1
|
Ni YN, Lei F, Tang X, Liang Z, Hilmisson H, Thomas RJ. Cardiopulmonary coupling predictors of blood pressure response to positive airway pressure therapy. Sleep Med 2024; 124:576-581. [PMID: 39471727 DOI: 10.1016/j.sleep.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
RATIONALE The effect of continuous positive airway pressure (CPAP) treatment on reducing cardiovascular disease risk in sleep apnea subjects remains inconclusive. It is plausible that pathological respiratory chemoreflex activation (high loop gain) is a predictive signal biomarker. OBJECTIVE To determine whether narrow band (e-LFCNB%) metric derived from cardiopulmonary coupling analysis is related with blood pressure reduction after CPAP. METHODS A secondary analysis of the Apnea Positive Pressure Long-term Efficacy Study (APPLES). The elevated low frequency coupling - narrow band (e-LFCNB %) metric derived from cardiopulmonary coupling analysis detects periodic breathing (as a surrogate for high loop gain), and was estimated in baseline polysomnogram. Linear regression analysis was performed to identify the potential association between e-LFCNB% of total sleep time and the observed reduction in blood pressure following the specified treatment. RESULTS A total of 388 subjects received CPAP and had e-LFCNB % measurements. At 2 months, 90/322 subjects had e-LFCNB ≥ 4 % at baseline. At 6 months 137/313 subjects had e-LFCNB higher than 2 % at baseline. For morning systolic blood pressure, e-LFCNB ≥ 4 % [β: 2.534, standard error (SE): 1.198, p: 0.035] was positively related with the extent of systolic blood pressure reductions after 2 months CPAP treatment and e-LFCNB ≥ 2 % was marginally related with systolic blood pressure decrement after 6 months (β: 2.162, SE: 1.173, p: 0.066). For the morning diastolic blood pressure, e-LFCNB ≥ 2 % predicted reductions at 6 months of treatment (β: 1.883, SE: 0.888, p: 0.035). CONCLUSION e-LFCNB % (probable high loop gain) was positively related to systolic blood pressure reduction (short-term) and diastolic blood pressure reduction (longer-term), following CPAP.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China; Department of Respiratory Care, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Fei Lei
- Department of Sleep Medicine Center, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Xiangdong Tang
- Department of Sleep Medicine Center, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | | | - Robert Joseph Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Jiang X, Yu W, Chen Z, Li C, Li X, Xu Y, Li F, Gao H, Qian J, Xiong B, Rong S, Chen G, She Q, Huang J. Low-intensity focused ultrasound combined with microbubbles for non-invasive downregulation of rabbit carotid body activity in the treatment of hypertension. Hypertens Res 2024:10.1038/s41440-024-01904-3. [PMID: 39300302 DOI: 10.1038/s41440-024-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Targeting the carotid body (CB) is a new approach in treating hypertension. This study investigates the efficacy and safety of ultrasound combined with microbubbles in targeting CB to treat hypertension. Twenty-seven hypertensive rabbits were randomly assigned to three groups: microbubbles only (sham group, n = 11), ultrasound plus microbubbles (LIFU group, n = 11), and bilateral carotid sinus nerve denervation (CSND group, n = 5). Four weeks post-intervention, blood pressure, hypoxic ventilatory response (HVR), blood pressure variability (BPV), heart rate variability (HRV), biochemical indicators, neurohormones, and histopathology were assessed in all groups. The results indicated significant reductions in systolic and diastolic blood pressure in the LIFU and CSND groups post-intervention, along with decreases in BPV, HRV, and catecholamines. HVR results showed a 35.10% reduction in CB activity in the LIFU group compared to the sham group, which was significantly lower than the reduction in the CSND group compared to the sham group (73.85%). Histopathology and transmission electron microscopy confirmed CB damage and cell apoptosis, with immunofluorescence showing a reduction in type I and II cells. In conclusion, LIFU combined with microbubbles can reduce blood pressure by lowering CB and sympathetic nerve activity.
Collapse
Affiliation(s)
- Xiujuan Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Wei Yu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohong Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Xu
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Fugui Li
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Hongli Gao
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Krnić J, Madirazza K, Pecotić R, Benzon B, Carev M, Đogaš Z. The Effects of Volatile Anesthetics on Renal Sympathetic and Phrenic Nerve Activity during Acute Intermittent Hypoxia in Rats. Biomedicines 2024; 12:910. [PMID: 38672264 PMCID: PMC11048470 DOI: 10.3390/biomedicines12040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Coordinated activation of sympathetic and respiratory nervous systems is crucial in responses to noxious stimuli such as intermittent hypoxia. Acute intermittent hypoxia (AIH) is a valuable model for studying obstructive sleep apnea (OSA) pathophysiology, and stimulation of breathing during AIH is known to elicit long-term changes in respiratory and sympathetic functions. The aim of this study was to record the renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA) during the AIH protocol in rats exposed to monoanesthesia with sevoflurane or isoflurane. Adult male Sprague-Dawley rats (n = 24; weight: 280-360 g) were selected and randomly divided into three groups: two experimental groups (sevoflurane group, n = 6; isoflurane group, n = 6) and a control group (urethane group, n = 12). The AIH protocol was identical in all studied groups and consisted in delivering five 3 min-long hypoxic episodes (fraction of inspired oxygen, FiO2 = 0.09), separated by 3 min recovery intervals at FiO2 = 0.5. Volatile anesthetics, isoflurane and sevoflurane, blunted the RSNA response to AIH in comparison to urethane anesthesia. Additionally, the PNA response to acute intermittent hypoxia was preserved, indicating that the respiratory system might be more robust than the sympathetic system response during exposure to acute intermittent hypoxia.
Collapse
Affiliation(s)
- Josip Krnić
- Department of Emergency Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Katarina Madirazza
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Renata Pecotić
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Mladen Carev
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Zoran Đogaš
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
4
|
Meyer EJ, Wittert GA. Approach the Patient With Obstructive Sleep Apnea and Obesity. J Clin Endocrinol Metab 2024; 109:e1267-e1279. [PMID: 37758218 PMCID: PMC10876414 DOI: 10.1210/clinem/dgad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Obstructive sleep apnea (OSA) and obesity are highly prevalent and bidirectionally associated. OSA is underrecognized, however, particularly in women. By mechanisms that overlap with those of obesity, OSA increases the risk of developing, or having poor outcomes from, comorbid chronic disorders and impairs quality of life. Using 2 illustrative cases, we discuss the relationships between OSA and obesity with type 2 diabetes, dyslipidemia, cardiovascular disease, cognitive disturbance, mood disorders, lower urinary tract symptoms, sexual function, and reproductive disorders. The differences in OSA between men and women, the phenotypic variability of OSA, and comorbid sleep disorders are highlighted. When the probability of OSA is high due to consistent symptoms, comorbidities, or both, a diagnostic sleep study is advisable. Continuous positive airway pressure or mandibular advancement splints improve symptoms. Benefits for comorbidities are variable depending on nightly duration of use. By contrast, weight loss and optimization of lifestyle behaviors are consistently beneficial.
Collapse
Affiliation(s)
- Emily Jane Meyer
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Gary Allen Wittert
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Andrade DC, Arce‐Álvarez A, Salazar‐Ardiles C, Toledo C, Guerrero‐Henriquez J, Alvarez C, Vasquez‐Muñoz M, Izquierdo M, Millet GP. Hypoxic peripheral chemoreflex stimulation-dependent cardiorespiratory coupling is decreased in swimmer athletes. Physiol Rep 2024; 12:e15890. [PMID: 38195247 PMCID: PMC10776339 DOI: 10.14814/phy2.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024] Open
Abstract
Swimmer athletes showed a decreased ventilatory response and reduced sympathetic activation during peripheral hypoxic chemoreflex stimulation. Based on these observations, we hypothesized that swimmers develop a diminished cardiorespiratory coupling due to their decreased hypoxic peripheral response. To resolve this hypothesis, we conducted a study using coherence time-varying analysis to assess the cardiorespiratory coupling in swimmer athletes. We recruited 12 trained swimmers and 12 control subjects for our research. We employed wavelet time-varying spectral coherence analysis to examine the relationship between the respiratory frequency (Rf ) and the heart rate (HR) time series during normoxia and acute chemoreflex activation induced by five consecutive inhalations of 100% N2 . Comparing swimmers to control subjects, we observed a significant reduction in the hypoxic ventilatory responses to N2 in swimmers (0.012 ± 0.001 vs. 0.015 ± 0.001 ΔVE /ΔVO2 , and 0.365 ± 0.266 vs. 1.430 ± 0.961 ΔVE /ΔVCO2 /ΔSpO2 , both p < 0.001, swimmers vs. control, respectively). Furthermore, the coherence at the LF cutoff during hypoxia was significantly lower in swimmers compared to control subjects (20.118 ± 3.502 vs. 24.935 ± 3.832 area under curve [AUC], p < 0.012, respectively). Our findings strongly indicate that due to their diminished chemoreflex control, swimmers exhibited a substantial decrease in cardiorespiratory coupling during hypoxic stimulation.
Collapse
Affiliation(s)
- David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Alexis Arce‐Álvarez
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San SebastiánSantiagoChile
| | - Camila Salazar‐Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
- NavarrabiomedHospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNAPamplonaNavarraSpain
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology. Institute of Physiology. Faculty of MedicineUniversidad Austral de ChileValdiviaChile
| | - Juan Guerrero‐Henriquez
- Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento de Ciencias de la Rehabilitación y el Movimiento Humano, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Cristian Alvarez
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation SciencesUniversidad Andres BelloSantiagoChile
| | - Manuel Vasquez‐Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la SaludUniversidad MayorSantiagoChile
| | - Mikel Izquierdo
- NavarrabiomedHospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNAPamplonaNavarraSpain
| | | |
Collapse
|
6
|
Parvanova A, Reseghetti E, Abbate M, Ruggenenti P. Mechanisms and treatment of obesity-related hypertension-Part 1: Mechanisms. Clin Kidney J 2024; 17:sfad282. [PMID: 38186879 PMCID: PMC10768772 DOI: 10.1093/ckj/sfad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of obesity has tripled over the past five decades. Obesity, especially visceral obesity, is closely related to hypertension, increasing the risk of primary (essential) hypertension by 65%-75%. Hypertension is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and its prevalence is rapidly increasing following the pandemic rise in obesity. Although the causal relationship between obesity and high blood pressure (BP) is well established, the detailed mechanisms for such association are still under research. For more than 30 years sympathetic nervous system (SNS) and kidney sodium reabsorption activation, secondary to insulin resistance and compensatory hyperinsulinemia, have been considered as primary mediators of elevated BP in obesity. However, experimental and clinical data show that severe insulin resistance and hyperinsulinemia can occur in the absence of elevated BP, challenging the causal relationship between insulin resistance and hyperinsulinemia as the key factor linking obesity to hypertension. The purpose of Part 1 of this review is to summarize the available data on recently emerging mechanisms believed to contribute to obesity-related hypertension through increased sodium reabsorption and volume expansion, such as: physical compression of the kidney by perirenal/intrarenal fat and overactivation of the systemic/renal SNS and the renin-angiotensin-aldosterone system. The role of hyperleptinemia, impaired chemoreceptor and baroreceptor reflexes, and increased perivascular fat is also discussed. Specifically targeting these mechanisms may pave the way for a new therapeutic intervention in the treatment of obesity-related hypertension in the context of 'precision medicine' principles, which will be discussed in Part 2.
Collapse
Affiliation(s)
- Aneliya Parvanova
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elia Reseghetti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Manuela Abbate
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Global Health and Lifestyle, Health Research Institutte of the Balearic Islands (IdISBa), Palma, Spain
| | - Piero Ruggenenti
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
7
|
Martínez-Barbero G, García-Mesa Y, Cobo R, Cuendias P, Martín-Biedma B, García-Suárez O, Feito J, Cobo T, Vega JA. Acid-Sensing Ion Channels' Immunoreactivity in Nerve Profiles and Glomus Cells of the Human Carotid Body. Int J Mol Sci 2023; 24:17161. [PMID: 38138991 PMCID: PMC10743051 DOI: 10.3390/ijms242417161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 are well known; conversely, the mechanisms by which it senses pH variations are almost unknown. Here, we used immunohistochemistry to investigate how the human carotid body contributes to the detection of acidosis, analyzing whether it expresses acid-sensing ion channels (ASICs) and determining whether these channels are in the chemosensory glomic cells or in the afferent nerves. In ASIC1, ASIC2, and ASIC3, and to a much lesser extent ASIC4, immunoreactivity was detected in subpopulations of type I glomus cells, as well as in the nerves of the carotid body. In addition, immunoreactivity was found for all ASIC subunits in the neurons of the petrosal and superior cervical sympathetic ganglia, where afferent and efferent neurons are located, respectively, innervating the carotid body. This study reports for the first time the occurrence of ASIC proteins in the human carotid body, demonstrating that they are present in glomus chemosensory cells (ASIC1 < ASIC2 > ASIC3 > ASIC4) and nerves, presumably in both the afferent and efferent neurons supplying the organ. These results suggest that the detection of acidosis by the carotid body can be mediated via the ASIC ion channels present in the type I glomus cells or directly via sensory nerve fibers.
Collapse
Affiliation(s)
- Graciela Martínez-Barbero
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Ramón Cobo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Patricia Cuendias
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Jorge Feito
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario, 37007 Salamanca, Spain;
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Región Metropolitana, Chile
| |
Collapse
|
8
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Loh HH, Lim QH, Chai CS, Goh SL, Lim LL, Yee A, Sukor N. Influence and implications of the renin-angiotensin-aldosterone system in obstructive sleep apnea: An updated systematic review and meta-analysis. J Sleep Res 2023; 32:e13726. [PMID: 36104933 PMCID: PMC10078316 DOI: 10.1111/jsr.13726] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023]
Abstract
Obstructive sleep apnea is a chronic, sleep-related breathing disorder, which is an independent risk factor for cardiovascular disease. The renin-angiotensin-aldosterone system regulates salt and water homeostasis, blood pressure, and cardiovascular remodelling. Elevated aldosterone levels are associated with excess morbidity and mortality. We aimed to analyse the influence and implications of renin-angiotensin-aldosterone system derangement in individuals with and without obstructive sleep apnea. We pooled data from 20 relevant studies involving 2828 participants (1554 with obstructive sleep apnea, 1274 without obstructive sleep apnea). The study outcomes were the levels of renin-angiotensin-aldosterone system hormones, blood pressure and heart rate. Patients with obstructive sleep apnea had higher levels of plasma renin activity (pooled wmd+ 0.25 [95% confidence interval 0.04-0.46], p = 0.0219), plasma aldosterone (pooled wmd+ 30.79 [95% confidence interval 1.05-60.53], p = 0.0424), angiotensin II (pooled wmd+ 5.19 [95% confidence interval 3.11-7.27], p < 0.001), systolic (pooled wmd+ 5.87 [95% confidence interval 1.42-10.32], p = 0.0098) and diastolic (pooled wmd+ 3.40 [95% confidence interval 0.86-5.94], p = 0.0086) blood pressure, and heart rate (pooled wmd+ 3.83 [95% confidence interval 1.57-6.01], p = 0.0009) compared with those without obstructive sleep apnea. The elevation remained significant (except for renin levels) when studies involving patients with resistant hypertension were removed. Sub-group analysis demonstrated that levels of angiotensin II were significantly higher only among the Asian population with obstructive sleep apnea compared with those without obstructive sleep apnea. Body mass index accounted for less than 10% of the between-study variance in elevation of the renin-angiotensin-aldosterone system parameters. Patients with obstructive sleep apnea have higher levels of renin-angiotensin-aldosterone system hormones, blood pressure and heart rate compared with those without obstructive sleep apnea, which remains significant even among patients without resistant hypertension.
Collapse
Affiliation(s)
- Huai Heng Loh
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia.,Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Quan Hziung Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Shee Chai
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Siew Li Goh
- Sports and Exercise Medicine Research and Education Group, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee-Ling Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Anne Yee
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlela Sukor
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
11
|
Lazarov NE, Atanasova DY. Carotid Body and Cell Therapy. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:155-159. [PMID: 37946082 DOI: 10.1007/978-3-031-44757-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
During the past decade, the carotid body (CB) has been considered an innovative therapeutic target for the treatment of certain cardiorespiratory and metabolic diseases most of which are sympathetically mediated. It has recently been revealed that CB stem cells provide new target sites for the development of promising cell-based therapies. Specifically, generation of CB progenitors in vitro which can differentiate into functionally active glomus cells may be a useful procedure to produce the cell mass required for replacement cell therapy. Due to their dopaminergic nature, adult glomus cells can be used for an intrastriatal grafting in neurodegenerative brain disorders including Parkinson's disease. The beneficial effect of throphic factors such as glial cell-derived neurotrophic factor synergistically released by the transplanted cells then enables the transplant to survive. Likewise, intracerebral administration of CB cell aggregates or dispersed cells has been tested for the treatment of an experimental model of stroke. The systematic clinical applicability of CB autotransplants following glomectomy in humans is under investigation. In such autotransplantation studies, cell aggregates from unilaterally resected CB might be used as autografts. In addition, stem cells could offer an opportunity for tissue expansion and might settle the issue of small number of glomus cells available for transplantation.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
12
|
Aldossary HS, Nieves DJ, Kavanagh DM, Owen D, Ray CJ, Kumar P, Coney AM, Holmes AP. Analyzing Angiotensin II Receptor Type 1 Clustering in PC12 Cells in Response to Hypoxia Using Direct Stochastic Optical Reconstruction Microscopy (dSTORM). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:175-184. [PMID: 37322348 DOI: 10.1007/978-3-031-32371-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/μm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 μm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.
Collapse
Affiliation(s)
- Hayyaf S Aldossary
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Daniel J Nieves
- Institute of Immunology and Immunotherapy and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | | | - Dylan Owen
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Clare J Ray
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Prem Kumar
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Andrew M Coney
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Holmes
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Kamra K, Karpuk N, Adam R, Zucker IH, Schultz HD, Wang HJ. Time-dependent alteration in the chemoreflex post-acute lung injury. Front Physiol 2022; 13:1009607. [PMID: 36338487 PMCID: PMC9630356 DOI: 10.3389/fphys.2022.1009607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. We hypothesized that the increase in respiratory rate (fR) during post-ALI is mediated by a sensitized chemoreflex. ALI was induced in male Sprague-Dawley rats using a single intra-tracheal injection of bleomycin (Bleo: low-dose = 1.25 mg/Kg or high-dose = 2.5 mg/Kg) (day 1) and respiratory variables- fR, Vt (Tidal Volume), and VE (Minute Ventilation) in response to 10% hypoxia (10% O2, 0% CO2) and 5% hypercapnia/21% normoxia (21% O2, 5% CO2) were measured weekly from W0-W4 using whole-body plethysmography (WBP). Our data indicate sensitization (∆fR = 93 ± 31 bpm, p < 0.0001) of the chemoreflex at W1 post-ALI in response to hypoxic/hypercapnic gas challenge in the low-dose bleo (moderate ALI) group and a blunted chemoreflex (∆fR = -0.97 ± 42 bpm, p < 0.0001) at W1 post-ALI in the high-dose bleo (severe ALI) group. During recovery from ALI, at W3-W4, both low-dose and high-dose groups exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia. We then hypothesized that the blunted chemoreflex at W1 post-ALI in the high-dose bleo group could be due to near maximal tonic activation of chemoreceptors, called the "ceiling effect". To test this possibility, 90% hyperoxia (90% O2, 0% CO2) was given to bleo treated rats to inhibit the chemoreflex. Our results showed no changes in fR, suggesting absence of the tonic chemoreflex activation in response to hypoxia at W1 post-ALI. These data suggest that during the acute stage of moderate (low-dose bleo) and severe (high-dose bleo) ALI, chemoreflex activity trends to be slightly sensitized and blunted, respectively while it becomes significantly sensitized during the recovery stage. Future studies are required to examine the molecular/cellular mechanisms underlying the time-course changes in chemoreflex sensitivity post-ALI.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nikolay Karpuk
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan Adam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Han-Jun Wang,
| |
Collapse
|
14
|
Role of the angiotensin type 1 receptor in modulating the carotid chemoreflex in an ovine model of renovascular hypertension. J Hypertens 2022; 40:1421-1430. [PMID: 35762481 DOI: 10.1097/hjh.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The carotid body has been implicated as an important mediator and putative target for hypertension. Previous studies have indicated an important role for angiotensin II in mediating carotid body function via angiotensin type-1 receptors (AT1R); however, their role in modulating carotid body function during hypertension is unclear. METHODS Using a large preclinical ovine model of renovascular hypertension, we hypothesized that acute AT1R blockade would lower blood pressure and decrease carotid body-mediated increases in arterial pressure. Adult ewes underwent either unilateral renal artery clipping or sham surgery. Two weeks later, flow probes were placed around the contralateral renal and common carotid arteries. RESULTS In both hypertensive and sham animals, carotid body stimulation using potassium cyanide caused dose-dependent increases in mean arterial pressure but a reduction in renal vascular conductance. These responses were not different between groups. Infusion of angiotensin II led to an increase in arterial pressure and reduction in renal blood flow. The sensitivity of the renal vasculature to angiotensin II was significantly attenuated in hypertension compared with the sham animals. Systemic inhibition of the AT1R did not alter blood pressure in either group. Interestingly carotid body-evoked arterial pressure responses were attenuated by AT1R blockade in renovascular hypertension but not in shams. CONCLUSION Taken together, our findings indicate a decrease in vascular reactivity of the non-clipped kidney to angiotensin II in hypertension. The CB-evoked increase in blood pressure in hypertension is mediated in part, by the AT1R. These findings indicate a differential role of the AT1R in the carotid body versus the renal vasculature.
Collapse
|
15
|
Respiratory and heart rate dynamics during peripheral chemoreceptor deactivation compared to targeted sympathetic and sympathetic/parasympathetic (co-)activation. Auton Neurosci 2022; 241:103009. [PMID: 35753247 DOI: 10.1016/j.autneu.2022.103009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The importance of peripheral chemoreceptors for cardiorespiratory neural control is known for decades. Pure oxygen inhalation deactivates chemoreceptors and increases parasympathetic outflow. However, the relationship between autonomic nervous system (ANS) activation and resulting respiratory as well as heart rate (HR) dynamics is still not fully understood. METHODS In young adults the impact of (1) 100 % pure oxygen inhalation (hyperoxic cardiac chemoreflex sensitivity (CHRS) testing), (2) the cold face test (CFT) and (3) the cold pressor test (CPT) on heart rate variability (HRV), hemodynamics and respiratory rate was investigated in randomized order. Baseline ANS outflow was determined assessing respiratory sinus arrhythmia via deep breathing, baroreflex sensitivity and HRV. RESULTS Baseline ANS outflow was normal in all participants (23 ± 1 years, 7 females, 3 males). Hyperoxic CHRS testing decreased HR (after 60 ± 3 vs before 63 ± 3 min-1, p = 0.004), while increasing total peripheral resistance (1053 ± 87 vs 988 ± 76 dyne*s + m2/cm5, p = 0.02) and mean arterial blood pressure (93 ± 4 vs 91 ± 4 mm Hg, p = 0.02). HRV indicated increased parasympathetic outflow after hyperoxic CHRS testing accompanied by a decrease in respiratory rate (15 ± 1vs 19 ± 1 min-1, p = 0.001). In contrast, neither CFT nor CPT altered the respiratory rate (18 ± 1 vs 18 ± 2 min-1, p = 0.38 and 18 ± 1 vs 18 ± 1 min-1, p = 0.84, respectively). CONCLUSION Changes in HR characteristics during deactivation of peripheral chemoreceptors but not during the CFT and CPT are related with a decrease in respiratory rate. This highlights the need of respiratory rate assessment when evaluating adaptations of cardiorespiratory chemoreceptor control.
Collapse
|
16
|
Langner-Hetmańczuk A, Tubek S, Niewiński P, Ponikowski P. The Role of Pharmacological Treatment in the Chemoreflex Modulation. Front Physiol 2022; 13:912616. [PMID: 35774285 PMCID: PMC9237514 DOI: 10.3389/fphys.2022.912616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
From a physiological point of view, peripheral chemoreceptors (PCh) are the main sensors of hypoxia in mammals and are responsible for adaptation to hypoxic conditions. Their stimulation causes hyperventilation—to increase oxygen uptake and increases sympathetic output in order to counteract hypoxia-induced vasodilatation and redistribute the oxygenated blood to critical organs. While this reaction promotes survival in acute settings it may be devastating when long-lasting. The permanent overfunctionality of PCh is one of the etiologic factors and is responsible for the progression of sympathetically-mediated diseases. Thus, the deactivation of PCh has been proposed as a treatment method for these disorders. We review here physiological background and current knowledge regarding the influence of widely prescribed medications on PCh acute and tonic activities.
Collapse
Affiliation(s)
- Anna Langner-Hetmańczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Stanisław Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- *Correspondence: Stanisław Tubek,
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
17
|
Arce-Álvarez A, Salazar-Ardiles C, Cornejo C, Paez V, Vásquez-Muñoz M, Stillner-Vilches K, Jara CR, Ramirez-Campillo R, Izquierdo M, Andrade DC. Chemoreflex Control as the Cornerstone in Immersion Water Sports: Possible Role on Breath-Hold. Front Physiol 2022; 13:894921. [PMID: 35733994 PMCID: PMC9207453 DOI: 10.3389/fphys.2022.894921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Immersion water sports involve long-term apneas; therefore, athletes must physiologically adapt to maintain muscle oxygenation, despite not performing pulmonary ventilation. Breath-holding (i.e., apnea) is common in water sports, and it involves a decrease and increases PaO2 and PaCO2, respectively, as the primary signals that trigger the end of apnea. The principal physiological O2 sensors are the carotid bodies, which are able to detect arterial gases and metabolic alterations before reaching the brain, which aids in adjusting the cardiorespiratory system. Moreover, the principal H+/CO2 sensor is the retrotrapezoid nucleus, which is located at the brainstem level; this mechanism contributes to detecting respiratory and metabolic acidosis. Although these sensors have been characterized in pathophysiological states, current evidence shows a possible role for these mechanisms as physiological sensors during voluntary apnea. Divers and swimmer athletes have been found to displayed longer apnea times than land sports athletes, as well as decreased peripheral O2 and central CO2 chemoreflex control. However, although chemosensitivity at rest could be decreased, we recently found marked sympathoexcitation during maximum voluntary apnea in young swimmers, which could activate the spleen (which is a reservoir organ for oxygenated blood). Therefore, it is possible that the chemoreflex, autonomic function, and storage/delivery oxygen organ(s) are linked to apnea in immersion water sports. In this review, we summarized the available evidence related to chemoreflex control in immersion water sports. Subsequently, we propose a possible physiological mechanistic model that could contribute to providing new avenues for understanding the respiratory physiology of water sports.
Collapse
Affiliation(s)
- Alexis Arce-Álvarez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Manuel Vásquez-Muñoz
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Clínica Santa María, Santiago, Chile
| | | | - Catherine R. Jara
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- *Correspondence: David C. Andrade, ,
| |
Collapse
|
18
|
Brain-heart communication in health and diseases. Brain Res Bull 2022; 183:27-37. [PMID: 35217133 DOI: 10.1016/j.brainresbull.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
Tight connections between the brain and heart have attracted a considerable amount of attention. This review focuses on the anatomical (extrinsic cardiac autonomic nervous system and intrinsic cardiac autonomic nervous system) and functional (neuroendocrine-heart axis and neuroimmune-heart axis) connections between the brain and heart, the linkage between central nervous system diseases and cardiovascular diseases, the harm of sympathetic hyperactivity to the heart, and current neuromodulation therapies. Depression is a comorbidity of cardiovascular diseases, and the two are causally related. This review summarizes the mechanisms and treatment of depression and cardiovascular diseases, providing theoretical evidence for basic research and clinical studies to improve treatment options.
Collapse
|
19
|
Renovascular Hypertension with Superimposed Aortic Arch Baroreceptor Failure: Case Report and Review of Literature. Case Rep Vasc Med 2022; 2022:4754027. [PMID: 35127193 PMCID: PMC8808237 DOI: 10.1155/2022/4754027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Atherosclerotic renal artery diseases are among the most common causes of secondary hypertension. Baroreceptors, as carotid and aortic, are important regulatory mechanisms of blood pressure; their disruption can lead to labile blood pressure due to sympathetic overactivity: an entity called neurogenic hypertension. A disease such as aortic dissection can lead to a challenging combined etiology of secondary hypertension. It can affect both or one of the renal arteries leading to a renovascular pathology that can cause hypertension through RAAS activation. Also, surgical repair of the dissected aortic arch can disrupt baroreceptors leading to neurogenic hypertension. Case Report. We report a case of an 83-year-old female patient investigated for recurrent episodes of aphasia. She has a history of hypertension and coronary artery disease. Surgical history is significant for aortic valve replacement complicated by type A aortic dissection requiring surgical repair. Following surgery, the patient developed difficult-to-control and labile blood pressure. Workup included a CT angiogram of the abdominal aorta that showed an infrarenal dominant abdominal aortic aneurysm with juxtarenal aortic dissection; these findings were similar to previous findings. A diagnosis of aortic baroreceptor failure following aortic dissection repair was established, which lead to labile hypertension with superimposed renovascular pathology due to unilateral compromised renal artery blood flow following aortic dissection and thrombosis. Conclusions. This report highlights the importance of accurate diagnosis of secondary hypertension and its underlying mechanisms, as this has a huge impact on the choice of therapy to avoid undertreatment or overtreatment of hypertension.
Collapse
|
20
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Devereaux MEM, Campbell KL, Munro D, Blier PU, Pamenter ME. Burrowing star-nosed moles (Condylura cristata) are not hypoxia tolerant. J Exp Biol 2021; 224:272220. [PMID: 34533564 DOI: 10.1242/jeb.242972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Star-nosed moles (Condylura cristata) have an impressive diving performance and burrowing lifestyle, yet no ventilatory data are available for this or any other talpid mole species. We predicted that, like many other semi-aquatic and fossorial small mammals, star-nosed moles would exhibit: (i) a blunted (i.e. delayed or reduced) hypoxic ventilatory response, (ii) a reduced metabolic rate and (iii) a lowered body temperature (Tb) in hypoxia. We thus non-invasively measured these variables from wild-caught star-nosed moles exposed to normoxia (21% O2) or acute graded hypoxia (21-6% O2). Surprisingly, star-nosed moles did not exhibit a blunted HVR or decreased Tb in hypoxia, and only manifested a significant, albeit small (<8%), depression of metabolic rate at 6% O2 relative to normoxic controls. Unlike small rodents inhabiting similar niches, star-nosed moles are thus intolerant to hypoxia, which may reflect an evolutionary trade-off favouring the extreme sensory biology of this unusual insectivore.
Collapse
Affiliation(s)
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Daniel Munro
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Pierre U Blier
- Départment de Biologie, L'Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
22
|
Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. J Neuroinflammation 2021; 18:191. [PMID: 34465362 PMCID: PMC8408927 DOI: 10.1186/s12974-021-02241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Department of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Rm 209 Martin Research Building, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Arijit Roy
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
23
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Pachen M, Abukar Y, Shanks J, Lever N, Ramchandra R. Regulation of Coronary Blood Flow by the Carotid Body Chemoreceptors in Ovine Heart Failure. Front Physiol 2021; 12:681135. [PMID: 34122147 PMCID: PMC8195281 DOI: 10.3389/fphys.2021.681135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors, which are primary sensors of systemic hypoxia and their activation produces respiratory, autonomic, and cardiovascular adjustments critical for body homeostasis. We have previously shown that carotid chemoreceptor stimulation increases directly recorded cardiac sympathetic nerve activity (cardiac SNA) which increases coronary blood flow (CoBF) in conscious normal sheep. Previous studies have shown that chemoreflex sensitivity is augmented in heart failure (HF). We hypothesized that carotid chemoreceptor stimulation would increase CoBF to a greater extent in HF than control sheep. Experiments were conducted in conscious HF sheep and control sheep (n = 6/group) implanted with electrodes to record diaphragmatic electromyography (dEMG), flow probes to record CoBF as well as arterial pressure. There was a significant increase in mean arterial pressure (MAP), CoBF and coronary vascular conductance (CVC) in response to potassium cyanide (KCN) in both groups of sheep. To eliminate the effects of metabolic vasodilation, the KCN was repeated while the heart was paced at a constant level. In this paradigm, the increase in CoBF and CVC was augmented in the HF group compared to the control group. Pre-treatment with propranolol did not alter the CoBF or the CVC increase in the HF group indicating this was not mediated by an increase in cardiac sympathetic drive. The pressor response to CB activation was abolished by pre-treatment with intravenous atropine in both groups, but there was no change in the CoBF and vascular conductance responses. Our data suggest that in an ovine model of HF, carotid body (CB) mediated increases in CoBF and CVC are augmented compared to control animals. This increase in CoBF is mediated by an increase in cardiac SNA in the control group but not the HF group.
Collapse
Affiliation(s)
- Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Peng YJ, Su X, Wang B, Matthews T, Nanduri J, Prabhakar NR. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol 2021; 125:2054-2067. [PMID: 33909496 DOI: 10.1152/jn.00067.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark manifestation of obstructive sleep apnea (OSA), a widespread breathing disorder. CIH-treated rodents exhibit activation of the sympathetic nervous system and hypertension. Heightened carotid body (CB) activity has been implicated in CIH-induced hypertension. CB expresses high abundance of olfactory receptor (Olfr) 78, a G-protein coupled receptor. Olfr 78 null mice exhibit impaired CB sensory nerve response to acute hypoxia. Present study examined whether Olfr78 participates in CB-dependent activation of the sympathetic nervous system and hypertension in CIH-treated mice and in hemeoxygenase (HO)-2 null mice experiencing CIH as a consequence of naturally occurring OSA. CIH-treated wild-type (WT) mice showed hypertension, biomarkers of sympathetic nerve activation, and enhanced CB sensory nerve response to hypoxia and sensory long-term facilitation (sLTF), and these responses were absent in CIH-treated Olfr78 null mice. HO-2 null mice showed higher apnea index (AI) (58 ± 1.2 apneas/h) than WT mice (AI = 8 ± 0.8 apneas/h) and exhibited elevated blood pressure (BP), elevated plasma norepinephrine (NE) levels, and heightened CB sensory nerve response to hypoxia and sLTF. The magnitude of hypertension correlated with AI in HO-2 null mice. In contrast, HO-2/Olfr78 double null mice showed absence of elevated BP and plasma NE levels and augmented CB response to hypoxia and sLTF. These results demonstrate that Olfr78 participates in sympathetic nerve activation and hypertension and heightened CB activity in two murine models of CIH.NEW & NOTEWORTHY Carotid body (CB) sensory nerve activation is essential for sympathetic nerve excitation and hypertension in rodents treated with chronic intermittent hypoxia (CIH) simulating blood O2 profiles during obstructive sleep apnea (OSA). Here, we report that CIH-treated mice and hemeoxygenase (HO)-2-deficient mice, which show OSA phenotype, exhibit sympathetic excitation, hypertension, and CB activation. These effects are absent in Olfr78 null and Olfr78/HO-2 double null mice.
Collapse
Affiliation(s)
- Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Timothy Matthews
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Stocco E, Sfriso MM, Borile G, Contran M, Barbon S, Romanato F, Macchi V, Guidolin D, De Caro R, Porzionato A. Experimental Evidence of A 2A-D 2 Receptor-Receptor Interactions in the Rat and Human Carotid Body. Front Physiol 2021; 12:645723. [PMID: 33935801 PMCID: PMC8082109 DOI: 10.3389/fphys.2021.645723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor–receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR–D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR–D2R heterodimers in type I and II cells of the CB; the presence of A2AR–D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Maria Martina Sfriso
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Silvia Barbon
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| |
Collapse
|
27
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
28
|
Arce-Álvarez A, Veliz C, Vazquez-Muñoz M, von Igel M, Alvares C, Ramirez-Campillo R, Izquierdo M, Millet GP, Del Rio R, Andrade DC. Hypoxic Respiratory Chemoreflex Control in Young Trained Swimmers. Front Physiol 2021; 12:632603. [PMID: 33716781 PMCID: PMC7953139 DOI: 10.3389/fphys.2021.632603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/27/2022] Open
Abstract
During an apnea, changes in PaO2 activate peripheral chemoreceptors to increase respiratory drive. Athletes with continuous apnea, such as breath-hold divers, have shown a decrease in hypoxic ventilatory response (HVR), which could explain the long apnea times; however, this has not been studied in swimmers. We hypothesize that the long periods of voluntary apnea in swimmers is related to a decreased HVR. Therefore, we sought to determine the HVR and cardiovascular adjustments during a maximum voluntary apnea in young-trained swimmers. In fifteen trained swimmers and twenty-seven controls we studied minute ventilation (VE), arterial saturation (SpO2), heart rate (HR), and autonomic response [through heart rate variability (HRV) analysis], during acute chemoreflex activation (five inhalations of pure N2) and maximum voluntary apnea test. In apnea tests, the maximum voluntary apnea time and the end-apnea HR were higher in swimmers than in controls (p < 0.05), as well as a higher low frequency component of HRV (p < 0.05), than controls. Swimmers showed lower HVR than controls (p < 0.01) without differences in cardiac hypoxic response (CHR). We conclude that swimmers had a reduced HVR response and greater maximal voluntary apnea duration, probably due to decreased HVR.
Collapse
Affiliation(s)
- Alexis Arce-Álvarez
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Carlos Veliz
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Manuel Vazquez-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.,Unidad de Estadística, Departamento de Calidad, Clínica Santa María, Santiago, Chile
| | - Magdalena von Igel
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Cristian Alvares
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Rodrigo Ramirez-Campillo
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
29
|
Carbamylated form of human erythropoietin normalizes cardiorespiratory disorders triggered by intermittent hypoxia mimicking sleep apnea syndrome. J Hypertens 2021; 39:1125-1133. [PMID: 33560061 DOI: 10.1097/hjh.0000000000002756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders. We aimed to determine whether cEpo normalized the CIH-enhanced carotid body ventilatory chemoreflex, the hypertension and ventilatory disorders in rats. METHODS Male Sprague-Dawley rats (250 g) were exposed to CIH (5% O2, 12/h, 8 h/day) for 28 days. cEPO (20 μg/kg, i.p) was administrated from day 21 every other day for one more week. Cardiovascular and respiratory function were assessed in freely moving animals. RESULTS Twenty-one days of CIH increased carotid body-mediated chemoreflex responses as evidenced by a significant increase in the hypoxic ventilatory response (FiO2 10%) and triggered irregular eupneic breathing, active expiration, and produced hypertension. cEpo treatment significantly reduced the carotid body--chemoreflex responses, normalizes breathing patterns and the hypertension in CIH. In addition, cEpo treatment effectively normalized carotid body chemosensory responses evoked by acute hypoxic stimulation in CIH rats. CONCLUSION Present results strongly support beneficial cardiorespiratory therapeutic effects of cEpo during CIH exposure.
Collapse
|
30
|
Castillo-Galán S, Arenas GA, Reyes RV, Krause BJ, Iturriaga R. Stim-activated TRPC-ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulm Circ 2020; 10:13-22. [PMID: 33110495 PMCID: PMC7557718 DOI: 10.1177/2045894020941484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA), a breathing disorder featured by chronic intermittent
hypoxia (CIH) is associated with pulmonary hypertension (PH). Rodents exposed to CIH
develop pulmonary vascular remodeling and PH, but the pathogenic mechanisms are not well
known. Overexpression of Stim-activated Transient Receptor Potential Channels (TRPC) and
Calcium Release-Activated Calcium Channel Protein (ORAI) TRPC-ORAI Ca2+
channels (STOC) has been involved in pulmonary vascular remodeling and PH in sustained
hypoxia. However, it is not known if CIH may change STOC levels. Accordingly, we studied
the effects of CIH on the expression of STOC subunits in the lung and if these changes
paralleled the progression of the vascular pulmonary remodeling and PH in a preclinical
model of OSA. Male Sprague-Dawley rats (∼200 g) were exposed to CIH (5%O2, 12
times/h for 8 h) for 14, 21, and 28 days. We measured right ventricular systolic pressure
(RVSP), cardiac morphometry with MRI, pulmonary vascular remodeling, and wire-myographic
arterial responses to KCl and endothelin-1 (ET-1). Pulmonary RNA and protein STOC levels
of TRPC1, TRPC4, TRPC6, ORAI 1, ORAI 2, and STIM1 subunits were measured by qPCR and
western blot, and results were compared with age-matched controls. CIH elicited a
progressive increase of RVSP and vascular contractile responses to KCl and ET-1, leading
to vascular remodeling and augmented right ventricular ejection fraction, which was
significant at 28 days of CIH. The levels of TRPC1, TRPC4, TRPC 6, ORAI 1, and STIM 1
channels increased following CIH, and some of them paralleled morphologic and functional
changes. Our findings show that CIH increased pulmonary STOC expression, paralleling
vascular remodeling and PH.
Collapse
Affiliation(s)
- Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Badoer E. The Carotid Body a Common Denominator for Cardiovascular and Metabolic Dysfunction? Front Physiol 2020; 11:1069. [PMID: 32982794 PMCID: PMC7478291 DOI: 10.3389/fphys.2020.01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The carotid body is a highly vascularized organ designed to monitor oxygen levels. Reducing oxygen levels in blood results in increased activity of the carotid body cells and reflex increases in sympathetic nerve activity. A key contributor to elevated sympathetic nerve activity in neurogenic forms of hypertension is enhanced peripheral chemoreceptor activity. Hypertension commonly occurs in metabolic disorders, like obesity. Such metabolic diseases are serious global health problems. Yet, the mechanisms contributing to increased sympathetic nerve activity and hypertension in obesity are not fully understood and a better understanding is urgently required. In this review, we examine the literature that suggests that overactivity of the carotid body may also contribute to metabolic disturbances. The purine ATP is an important chemical mediator influencing the activity of the carotid body and the role of purines in the overactivity of the carotid body is explored. We will conclude with the suggestion that tonic overactivity of the carotid body may be a common denominator that contributes to the hypertension and metabolic dysfunction seen in conditions in which metabolic disease exists such as obesity or insulin resistance induced by high caloric intake. Therapeutic treatment targeting the carotid bodies may be a viable treatment since translation to the clinic could be more easily performed than expected via repurposing antagonists of purinergic receptors currently in clinical practice, and the use of other minimally invasive techniques that reduce the overactivity of the carotid bodies which may be developed for such clinical use.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Duffin J. Fail‐safe aspects of oxygen supply. J Physiol 2020; 598:4859-4867. [DOI: 10.1113/jp280301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- James Duffin
- Department of Anesthesiology and Pain Medicine University of Toronto Toronto Ontario Canada
- Department of Physiology University of Toronto Toronto Ontario Canada
- Thornhill Medical Toronto Ontario Canada
| |
Collapse
|
33
|
Tretter V, Zach ML, Böhme S, Ullrich R, Markstaller K, Klein KU. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol 2020; 11:947. [PMID: 32848874 PMCID: PMC7417655 DOI: 10.3389/fphys.2020.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Shahrbaf MA, Akbarzadeh MA, Tabary M, Khaheshi I. Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Curr Probl Cardiol 2020; 46:100649. [PMID: 32839041 DOI: 10.1016/j.cpcardiol.2020.100649] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/26/2022]
Abstract
Air pollution is the mixture of some chemical and environmental agents including dust, fumes, gases, particulate matters, and biological materials which can be harmful for the environment and the human body. The increasing trend of the air pollution, especially in developing countries, may exert its detrimental effects on human health. The potentially harmful effects of air pollution on the human health have been recognized and many epidemiological studies have clearly suggested the strong association between air pollution exposure and increased morbidities and mortalities. Air pollutants are classified into gaseous pollutants including carbon mono oxide, nitrogen oxides, ozone and sulfur dioxide, and particulate matters (PMs). All air pollutants have destructive effects on the health systems including cardiovascular system. Many studies have demonstrated the effect of air pollutant on the occurrence of ST elevation myocardial infarction, sudden cardiac death, cardiac arrythmias, and peripheral arterial disease. Recently, some studies suggested that air pollution may be associated with cardiac arrhythmias. In this study, we aimed to comprehensively review the last evidences related to the association of air pollutant and cardiac arrythmias. We found that particulate matters (PM10, PM2.5, and UFP) and gaseous air pollutants can exert undesirable effects on cardiac rhythms. Short-term and long-term exposure to the air pollutants can interact with the cardiac rhythms through oxidative stress, autonomic dysfunction, coagulation dysfunction, and inflammation. It seems that particulate matters, especially PM2.5 have stronger association with cardiac arrhythmias among all air pollutants. However, future studies are needed to confirm these results.
Collapse
|
35
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
36
|
Carotid body enlargement in hypertension and other comorbidities evaluated by ultrasonography. J Hypertens 2020; 37:1455-1462. [PMID: 30925145 DOI: 10.1097/hjh.0000000000002068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Carotid body hyperactivity is important for sympathetic-related diseases and carotid body volume may partly reflect carotid bodies' activity. Our objective was to identify the association between carotid body volume and hypertension or other sympathetic-related diseases. METHODS Consecutive individuals, undergoing carotid ultrasonography, who were eligible for the inclusion criteria were included. The bilateral carotid bodies were detected and volumetric parameters were measured by carotid ultrasonography in clinical. Clinical data of included participants were collected and analysed. RESULTS A total of 1226 consecutive individuals underwent carotid ultrasonography. Carotid bodies were detected as solid, pebble-shaped, hypoechoic structures and the overall carotid body detection rate was 78.7% (965/1226). Univariate and multivariate regression analyses indicated that hypertension, chronic heart failure (CHF), chronic lung disease, smoking and high BMI were positively associated with carotid body enlargement. Compared with controls (2.63 μl), carotid body volume was significantly elevated in simple hypertensive (3.11 μl, P < 0.001), simple CHF (3.27 μl, P = 0.004) and simple smoking (3.47 μl, P < 0.001) groups. Moreover, the individuals with three comorbidities (4.05 μl) had significantly larger carotid bodies than those with one (3.23 μl, P < 0.001) or two comorbidities (3.46 μl, P = 0.017), suggesting that there existed a cumulative effect of comorbidities on carotid body volume. CONCLUSION Carotid body enlargement is strongly associated with hypertension and other sympathetic-related diseases or risk factors, and carotid body volume evaluated by carotid ultrasonography may be further explored as a promising screening and evaluation predictor for carotid body modulation therapy in patients with hypertension and other sympathetic-related diseases.
Collapse
|
37
|
Ferreira CB, Schoorlemmer GH, Rocha AA, Cravo SL. Increased sympathetic responses induced by chronic obstructive sleep apnea are caused by sleep fragmentation. J Appl Physiol (1985) 2020; 129:163-172. [PMID: 32552428 DOI: 10.1152/japplphysiol.00811.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is often associated with sympathetic overactivity and hypertension. These associations are mainly attributed to hypoxia acting on arterial chemoreceptors. However, the contribution of arousal from sleep is unclear. We measured the effect of OSA and sleep fragmentation on cardiovascular and sympathetic function and gene expression in the brain in rats. Male Wistar rats were fitted with a tracheal balloon and EEG and electromyogram electrodes and assigned to control (n = 6), OSA (n = 9), or arousal (n = 8) treatments. The OSA group was subjected to obstructive apnea, each time the rat entered sleep, for 8 h/day for 15 days. The arousal group was similarly exposed to vibration, which was produced with a miniature vibration motor mounted on the rat's head. Vibration intensity slowly increased until the rat awoke. One day after the last apnea or arousal, rats were anesthetized and arterial blood pressure and splanchnic sympathetic nerve activity (SSNA) were recorded. Baseline mean and diastolic pressure were increased after OSA. Resting SSNA was similar in the three groups, but both OSA and sleep fragmentation increased sympathetic activation in response to airway obstruction and chemoreflex activation by cyanide. OSA increased superoxide dismutases 1 and 2 in the brainstem, whereas sleep fragmentation did not. Our results suggest that sympathetic overactivity to chemoreceptor stimulation was a consequence of arousal from sleep. Our study suggests that sleep disruption may have an important role in the development of apnea-related sympathetic activation.NEW & NOTEWORTHY Obstructive sleep apnea causes a hyperactive chemoreflex, with increased sympathetic activation. However, it is not clear whether this pathophysiologic mechanism is due to repeated hypoxia or to sleep disruption. The present study suggests that sleep fragmentation contributes importantly to increased sympathetic activation after chemoreceptor stimulation. This suggests that sleep fragmentation has an important role in the sympathetic activation seen in sleep apnea patients.
Collapse
Affiliation(s)
- Caroline B Ferreira
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Guus H Schoorlemmer
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antonio A Rocha
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio L Cravo
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Devereaux MEM, Pamenter ME. Fossorial giant Zambian mole-rats have blunted ventilatory responses to environmental hypoxia and hypercapnia. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110672. [PMID: 32032753 DOI: 10.1016/j.cbpa.2020.110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Fossorial giant Zambian mole-rats are believed to live in a hypoxic and hypercapnic subterranean environment but their physiological responses to these challenges are entirely unknown. To investigate this, we exposed awake and freely-behaving animals to i) 6 h of normoxia, ii) acute graded normocapnic hypoxia (21, 18, 15, 12, 8, and 5% O2, 0% CO2, balance N2; 1 h each), or iii) acute graded normoxic hypercapnia (0, 2, 5, 7, 9, and 10% CO2, 21% O2, balance N2; 1 h each), followed by a 1 h normoxic normocapnic recovery period, while non-invasively measuring ventilation, metabolic rate, and body temperature (Tb). We found that these mole-rats had a blunted hypoxic ventilatory response that manifested at 12% inhaled O2, a robust hypoxic metabolic response (up to a 68% decrease, starting at 15% O2), and decreased Tb (at or below 8% O2). Upon reoxygenation, metabolic rate increased 52% above normoxic levels, suggesting the paying off of an O2 debt. Ventilation was less sensitive to environmental hypercapnia than to environmental hypoxia and animals also exhibited a blunted hypercapnic ventilatory response that did not manifest below 9% inhaled CO2. Conversely, metabolism and Tb were not affected by hypercapnia. Taken together, these results indicate that, like most other fossorial rodents, giant Zambian mole-rats have blunted hypoxic and hypercapnic ventilatory responses and employ metabolic suppression to tolerate acute hypoxia. Blunted physiological responses to hypoxia and hypercapnia likely reflect the subterranean lifestyle of this mammal, wherein intermittent but severe hypoxia and/or hypercapnia may be common challenges.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
39
|
Atanasova DY, Dandov AD, Dimitrov ND, Lazarov NE. Histochemical and immunohistochemical localization of nitrergic structures in the carotid body of spontaneously hypertensive rats. Acta Histochem 2020; 122:151500. [PMID: 31918956 DOI: 10.1016/j.acthis.2019.151500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The carotid body (CB) is a multipurpose metabolic sensor that acts to initiate cardiorespiratory reflex adjustments to maintain homeostasis of blood-borne chemicals. Emerging evidence suggests that nitric oxide increases the CB chemosensory activity and this enhanced peripheral chemoreflex sensitivity contributes to sympathoexcitation and consequent pathology. The aim of this study was to examine by means of NADPH-diaphorase histochemistry and nitric oxide synthase (NOS) immunohistochemistry the presence and distribution of nitrergic structures in the CB of spontaneously hypertensive rats (SHRs) and to compare their expression patterns to that of age-matched normotensive Wistar rats (NWRs). Histochemistry revealed that the chemosensory glomus cells were NADPH-d-negative but were encircled by fine positive varicosities, which were also dispersed in the stroma around the glomeruli. The NADPH-d-reactive fibers showed the same distributional pattern in the CB of SHRs, however their staining activity was weaker when compared with NWRs. Thin periglomerular, intraglomerular and perivascular varicose fibers, but not glomus or sustentacular cells in the hypertensive CB, constitutively expressed two isoforms of NOS, nNOS and eNOS. In addition, clusters of glomus cells and blood vessels in the CB of SHRs exhibited moderate immunoreactivity for the third known NOS isoenzyme, iNOS. The present study demonstrates that in the hypertensive CB nNOS and eNOS protein expression shows statistically significant down-regulation whereas iNOS expression is up-regulated in the glomic tissue compared to normotensive controls. Our results suggest that impaired NO synthesis could contribute to elevated blood pressure in rats via an increase in chemoexcitation and sympathetic nerve activity in the CB.
Collapse
Affiliation(s)
- Dimitrinka Y Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Angel D Dandov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria.
| | - Nikolay D Dimitrov
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Nikolai E Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria.
| |
Collapse
|
40
|
Mottelson MN, Lundsgaard CC, Møller S. Mechanisms in fluid retention - towards a mutual concept. Clin Physiol Funct Imaging 2019; 40:67-75. [PMID: 31823451 DOI: 10.1111/cpf.12615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Fluid retention is a common and challenging condition in daily clinical practice. The normal fluid homoeostasis in the human body is based on accurately counter-balanced physiological mechanisms. When compromised fluid retention occurs and is seen in pathophysiologically different conditions such as liver cirrhosis, heart and kidney failure, and in preeclampsia. These conditions may share pathophysiological mechanisms such as functional arterial underfilling, which seems to be a mutual element in cirrhosis, cardiac failure, cardiorenal and hepatorenal syndromes, and in pregnancy. However, there are also distinct differences and it is still unclear whether kidney dysfunction or arterial underfilling is the initiating factor of fluid retention or if they happen simultaneously. This review focuses on similarities and differences in water retaining conditions and points to areas where important knowledge is still needed.
Collapse
Affiliation(s)
- Mathis N Mottelson
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Internal Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Christoffer C Lundsgaard
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
41
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
42
|
Zhang SY, Pamenter ME. Fossorial Damaraland mole rats do not exhibit a blunted hypercapnic ventilatory response. Biol Lett 2019; 15:20190006. [PMID: 30862308 DOI: 10.1098/rsbl.2019.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Damaraland mole rats (DMRs, Fukomys damarensis) are a eusocial fossorial species that spend the majority of their life in densely populated underground burrows, in which they likely experience intermittent periods of elevated CO2 (i.e. hypercapnia). The primary physiological response to hypercapnia in most mammals is to increase depth and rate of breathing (i.e. hyperpnoea), but this response is often blunted in species that inhabit hypercapnic environments. In their natural habitat, DMRs putatively experience a gaseous environment ranging from normocapnic (0.1% CO2) to hypercapnic (6.0% CO2) conditions (Roper et al. 2001 J. Zool. 254, 101-107). As such, we hypothesized that DMRs would exhibit blunted hypercapnic ventilatory and metabolic responses, relative to those of non-fossorial rodent species. To test this hypothesis, we exposed awake, freely behaving DMRs to normoxic normocapnia (21% O2, 0% CO2, balance N2) or graded normoxic hypercapnia (21% O2, 0, 2, 5, 7 and 10% CO2, balance N2), and measured ventilation and metabolism using whole-body plethysmography and indirect calorimetry, respectively. We found that ventilation and metabolism were unchanged during prolonged normocapnia, whereas during graded hypercapnia, ventilation was elevated at 2% CO2 and above. As a result, O2 extraction efficiency at the lungs decreased with increasing hyperpnoea. Conversely, metabolic rate did not increase until 10% CO2, presumably due to the metabolic cost of hyperpnoea. Taken together, our results suggest that despite their fossorial lifestyle, DMRs do not exhibit adaptations in their ventilatory or metabolic responses to environmental hypercapnia.
Collapse
Affiliation(s)
- Sarah Y Zhang
- 1 Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5 , Canada
| | - Matthew E Pamenter
- 1 Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5 , Canada.,2 University of Ottawa Brain and Mind Research Institute , Ottawa, Ontario , Canada
| |
Collapse
|
43
|
Iturriaga R, Castillo-Galán S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 2019; 21:89. [PMID: 31599367 DOI: 10.1007/s11906-019-0995-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
44
|
De Bels D, Pierrakos C, Bruneteau A, Reul F, Crevecoeur Q, Marrone N, Vissenaeken D, Borgers G, Balestra C, Honoré PM, Theunissen S. Variation of Cognitive Function During a Short Stay at Hypobaric Hypoxia Chamber (Altitude: 3842 M). Front Physiol 2019; 10:806. [PMID: 31316394 PMCID: PMC6611417 DOI: 10.3389/fphys.2019.00806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To observe the effects of a fast-acute ascent to high altitude on brain cognitive function and transcranial doppler parameters in order to understand the physiological countermeasures of hypoxia. Methods 17 high-altitude-naïve male subjects (mean age was 26.3 ± 8.1 years) participated in the study. We measured Critical Flicker Fusion Frequency (CFFF), blood oxygen saturation, Psychology Experiment Building (PEBL) including three tests (Modified Math Processing Task, Perceptual Vigilance Task, and Time Estimation Task), as well as Cerebral Blood Flow index (CBFi), mean cerebral artery Systolic and diastolic velocities, Cerebral Pulsatility index (CPi), and heart Rate. All were measured at sea level, at least 1 h after arrival at the hypobaric hypoxia equivalent of 3842 m and 1 h after return to sea level. Results Under acute exposure to hypobaric hypoxic conditions, significant decrease in CFFF [42.1 ± 1 vs. 43.5 ± 1.7 Hz at sea level (asl), p < 0.01], CBFi (611 ± 51 vs. 665 ± 71 asl, p < 0.01) and blood oxygen saturation (83 ± 4% vs. 98 ± 1% asl, p < 0.001) as compared to pre-ascent values were observed. Physiological countermeasures to hypoxia could be involved as there was no significant change in neuropsychometric tests, Systolic and Diastolic velocities and CPi. A significant increase in Heart Rate (81 ± 15 bpm vs. 66 ± 15 bpm asl, p < 0.001) was observed. All parameters returned to their basal values 1 h after regaining sea level. Conclusion Hypoxia results in a decrease in CFFF, CBFi and oxygen saturation and in an increase in heart rate. As it decreased, Cerebral Blood Flow index does not seem to be the physiological measurement of choice to hypoxia explaining the maintenance of cognitive performance after acute exposure to hypobaric hypoxia and requires further investigation. Cerebral oxygen delivery and extraction could be one of the underlying mechanisms.
Collapse
Affiliation(s)
- D De Bels
- Department of Intensive Care Medicine, Brugmann University Hospital, Brussels, Belgium.,Unit of Oxygen Study, Translational Research Laboratory, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - C Pierrakos
- Department of Intensive Care Medicine, Brugmann University Hospital, Brussels, Belgium.,Unit of Oxygen Study, Translational Research Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - A Bruneteau
- Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - F Reul
- Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Q Crevecoeur
- Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - N Marrone
- Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - D Vissenaeken
- Hypobaric Chamber, Queen Astrid Military Hospital, Brussels, Belgium
| | - G Borgers
- Hypobaric Chamber, Queen Astrid Military Hospital, Brussels, Belgium
| | - C Balestra
- Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - P M Honoré
- Department of Intensive Care Medicine, Brugmann University Hospital, Brussels, Belgium
| | - S Theunissen
- Laboratory of Integrative Physiology, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| |
Collapse
|
45
|
Ozmen S, Altinkaynak K, Aydin MD, Ahiskalioglu A, Demirci T, Özlü C, Kanat A, Aydin N. Toward understanding the causes of blood pH irregularities and the roles of newly described binuclear neurons of carotid bodies on blood pH regulation during subarachnoid hemorrhage: Experimental study. Neuropathology 2019; 39:259-267. [DOI: 10.1111/neup.12552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sevilay Ozmen
- Department of PathologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Konca Altinkaynak
- Department of BiochemistryErzurum Research Training Hospital Erzurum Turkey
| | - Mehmet D. Aydin
- Department of NeurosurgeryAtaturk University, Medical Faculty Erzurum Turkey
| | - Ali Ahiskalioglu
- Department of AnesthesiologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Tuba Demirci
- Department of HistologyMedical Faculty of Ataturk University Erzurum Turkey
| | - Can Özlü
- Department of HematologyErzurum Research Training Hospital Erzurum Turkey
| | - Ayhan Kanat
- Department of NeurosurgeryRecep Tayyip Erdogan University Rize Turkey
| | - Nazan Aydin
- Department of PsychiatryBakirkoy Mental Diseases Education Hospital İstanbul Turkey
| |
Collapse
|
46
|
Yuan W, Nie S, Wang H, Xu Q, Jia N. Anticholinergics aggravate the imbalance of the autonomic nervous system in stable chronic obstructive pulmonary disease. BMC Pulm Med 2019; 19:88. [PMID: 31072407 PMCID: PMC6506959 DOI: 10.1186/s12890-019-0848-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Inhaled anticholinergics, recommended as first-line maintenance treatment for patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), has been demonstrated to be associated with an increased risk of cardiovascular diseases. Nevertheless, why COPD patients using inhaled anticholinergics have this higher risk remains unknown. One of mechanisms may be an autonomic imbalance because anticholinergics yield reduced vagal nervous activity. To test our hypothesis, we studied heart rate recovery (HRR) after exercise, recognized as a marker of cardiac autonomic function, in COPD patients using and not using inhaled anticholinergics. Methods Sixty patients with COPD were involved in this study (mean FEV1 = 1.57 ± 0.42 L), including 24 patients who had received tiotropium for more than 1 year and 36 patients not using tiotropium as a control group. A maximal cardiopulmonary exercise test was performed. HRR was defined as the difference between peak exercise and at 1-min recovery heart rate. Results HRR was significantly lower in patients using tiotropium than in the controls (16 ± 6 vs 22 ± 8 beats/min, respectively, p < 0.05). Multivariate regression analysis revealed that tiotropium use and peak VCO2 were independent predictors of HRR in these COPD patients. Conclusions These findings suggest that anticholinergics bronchodilators reduce HRR after exercise in COPD patients. This has the potential to aggravate autonomic nervous imbalance. Therefore, we recommend that COPD patients taking anticholinergic bronchodilators should be considered for monitoring of cardiac function and prescribers should be alert for cardiovascular events that may arise from autonomic nervous imbalance.
Collapse
Affiliation(s)
- Wei Yuan
- Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yongan Road Xicheng District, Beijing, 100050, China
| | - Shan Nie
- Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yongan Road Xicheng District, Beijing, 100050, China.
| | - Haoyan Wang
- Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yongan Road Xicheng District, Beijing, 100050, China
| | - Qiufen Xu
- Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yongan Road Xicheng District, Beijing, 100050, China
| | - Nan Jia
- Capital Medical University Affiliated Beijing Friendship Hospital, 95 Yongan Road Xicheng District, Beijing, 100050, China
| |
Collapse
|
47
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
48
|
Leonard EM, Zhang M, Nurse CA. Evidence for protein kinase involvement in the 5-HT-[Ca 2+ ] i -pannexin-1 signalling pathway in type II glial cells of the rat carotid body. Exp Physiol 2018; 104:244-253. [PMID: 30456914 DOI: 10.1113/ep087411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/19/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The mammalian carotid body (CB) is a peripheral chemoreceptor organ involved in O2 and CO2 /H+ homeostasis. Recent studies suggest that 5-HT, released from CB receptor cells, can stimulate adjacent glial-like type II cells, leading to an increase in intracellular Ca2+ (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. The aim of this study was to elucidate the role of protein kinases in the 5-HT-[Ca2+ ]i -Panx-1 signalling pathway. What is the main finding and its importance? Src family kinase and protein kinase A, acting downstream from Δ[Ca2+ ]i , played central roles in 5-HT-mediated Panx-1 channel activation. This provides new insight into mechanisms regulating CB excitation, especially in pathophysiological conditions. ABSTRACT Chemoreceptor (type I) cells of the rodent carotid body (CB) synthesize and release several neurotransmitters/neuromodulators, including 5-hydroxytryptamine (5-HT), implicated in enhanced CB excitation after exposure to chronic intermittent hypoxia, e.g. sleep apnoea. However, recent studies suggest that 5-HT can robustly stimulate adjacent glial-like type II cells via ketanserin-sensitive 5-HT2 receptors, leading to intracellular Ca2+ elevation (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. Using dissociated rat CB cultures, we investigated the role of protein kinases in the intracellular signalling pathways in type II cells. In isolated type II cells, 5-HT activated a Panx-1-like inward current (I5-HT ) that was reversibly inhibited by the Src family kinase inhibitor PP2 (1 μm), but not by its inactive analogue, PP3 (1 μm). Moreover, I5-HT was reversibly inhibited (>90%) by H89 (1 μm), a protein kinase A blocker, whereas the protein kinase C blocker GF109203X (2 μm) was largely ineffective. In contrast, the P2Y2R agonist UTP (100 μm) activated Panx-1-like currents that were reversibly inhibited (∼60%) by either H89 or GF109203X. Using fura-2 spectrofluorimetry, the 5-HT-induced Δ[Ca2+ ]i was unaffected by PP2, H89 and GF109293X, suggesting that the kinases acted downstream of the Ca2+ rise. Given that intracellular Ca2+ chelation was previously shown to block receptor-mediated Panx-1 current activation in type II cells, these data suggest that CB neuromodulators use overlapping, but not necessarily identical, signalling pathways to activate Panx-1 channels and release ATP, a CB excitatory neurotransmitter. In conclusion, these studies provide new mechanistic insight into 5-HT signalling in the CB that has pathophysiological relevance.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Nagaoka M, Goda A, Takeuchi K, Kikuchi H, Finger M, Inami T, Soejima K, Satoh T. Nocturnal Hypoxemia, But Not Sleep Apnea, Is Associated With a Poor Prognosis in Patients With Pulmonary Arterial Hypertension. Circ J 2018; 82:3076-3081. [PMID: 30333436 DOI: 10.1253/circj.cj-18-0636] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sleep apnea (SA) can cause repeated nocturnal arterial oxygen desaturation and result in acute increase in pulmonary arterial pressure (PAP). The presence of SA is associated with a poor prognosis in patients with chronic left-sided heart failure, but little is known for patients with pulmonary arterial hypertension (PAH). Methods and Results: We enrolled 151 patients with PAH (44±16 years old, male/female=37/114). They were all in the Nice Classification group 1 (idiopathic PAH/associated PAH=52/48%, mean PAP of 46±16 mmHg). They underwent right-heart catheterization and a sleep study with simplified polysomnography. Averaged percutaneous oxygen saturation (SpO2) during sleep was measured and an apnea-hypopnea index >5 was defined as SA. SA was noted in 58 patients (obstructive SA/central SA: 29/29). Over an average follow-up of 1,170±763 days, 32 patients died. By Kaplan-Meier analysis, there was no significant difference in deaths of patients with and without SA (χ2=2.82, P=0.093). On the other hand, the mortality in patients with lower averaged SpO2 was significantly higher than in those with higher averaged SpO2 (χ2=14.7, P<0.001) and that was the only independent variable related to death in multivariate Cox proportional hazards analysis. CONCLUSIONS SA in patients with PAH was not associated with worse prognosis, unlike left ventricular heart failure, but nocturnal hypoxemia was related to poor prognosis.
Collapse
Affiliation(s)
- Mika Nagaoka
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Ayumi Goda
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Kaori Takeuchi
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Hanako Kikuchi
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Mayumi Finger
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Takumi Inami
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Kyoko Soejima
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| | - Toru Satoh
- Division of Cardiology, Department of Medicine, Kyorin University Hospital
| |
Collapse
|
50
|
Nogueira V, Brito-Alves J, Fontes D, Oliveira L, Lucca W, Tourneur Y, Wanderley A, da Silva GSF, Leandro C, Costa-Silva JH. Carotid body removal normalizes arterial blood pressure and respiratory frequency in offspring of protein-restricted mothers. Hypertens Res 2018; 41:1000-1012. [PMID: 30242293 DOI: 10.1038/s41440-018-0104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study is to evaluate the short-term and long-term effects elicited by carotid body removal (CBR) on ventilatory function and the development of hypertension in the offspring of malnourished rats. Wistar rats were fed a normo-protein (NP, 17% casein) or low-protein (LP, 8% casein) diet during pregnancy and lactation. At 29 days of age, the animals were submitted to CBR or a sham surgery, according to the following groups: NP-cbr, LP-cbr, NP-sham, or LP-sham. In the short-term, at 30 days of age, the respiratory frequency (RF) and immunoreactivity for Fos on the retrotrapezoid nucleus (RTN; brainstem site containing CO2 sensitive neurons) after exposure to CO2 were evaluated. In the long term, at 90 days of age, arterial pressure (AP), heart rate (HR), and cardiovascular variability were evaluated. In the short term, an increase in the baseline RF (~6%), response to CO2 (~8%), and Fos in the RTN (~27%) occurred in the LP-sham group compared with the NP-sham group. Interestingly, the CBR in the LP group normalized the RF in response to CO2 as well as RTN cell activation. In the long term, CBR reduced the mean AP by ~20 mmHg in malnourished rats. The normalization of the arterial pressure was associated with a decrease in the low-frequency (LF) oscillatory component of AP (~58%) and in the sympathetic tonus to the cardiovascular system (~29%). In conclusion, carotid body inputs in malnourished offspring may be responsible for the following: (i) enhanced respiratory frequency and CO2 chemosensitivity in early life and (ii) the production of autonomic imbalance and the development of hypertension.
Collapse
Affiliation(s)
- Viviane Nogueira
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jose Brito-Alves
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Danilo Fontes
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Larissa Oliveira
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Waldecy Lucca
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Yves Tourneur
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.,Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon 1, Lyon, France
| | - Almir Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carol Leandro
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|