1
|
Forrer S, Arentshorst M, Koolth Valappil P, Visser J, Ram AFJ. Competition between homologous chromosomal DNA and exogenous donor DNA to repair CRISPR/Cas9-induced double-strand breaks in Aspergillus niger. Fungal Biol Biotechnol 2024; 11:15. [PMID: 39407321 PMCID: PMC11481784 DOI: 10.1186/s40694-024-00184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Aspergillus niger is well-known for its high protein secretion capacity and therefore an important cell factory for homologous and heterologous protein production. The use of a strong promoter and multiple gene copies are commonly used strategies to increase the gene expression and protein production of the gene of interest (GOI). We recently presented a two-step CRISPR/Cas9-mediated approach in which glucoamylase (glaA) landing sites (GLSs) are introduced at predetermined sites in the genome (step 1), which are subsequently filled with copies of the GOI (step 2) to achieve high expression of the GOI. RESULTS Here we show that in a ku70 defective A. niger strain (Δku70), thereby excluding non-homologous end joining (NHEJ) as a mechanism to repair double-stranded DNA breaks (DSBs), the chromosomal glaA locus or homologous GLSs can be used to repair Cas9-induced DSBs, thereby competing with the integration of the donor DNA containing the GOI. In the absence of exogenously added donor DNA, the DSBs are repaired with homologous chromosomal DNA located on other chromosomes (inter-chromosomal repair) or, with higher efficiency, by a homologous DNA fragment located on the same chromosome (intra-chromosomal repair). Single copy inter-chromosomal homology-based DNA repair was found to occur in 13-20% of the transformants while 80-87% of the transformants were repaired by exogenously added donor DNA. The efficiency of chromosomal repair was dependent on the copy number of the potential donor DNA sequences in the genome. The presence of five homologous DNA sequences, resulted in an increased number (35-61%) of the transformants repaired by chromosomal DNA. The efficiency of intra-chromosomal homology based DSB repair in the absence of donor DNA was found to be highly preferred (85-90%) over inter-chromosomal repair. Intra-chromosomal repair was also found to be the preferred way of DNA repair in the presence of donor DNA and was found to be locus-dependent. CONCLUSION The awareness that homologous chromosomal DNA repair can compete with donor DNA to repair DSB and thereby affecting the efficiency of multicopy strain construction using CRISPR/Cas9-mediated genome editing is an important consideration to take into account in industrial strain design.
Collapse
Affiliation(s)
- Selina Forrer
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Mark Arentshorst
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Prajeesh Koolth Valappil
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Jaap Visser
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Arthur F J Ram
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands.
| |
Collapse
|
2
|
Dinius A, Müller H, Kellhammer D, Deffur C, Schmideder S, Hammel JU, Krull R, Briesen H. 3D imaging and analysis to unveil the impact of microparticles on the pellet morphology of filamentous fungi. Biotechnol Bioeng 2024; 121:3128-3143. [PMID: 38943490 DOI: 10.1002/bit.28788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henri Müller
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Diana Kellhammer
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Charlotte Deffur
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Stefan Schmideder
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum hereon, Institute of Materials Physics, Geesthacht, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Heiko Briesen
- School of Life Sciences, Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Sidar A, Voshol GP, Arentshorst M, Ram AFJ, Vijgenboom E, Punt PJ. Deciphering domain structures of Aspergillus and Streptomyces GH3-β-Glucosidases: a screening system for enzyme engineering and biotechnological applications. BMC Res Notes 2024; 17:257. [PMID: 39256846 PMCID: PMC11389254 DOI: 10.1186/s13104-024-06896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
The glycoside hydrolase family 3 (GH3) β-glucosidases from filamentous fungi are crucial industrial enzymes facilitating the complete degradation of lignocellulose, by converting cello-oligosaccharides and cellobiose into glucose. Understanding the diverse domain organization is essential for elucidating their biological roles and potential biotechnological applications. This research delves into the variability of domain organization within GH3 β-glucosidases. Two distinct configurations were identified in fungal GH3 β-glucosidases, one comprising solely the GH3 catalytic domain, and another incorporating the GH3 domain with a C-terminal fibronectin type III (Fn3) domain. Notably, Streptomyces filamentous bacteria showcased a separate clade of GH3 proteins linking the GH3 domain to a carbohydrate binding module from family 2 (CBM2). As a first step to be able to explore the role of accessory domains in β-glucosidase activity, a screening system utilizing the well-characterised Aspergillus niger β-glucosidase gene (bglA) in bglA deletion mutant host was developed. Based on this screening system, reintroducing the native GH3-Fn3 gene successfully expressed the gene allowing detection of the protein using different enzymatic assays. Further investigation into the role of the accessory domains in GH3 family proteins, including those from Streptomyces, will be required to design improved chimeric β-glucosidases enzymes for industrial application.
Collapse
Affiliation(s)
- Andika Sidar
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands.
- Department of Food and Agricultural Product Technology, Gadjah Mada University, Yogyakarta, Indonesia.
| | - Gerben P Voshol
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
- , Genomescan, Leiden, The Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Erik Vijgenboom
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Peter J Punt
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands.
- Ginkgo Bioworks, Zeist, The Netherlands.
| |
Collapse
|
4
|
Thai HD, Trinh MT, Do LTBX, Le TH, Nguyen DT, Tran QT, Tran VKT, Mai LTD, Pham DN, Le DH, Vu TX, Tran VT. Gene function characterization in Aspergillus niger using a dual resistance marker transformation system mediated by Agrobacterium tumefaciens. J Microbiol Methods 2024; 224:106989. [PMID: 38996925 DOI: 10.1016/j.mimet.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Minh Thi Trinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thu-Hang Le
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Thanh Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Que Thi Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Khanh Tong Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Linh Thi Dam Mai
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Ngoc Pham
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Diep Hong Le
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
5
|
Fritsche S, Fronek F, Mach RL, Steiger MG. Applicability of non-invasive and live-cell holotomographic imaging on fungi. J Microbiol Methods 2024; 224:106983. [PMID: 38945304 DOI: 10.1016/j.mimet.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The ability to acquire three-dimensional (3D) information of cellular structures without the need for fluorescent tags or staining makes holotomographic imaging a powerful tool in cellular biology. It provides valuable insights by measuring the refractive index (RI), an optical parameter describing the phase delay of light that passes through the living cell. Here, we demonstrate holotomographic imaging on industrial relevant ascomycete fungi and study their development and morphogenesis. This includes conidial germination, subcellular dynamics, and cytoplasmic flow during hyphal growth in Aspergillus niger. In addition, growth and budding of Aureobasidium pullulans cells are captured using holotomographic microscopy. Coupled to fluorescence imaging, lipid droplets, vacuoles, the mitochondrial network, and nuclei are targeted and analyzed in the 3D RI reconstructed images. While lipid droplets and vacuoles can be assigned to a specific RI pattern, mitochondria and nuclei were not pronounced. We show, that the lower sensitivity of RI measurements derives from the fungal cell wall that acts as an additional barrier for the illumination light of the microscope. After cell wall digest of hyphae and protoplast formation of A. niger expressing GFP-tagged histone H2A, location of nuclei could be determined by non-invasive RI measurements. Furthermore, we used coupled fluorescence microscopy to observe migration of nuclei in unperturbed hyphal segments and duplication during growth on a single-cell level. Detailed micromorphological studies in Saccharomyces cerevisiae and Trichoderma reesei are challenging due to cell size restrictions. Overall, holotomography opens up new avenues for exploring dynamic cellular processes in real time and enables the visualization of fungi from a new perspective.
Collapse
Affiliation(s)
- Susanne Fritsche
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Felix Fronek
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Matthias G Steiger
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria.
| |
Collapse
|
6
|
Tiwari P, Park KI. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J Fungi (Basel) 2024; 10:506. [PMID: 39057391 PMCID: PMC11278089 DOI: 10.3390/jof10070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The present era has witnessed an unprecedented scenario with extreme climate changes, depleting natural resources and rising global food demands and its widespread societal impact. From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic variations and extreme niches and promote environmental sustainability. It is important to mention that advances in fungal biotechnologies have opened new avenues and significantly contributed to improving human lives through addressing socio-economic challenges. Microbe-based sustainable innovations would likely contribute to the United Nations sustainable development goals (SDGs) by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing economic burdens/affordable living conditions (new opportunities by the creation of bio-based industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer marine life) and poverty reduction (microbial products), among other microbe-mediated approaches. The article highlights the emerging trends and future directions into how fungal biotechnologies can provide feasible and sustainable solutions to achieve SDGs and address global issues.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
7
|
Chen X, Pan B, Yu L, Wang B, Pan L. Enhancement of protein production in Aspergillus niger by engineering the antioxidant defense metabolism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:91. [PMID: 38951910 PMCID: PMC11218396 DOI: 10.1186/s13068-024-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Research on protein production holds significant importance in the advancement of food technology, agriculture, pharmaceuticals, and bioenergy. Aspergillus niger stands out as an ideal microbial cell factory for the production of food-grade proteins, owing to its robust protein secretion capacity and excellent safety profile. However, the extensive oxidative folding of proteins within the endoplasmic reticulum (ER) triggers ER stress, consequently leading to protein misfolding reactions. This stressful phenomenon results in the accelerated generation of reactive oxygen species (ROS), thereby inducing oxidative stress. The accumulation of ROS can adversely affect intracellular DNA, proteins, and lipids. RESULT In this study, we enhanced the detoxification of ROS in A. niger (SH-1) by integrating multiple modules, including the NADPH regeneration engineering module, the glutaredoxin system, the GSH synthesis engineering module, and the transcription factor module. We assessed the intracellular ROS levels, growth under stress conditions, protein production levels, and intracellular GSH content. Our findings revealed that the overexpression of Glr1 in the glutaredoxin system exhibited significant efficacy across various parameters. Specifically, it reduced the intracellular ROS levels in A. niger by 50%, boosted glucoamylase enzyme activity by 243%, and increased total protein secretion by 88%. CONCLUSION The results indicate that moderate modulation of intracellular redox conditions can enhance overall protein output. In conclusion, we present a strategy for augmenting protein production in A. niger and propose a potential approach for optimizing microbial protein production system.
Collapse
Affiliation(s)
- Xin Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Baoxiang Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Leyi Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
9
|
Mittermeier F, Fischer F, Hauke S, Hirschmann P, Weuster-Botz D. Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed. BIOTECH 2024; 13:15. [PMID: 38804297 PMCID: PMC11130873 DOI: 10.3390/biotech13020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and cellulases that is suitable to degrade lignocellulosic biomass to sugar monomers (D-glucose, D-xylose, and L-arabinose). An integrated one-pot process for enzyme production followed by hydrolysis in stirred tank bioreactors resulted in hydrolysates with overall sugar concentrations of 32.3 g L-1 and 24.4 g L-1 at a 25 L and a 1000 L scale, respectively, within 86 h. Furthermore, the residual solid biomass consisting of fermented wheat bran with protein-rich fungal mycelium displays improved nutritional properties for usage as animal feed due to its increased content of sugars, protein, and fat.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Fabienne Fischer
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Sebastian Hauke
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Peter Hirschmann
- Bavarian Milling Confederation (Bayerischer Müllerbund e.V.), 80333 Munich, Germany
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
10
|
Xu Y, Dong F, Wang R, Ajmal M, Liu X, Lin H, Chen H. Alternative splicing analysis of lignocellulose-degrading enzyme genes and enzyme variants in Aspergillus niger. Appl Microbiol Biotechnol 2024; 108:302. [PMID: 38639796 PMCID: PMC11031446 DOI: 10.1007/s00253-024-13137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-β-1,4-xylanase F1 gene (xynF1) and the endo-β-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-β-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New β-1,4-xylanase and LPMO derived from AS events were characterized.
Collapse
Affiliation(s)
- Yifan Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feiyu Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruoxin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Maria Ajmal
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinyu Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Rohr K, Gremm L, Geinitz B, Jourdier E, Wiechert W, Ben Chaabane F, Oldiges M. Optimizing microbioreactor cultivation strategies for Trichoderma reesei: from batch to fed-batch operations. Microb Cell Fact 2024; 23:112. [PMID: 38622596 PMCID: PMC11334512 DOI: 10.1186/s12934-024-02371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l- 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h)- 1 , the lowest rate of 0.3 g (l h)- 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in β -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.
Collapse
Affiliation(s)
- Katja Rohr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Lisa Gremm
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bertram Geinitz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Etienne Jourdier
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Fadhel Ben Chaabane
- IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Steenwyk JL, Balamurugan C, Raja HA, Gonçalves C, Li N, Martin F, Berman J, Oberlies NH, Gibbons JG, Goldman GH, Geiser DM, Houbraken J, Hibbett DS, Rokas A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. Microbiol Spectr 2024; 12:e0398023. [PMID: 38445873 PMCID: PMC10986620 DOI: 10.1128/spectrum.03980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ningxiao Li
- Department of Plant Pathology, University of California, Davis, California, USA
- USDA-ARS, Salinas, California, USA
| | | | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, Pennsylvania, USA
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| |
Collapse
|
13
|
Alwakeel S, Alothman N, Ameen F, Alotaibi M, Mohammed AE, Alhomaidi E. Stress-driven metabolites of desert soil fungi. Biotechnol Genet Eng Rev 2024; 40:140-153. [PMID: 36852923 DOI: 10.1080/02648725.2023.2182537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023]
Abstract
Microorganisms produce secondary metabolites to survive under stressful conditions. The effect of drought and heat stress on fungi isolated from Arabian desert soil during the hot (ca 40°C) and cool (ca 10°C) seasons was studied using the genome mining approach. The presence of three stress-related genes (calmodulin, polyketide synthase and beta tubulin) was analyzed molecularly using specific primers. The presence of the genes in desert fungi was compared to their antimicrobial (ten bacterial or fungal pathogens) and anticancer (liver, cervical and breast) properties and the production of thermostable enzymes (phytase and xylanase). The genes appeared to be present in the fungal sequence obtained during the summer, while none of the genes were present during winter. Appreciable differences were observed in enzyme activities, with summer activities high and winter low. The antagonistic activities of A. niger were relatively stable and varying, while those of P. chrysogenum were consistently higher in summer than in winter. The presence of the three genes seemed to correlate with the highly antagonistic activities of P. chrysogenum, while A. niger had relatively active winter isolates without any of the genes. The hot season in deserts yields fungal isolates with biological activities useful in biotechnological solutions.
Collapse
Affiliation(s)
- Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nouf Alothman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Barthel L, Cairns T, Duda S, Müller H, Dobbert B, Jung S, Briesen H, Meyer V. Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. Fungal Biol Biotechnol 2024; 11:3. [PMID: 38468360 PMCID: PMC10926633 DOI: 10.1186/s40694-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom. RESULTS In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization. CONCLUSION This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.
Collapse
Affiliation(s)
- Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | - Sven Duda
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Henri Müller
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Birgit Dobbert
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sascha Jung
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Heiko Briesen
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Ferreira EDS, Cordeiro LV, Silva DDF, Diniz Neto H, Sousa APD, Souza HDDS, Athayde-Filho PFD, Guerra FQS, Barbosa-Filho JM, Oliveira Filho AAD, Lima EDO, Castro RDD. Evaluation of antifungal activity, mechanisms of action and toxicological profile of the synthetic amide 2-chloro- N-phenylacetamide. Drug Chem Toxicol 2024; 47:191-202. [PMID: 36803623 DOI: 10.1080/01480545.2022.2158849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 02/22/2023]
Abstract
Aspergillus niger causes infections such as otitis and pulmonary aspergillosis in immunocompromised individuals. Treatment involves voriconazole or amphotericin B, and due to the increase in fungal resistance, the search for new compounds with antifungal activity has intensified. In the development of new drugs, cytotoxicity and genotoxicity assays are important, as they allow predicting possible damage that a molecule can cause, and in silico studies predict the pharmacokinetic properties. The aim of this study was to verify the antifungal activity and the mechanism of action of the synthetic amide 2-chloro-N-phenylacetamide against Aspergillus niger strains and toxicity. 2-Chloro-N-phenylacetamide showed antifungal activity against different strains of Aspergillus niger with minimum inhibitory concentrations between 32 and 256 μg/mL and minimum fungicides between 64 and 1024 μg/mL. The minimum inhibitory concentration of 2-chloro-N-phenylacetamide also inhibited conidia germination. When associated with amphotericin B or voriconazole, 2-chloro-N-phenylacetamide had antagonistic effects. Interaction with ergosterol in the plasma membrane is the probable mechanism of action.2-Chloro-N-phenylacetamide has favorable physicochemical parameters, good oral bioavailability and absorption in the gastrointestinal tract, crosses the blood-brain barrier and inhibits CYP1A2. At concentrations of 50 to 500 µg/mL, it has little hemolytic effect and a protective effect for type A and O red blood cells, and in the cells of the oral mucosa it promotes little genotoxic change. It is concluded that 2-chloro-N-phenylacetamide has promising antifungal potential, favorable pharmacokinetic profile for oral administration and low cytotoxic and genotoxic potential, being a promising candidate for in vivo toxicity studies.
Collapse
Affiliation(s)
- Elba Dos Santos Ferreira
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Laísa Vilar Cordeiro
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Daniele de Figuerêdo Silva
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Hermes Diniz Neto
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Aleson Pereira de Sousa
- Postgraduate Program in Technological Development and Innovation of Medicines, Health Sciences Center, Federal University of Paraíba, University City Allotment, João Pessoa, Brazil
| | - Helivaldo Diógenes da Silva Souza
- Department of Chemistry, Center for Exact and Natural Sciences, Federal University of Paraíba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Petrônio Filgueiras de Athayde-Filho
- Department of Chemistry, Center for Exact and Natural Sciences, Federal University of Paraíba, Campus I, University City Allotment, João Pessoa, Brazil
| | | | - José Maria Barbosa-Filho
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Abrahão Alves de Oliveira Filho
- Biological Sciences Academic Unit at the Center for Rural Health and Technology (CSTR), Federal University of Campina Grande (UFCG), Bairro Jatobá, Patos, Brazil
| | - Edeltrudes de Oliveira Lima
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| | - Ricardo Dias de Castro
- Postgraduate Program in Natural and Bioactive Synthetic Products, Health Sciences Center, Federal University of Paraíba, Center for Health Sciences, Federal University of Paraiba, Campus I, University City Allotment, João Pessoa, Brazil
| |
Collapse
|
16
|
Crament TC, Arendsen K, Rose SH, Jansen T. Cultivation of recombinant Aspergillus niger strains on dairy whey as a carbohydrate source. J Ind Microbiol Biotechnol 2024; 51:kuae007. [PMID: 38299783 PMCID: PMC10863410 DOI: 10.1093/jimb/kuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Agricultural waste valorisation provides a sustainable solution to waste management, and combining waste utilisation with commodity production allows for responsible production processes. Recombinant Aspergillus niger D15 strains expressing fungal endoglucanases (Trichoderma reesei eg1 and eg2 and Aspergillus carneus aceg) were evaluated for their ability to utilise lactose as a carbon source to determine whether dairy waste could be used as a feedstock for enzyme production. The recombinant A. niger D15[eg1]PyrG, D15[eg2]PyrG, and D15[aceg]PyrG strains produced maximum endoglucanase activities of 34, 54, and 34 U/mL, respectively, on lactose and 23, 27, and 22 U/mL, respectively, on whey. The A. niger D15[eg2]PyrG strain was used to optimise the whey medium. Maximum endoglucanase activity of 46 U/mL was produced on 10% whey medium containing 0.6% NaNO3. The results obtained indicate that dairy whey can be utilised as a feedstock for recombinant enzyme production. However, variations in enzyme activities were observed and require further investigation.
Collapse
Affiliation(s)
- Teagan C Crament
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayline Arendsen
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
17
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
18
|
Zadravec M, Lešić T, Brnić D, Pleadin J, Kraak B, Jakopović Ž, Perković I, Vahčić N, Tkalec VJ, Houbraken J. Regional distribution and diversity of Aspergillus and Penicillium species on Croatian traditional meat products. Int J Food Microbiol 2023; 406:110404. [PMID: 37778241 DOI: 10.1016/j.ijfoodmicro.2023.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Various factors, such as weather and production practices (e.g., environmental hygiene, process duration, raw material quality, ripening temperature, and relative humidity), in combination with the intrinsic product properties (e.g., pH, aw, salt content), significantly affect the growth of surface moulds. The aim of this study was to isolate and identify surface moulds retrieved from traditional meat products (TMPs) and correlate these data to the production region and production technology. The surface of 250 TMPs (dry-fermented sausages, n = 108; dry-cured meat products, n = 142) from five Croatian regions were sampled during a two-year period. Dry-fermented sausages had a significantly higher pH and a lower salt concentration when compared to dry-cured meat products. In total, 528 isolates were obtained, comprising 20 Penicillium and 17 Aspergillus species. The species most frequently isolated from the dry-fermented sausages were P. commune (32.4 %), A. proliferans (33 %), and P. solitum (14.8 %), while A. proliferans (52.1 %), P. commune (28.9 %) and P. citrinum (19.7 %) predominated in dry-cured meat products. Aspergillus predominated on the TMPs from southern Croatia, while Penicillium was prevalent on products from the other four regions, possibly due to differences in weather conditions. Seven potentially mycotoxigenic species (A. creber, A. flavus, A. niger, A. westerdijkiae, P. citrinum, P. commune, and P. nordicum) were isolated and identified. Regular monitoring of mould species and their toxigenic metabolites present on traditional meat products is of the utmost importance from the public health perspective, while the results of such a monitoring can prove beneficial for the tailoring of the production technology development.
Collapse
Affiliation(s)
- Manuela Zadravec
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Tina Lešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Perković
- Croatian Veterinary Institute, Veterinary Department Vinkovci, J. Kozarca 24, 32100 Vinkovci, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Vesna Jaki Tkalec
- Croatian Veterinary Institute, Veterinary Department Križevci, Ivana Zakmardija Dijankovečkog 10, 48260 Križevci, Croatia.
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
19
|
Liu J, Zhu J, Zhang Q, Lv R, Liu H. Establishing a one-step marker-free CRISPR/Cas9 system for industrial Aspergillus niger using counter-selectable marker Ang-ace2. Biotechnol Lett 2023; 45:1477-1485. [PMID: 37805953 DOI: 10.1007/s10529-023-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To develop a one-step, marker-free CRISPR/Cas9 system for highly efficient genome editing in industrial Aspergillus niger, with a short genetic operation cycle. RESULTS Firstly, evaluation of different promoters for sgRNA expression revealed tRNAGly15 as the most efficient, achieving a remarkable 100% gene editing efficiency. Furthermore, a counter-selectable marker, Ang-ace2, was identified for A. niger. Subsequently, a CRISPR/Cas9 plasmid was developed, utilizing a truncated AMA1 element and the Ang-ace2 conditional expression cassette driven by a Tet-on promoter. In the presence of doxycycline, the plasmid demonstrated a 33% loss efficiency in the progeny of A. niger spores after a single generation, resulting in a shortened genetic operation cycle of 16 days for CRISPR/Cas9. CONCLUSIONS The one-step marker-free CRISPR/Cas9 system was successfully developed in industrial A. niger, allowing for efficient gene editing while simultaneously reducing the editing time.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jie Zhu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qian Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruitong Lv
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
20
|
Antunes A, Meyer-Dombard DR. Editorial: Rising stars in space microbiology: 2022. Front Microbiol 2023; 14:1322924. [PMID: 38029155 PMCID: PMC10679738 DOI: 10.3389/fmicb.2023.1322924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macao SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macao SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Müller H, Deffur C, Schmideder S, Barthel L, Friedrich T, Mirlach L, Hammel JU, Meyer V, Briesen H. Synchrotron radiation-based microcomputed tomography for three-dimensional growth analysis of Aspergillus niger pellets. Biotechnol Bioeng 2023; 120:3244-3260. [PMID: 37475650 DOI: 10.1002/bit.28506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Filamentous fungi produce a wide range of relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to a variety of analytical methods to quantify their macromorphology. Nevertheless, only a µ-computed tomography (µ-CT) based method allows a detailed analysis of the 3D micromorphology of fungal pellets. However, the low sample throughput of a laboratory µ-CT limits the tracking of the micromorphological evolution of a statistically representative number of submerged cultivated fungal pellets over time. To meet this challenge, we applied synchrotron radiation-based X-ray microtomography at the Deutsches Elektronen-Synchrotron [German Electron Synchrotron Research Center], resulting in 19,940 3D analyzed individual fungal pellets that were obtained from 26 sampling points during a 48 h Aspergillus niger submerged batch cultivation. For each of the pellets, we were able to determine micromorphological properties such as number and density of spores, tips, branching points, and hyphae. The computed data allowed us to monitor the growth of submerged cultivated fungal pellets in highly resolved 3D for the first time. The generated morphological database from synchrotron measurements can be used to understand, describe, and model the growth of filamentous fungal cultivations.
Collapse
Affiliation(s)
- Henri Müller
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Charlotte Deffur
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Stefan Schmideder
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Tiaan Friedrich
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Lukas Mirlach
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum hereon, Institute of Materials Physics, Geesthacht, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Heiko Briesen
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Vieira L, Filipe D, Amaral D, Magalhães R, Martins N, Ferreira M, Ozorio R, Salgado J, Belo I, Oliva-Teles A, Peres H. Solid-State Fermentation as Green Technology to Improve the Use of Plant Feedstuffs as Ingredients in Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2023; 13:2692. [PMID: 37684956 PMCID: PMC10486719 DOI: 10.3390/ani13172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to evaluate the utilization by juvenile European sea bass of a SSFed PF mixture with Aspergillus niger CECT 2088. A 22-day digestibility and a 50-day growth trial were performed testing four diets, including 20 or 40% of an unfermented or SSFed PF mixture (rapeseed, soybean, rice bran, and sunflower seed meals, 25% each). SSF of the PF added cellulase and β-glucosidase activity to the diets. Mycotoxin contamination was not detected in any of the experimental diets except for residual levels of zearalenone and deoxynivalenol (100 and 600 times lower than that established by the European Commission Recommendation-2006/576/EC). In diets including 20% PF, SSF did not affect growth but increased apparent digestibility coefficients of protein and energy, feed efficiency, and protein efficiency ratio. On the contrary, in diets including 40% PF, SSF decreased growth performance, feed intake, feed and protein efficiency, and diet digestibility. SSF decreased the intestinal amylase activity in the 40% SSFed diet, while total alkaline proteases decreased in the 20% and 40% SSFed diets. Hepatic amino acid catabolic enzyme activity was not modulated by SSF, and plasma total protein, cholesterol, and triglyceride levels were similar among dietary treatments. In conclusion, dietary inclusion of moderate levels of the SSFed PF, up to 20%, improves the overall feed utilization efficiency without negatively impacting European sea bass growth performance. The replacement of PF with the SSFed PF mixture may contribute to reducing the environmental footprint of aquaculture production.
Collapse
Affiliation(s)
- Lúcia Vieira
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Diogo Filipe
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Diogo Amaral
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Rui Magalhães
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Nicole Martins
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Marta Ferreira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rodrigo Ozorio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - José Salgado
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, 4704-553 Guimarães, Portugal
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4050-123 Porto, Portugal
| |
Collapse
|
23
|
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the Development of Industrial Fungal Producing Strains. J Fungi (Basel) 2023; 9:834. [PMID: 37623605 PMCID: PMC10455633 DOI: 10.3390/jof9080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, VLC, Spain
| |
Collapse
|
24
|
Sgro M, Chow N, Olyaei F, Arentshorst M, Geoffrion N, Ram AFJ, Powlowski J, Tsang A. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger. J Biol Chem 2023; 299:105003. [PMID: 37399977 PMCID: PMC10406623 DOI: 10.1016/j.jbc.2023.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on β-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These β-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the β-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes β-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes β-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to β-ketoadipate.
Collapse
Affiliation(s)
- Michael Sgro
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas Chow
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Farnaz Olyaei
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Arthur F J Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Liu D, Garrigues S, de Vries RP. Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5019-5033. [PMID: 37405433 PMCID: PMC10386965 DOI: 10.1007/s00253-023-12660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Filamentous fungi are able to produce a wide range of valuable proteins and enzymes for many industrial applications. Recent advances in fungal genomics and experimental technologies are rapidly changing the approaches for the development and use of filamentous fungi as hosts for the production of both homologous and heterologous proteins. In this review, we highlight the benefits and challenges of using filamentous fungi for the production of heterologous proteins. We review various techniques commonly employed to improve the heterologous protein production in filamentous fungi, such as strong and inducible promoters, codon optimization, more efficient signal peptides for secretion, carrier proteins, engineering of glycosylation sites, regulation of the unfolded protein response and endoplasmic reticulum associated protein degradation, optimization of the intracellular transport process, regulation of unconventional protein secretion, and construction of protease-deficient strains. KEY POINTS: • This review updates the knowledge on heterologous protein production in filamentous fungi. • Several fungal cell factories and potential candidates are discussed. • Insights into improving heterologous gene expression are given.
Collapse
Affiliation(s)
- Dujuan Liu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Food Biotechnology, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Zhu Y, Liu T, Wang Y, Chen G, Fang X, Zhou G, Wang J. ChsA, a Class Ⅱ Chitin Synthase, Contributes to Asexual Conidiation, Mycelial Morphology, Cell Wall Integrity, and the Production of Enzymes and Organic Acids in Aspergillus niger. J Fungi (Basel) 2023; 9:801. [PMID: 37623572 PMCID: PMC10455844 DOI: 10.3390/jof9080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin synthases (CHSs) are vital enzymes for the synthesis of chitin and play important and differential roles in fungal development, cell wall integrity, environmental adaptation, virulence, and metabolism in fungi. However, except for ChsC, a class III CHS, little is known about the functions of CHSs in Aspergillus niger, an important fungus that is widely applied in the fermentation industry and food processing, as well as a spoilage fungus of food and a human pathogen. This study showed the important functions of ChsA, a class II CHS, in A. niger using multi-phenotypic and transcriptional analyses under various conditions. The deletion of chsA led to severe defects in conidiation on different media and resulted in the formation of smaller and less compact pellets with less septa in hyphal cells during submerged fermentation. Compared with the WT, the ΔchsA mutants exhibited less chitin content, reduced growth under the stresses of cell wall-disturbing and oxidative agents, more released protoplasts, a thicker conidial wall, decreased production of amylases, pectinases, cellulases, and malic acid, and increased citric acid production. However, ΔchsA mutants displayed insignificant changes in their sensitivity to osmotic agents and infection ability on apple. These findings concurred with the alteration in the transcript levels and enzymatic activities of some phenotype-related genes. Conclusively, ChsA is important for cell wall integrity and mycelial morphology, and acts as a positive regulator of conidiation, cellular responses to oxidative stresses, and the production of malic acid and some enzymes, but negatively regulates the citric acid production in A. niger.
Collapse
Affiliation(s)
- Yunqi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Tong Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Guojun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| |
Collapse
|
27
|
Koch SM, Freidank-Pohl C, Siontas O, Cortesao M, Mota A, Runzheimer K, Jung S, Rebrosova K, Siler M, Moeller R, Meyer V. Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Front Microbiol 2023; 14:1233740. [PMID: 37547691 PMCID: PMC10399693 DOI: 10.3389/fmicb.2023.1233740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.
Collapse
Affiliation(s)
- Stella Marie Koch
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Carsten Freidank-Pohl
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Siontas
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marta Cortesao
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Afonso Mota
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Katharina Runzheimer
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Sascha Jung
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Katarina Rebrosova
- Department of Microbiology, Faculty of Medicine, Masaryk University (MUNI) and St. Anne's Faculty Hospital, Brno, Czechia
| | - Martin Siler
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
29
|
Cairns TC, de Kanter T, Zheng XZ, Zheng P, Sun J, Meyer V. Regression modelling of conditional morphogene expression links and quantifies the impact of growth rate, fitness and macromorphology with protein secretion in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:95. [PMID: 37268954 DOI: 10.1186/s13068-023-02345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.
Collapse
Affiliation(s)
- Timothy C Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| | - Tom de Kanter
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Xiaomei Z Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
30
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
31
|
Tamano K, Brown DW, Yoshimi A. Editorial: The use of metabolic engineering techniques to increase the productivity of primary and secondary metabolites within filamentous fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1178290. [PMID: 37746119 PMCID: PMC10512314 DOI: 10.3389/ffunb.2023.1178290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Daren W. Brown
- Mycotoxin Prevention and Applied Microbiology Research (MPM), National Center for Agricultural Utilization Research (NCAUR), Agricultural Research Service, USDA, Peoria, IL, United States
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Thai HD, Do LTBX, Nguyen XT, Vu TX, Tran HTT, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger. Arch Microbiol 2023; 205:183. [PMID: 37032362 DOI: 10.1007/s00203-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Xuan Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
33
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
34
|
Itani A, Shida Y, Ogasawara W. A microfluidic device for simultaneous detection of enzyme secretion and elongation of a single hypha. Front Microbiol 2023; 14:1125760. [PMID: 36937311 PMCID: PMC10020217 DOI: 10.3389/fmicb.2023.1125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Filamentous fungi grow through elongation of their apical region by exocytosis and secrete enzymes that can be of commercial or industrial importance. Their hyphae exhibit extensive branching, making it difficult to control hyphal growth for observation and analysis. Therefore, although hyphal morphology and productivity are closely related, the relationship between the two has not yet been clarified. Conventional morphology and productivity studies have only compared the results of macro imaging of fungal pellets cultured in bulk with the averaged products in the culture medium. Filamentous fungi are multicellular and their expression differs between different hyphae. To truly understand the relationship between morphology and productivity, it is necessary to compare the morphology and productivity of individual hyphae. To achieve this, we developed a microfluidic system that confines hyphae to individual channels for observation and investigated the relationship between their growth, morphology, and enzyme productivity. Furthermore, using Trichoderma reesei, a potent cellulase-producing fungus, as a model, we developed a cellulase detection assay with 4-MUC substrate to detect hyphal growth and enzyme secretion in a microfluidic device in real time. Using a strain that expresses cellobiohydrolase I (CBH I) fused with AcGFP1, we compared fluorescence from the detection assay with GFP fluorescence intensity, which showed a strong correlation between the two. These results indicate that extracellular enzymes can be easily detected in the microfluidic device in real time because the production of cellulase is synchronized in T. reesei. This microfluidic system enables real-time visualization of the dynamics of hypha and enzymes during carbon source exchange and the quantitative dynamics of gene expression. This technology can be applied to many biosystems from bioenergy production to human health.
Collapse
Affiliation(s)
- Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
35
|
Bulmer GS, Yuen FW, Begum N, Jones BS, Flitsch SL, van Munster JM. Biochemical characterization of a glycoside hydrolase family 43 β-D-galactofuranosidase from the fungus Aspergillus niger. Enzyme Microb Technol 2023; 164:110170. [PMID: 36521309 DOI: 10.1016/j.enzmictec.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
β-D-Galactofuranose (Galf) and its polysaccharides are found in bacteria, fungi and protozoa but do not occur in mammalian tissues, and thus represent a specific target for anti-pathogenic drugs. Understanding the enzymatic degradation of these polysaccharides is therefore of great interest, but the identity of fungal enzymes with exclusively galactofuranosidase activity has so far remained elusive. Here we describe the identification and characterization of a galactofuranosidase from the industrially important fungus Aspergillus niger. Analysis of glycoside hydrolase family 43 subfamily 34 (GH43_34) members via conserved unique peptide patterns and phylogeny, revealed the occurrence of distinct clusters and, by comparison with specificities of characterized bacterial members, suggested a basis for prediction of enzyme specificity. Using this rationale, in tandem with molecular docking, we identified a putative β-D-galactofuranosidase from A. niger which was recombinantly produced in Escherichia coli. The Galf-specific hydrolase, encoded by xynD demonstrates maximum activity at pH 5, 25 °C towards 4-nitrophenyl-β-galactofuranoside (pNP-β-Galf), with a Km of 17.9 ± 1.9 mM and Vmax of 70.6 ± 5.3 µM min-1. The characterization of this first fungal GH43 galactofuranosidase offers further molecular insight into the degradation of Galf-containing structures.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fang Wei Yuen
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Naimah Begum
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bethan S Jones
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jolanda M van Munster
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Scotland's Rural College, West Mains Road, King's Buildings, Edinburgh EH9 3JG, United Kingdom.
| |
Collapse
|
36
|
Effective production of kojic acid in engineered Aspergillus niger. Microb Cell Fact 2023; 22:40. [PMID: 36843006 PMCID: PMC9969635 DOI: 10.1186/s12934-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae-based methods. RESULTS In this study, we achieved the first successful heterologous production of KA in Aspergillus niger, an industrially important fungus that does not naturally produce KA, through the expression of the kojA gene from A. oryzae. Using the resulting KA-producing A. niger strain as a platform, we identified four genes (nrkA, nrkB, nrkC, and nrkD) that negatively regulate KA production. Knocking down nrkA or deleting any of the other three genes resulted in a significant increase in KA production in shaking flask cultivation. The highest KA titer (25.71 g/L) was achieved in a pH controlled batch bioreactor using the kojA overexpression strain with a deletion of nrkC, which showed a 26.7% improvement compared to the KA titer (20.29 g/L) that was achieved in shaking flask cultivation. CONCLUSION Our study demonstrates the potential of using A. niger as a platform for studying KA biosynthesis and regulation, and for the cost-effective production of KA in industrial strain development.
Collapse
|
37
|
Su L, Hu L, Sui Q, Ding C, Fang D, Zhou L. Improvement of fungal extraction of phosphorus from sewage sludge ash by Aspergillus niger using sludge filtrate as nutrient substrate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:25-35. [PMID: 36516581 DOI: 10.1016/j.wasman.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fungal extraction is a promising approach for reclaiming phosphorus (P) from sewage sludge ash (SSA). However, this approach faces notable technical and economic challenges, including an unknown P speciation evolution and the addition of expensive chemical organic carbon. In this study, the use of an organic-rich effluent produced in sludge dewatering as nutrient source is proposed to initiate the fungal extraction of SSA-borne P with Aspergillus niger. The changes in P speciation in the ash during fungal treatment was analyzed by combined sequential extraction, solid-state 31P nuclear magnetic resonance, and P X-ray absorption near edge spectroscopy. Results showed that after 5 days of fungal treatment using sludge-derived organics, 85 % of P was leached from SSA. Dominantly, this considerable release of P resulted from the dissolution of Ca3(PO4)2, AlPO4, FePO4, and Mg3(PO4)2 in the ash, and their individual contribution rates to P released accounted for 28.0 %, 24.3 %, 20.6 %, and 18.8 %, respectively. After removal of metal cations (e.g., Mg2+, Al3+, Fe3+, and heavy metals) by cation exchange resin (CER), a hydroxyapatite (HAP) product with a purity of > 85 % was harvested from the extract by precipitation with CaCl2. By contrast, without CER purification, a crude product of Ca/Mg-carbonates and phosphates mixture were obtained from this extract. A total of 73.2 wt% of P was ultimately recovered from SSA through integrated fungal extraction, CER purification, and HAP crystallization. These findings provide a mechanistic basis for the development of waste management strategies for improved P reclamation with minimal chemical organics consumption.
Collapse
Affiliation(s)
- Long Su
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Lingyu Hu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghong Sui
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Di Fang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Lixiang Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
38
|
Ploessl D, Zhao Y, Shao Z. Engineering of non-model eukaryotes for bioenergy and biochemical production. Curr Opin Biotechnol 2023; 79:102869. [PMID: 36584447 DOI: 10.1016/j.copbio.2022.102869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
The prospect of leveraging naturally occurring phenotypes to overcome bottlenecks constraining the bioeconomy has marshalled increased exploration of nonconventional organisms. This review discusses the status of non-model eukaryotic species in bioproduction, the evaluation criteria for effectively matching a candidate host to a biosynthetic process, and the genetic engineering tools needed for host domestication. We present breakthroughs in genome editing and heterologous pathway design, delving into innovative spatiotemporal modulation strategies that potentiate more refined engineering capabilities. We cover current understanding of genetic instability and its ramifications for industrial scale-up, highlighting key factors and possible remedies. Finally, we propose future opportunities to expand the current collection of available hosts and provide guidance to benefit the broader bioeconomy.
Collapse
Affiliation(s)
- Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA; Bioeconomy Institute, Iowa State University, Ames, IA, USA; The Ames Laboratory, Ames, IA, USA.
| |
Collapse
|
39
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
40
|
Zheng J, Yao L, Zeng X, Wang B, Pan L. ERV14 receptor impacts mycelial growth via its interactions with cell wall synthase and transporters in Aspergillus niger. Front Microbiol 2023; 14:1128462. [PMID: 37113235 PMCID: PMC10126429 DOI: 10.3389/fmicb.2023.1128462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Efficient protein secretion is closely correlated with vesicle sorting and packaging, especially with cargo receptor-mediated selective transport for ER exit. Even though Aspergillus niger is considered an industrially natural host for protein production due to its exceptional secretion capacity, the trafficking mechanism in the early secretory pathway remains a black box for us to explore. Here, we identified and characterized all putative ER cargo receptors of the three families in A. niger. We successfully constructed overexpression and deletion strains of each receptor and compared the colony morphology and protein secretion status of each strain. Among them, the deletion of Erv14 severely inhibited mycelial growth and secretion of extracellular proteins such as glucoamylase. To gain a comprehensive understanding of the proteins associated with Erv14, we developed a high-throughput method by combining yeast two-hybrid (Y2H) with next-generation sequencing (NGS) technology. We found Erv14 specifically interacted with transporters. Following further validation of the quantitative membrane proteome, we determined that Erv14 was associated with the transport of proteins involved in processes such as cell wall synthesis, lipid metabolism, and organic substrate metabolism.
Collapse
Affiliation(s)
- Junwei Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Linlin Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xu Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Bin Wang, ; Li Pan,
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Bin Wang, ; Li Pan,
| |
Collapse
|
41
|
Baldin C, Kühbacher A, Merschak P, Wagener J, Gsaller F. Modular Inducible Multigene Expression System for Filamentous Fungi. Microbiol Spectr 2022; 10:e0367022. [PMID: 36350143 PMCID: PMC9769661 DOI: 10.1128/spectrum.03670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare. To date, the concomitant use of multiple regulatable promoter platforms for controlled multigene expression has been poorly explored. This work provides pioneer work in the human pathogenic fungus Aspergillus fumigatus, wherein we investigated different inducible systems, elucidated three candidate promoters, and proved for the first time that up to three systems can be used simultaneously without interfering with each other. Proof of concept was obtained by conditionally expressing three antifungal drug targets within the ergosterol biosynthetic pathway under the control of the xylose-inducible PxylP system, the tetracycline-dependent Tet-On system, and the thiamine-repressible PthiA system. IMPORTANCE In recent years, inducible promoters have gained increasing interest for industrial or laboratory use and have become key instruments for protein expression, synthetic biology, and metabolic engineering. Constitutive, high-expressing promoters can be used to achieve high expression yields; however, the continuous overexpression of specific proteins can lead to an unpredictable metabolic burden. To prevent undesirable effects on the expression host's metabolism, the utilization of tunable systems that allow expression of a gene product on demand is indispensable. Here, we elucidated several excellent tunable promoter systems and verified that each can be independently induced in a single strain to ultimately develop a unique conditional multigene expression system. This highly efficient, modular toolbox has the potential to significantly advance applications in fundamental as well as applied research in which regulatable expression of several genes is a key requirement.
Collapse
Affiliation(s)
- Clara Baldin
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kühbacher
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Wagener
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Mittermeier F, Hafner N, XypoliaVasila K, Weuster‐Botz D. Co‐Cultivation of
Aspergillus niger
and
Trichoderma reesei
Enables Efficient Production of Enzymes for the Hydrolysis of Wheat Bran. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fabian Mittermeier
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Nathalie Hafner
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Konstantina XypoliaVasila
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| | - Dirk Weuster‐Botz
- Technical University of Munich Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design Garching Germany
| |
Collapse
|
43
|
Effect of Microparticles on Fungal Fermentation for Fermentation-Based Product Productions. Processes (Basel) 2022. [DOI: 10.3390/pr10122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ranging from simple food ingredients to complex pharmaceuticals, value-added products via microbial fermentation have many advantages over their chemically synthesized alternatives. Some of such advantages are environment-friendly production pathways, more specificity in the case of enzymes as compared to the chemical catalysts and reduction of harmful chemicals, such as heavy metals or strong acids and bases. Fungal fermentation systems include yeast and filamentous fungal cells based on cell morphology and culture conditions. However, filamentous fungal fermentation has gained attention in the past few decades because of the diversity of microbial products and robust production of some of the most value-added commodities. This type of fungal fermentation is usually carried out by solid-state fermentation. However, solid-state fermentation poses problems during the scale-up for industrial production. Therefore, submerged fermentation for value-added products is usually preferred for scaling-up purposes. The main problem with submerged fungal fermentation is the formation of complex mycelial clumps or pellets. The formation of such pellets increases the viscosity of the media and hinders the efficient transfer of oxygen and nutrient resources in the liquid phase. The cells at the center of the clump or pellet start to die because of a shortage of resources and, thus, productivity decreases substantially. To overcome this problem, various morphological engineering techniques are being researched. One approach is the use of microparticles. Microparticles are inert particles with various size ranges that are used in fermentation. These microparticles are shown to have positive effects, such as high enzyme productivity or smaller pellets with fungal fermentation. Therefore, this review provides a background about the types of microparticles and summarizes some of the recent studies with special emphasis on the fungal morphology changes and microparticle types along with the applications of microparticles in filamentous fungal fermentations.
Collapse
|
44
|
dos Reis Gasparetto B, Chelala Moreira R, Priscilla França de Melo R, de Souza Lopes A, de Oliveira Rocha L, Maria Pastore G, Lemos Bicas J, Martinez J, Joy Steel C. Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Res Int 2022; 162:111900. [DOI: 10.1016/j.foodres.2022.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
|
45
|
Zheng X, Cairns T, Zheng P, Meyer V, Sun J. Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange. STAR Protoc 2022; 3:101838. [PMID: 36595926 PMCID: PMC9678785 DOI: 10.1016/j.xpro.2022.101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
This protocol presents an efficient genetic strategy to investigate gene function in the fungus Aspergillus niger. We combined 5S rRNA-CRISPR-Cas9 technology with Tet-on gene switch to generate conditional-expression mutants via precisely replacing native promoter with inducible promoter. We describe the design and DNA preparation for sgRNAs and donor DNA. We then detail the steps for DNA co-transformation into A. niger protoplasts by PEG-mediated transformation, followed by homozygote isolation. Finally, we describe the genome verification and strain validation of the isolates. For complete details on the use and execution of this protocol, please refer to Zheng et al. (2019).1.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| | - Timothy Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| |
Collapse
|
46
|
Qi J, Xiao X, Ouyang L, Yang C, Zhuang Y, Zhang L. Enhancement of fatty acid degradation pathway promoted glucoamylase synthesis in Aspergillus niger. Microb Cell Fact 2022; 21:238. [PMID: 36376878 PMCID: PMC9664828 DOI: 10.1186/s12934-022-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Our recent multi-omics analyses of glucoamylase biosynthesis in Aspergillus niger (A. niger) suggested that lipid catabolism was significantly up-regulated during high-yield period under oxygen limitation. Since the catabolism of fatty acids can provide energy compounds such as ATP and important precursors such as acetyl-CoA, we speculated that enhancement of this pathway might be beneficial to glucoamylase overproduction. Results Based on previous transcriptome data, we selected and individually overexpressed five candidate genes involved in fatty acid degradation under the control of the Tet-on gene switch in A. niger. Overexpression of the fadE, fadA and cyp genes increased the final specific enzyme activity and total secreted protein on shake flask by 21.3 ~ 31.3% and 16.0 ~ 24.2%, respectively. And a better inducible effect by doxycycline was obtained from early logarithmic growth phase (18 h) than stationary phase (42 h). Similar with flask-level results, the glucoamylase content and total extracellular protein in engineered strains OE-fadE (overexpressing fadE) and OE-fadA (overexpressing fadA) on maltose-limited chemostat cultivation were improved by 31.2 ~ 34.1% and 35.1 ~ 38.8% compared to parental strain B36. Meanwhile, intracellular free fatty acids were correspondingly decreased by 41.6 ~ 44.6%. The metabolomic analysis demonstrated intracellular amino acids pools increased 24.86% and 18.49% in two engineered strains OE-fadE and OE-fadA compared to B36. Flux simulation revealed that increased ATP, acetyl-CoA and NADH was supplied into TCA cycle to improve amino acids synthesis for glucoamylase overproduction. Conclusion This study suggested for the first time that glucoamylase production was significantly improved in A. niger by overexpression of genes fadE and fadA involved in fatty acids degradation pathway. Harnessing the intracellular fatty acids could be a strategy to improve enzyme production in Aspergillus niger cell factory. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01966-3.
Collapse
|
47
|
Altammar KA, Ling JG, Al-Bajalan HM, Chin IS, Mackeen MM, Mahadi NM, Murad AMA, Bakar FDA. Characterization of AnCUT3, a plastic-degrading paucimannose cutinase from Aspergillus niger expressed in Pichia pastoris. Int J Biol Macromol 2022; 222:2353-2367. [DOI: 10.1016/j.ijbiomac.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
48
|
Cortesão M, Holland G, Schütze T, Laue M, Moeller R, Meyer V. Colony growth and biofilm formation of Aspergillus niger under simulated microgravity. Front Microbiol 2022; 13:975763. [PMID: 36212831 PMCID: PMC9539656 DOI: 10.3389/fmicb.2022.975763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The biotechnology- and medicine-relevant fungus Aspergillus niger is a common colonizer of indoor habitats such as the International Space Station (ISS). Being able to colonize and biodegrade a wide range of surfaces, A. niger can ultimately impact human health and habitat safety. Surface contamination relies on two key-features of the fungal colony: the fungal spores, and the vegetative mycelium, also known as biofilm. Aboard the ISS, microorganisms and astronauts are shielded from extreme temperatures and radiation, but are inevitably affected by spaceflight microgravity. Knowing how microgravity affects A. niger colony growth, in particular regarding the vegetative mycelium (biofilm) and spore production, will help prevent and control fungal contaminations in indoor habitats on Earth and in space. Because fungal colonies grown on agar can be considered analogs for surface contamination, we investigated A. niger colony growth on agar in normal gravity (Ground) and simulated microgravity (SMG) conditions by fast-clinorotation. Three strains were included: a wild-type strain, a pigmentation mutant (ΔfwnA), and a hyperbranching mutant (ΔracA). Our study presents never before seen scanning electron microscopy (SEM) images of A. niger colonies that reveal a complex ultrastructure and biofilm architecture, and provide insights into fungal colony development, both on ground and in simulated microgravity. Results show that simulated microgravity affects colony growth in a strain-dependent manner, leading to thicker biofilms (vegetative mycelium) and increased spore production. We suggest that the Rho GTPase RacA might play a role in A. niger’s adaptation to simulated microgravity, as deletion of ΔracA leads to changes in biofilm thickness, spore production and total biomass. We also propose that FwnA-mediated melanin production plays a role in A. niger’s microgravity response, as ΔfwnA mutant colonies grown under SMG conditions showed increased colony area and spore production. Taken together, our study shows that simulated microgravity does not inhibit A. niger growth, but rather indicates a potential increase in surface-colonization. Further studies addressing fungal growth and surface contaminations in spaceflight should be conducted, not only to reduce the risk of negatively impacting human health and spacecraft material safety, but also to positively utilize fungal-based biotechnology to acquire needed resources in situ.
Collapse
Affiliation(s)
- Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Cologne, Germany
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Marta Cortesão,
| | - Gudrun Holland
- Robert Koch Institute, Advanced Light and Electron Microscopy (ZBS 4), Berlin, Germany
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, Advanced Light and Electron Microscopy (ZBS 4), Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Cologne, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
49
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
50
|
Shi Z, Zhao Y, Liu S, Wang Y, Yu Q. Size-Dependent Impact of Magnetic Nanoparticles on Growth and Sporulation of Aspergillus niger. Molecules 2022; 27:molecules27185840. [PMID: 36144576 PMCID: PMC9502663 DOI: 10.3390/molecules27185840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are becoming important DNA nanocarriers for genetic engineering of industrial fungi. However, the biological effect of MNPs on industrial fungi remains unknown. In this study, we prepared three kinds of magnetic nanoparticles with different sizes (i.e., 10 nm, 20 nm, and 200 nm) to investigate their impact on the growth and sporulation of the important industrial fungus Aspergillus niger. Transmission electron microscopy, X-ray diffraction analysis and Zeta potential analysis revealed that the three kinds of MNPs, including MNP10, MNP20 and MNP200, had uniform size distribution, regular Fe3O4 X-ray diffraction (XRD) patterns and similar Zeta potentials. Interestingly, although the three kinds of MNPs did not obviously inhibit growth of the fungus, the MNP20 at 500 mg/L strongly attenuated sporulation, leading to a remarkable decrease in spore numbers on culturing plates. Further investigation showed that MNP20 at the high concentration led to drastic chitin accumulation in the cell wall, indicating cell wall disruption of the MNP20-treated fungal cells. Moreover, the MNPs did not cause unusual iron dissolution and reactive oxygen species (ROS) accumulation, and the addition of ferrous ion, ferric ion or the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) had no impact on the sporulation of the fungus, suggesting that both iron dissolution and ROS accumulation did not contribute to attenuated sporulation by MNP20. This study revealed the size-dependent effect of MNPs on fungal sporulation, which was associated with MNP-induced cell wall disruption.
Collapse
Affiliation(s)
- Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuo Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanting Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|