1
|
Li K, Guo Z, Wu Y, Xu H, Jiang J, Wu H, Sun C, Li Q. Assessing the effects of dual functional V-type cornstarch films added with kiwifruit peel extracts on preservation of fresh-cut kiwifruits: A metabolomics study. Int J Biol Macromol 2025; 291:138833. [PMID: 39708893 DOI: 10.1016/j.ijbiomac.2024.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Fresh-cut fruit, with nutrition and convenience, has a broad market demand. However, its shelf life is shortened due to its tissue damage. Therefore, the development of cost-effective and eco-friendly multifunctional packaging materials to extend the shelf life of fresh-cut fruits is urgently needed. A cornstarch-based film (CS film) was successfully prepared using V-type corn starch as an ethylene scavenger and kiwifruit peel extract (KPE) as an antioxidant. The film containing 4.00 % (v/v) KPE had a DPPH radical scavenging capability of 52.1 % ± 2.4 % and ABTS radical scavenging capability of 70.4 % ± 4.4 %. The amount of ethylene harvested was 17.27 cm3 g-1. In addition, the malondialdehyde content of fresh-cut kiwifruits covered by CS film decreased by 42.82 % compared with PE film after 72 h, and the hardness increased 71.20 %. And the CS film could regulate ethylene and oxygen concentration, and extending the fresh life of kiwifruit from 3 days to 15 days. Metabolomics and transcriptomic analyses revealed that the CS film regulated ethylene self-promotion and the balance of reactive oxygen species metabolism. As a result, these reduced sugar synthesis and metabolism, which helped to maintain the freshness of fresh-cut kiwifruit. These findings can serve as a reference for developing techniques to preserve the packaging of fresh-cut fruits.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhenlong Guo
- Business Comprehensive Service Center, Baiguan Street, Shangyu District, Shaoxing City, Zhejiang 312399, China
| | - Yi Wu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Xu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Juanjuan Jiang
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Lamonaca A, De Angelis E, Monaci L, Pilolli R. Promoting the Emerging Role of Pulse By-Products as Valuable Sources of Functional Compounds and Novel Food Ingredients. Foods 2025; 14:424. [PMID: 39942018 PMCID: PMC11816435 DOI: 10.3390/foods14030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The growth of the human population worldwide has increased food demand, generating the massive production of foods and consequently causing enormous production of waste every year. The indiscriminate exploitation of the already limited natural resources has also generated serious environmental and economic crises. The use, or reuse, of waste or by-products represents a viable solution to constrain the problem by promoting alternative routes of exploitation with multiple food and biotechnological applications. This review focuses on the most recent advances in the valorization of food by-products, with specific reference to legume-derived by-products. The main technological solutions for reintroducing and/or valorizing food waste are reported together with a critical discussion of the main pros and cons of each alternative, supported by practical case studies whenever available. First, the possibility to exploit the by-products as valuable sources of functional compounds is presented by reviewing both conventional and innovative extraction techniques tailored to provide functional extracts with multiple food, pharmaceutical, and biotechnological applications. Second, the possibility to valorize the by-products as novel food ingredients by inclusion in different formulations, either as a whole or as hydrolyzed/fermented derivatives, is also presented and discussed. To the best of our knowledge, several of the technological solutions discussed have found only limited applications for waste or by-products derived from the legume production chain; therefore, great efforts are still required to gain the full advantages of the intrinsic potential of pulse by-products.
Collapse
Affiliation(s)
- Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| |
Collapse
|
3
|
Taesuwan S, Jirarattanarangsri W, Wangtueai S, Hussain MA, Ranadheera S, Ajlouni S, Zubairu IK, Naumovski N, Phimolsiripol Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr Nutr Rep 2024; 13:896-913. [PMID: 39276290 DOI: 10.1007/s13668-024-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW Global food production leads to substantial amounts of agricultural and food waste that contribute to climate change and hinder international efforts to end food insecurity and poverty. Food waste is a rich source of vitamins, minerals, fibers, phenolic compounds, lipids, and bioactive peptides. These compounds can be used to create food products that help reduce heart disease risk and promote sustainability. This review examines the potential cardiovascular benefits of nutrients found in different food waste categories (such as fruits and vegetables, cereal, dairy, meat and poultry, and seafood), focusing on animal and clinical evidence, and giving examples of functional food products in each category. RECENT FINDINGS Current evidence suggests that consuming fruit and vegetable pomace, cereal bran, and whey protein may lower the risk of cardiovascular disease, particularly in individuals who are at risk. This is due to improved lipid profile, reduced blood pressure and increased flow-mediated dilation, enhanced glucose and insulin regulation, decreased inflammation, as well as reduced platelet aggregation and improved endothelial function. However, the intervention studies are limited, including a low number of participants and of short duration. Food waste has great potential to be utilized as cardioprotective products. Longer-term intervention studies are necessary to substantiate the health claims of food by-products. Technological advances are needed to improve the stability and bioavailability of bioactive compounds. Implementing safety assessments and regulatory frameworks for functional food derived from food waste is crucial. This is essential for maximizing the potential of food waste, reducing carbon footprint, and improving human health.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia.
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
| | | | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Malik A Hussain
- School of Science, Western Sydney University, Richmond, NSW, 2758, Australia
| | - Senaka Ranadheera
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
4
|
Fatima R, Fatima F, Altemimi AB, Bashir N, Sipra HM, Hassan SA, Mujahid W, Shehzad A, Abdi G, Aadil RM. Bridging sustainability and industry through resourceful utilization of pea pods- A focus on diverse industrial applications. Food Chem X 2024; 23:101518. [PMID: 38952562 PMCID: PMC11215214 DOI: 10.1016/j.fochx.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The focus on sustainable utilization of agricultural waste is currently a leading area of scientific research, driving significant advancements in technology and circular economy models. The fundamental capacity of bio-based products, bioprocessing techniques, and the crucial involvement of microbial treatments are opening opportunities for efficient solutions in various industries. One of the most popular green vegetables, peas are members of the Fabaceae family and have a pod-like structure. Every year, a significant amount of pea pods is discarded as waste products of peas that have negative impacts on our environment. In this comprehensive review, we explore innovative methods for utilizing pea pods to minimize their environmental footprint and optimize their viability across multiple industries. A large portion of the pea processing industry's output consists of pea pods. Variety of proteins, with major classes being globulin and albumin (13%), dietary fiber (43-58%), and minerals are abundant in these pods. Because of their diverse physiochemical properties, they find applications in many diverse fields. The porous pea pods comprised cellulose (61.35%) and lignin (22.12%), which could make them superior adsorbents. The components of these byproducts possess valuable attributes that make them applicable across treatment of wastewater, production of biofuels, synthesis of biocolors, development of nutraceuticals, functional foods, and enzymes for the textile industry, modification of oil, and inhibition of steel corrosion.
Collapse
Affiliation(s)
- Rubab Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Filza Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Nadia Bashir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hassan Mehmood Sipra
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waqar Mujahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ.Artois, ULR7519 - Transformations & Agro-ressources, Normandie Université, F-76130, Mont-Saint-Aignan, France
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Travičić V, Cvanić T, Vidović S, Pezo L, Hidalgo A, Šovljanski O, Ćetković G. Sustainable Recovery of Polyphenols and Carotenoids from Horned Melon Peel via Cloud Point Extraction. Foods 2024; 13:2863. [PMID: 39335792 PMCID: PMC11431220 DOI: 10.3390/foods13182863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Using natural plant extracts as food additives is a promising approach for improving food products' quality, nutritional value, and safety, offering advantages for both consumers and the environment. Therefore, the main goal of this study was to develop a sustainable method for extracting polyphenols and carotenoids from horned melon peel using the cloud point extraction (CPE) technique, intending to utilize it as a natural food additive. CPE is novel promising extraction method for separation and pre-concentration of different compounds while being simple, inexpensive, and low-toxic. Three parameters within the CPE approach, i.e., pH, equilibrium temperature, and equilibrium time, were investigated as independent variables through the implementation of Box-Behnken design and statistical analyses. The optimized conditions for the maximum recovery of both polyphenols and carotenoids, reaching 236.14 mg GAE/100 g and 13.80 mg β carotene/100 g, respectively, were a pH value of 7.32, an equilibrium temperature of 55 °C, and an equilibrium time of 43.03 min. The obtained bioactives' recovery values under the optimized conditions corresponded to the predicted ones, indicating the suitability of the employed RSM model. These results highlight the effectiveness of CPE in extracting bioactive compounds with varying polarities from agricultural by-products, underscoring its potential for enhancing the value of food waste and advancing sustainable practices in food processing. According to microbiological food safety parameters, the optimal CPE extract is suitable for food applications, while its storage under refrigerated and dark conditions is particularly beneficial. The CPE extract's enhanced stability under these conditions makes it a more viable option for long-term storage, preserving both safety and quality.
Collapse
Affiliation(s)
- Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Teodora Cvanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Engineering Department, Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Gordana Ćetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Chiaraluce G, Bentivoglio D, Del Conte A, Lucas MR, Finco A. The second life of food by-products: Consumers’ intention to purchase and willingness to pay for an upcycled pizza. CLEANER AND RESPONSIBLE CONSUMPTION 2024; 14:100198. [DOI: 10.1016/j.clrc.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Martín I, López C, García-González J, Mateo S. Eco-friendly solvent-based liquid-liquid extraction of phenolic acids from winery wastewater streams. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121969. [PMID: 39098073 DOI: 10.1016/j.jenvman.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
This study proposes liquid-liquid extraction (LLE) for the recovery of phenolic acids from winery wastewater replacing common volatile organic compounds (VOCs) with environmentally friendly solvents. On one hand, terpenes (α-pinene and p-cymene) and terpenoids (eucalyptol and linalool) were selected as green solvents and compared to common VOCs (ethyl acetate or 1-butanol). On the other hand, gallic acid (GA), vanillic acid (VA), syringic acid (SA) and caffeic acid (CA) were selected as phenolic acids to be recovered. The extraction performance was evaluated under different operation conditions: solvent-to-feed ratio, initial concentration of phenolic acids and temperature. This work also evaluated the back-extraction whole process global recovery and solvent regeneration, by means of aqueous NaOH solution. Eucalyptol has shown the highest overall global extraction performance (21.07 % for GA, 93.21 % for VA, 78.79 % for SA, and 80.57 % for CA) and lower water solubility compared to the best performing VOC solvent (1-butanol). Therefore, eucalyptol can be a potential eco-friendly solvent to replace VOCs for sustainable phenolic acid recovery from winery wastewater. Finally, to ensure a clean water stream after the LLE, the traces of solvent were completely removed by electrooxidation with boron-doped diamond anode at a current density of 422.54 A/m2.
Collapse
Affiliation(s)
- Ismael Martín
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Claudia López
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Julián García-González
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Sara Mateo
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Junker N, Sariyar Akbulut B, Wendisch VF. Utilization of orange peel waste for sustainable amino acid production by Corynebacterium glutamicum. Front Bioeng Biotechnol 2024; 12:1419444. [PMID: 39050686 PMCID: PMC11266056 DOI: 10.3389/fbioe.2024.1419444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Oranges are the most processed fruit in the world-it is therefore apparent that the industrial production of orange juice generates large quantities of orange peel as a by-product. Unfortunately, the management of the orange peel waste leads to economic and environmental problems. Meanwhile, the use of sustainable raw materials for the production of bulk chemicals, such as amino acids, is becoming increasingly attractive. To address both issues, this study focused on the use of orange peel waste as a raw material for media preparation for the production of amino acids by engineered Corynebacterium glutamicum. C. glutamicum grew on pure orange peel hydrolysate (OPH) and growth was enhanced by the addition of a nitrogen source and a pH buffer. Inhibitory effects by the combination of high concentrations of OPH, (NH4)2SO4, and MOPS buffer in the wild-type strain (WT), were overcome in the tyrosine-producing engineered C. glutamicum strain AROM3. Genetic modifications that we identified to allow for improved growth rates under these conditions included the deletions of the vanillin dehydrogenase gene vdh, the ʟ-lactate dehydrogenase gene ldhA and the 19 genes comprising cluster cg2663-cg2686. A growth inhibiting compound present in high concentrations in the OPH is 5-(hydroxymethyl)furfural (HMF). We identified vdh as being primarily responsible for the oxidation of HMF to its acid 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), as the formation of HMFCA was reduced by 97% upon deletion of vdh in C. glutamicum WT. In addition, we showed that growth limitations could be overcome by adjusting the media preparation, using a combination of cheap ammonia water and KOH for pH neutralization after acidic hydrolysis. Overall, we developed a sustainable medium based on orange peel waste for the cultivation of C. glutamicum and demonstrated the successful production of the exemplary amino acids ʟ-arginine, ʟ-lysine, ʟ-serine, ʟ-valine and ʟ-tyrosine.
Collapse
Affiliation(s)
- Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Kutlu G. Valorization of various nut residues grown in Turkiye: Antioxidant, anticholinesterase, antidiabetic, and cytotoxic activities. Food Sci Nutr 2024; 12:4362-4371. [PMID: 38873436 PMCID: PMC11167162 DOI: 10.1002/fsn3.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 06/15/2024] Open
Abstract
The utilization of plant-based residues has been extensively employed for the control of diverse illnesses, owing to their safety and minimal adverse effects. In the current study, it was aimed for the characterization of the bioactive, enzyme inhibitory, and cytotoxic activities of fresh pistachio shell skin (FPSS), green walnut husk and walnut membrane (GWH), almond outer shell and inner brown skin (ASIS), as well as peanut husk and inner skin (PHIS) to be used as industrial food processing by-products. The results showed that the samples exhibited different extraction yields, with GWH having the highest percentage at 15.18%, followed by FPSS at 12.81%, ASIS at 10.29%, and PHIS at 7.80%. FPSS had the highest total phenolic content (16.28 mg gallic acid equivalents (GAE)/g) as well as the best antioxidant capabilities for DPPH (8.96 mg Trolox equivalent (TE)/g), FRAP (11.46 mg TE/g), and ABTS (22.38 mg TE/g) assays. FPSS was followed by PHIS, ASIS, and GWH, respectively. Moreover, the extracts exhibited relatively low activity against acetylcholinesterase, α-glucosidase, and α-amylase compared to standard acarbose or galantamine. Furthermore, the extracts may have the potential to induce cytotoxic effects, varying from moderate to mild, on both cancerous (IC50 = 454.55-617.28 μg/mL) and healthy cells (IC50 = 438.60-490.20 μg/mL). The results of this research showed that shell residues of nut hold promise for a variety of industrial applications spanning the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Gozde Kutlu
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and ArchitectureAnkara Medipol UniversityAnkaraTurkiye
| |
Collapse
|
10
|
Negrean OR, Farcas AC, Nemes SA, Cic DE, Socaci SA. Recent advances and insights into the bioactive properties and applications of Rosa canina L. and its by-products. Heliyon 2024; 10:e30816. [PMID: 38765085 PMCID: PMC11101839 DOI: 10.1016/j.heliyon.2024.e30816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Rosa canina L., commonly known as rosehip, is of notable scientific interest for its applications in nutrition, cosmetics, and pharmaceuticals. This review article highlights its health-promoting properties, including antioxidant, anti-inflammatory, hepatoprotective, and anticarcinogenic effects, attributed to its rich content of phenolic acids, carotenoids, tocopherols, and vitamins. With growing interest in sustainable practices, rosehip by-products are increasingly valorized. For instance, cold-pressed rosehip seed oil is a valuable source of polyunsaturated fatty acids, while incorporating rosehip pomace into snacks enhances their nutritional profile, positioning them as potential functional foods and dietary supplements. This article aims to provide a comprehensive overview of advancements in utilizing rosehip and its by-products, emphasizing their role in enriching food and pharmaceutical products with nutritional and functional bioactivities.
Collapse
Affiliation(s)
- Oana-Raluca Negrean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Anca Corina Farcas
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana-Elena Cic
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Sonia Ancuta Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Yu Y, Lu P, Yang Y, Ji H, Zhou H, Chen S, Qiu Y, Chen H. Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques. Sci Rep 2024; 14:9182. [PMID: 38649422 PMCID: PMC11035564 DOI: 10.1038/s41598-024-59760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.
Collapse
Affiliation(s)
- Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ping Lu
- China Tobacco Fujian Industrial Co., Ltd, Xiamen, 361012, China
| | - Yongfeng Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huifu Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hang Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyuan Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Breschi C, D'Agostino S, Meneguzzo F, Zabini F, Chini J, Lovatti L, Tagliavento L, Guerrini L, Bellumori M, Cecchi L, Zanoni B. Can a Fraction of Flour and Sugar Be Replaced with Fruit By-Product Extracts in a Gluten-Free and Vegan Cookie Recipe? Molecules 2024; 29:1102. [PMID: 38474613 DOI: 10.3390/molecules29051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.
Collapse
Affiliation(s)
- Carlotta Breschi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| | - Silvia D'Agostino
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| | | | - Federica Zabini
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| | - Jasmine Chini
- R&D Department, Consorzio Melinda Sca, Via Trento 200, 38023 Cles, Italy
| | - Luca Lovatti
- R&D Department, Consorzio Melinda Sca, Via Trento 200, 38023 Cles, Italy
| | | | - Lorenzo Guerrini
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35122 Padua, Italy
| | - Maria Bellumori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| | - Bruno Zanoni
- Department of Agriculture, Food, Environment and Forestry Sciences and Technologies (DAGRI), University of Florence, 50121 Florence, Italy
| |
Collapse
|
13
|
Tapia-Quirós P, Granados M, Sentellas S, Saurina J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168716. [PMID: 38036116 DOI: 10.1016/j.scitotenv.2023.168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
14
|
Vassalini I, Maddaloni M, Depedro M, De Villi A, Ferroni M, Alessandri I. From Water for Water: PEDOT:PSS-Chitosan Beads for Sustainable Dyes Adsorption. Gels 2023; 10:37. [PMID: 38247760 PMCID: PMC10815287 DOI: 10.3390/gels10010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study investigates the viability of developing chitosan-based hydrogels derived from waste shrimp shells for the removal of methylene blue and methyl orange, thereby transforming food waste into advanced materials for environmental remediation. Despite chitosan-based adsorbents being conventionally considered ideal for the removal of negative pollutants, through targeted functionalization with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) at varying concentrations, we successfully enhance the hydrogels' efficacy in also adsorbing positively charged adsorbates. Specifically, the incorporation of PEDOT:PSS at a concentration of 10% v/v emerges as a critical factor in facilitating the robust adsorption of dyes. In the case of the anionic dye methyl orange (MO, 10-5 M), the percentage of removed dye passed from 47% (for beads made of only chitosan) to 66% (for beads made of chitosan-PEDOT:PSS 10%), while, in the case of the cationic dye methylene blue (MB, 10-5 M), the percentage of removed dye passed from 52 to 100%. At the basis of this enhancement, there is an adsorption mechanism resulting from the interplay between electrostatic forces and π-π interactions. Furthermore, the synthesized functionalized hydrogels exhibit remarkable stability and reusability (at least five consecutive cycles) in the case of MB, paving the way for the development of cost-effective and sustainable adsorbents. This study highlights the potential of repurposing waste materials for environmental benefits, introducing an innovative approach to address the challenges regarding water pollution.
Collapse
Affiliation(s)
- Irene Vassalini
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- CNR-INO, Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Marina Maddaloni
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- Chemistry for Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Mattia Depedro
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Alice De Villi
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
- CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | - Ivano Alessandri
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- CNR-INO, Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
15
|
Hur JY, Lee S, Shin WR, Kim YH, Ahn JY. The emerging role of medical foods and therapeutic potential of medical food-derived exosomes. NANOSCALE ADVANCES 2023; 6:32-50. [PMID: 38125597 PMCID: PMC10729880 DOI: 10.1039/d3na00649b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.
Collapse
Affiliation(s)
- Jin-Young Hur
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - SeonHyung Lee
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| |
Collapse
|
16
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
17
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
19
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
20
|
Vachiraarunwong A, Tuntiwechapikul W, Wongnoppavich A, Meepowpan P, Wongpoomchai R. 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone from Cleistocalyx nervosum var. paniala seeds attenuated the early stage of diethylnitrosamine and 1,2-dimethylhydrazine-induced colorectal carcinogenesis. Biomed Pharmacother 2023; 165:115221. [PMID: 37517291 DOI: 10.1016/j.biopha.2023.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Dichloromethane extract of Cleistocalyx nervosum var. paniala seeds exhibited an anticarcinogenicity against chemically-induced the early stages of carcinogenesis in rats. This study aimed to identify anticarcinogenic compounds from C. nervosum seed extract (CSE). METHODS Salmonella mutation assay was performed to determine mutagenicity and antimutagenicity of partially purified and purified compounds of CSE. The anticarcinogenic enzyme-inducing activity was measured in Hepa1c1c7. Moreover, the anticancer potency was examined on various human cancer cell lines. The anticarcinogenicity of DMC was investigated using dual-organ carcinogenicity model. The number of preneoplastic lesions was evaluated in the liver and colon. The inhibitory mechanisms of DMC on liver- and colorectal carcinogenesis were investigated. RESULTS Six partially purified fractions (MK1 - MK6) and purified compounds, including 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) and hariganetin, were obtained from CSE. Among these fractions, MK4 and DMC presented the greatest antimutagenicity against indirect mutagens in bacterial model. Moreover, MK5 possessed an effective anticarcinogenic enzyme inducer in Hepa1c1c7. The MK4, DMC and CSE showed greater anticancer activity on all cell lines and exhibited the most effective toxicity on colon cancer cells. Furthermore, DMC inhibited the formation of colonic preneoplastic lesions in carcinogens-treated rats. It reduced PCNA-positive cells and frequency of BCAC in rat colon. DMC also enhanced the detoxifying enzyme, GST, in rat livers. CONCLUSIONS DMC obtained from CSE may be a promising cancer chemopreventive compound of colorectal cancer process in rats. It could increase detoxifying enzymes and suppress the cell proliferation process resulting in prevention of post-initiation stage of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
21
|
Crescente G, Cascone G, Petruzziello A, Bouymajane A, Volpe MG, Russo GL, Moccia S. A Comparative Study between Microwave Hydrodiffusion and Gravity (MHG) and Ultrasound-Assisted Extraction (UAE): Chemical and Biological Characterization of Polyphenol-Enriched Extracts from Aglianico Grape Pomace. Foods 2023; 12:2678. [PMID: 37509770 PMCID: PMC10378583 DOI: 10.3390/foods12142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The wine industry produces large amounts of grape pomace (GP), a waste that needs to be disposed of properly. Bioactive compounds with high added value can be recovered from GP as an interesting strategy to reduce the environmental impact. Here, two different technologies were employed to recover polyphenol compounds from GP: microwave hydrodiffusion and gravity (MHG) and ultrasound-assisted extraction (UAE). The further purification of UAE and MHG extracts was carried out through solid-phase extraction (SPE) to obtain three fractions, F1, F2 and F3. ATR-FTIR analysis confirmed the presence of sugar and polysaccharide components in F1, as well as non-anthocyanin and anthocyanin compounds in F2 and F3, respectively. Also, the chemical profile was determined by HPLC-UV-DAD, identifying the presence of catechin in F2, and malvidin-3-O-glucoside chloride and cyanidin chloride derivative as the main anthocyanin compounds in F3. The fractions and their parental extracts were characterized for total phenolic content (TPC) and scavenger activity by in vitro assays. We found that F2-MHG and F3-MHG contained phenol contents 6.5 and 8.5 times higher than those of the parental non-fractionated extracts. Finally, F3-MHG (100 μg/mL, w/v) was shown to reduce the proliferation of HT-29 cells.
Collapse
Affiliation(s)
| | - Giovanni Cascone
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | | | - Aziz Bouymajane
- National Research Council, Research Institute on Terrestrial Ecosystems, 80131 Napoli, Italy
| | - Maria Grazia Volpe
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
22
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
23
|
Leonarski E, Kuasnei M, Cesca K, Oliveira DD, Zielinski AAF. Black rice and its by-products: anthocyanin-rich extracts and their biological potential. Crit Rev Food Sci Nutr 2023; 64:9261-9279. [PMID: 37194647 DOI: 10.1080/10408398.2023.2211169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recently, growing demand for products enriched with natural compounds that support human health has been observed. Black rice, its by-products, and residues are known to have in their composition a large amount of these compounds with biological potential, mainly anthocyanins. These compounds have reported effects on anti-obesity, antidiabetic, antimicrobial, anticancer, neuroprotective, and cardiovascular disease. Therefore, the extract from black rice or its by-products have great potential for application as ingredients in functional foods, supplements, or pharmacological formulations. This overview summarizes the methods employed for the extraction of anthocyanins from both black rice and its by-products. In addition, trends in applications of these extracts are also evaluated regarding their biological potential. Commonly, the extraction methods used to recover anthocyanins are conventional (maceration) and some emerging technologies (Ultrasound-Assisted Extraction - UAE, and Microwave-Assisted Extraction - MAE). Anthocyanin-rich extracts from black rice have presented a biological potential for human health. In vitro and in vivo assays (in mice) showed these compounds mainly with anti-cancer properties. However, more clinical trials are still needed to prove these potential biological effects. Extracts from black rice and its by-products have great potential in applying functional products with beneficial characteristics to humans and reducing agro-industrial residues.
Collapse
Affiliation(s)
- Eduardo Leonarski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Acácio A F Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Li S, Qin Y, Jing S, Wang D, Zhang Z, Qin Y, Hu G, Zhao J. Metabolome and transcriptome analyses reveal the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107749. [PMID: 37224629 DOI: 10.1016/j.plaphy.2023.107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Agrobacterium rhizogenes-mediated hairy root culture offer a promising approach for gene function analysis and production of plant secondary metabolites. Here, we obtained red litchi hairy roots using A. rhizogenes-mediated LcMYB1 transformation. Using high performance liquid chromatography, the main anthocyanins in the red hairy roots were determined to be cyanidin 3-rutinoside and cyanidin 3-glucoside. A total of 164 metabolites were significantly upregulated or downregulated in the red hairy roots, which were mostly involved in flavone and flavonol pathway, and flavonoid pathway. The transcriptome analysis revealed 472 differentially expressed genes (DEGs). Up-regulated genes were considerably enriched in anthocyanin, flavone and flavonol biosynthesis. Integrative metabolite profiling and transcriptome analyses showed that LcF3'H, LcUFGT1, and LcGST4 were key structural genes in anthocyanin biosynthesis. However, the expression of Cinnamyl-alcohol dehydrogenase (CAD) and Peroxidase (POD) leading to the production of lignin were significantly down-regulated, suggesting flavonoids and lignin compete with each other in the phenylpropanoid pathway. A total of 52 DEGs were identified as transcription factors. Correlation analysis showed that 8 transcription factors were positively correlated with LcUFGT1, and LcGST4, involving in anthocyanin biosynthesis. These findings clarify the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yaqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiqi Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes (Basel) 2023. [DOI: 10.3390/pr11030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste.
Collapse
|
26
|
Bioactive compounds from acerola pomace: A review. Food Chem 2023; 404:134613. [DOI: 10.1016/j.foodchem.2022.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
27
|
Kour R, Singh S, Sharma HB, Naik TSSK, Shehata N, N P, Ali W, Kapoor D, Dhanjal DS, Singh J, Khan AH, Khan NA, Yousefi M, Ramamurthy PC. Persistence and remote sensing of agri-food wastes in the environment: Current state and perspectives. CHEMOSPHERE 2023; 317:137822. [PMID: 36649897 DOI: 10.1016/j.chemosphere.2023.137822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Food demand is expected to increase globally by 60-110% from 2005 to 2050 due to diet shifts and population growth. This growth in food demand leads to the generation of enormous agri-food wastes (AFWs), which could be classified into pre-consumption and post-consumption. The AFW represents economic losses for all stakeholders along food supply chains, including consumers. It is reported that the direct financial, social, and environmental costs of food waste are 1, 0.9, and 0.7 trillion USD/year, respectively. Diverse conventional AFW management approaches are employed at the different life cycle levels (entre supply chain). The review indicates that inadequate transportation, erroneous packaging, improper storage, losses during processing, contamination, issues with handling, and expiry dates are the main reason for the generation of AFWs in the supply chain. Further, various variables such as cultural, societal, personal, and behavioral factors contribute to the AFW generation. The selection of a specific valorization technology is based on multiple physicochemical and biological parameters. Furthermore, other factors like heterogeneity of the AFWs, preferable energy carriers, by-products management, cost, end-usage applications, and environmental legislative and disposal processes also play a crucial role in adopting suitable technology. Valorization of AFW could significantly impact both economy and the environment. AFWs have been widely investigated for the development of engineered added-value biomaterials and renewable energy production. Considering this, this study has been carried out to highlight the significance of AFW cost, aggregation, quantification, and membrane-based strategies for its management. The study also explored the satellite remote sensing data for Spatio-temporal monitoring, mapping, optimization, and management of AFW management. Along with this, the study also explained the most recent strategies for AFW valorization and outlined the detailed policy recommendation along with opportunities and challenges. The review suggested that AFW should be managed using a triple-bottom-line strategy (economic, social, and environmental sustainability).
Collapse
Affiliation(s)
- Retinder Kour
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Sikkim, 737136, India
| | - T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Pavithra N
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Kingdom of Saudi Arabia
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, PO Box. 706, Jazan 45142, Saudi Arabia
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh, Haryana-122107, India
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
28
|
Cardona-Alzate CA, Ortiz-Sanchez M, Solarte-Toro JC. Design strategy of food residues biorefineries based on multifeedstocks analysis for increasing sustainability of value chains. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
29
|
Food waste valorization applying the biorefinery concept in the Colombian context: Pre-feasibility analysis of the organic kitchen food waste processing. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
30
|
Song J, Jeong J, Kim EH, Hong YS. A strategy for healthy eating habits of daily fruits revisited: A metabolomics study. Curr Res Food Sci 2023; 6:100440. [PMID: 36699116 PMCID: PMC9868340 DOI: 10.1016/j.crfs.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Many people peel fruits, commonly persimmon, grape, apple, and peach, before eating as table fruits. Differences of bioactive compounds between peels and pulps of daily fruits are widely known but limited to individual compound because understanding of differences in their global metabolites is lack. We employed 1H NMR-based metabolomics to explore the global metabolite differences between their peels and pulps from the fruits, which included changes of diverse metabolites in persimmon after harvest ripening. Of diverse metabolites observed among the fruits tested, various health-beneficial metabolites were present in the peels rather than the pulps and their classes were dependent on the type of fruit: gallocatechin, epicatechin and epigallocatehin only in persimmon, apple, and peach, respectively; quercetin only in persimmon and apple; kaempferol only in persimmon; chlorogenic acid only in grape and peach; neochlorogenic acid only in apple and peach; p-coumaric acid only in grape; phloridzin and catechin only in apple. These metabolites in the peels of each fruits were strongly correlated with free radical-scavenging activity and delay of carbohydrate digestion. Therefore, intake of whole fruits, rather than removal of their peels, were recommended for potential improvement of healthy lifespan and human wellness. This study highlights the critical role of metabolomic studies in simultaneous determinations of diverse and intrinsic metabolites in different types of fruits and thus providing a strategy for healthy eating habits of daily fruits.
Collapse
Affiliation(s)
- June Song
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Cheongwon-gu, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea,Corresponding author.
| |
Collapse
|
31
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
32
|
Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel) 2022; 12:antiox12010048. [PMID: 36670910 PMCID: PMC9855055 DOI: 10.3390/antiox12010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.
Collapse
|
33
|
Cavalluzzi MM, Lamonaca A, Rotondo NP, Miniero DV, Muraglia M, Gabriele P, Corbo F, De Palma A, Budriesi R, De Angelis E, Monaci L, Lentini G. Microwave-Assisted Extraction of Bioactive Compounds from Lentil Wastes: Antioxidant Activity Evaluation and Metabolomic Characterization. Molecules 2022; 27:7471. [PMID: 36364300 PMCID: PMC9655545 DOI: 10.3390/molecules27217471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
The recovery of industrial by-products is part of the zero-waste circular economy. Lentil seed coats are generally considered to be a waste by-product. However, this low-value by-product is rich in bioactive compounds and may be considered an eco-friendly source of health-promoting phytochemicals. For the first time, a sustainable microwave-assisted extraction technique was applied, and a solvent screening was carried out to enhance the bioactive compound content and the antioxidant activity of green and red lentil hull extracts. With respect to green lentil hull extracts that were obtained with different solvents, the aqueous extract of the red lentil seed coats showed the highest total phenolic and total flavonoid content (TPC = 28.3 ± 0.1 mg GAE/g dry weight, TFC = 1.89 ± 0.01 mg CE/100 mg dry weight, respectively), as well as the highest antioxidant activity, both in terms of the free radical scavenging activity (ABTS, 39.06 ± 0.73 mg TE/g dry weight; DPPH, IC50 = 0.39 μg/mL) and the protection of the neuroblastoma cell line (SH-SY5Y, IC50 = 10.1 ± 0.6 μg/mL), the latter of which has never been investigated so far. Furthermore, a metabolite discovery analysis was for the first time performed on the aqueous extracts of both cultivars using an HPLC separation which was coupled with an Orbitrap-based high-Resolution Mass Spectrometry technique.
Collapse
Affiliation(s)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Paola Gabriele
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
34
|
Nonthermal Food Processing: A Step Towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem X 2022; 16:100516. [DOI: 10.1016/j.fochx.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
35
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
36
|
Successive extraction using natural deep eutectic solvents and pressurized liquids for a greener and holistic recovery of proteins from pomegranate seeds. Food Res Int 2022; 161:111862. [DOI: 10.1016/j.foodres.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
37
|
Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules 2022; 27:molecules27206813. [PMID: 36296406 PMCID: PMC9612334 DOI: 10.3390/molecules27206813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Plants represent a significant part of the human diet. Humans have utilized every part of plants for survival, and seeds are no exception. Seeds offer high protein, unsaturated fats, fibre, essential vitamins, and minerals for various food applications. They are also a promising reservoir of bioactive compounds, where various phytochemicals, such as polyphenolic compounds, capable of maintaining and improving well-being, are present in abundant quantities. Plants from Malvaceae and Cannabaceae families are known for their fibre-rich stems that benefit humankind by serving numerous purposes. For many centuries they have been exploited extensively for various commercial and industrial uses. Their seeds, which are often regarded as a by-product of fibre processing, have been scientifically discovered to have an essential role in combating hypercholesterolemia, diabetes, cancer, and oxidative stress. Maximizing the use of these agricultural wastes can be a promising approach to creating a more sustainable world, in accordance with the concept of Sustainable Development Goals (SDGs).
Collapse
|
38
|
Abstract
One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer’s health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.
Collapse
|
39
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
40
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
41
|
Sreekala AGV, Ismail MHB, Nathan VK. Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62755-62784. [PMID: 35802320 DOI: 10.1007/s11356-022-21794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the globe is facing tremendous effects due to the unnecessary piling of municipal solid waste among which food waste holds a greater portion. This practice not only affects the environment in terms of generating greenhouse gas emissions but when left dumped in landfills will also trigger poverty and malnutrition. This review focuses on the global trend in food waste management strategies involved in the effective utilization of food waste to produce various value-added products in a microbiology aspect, thereby diminishing the negative impacts caused by the unnecessary side effects of non-renewable energy sources. The review also detailed the efficiency of microorganisms in the production of various bio-energies as well. Further, recent attempts to the exploitation of genetically modified microorganisms in producing value-added products were enlisted. This also attempted to address food waste valorization techniques, the combined applications of various processes for an enhanced yield of different compounds, and addressed various challenges. Further, the current challenges involved in various processes and the effective measures to tackle them in the future have been addressed. Thus, the present review has successfully addressed the circular bio-economy in food waste valorization.
Collapse
Affiliation(s)
| | - Muhammad Heikal Bin Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra, Putrajaya, Malaysia
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
42
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
43
|
Awasthi MK, Harirchi S, Sar T, Vs V, Rajendran K, Gómez-García R, Hellwig C, Binod P, Sindhu R, Madhavan A, Kumar ANA, Kumar V, Kumar D, Zhang Z, Taherzadeh MJ. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. BIORESOURCE TECHNOLOGY 2022; 360:127592. [PMID: 35809874 DOI: 10.1016/j.biortech.2022.127592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Vigneswaran Vs
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - A N Anoop Kumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram 673635, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
44
|
Fărcaș AC, Socaci SA, Nemeș SA, Pop OL, Coldea TE, Fogarasi M, Biriș-Dorhoi ES. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022; 14:nu14173470. [PMID: 36079730 PMCID: PMC9460243 DOI: 10.3390/nu14173470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cereal processing generates around 12.9% of all food waste globally. Wheat bran, wheat germ, rice bran, rice germ, corn germ, corn bran, barley bran, and brewery spent grain are just a few examples of wastes that may be exploited to recover bioactive compounds. As a result, a long-term strategy for developing novel food products and ingredients is encouraged. High-value compounds like proteins, essential amino acids, essential fatty acids, ferulic acid, and other phenols, tocopherols, or β-glucans are found in cereal by-products. This review aims to provide a critical and comprehensive overview of current knowledge regarding the bioactive compounds recovered from cereal by-products, emphasizing their functional values and potential human health benefits.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Silvia Amalia Nemeș
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Melinda Fogarasi
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Elena Suzana Biriș-Dorhoi
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Tapia-Quirós P, Montenegro-Landívar MF, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M, Reig M. A green approach to phenolic compounds recovery from olive mill and winery wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155552. [PMID: 35489508 DOI: 10.1016/j.scitotenv.2022.155552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the recovery of phenolic compounds from olive mill and winery wastes by conventional solid-liquid extraction (SLE) using water as the extraction solvent. The studied variables were extraction time (5-15 min), temperature (25-90 °C), solid-to-liquid ratio (1:10-1:100 (kg/L)), pH (3-10) and application of multiple extractions (1-3). The extraction efficiency was evaluated in terms of total phenolic content (TPC), determined by high performance liquid chromatography (HPLC-UV), but also from the recovery of some representative phenolic compounds. The optimized conditions were one extraction step, 10 min, 25 °C, 1:30 (kg/L), pH 5 for olive pomace, and one extraction step, 10 min, 70 °C, 1:100 (kg/L), pH 5 for winery residues. The extraction method is simple and suitable for scaling-up in industry, and the aqueous extracts are fully compatible with further purification schemes based on the use of membranes or resins. The optimized technique was applied to a set of different representative residues from olive mill and winery industries, to assess their suitability as sources for phenolic compounds recovery. The phenolic content in the extracts was evaluated by chromatographic analysis and by the Folin-Ciocalteu assay (FC). Furthermore, the antioxidant capacity was determined by 2,2-azinobis-3-etilbenzotiazolina-6-sulfonat (ABTS), 2,-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Because of their high contents in phenolic compounds and great antioxidant capacity, olive pomace and lees filters were identified as especially suited sources for phenolic compounds recovery.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Xanel Vecino
- CINTECX, University of Vigo, Chemical Engineering Department, 36310 Vigo, Spain.
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
46
|
Valdés A, Garrigós MC, Jiménez A. Extraction and Characterization of Antioxidant Compounds in Almond ( Prunus amygdalus) Shell Residues for Food Packaging Applications. MEMBRANES 2022; 12:806. [PMID: 36005720 PMCID: PMC9416045 DOI: 10.3390/membranes12080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This work proposes the revalorization of almond shell (AS) wastes as an active additive for food packaging applications. A new microwave-assisted extraction (MAE) method to obtain extracts rich in polyphenolic compounds with high antioxidant capacity was optimized. An experimental design to optimize the MAE procedure through response surface methodology (RSM) using a Box-Behnken design was proposed. The effects of extraction temperature, irradiation time, ethanol:water concentration, and solvent pH at three levels were evaluated in terms of total phenolic content (TPC) and antioxidant activity (DPPH (2,2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays). The optimal conditions found were 57 min, 80 °C, pH 8, and 70% (v/v) ethanol. Optimized MAE extracts showed low soluble protein content (0.43 mg BSA g-1) and were rich in TPC (5.64 mg GAE g-1), flavonoids (1.42 mg CE g-1), and polysaccharides (1.59 mg glucose g-1), with good antioxidant capacity (2.82 mg AAE acid g-1). These results suggest the potential application of these extracts in the food industry as active additives. This strategy opens new pathways to valorize almond shell residues, contributing to the circular economy.
Collapse
|
47
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
48
|
Fărcaș AC, Socaci SA, Nemeș SA, Salanță LC, Chiș MS, Pop CR, Borșa A, Diaconeasa Z, Vodnar DC. Cereal Waste Valorization through Conventional and Current Extraction Techniques-An Up-to-Date Overview. Foods 2022; 11:foods11162454. [PMID: 36010454 PMCID: PMC9407619 DOI: 10.3390/foods11162454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, in the European Union more than 100 million tons of food are wasted, meanwhile, millions of people are starving. Food waste represents a serious and ever-growing issue which has gained researchers’ attention due to its economic, environmental, social, and ethical implications. The Sustainable Development Goal has as its main objective the reduction of food waste through several approaches such as the re-use of agro-industrial by-products and their exploitation through complete valorization of their bioactive compounds. The extraction of the bioactive compounds through conventional methods has been used for a long time, whilst the increasing demand and evolution for using more sustainable extraction techniques has led to the development of new, ecologically friendly, and high-efficiency technologies. Enzymatic and ultrasound-assisted extractions, microwave-assisted extraction, membrane fractionation, and pressure-based extraction techniques (supercritical fluid extraction, subcritical water extraction, and steam explosion) are the main debated green technologies in the present paper. This review aims to provide a critical and comprehensive overview of the well-known conventional extraction methods and the advanced novel treatments and extraction techniques applied to release the bioactive compounds from cereal waste and by-products.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemeș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Laboratory for Testing Quality and Food Safety, Calea Florești Street, No. 64, 400516 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (M.S.C.); Tel.: +40-264-596384 (A.C.F.); +40-(21)-318-2564 (M.S.C.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Andrei Borșa
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăştur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
49
|
Chang Y, Shi X, He F, Wu T, Jiang L, Normakhamatov N, Sharipov A, Wang T, Wen M, Aisa HA. Valorization of Food Processing Waste to Produce Valuable Polyphenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8855-8870. [PMID: 35833703 DOI: 10.1021/acs.jafc.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional incineration and landfill of food processing waste (FPW) have polluted the environment and underutilized valuable bioactive compounds, including polyphenols in food waste. As one of the most widely occurring compounds in the FPW, polyphenols possess high utilization value in many fields such as human health, energy, and environmental protection. Extracting polyphenols directly from FPW can maximize the value of polyphenols and avoid waste of resources. However, traditional polyphenol extraction methods mostly use the Soxhlet extraction, infiltration, and impregnation method, consuming a large amount of organic solvent and suffering from long extraction time and low extraction efficiency. Emerging green extraction methods such as supercritical fluid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and other methods can shorten the extraction time and improve the solvent extraction efficacy, resulting in the green and safe recovery of polyphenols from FPW. In this paper, the traditional treatment methods of FPW waste and the application of polyphenols in FPW are briefly reviewed, and the traditional extraction methods and emerging green extraction methods of polyphenols in FPW are compared to obtain insight into the start-of-the-art extraction approaches.
Collapse
Affiliation(s)
- Yuyin Chang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Xiaoyu Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Fei He
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Avez Sharipov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Tianfu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Mingzhang Wen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
50
|
Paun G, Neagu E, Parvulescu V, Anastasescu M, Petrescu S, Albu C, Nechifor G, Radu GL. New Hybrid Nanofiltration Membranes with Enhanced Flux and Separation Performances Based on Polyphenylene Ether-Ether-Sulfone/Polyacrylonitrile/SBA-15. MEMBRANES 2022; 12:membranes12070689. [PMID: 35877893 PMCID: PMC9316977 DOI: 10.3390/membranes12070689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/23/2022]
Abstract
This study presents the preparation of hybrid nanofiltration membranes based on poly(1,4-phenylene ether ether sulfone), polyacrylonitrile, poly(vinyl pyrrolidone), and SBA-15 mesoporous silica. Laser treatment of polymeric solutions to enhance the hydrophilicity and performance of membranes was investigated. The membranes’ structure was characterized using scanning electron (SEM) and atomic force (AFM) microscopy and contact angle measurements. The addition of PAN in the casting solution produced significant changes in the membrane structure, from finger-like porous structures to sponge-like porous structures. Increased PAN concentration in the membrane composition enhanced the hydrophilicity of the membrane surface, which also accounted for the improvement in the antifouling capabilities. The permeation of apple pomace extract and the content of polyphenols and flavonoids were used to evaluate the efficacy of the hybrid membranes created. The results showed that the hybrid nanofiltration membranes based on PPEES/PAN/PVP/SBA-15: 15/5/1/1 and 17/3/1/1 exposed to laser for 5 min present a higher rejection coefficient to total polyphenols (78.6 ± 0.7% and 97.8 ± 0.9%, respectively) and flavonoids (28.7 ± 0.2% and 50.3 ± 0.4%, respectively) and are substantially better than a commercial membrane with MWCO 1000 Da or PPEES-PVP-based membrane.
Collapse
Affiliation(s)
- Gabriela Paun
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Viorica Parvulescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Simona Petrescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Camelia Albu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Gheorghe Nechifor
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica from Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Gabriel Lucian Radu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
- Correspondence: ; Tel.: +40-0212200900
| |
Collapse
|