMID: 33427736 DOI: 10.3233/jad-200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is considered by some to be a prodromal phase of a progressive disease (i.e., neurodegeneration) resulting in dementia; however, a substantial portion of individuals (ranging from 5-30%) remain cognitively stable over the long term (sMCI). The etiology of sMCI is unclear but may be linked to cerebrovascular disease (CVD), as evidence from longitudinal studies suggest a significant proportion of individuals with vasculopathy remain stable over time. OBJECTIVE To quantify the presence of neurodegenerative and vascular pathologies in individuals with long-term (>5-year) sMCI, in a preliminary test of the hypothesis that CVD may be a contributor to non-degenerative cognitive impairment. We expect frequent vasculopathy at autopsy in sMCI relative to neurodegenerative disease, and relative to individuals who convert to dementia. METHODS In this retrospective study, using data from the National Alzheimer's Coordinating Center, individuals with sMCI (n = 28) were compared to those with MCI who declined over a 5 to 9-year period (dMCI; n = 139) on measures of neurodegenerative pathology (i.e., Aβ plaques, neurofibrillary tangles, TDP-43, and cerebral amyloid angiopathy) and CVD (infarcts, lacunes, microinfarcts, hemorrhages, and microbleeds). RESULTS Alzheimer's disease pathology (Aβ plaques, neurofibrillary tangles, and cerebral amyloid angiopathy) was significantly higher in the dMCI group than the sMCI group. Microinfarcts were the only vasculopathy associated with group membership; these were more frequent in sMCI. CONCLUSION The most frequent neuropathology in this sample of long-term sMCI was microinfarcts, tentatively suggesting that silent small vessel disease may characterize non-worsening cognitive impairment.
Collapse
Affiliation(s)
- Manu J Sharma
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| | - Brandy L Callahan
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| |
Collapse
|
34
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
35
|
Katsumata Y, Abner EL, Karanth S, Teylan MA, Mock CN, Cykowski MD, Lee EB, Boehme KL, Mukherjee S, Kauwe JSK, Kryscio RJ, Schmitt FA, Fardo DW, Nelson PT. Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy. Acta Neuropathol 2020; 140:659-674. [PMID: 32797255 PMCID: PMC7572241 DOI: 10.1007/s00401-020-02211-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
To better understand clinical and neuropathological features of TDP-43 proteinopathies, data were analyzed from autopsied research volunteers who were followed in the National Alzheimer's Coordinating Center (NACC) data set. All subjects (n = 495) had autopsy-proven TDP-43 proteinopathy as an inclusion criterion. Subjects underwent comprehensive longitudinal clinical evaluations yearly for 6.9 years before death on average. We tested whether an unsupervised clustering algorithm could detect coherent groups of TDP-43 immunopositive cases based on age at death and extensive neuropathologic data. Although many of the brains had mixed pathologies, four discernible clusters were identified. Key differentiating features were age at death and the severity of comorbid Alzheimer's disease neuropathologic changes (ADNC), particularly neuritic amyloid plaque densities. Cluster 1 contained mostly cases with a pathologic diagnosis of frontotemporal lobar degeneration (FTLD-TDP), consistent with enrichment of frontotemporal dementia clinical phenotypes including appetite/eating problems, disinhibition and primary progressive aphasia (PPA). Cluster 2 consisted of elderly limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) subjects without severe neuritic amyloid plaques. Subjects in Cluster 2 had a relatively slow cognitive decline. Subjects in both Clusters 3 and 4 had severe ADNC + LATE-NC; however, Cluster 4 was distinguished by earlier disease onset, swifter disease course, more Lewy body pathology, less neocortical TDP-43 proteinopathy, and a suggestive trend in a subgroup analysis (n = 114) for increased C9orf72 risk SNP rs3849942 T allele (Fisher's exact test p value = 0.095). Overall, clusters enriched with neocortical TDP-43 proteinopathy (Clusters 1 and 2) tended to have lower levels of neuritic amyloid plaques, and those dying older (Clusters 2 and 3) had far less PPA or disinhibition, but more apathy. Indeed, 98% of subjects dying past age 85 years lacked clinical features of the frontotemporal dementia syndrome. Our study revealed discernible subtypes of LATE-NC and underscored the importance of age of death for differentiating FTLD-TDP and LATE-NC.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Shama Karanth
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, 98105, USA
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, 98105, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin L Boehme
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | | | - John S K Kauwe
- Brigham Young University-Hawaii, Laie, HI, 96762, USA
- Biology Department, Brigham Young University, Provo, UT, 84602, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Statistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pathology, University of Kentucky, Rm 311 Sanders-Brown Center on Aging, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Trejo-Lopez JA, Sorrentino ZA, Riffe CJ, Lloyd GM, Labuzan SA, Dickson DW, Yachnis AT, Prokop S, Giasson BI. Novel monoclonal antibodies targeting the RRM2 domain of human TDP-43 protein. Neurosci Lett 2020; 738:135353. [PMID: 32905837 DOI: 10.1016/j.neulet.2020.135353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Transactive response DNA-binding protein of 43 kilodaltons (TDP-43) is a 414 amino acid protein that under physiologic conditions localizes to the nucleus and participates in the regulation of RNA metabolism through two RNA recognition motifs (RRM1 and RRM2). In neurodegenerative diseases, TDP-43 may become hyperphosphorylated, ubiquitinated, and aggregate into cytoplasmic inclusions. TDP-43 is now well-characterized as a pathologic protein of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Additionally, a common TDP-43 proteinopathy arising outside of the context of ALS and FTLD-TDP has been recently described, termed "limbic predominant age-related TDP-43 encephalopathy (LATE)." In the current study, two novel mouse-derived monoclonal antibodies, 2G11 and 2H1, raised against an epitope within the RRM2 domain of TDP-43 (residues 198-216), were characterized for specificity and immunohistochemical application in human brain from cases of Alzheimer's disease (AD), Lewy Body Disease (LBD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobe degeneration with TDP-43 inclusions (FTLD-TDP). Immunoblot analysis of these antibodies in HEK293T cells revealed efficient detection of intact human TDP-43 protein, and in N2A cells showed no reactivity for mouse TDP-43. Immunohistochemically applied to formalin-fixed paraffin-embedded tissues, 2G11 and 2H1 robustly identified the classic inclusions of ALS and FTLD-TDP, and efficaciously provided a diagnosis of LATE in cases of AD and LBD. These novel antibodies label aberrant intracytoplasmic protein inclusions without relying on hyperphosphorylated epitopes, and provide elegant discrimination between TDP-43 and tau neurofibrillary tangles within neurodegenerative comorbidity.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Department of Laboratory Medicine and Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zachary A Sorrentino
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Grace M Lloyd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Sydney A Labuzan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
37
|
Lopez OL, Kofler J, Chang Y, Berman SB, Becker JT, Sweet RA, Nadkarni N, Patira R, Kamboh MI, Cohen AD, Snitz BE, Kuller LH, Klunk WE. Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol 2020; 7:1546-1556. [PMID: 32735084 PMCID: PMC7480925 DOI: 10.1002/acn3.51135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To examine the relationship between duration of the cognitive symptoms, from the earliest reported symptom to death, and hippocampal sclerosis (HS) and TAR-DNA binding protein of 43kDA (TDP-43) in Alzheimer's disease (AD) patients. METHODS The study was conducted in 359 cognitively impaired patients who met the pathological criteria for AD (NIA-Reagan intermediate or high). The mean age at onset was 69.5 ± 8.8 years (range 37-95) and the mean duration of the symptoms was 10.5 ± 4.2 years. The association between symptoms duration and HS and TDP-43 was examined with logistic regression analyses controlling for age at death, atherosclerosis in the Circle of Willis (CW), cerebral infarcts, gender, baseline Mini Mental State Examination scores, APOE-4 allele, and presence of Lewy bodies (LB). RESULTS HS was present in 18% (n = 64) and TDP-43 in 51.5% (n = 185) of the patients. HS and TDP-43 were more frequent in patients whose symptoms lasted more than 10 years. LBs were present in 72% of the patients with HS and in 64% of the patients with TDP-43. Age at onset was not associated with TDP-43 or HS. HS was associated with duration of symptoms and LB, TDP-43, and atherosclerosis in the CW. TDP-43 was associated with duration of symptoms, LB, and HS. INTERPRETATION HS and TDP-43 are present in early and late onset AD. However, their presence is mainly driven by the duration of symptoms and the presence of LB. This suggests that HS and TDP-43 are part of the later neuropathological changes in AD.
Collapse
Affiliation(s)
- Oscar L. Lopez
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Julia Kofler
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - YueFang Chang
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Sarah B. Berman
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - James T. Becker
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Robert A. Sweet
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Neelesh Nadkarni
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Riddhi Patira
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - M. Ilyas Kamboh
- Department of Human GeneticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Ann D. Cohen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Beth E. Snitz
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Lewis H. Kuller
- Department of EpidemiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - William E. Klunk
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
38
|
Zhang N, Gu D, Meng M, Gordon ML. TDP-43 Is Elevated in Plasma Neuronal-Derived Exosomes of Patients With Alzheimer's Disease. Front Aging Neurosci 2020; 12:166. [PMID: 32581773 PMCID: PMC7287025 DOI: 10.3389/fnagi.2020.00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Recently, TDP-43 has been recognized as a common proteinopathy in the “oldest old” and a neuropathological comorbidity in patients with Alzheimer’s disease (AD). However, since it has a low concentration in cerebrospinal fluid, the presence of TDP-43 in AD is rarely investigated in vivo. Methods Twenty-four patients with amyloid PET confirmed AD and 15 healthy controls (HCs) were included in this study. TDP-43 level in plasma neuronal-derived exosomes (NDEs) was measured by enzyme-linked immunosorbent assay. Results TDP-43 level was elevated in patients with AD compared with HCs (median 1.08 ng/ml, IQR 0.72–1.37 ng/ml vs. median 0.66 ng/ml, IQR 0.48–0.76 ng/ml, P = 0.002). There was no correlation between TDP-43 level and cognitive function, neuropsychiatric symptoms or APOE genotype in patients with AD. Conclusion This study demonstrated increased TDP-43 accumulation in AD patients by examining plasma NDEs, which may provide a window into the effects of TDP-43 on AD progression.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China.,Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Dongmei Gu
- Department of Clinical Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
39
|
Mock C, Teylan M, Beecham G, Besser L, Cairns NJ, Crary JF, Katsumata Y, Nelson PT, Kukull W. The Utility of the National Alzheimer's Coordinating Center's Database for the Rapid Assessment of Evolving Neuropathologic Conditions. Alzheimer Dis Assoc Disord 2020; 34:105-111. [PMID: 32304374 PMCID: PMC7242145 DOI: 10.1097/wad.0000000000000380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of dementia research is rapidly evolving, especially with regards to our understanding of the diversity of neuropathologic changes that underlie cognitive decline. Definitions and criteria for known conditions are being periodically revised and refined, and new findings are being made about neuropathologic features associated with dementia status. The database maintained by the National Alzheimer's Coordinating Center (NACC) offer researchers a robust, rapid, and statistically well-powered method to evaluate the implications of newly identified neuropathologic conditions with regards to comorbidities, demographic associations, cognitive status, neuropsychologic tests, radiographic findings, and genetics. NACC data derive from dozens of excellent US Alzheimer disease research centers, which collectively follow thousands of research volunteers longitudinally. Many of the research participants are autopsied using state-of-the-art methods. In this article, we describe the NACC database and give examples of its use in evaluating recently revised neuropathologic diagnoses, including primary age-related tauopathy (PART), limbic predominant age-related TDP-43 encephalopathy (LATE), and the preclinical stage of Alzheimer disease neuropathologic change, based on the National Institute on Aging-Alzheimer's Association consensus guidelines. The dementia research community is encouraged to make use of this readily available database as new neuropathologic changes are recognized and defined in this rapidly evolving field.
Collapse
Affiliation(s)
- Charles Mock
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Merilee Teylan
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Gary Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Nigel J. Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John F. Crary
- Neuropathology Brain Bank & Research Core, Departments of Pathology & Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Walter Kukull
- National Alzheimer’s Coordinating Center, University of Washington, WA
| |
Collapse
|
40
|
Besser LM, Teylan MA, Nelson PT. Limbic Predominant Age-Related TDP-43 Encephalopathy (LATE): Clinical and Neuropathological Associations. J Neuropathol Exp Neurol 2020; 79:305-313. [PMID: 31845964 PMCID: PMC7036651 DOI: 10.1093/jnen/nlz126] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, a consensus working group provided new terminology for a common disease entity, limbic predominant age-related TDP-43 encephalopathy (LATE), and its neuropathological substrate (LATE-NC). LATE-NC not only often co-occurs with Alzheimer disease neuropathological change (ADNC), but also may present in isolation. The present study aimed to investigate potential risk factors and neuropathological characteristics associated with LATE-NC. A sample of 616 autopsied participants (>75 years at death), with TDP-43 immunohistochemical studies performed, was obtained from the National Alzheimer's Coordinating Center. Logistic regression analyses examined associations between demographic, clinical and neuropathological characteristics and LATE-NC (TDP-43 in amygdala, hippocampus, or entorhinal/inferior temporal cortex) (alpha = 0.05). Adjusted models indicated that ADNC, hippocampal sclerosis (HS), arteriolosclerosis, and limbic or amygdala-predominant Lewy body disease (LBD), but not other LBD subtypes, were associated with higher odds of LATE-NC, whereas congestive heart failure (CHF) and motor problems as first predominant symptom were associated with lower odds of LATE-NC. Our findings corroborate previous studies indicating associations between LATE-NC and ADNC, HS, and arteriolosclerosis. Novel findings suggest the association with LATE-NC is restricted to amygdala/limbic-predominant subtype of LBD, and a possible protective (or competing risk) association with CHF. This study may inform future hypothesis-driven research on LATE-NC, a common brain disease of aging.
Collapse
Affiliation(s)
- Lilah M Besser
- From the Institute for Human Health and Disease Intervention (I-HEALTH), School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, Florida
| | - Merilee A Teylan
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, Washington
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
41
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 882] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
42
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|