1
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Bucher F, Dastagir N, Tamulevicius M, Obed D, Dieck T, Vogt PM, Dastagir K. Evaluation of non-occlusive mesenteric ischemia for burn patients - A matched-pair analysis and treatment algorithm. Burns 2024; 50:107254. [PMID: 39442475 DOI: 10.1016/j.burns.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Burn injuries may cause gastrointestinal dysfunction leading to intestinal barrier dysfunction, abdominal compartment syndrome, and acute mesenteric ischemia. In the absence of major vascular occlusion, non-occlusive mesenteric ischemia (NOMI) often occurs in critically ill intensive-care burn patients. METHODS A retrospective descriptive analysis of the burn registry of the Department of Plastic, Aesthetic, Hand and Reconstructive Surgery of Hannover Medical School was performed from 1st January 2018 to 1st May 2024. Burn patients with NOMI were matched with burn patients who did not acquire acute mesenteric ischemia based on key variables and shared characteristics. RESULTS A total of 20 patients were included in this study. Patients with NOMI showed a statistically significant elevation in serum lactate (p = 0.005) and were most likely to be in a shock state requiring vasopressors (p = 0.047). Overall prognosis was poor for the NOMI cohort, 80 % of whom had a fatal result (p = 0.024). A total of four patients received intra-arterial administration of alprostadil. CONCLUSIONS NOMI represents a potentially fatal condition for the burn patient. The current lack of sensitive biomarkers and accurate diagnostic tools for the early detection of NOMI onset is a major factor behind the overall poor prognosis. We propose the intra-arterial administration of alprostadil as a novel approach to targeted treatment for NOMI.
Collapse
Affiliation(s)
- Florian Bucher
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany.
| | - Nadjib Dastagir
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Martynas Tamulevicius
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Doha Obed
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Thorben Dieck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Khaled Dastagir
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Wang S, Zhou H, Cui W, Zhang J, Wu D, Zhang N, Xu X. Qi Wei Anti-burn Tincture Remodels Liver Metabolic Pathways and Treats Burn Wounds Efficiently. J Burn Care Res 2024; 45:916-925. [PMID: 36402740 DOI: 10.1093/jbcr/irac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 02/17/2024]
Abstract
This work aims to elucidate the molecular mechanism of Qi Wei anti-burn Tincture (QW) on wound healing in burnt mice using metabolomics and molecular biology techniques. A scald model was first established in Kunming mice. After treatment, biochemical indicators for liver function and burnt skin tissues were then evaluated via biochemical detection and HE staining, respectively. Liver tissues were further analyzed for differential metabolites, inflammatory factors, and mRNA levels of cytokines using metabolomics and molecular biology techniques. Involved metabolic pathways were also identified using software. QW treatment did promote the healing of the burn wounds in Kunming mice with a downregulation of ALP, ALT, and AST to normal levels. In mouse liver tissue, the contents of glutamine, aspartic acid, and citrulline were significantly reduced, while the contents of 5-hydroxyproline, taurine, hypotaurine, and glutamic acid significantly increased. These major differential compounds are involved in the arginine metabolic pathway, nitrogen excretion, and the metabolism of taurine and hypotaurine, suggesting that QW reprogramed the above metabolic processes in the liver. Furthermore, the application of QW increased the expression of TGF-β1 and FGF-2 and reduced the levels of TNF-α, IL-1β, IL-6, and reactive oxygen species in the liver of mice induced by burn injury. This study found that QW treatment promoted metabolic pathway remodeling in the liver, which might be a potential mechanism for QW to treat burn wounds.
Collapse
Affiliation(s)
- Shuai Wang
- The First People's Hospital of Zhengzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| | - Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| | - Junwei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| | - Deqiao Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| | - Nan Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, P. R. China
| |
Collapse
|
4
|
Dobson GP, Morris JL, Letson HL. Pathophysiology of Severe Burn Injuries: New Therapeutic Opportunities From a Systems Perspective. J Burn Care Res 2024; 45:1041-1050. [PMID: 38517382 PMCID: PMC11303127 DOI: 10.1093/jbcr/irae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 03/23/2024]
Abstract
Severe burn injury elicits a profound stress response with the potential for high morbidity and mortality. If polytrauma is present, patient outcomes appear to be worse. Sex-based comparisons indicate females have worse outcomes than males. There are few effective drug therapies to treat burn shock and secondary injury progression. The lack of effective drugs appears to arise from the current treat-as-you-go approach rather than a more integrated systems approach. In this review, we present a brief history of burns research and discuss its pathophysiology from a systems' perspective. The severe burn injury phenotype appears to develop from a rapid and relentless barrage of damage-associated molecular patterns, pathogen-associated molecular patterns, and neural afferent signals, which leads to a state of hyperinflammation, immune dysfunction, coagulopathy, hypermetabolism, and intense pain. We propose that if the central nervous system control of cardiovascular function and endothelial-glycocalyx-mitochondrial coupling can be restored early, these secondary injury processes may be minimized. The therapeutic goal is to switch the injury phenotype to a healing phenotype by reducing fluid leak and maintaining tissue O2 perfusion. Currently, no systems-based therapies exist to treat severe burns. We have been developing a small-volume fluid therapy comprising adenosine, lidocaine, and magnesium (ALM) to treat hemorrhagic shock, traumatic brain injury, and sepsis. Our early studies indicate that the ALM therapy holds some promise in supporting cardiovascular and pulmonary functions following severe burns. Future research will investigate the ability of ALM therapy to treat severe burns with polytrauma and sex disparities, and potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Li H, Zhang G, Liu Y, Gao F, Ye X, Lin R, Wen M. Hypoxia-inducible factor 1α inhibits heat stress-induced pig intestinal epithelial cell apoptosis through eif2α/ATF4/CHOP signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171649. [PMID: 38485018 DOI: 10.1016/j.scitotenv.2024.171649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Gang Zhang
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Yongqing Liu
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Fan Gao
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, PR China
| | - Rutao Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| |
Collapse
|
6
|
Xu Y, Chen W, Yang H, Song Z, Wang Y, Su R, Mwacharo JM, Lv X, Sun W. miR-329b-5p Affects Sheep Intestinal Epithelial Cells against Escherichia coli F17 Infection. Vet Sci 2024; 11:206. [PMID: 38787178 PMCID: PMC11126089 DOI: 10.3390/vetsci11050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Diarrhea is the most common issue in sheep farms, typically due to pathogenic Escherichia coli (E. coli) infections, such as E. coli F17. microRNA, a primary type of non-coding RNA, has been shown to be involved in diarrhea caused by pathogenic E. coli. To elucidate the profound mechanisms of miRNA in E. coli F17 infections, methods such as E. coli F17 adhesion assay, colony counting assay, relative quantification of bacterial E. coli fimbriae gene expression, indirect immune fluorescence (IF), Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), Western blotting (WB), and scratch assay were conducted to investigate the effect of miR-329b-5p overexpression/knock-down on E. coli F17 susceptibility of sheep intestinal epithelial cells (IECs). The findings indicated that miR-329b-5p enhances the E. coli F17 resistance of sheep IECs to E.coli F17 by promoting adhesion between E. coli F17 and IEC, as well as IEC proliferation and migration. In summary, miR-329b-5p plays a crucial role in the defense of sheep IECs against E. coli F17 infection, providing valuable insights into its mechanism of action.
Collapse
Affiliation(s)
- Yeling Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (W.C.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (W.C.)
| | - Huiguo Yang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi 830013, China;
| | - Zhenghai Song
- Dongshan Animal Epidemic Prevention Station, Wuzhong District, Suzhou 215100, China;
| | - Yeqing Wang
- Suzhou Taihu Dongshang Sheep Industry Development Co., Ltd., Suzhou 215000, China;
| | - Rui Su
- Suzhou Stud Farm Co., Ltd., Suzhou 215200, China;
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia;
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (W.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
7
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Song Y, Li Y, Hu W, Li F, Sheng H, Huang C, Gou X, Hou J, Zheng J, Xiao Y. Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. BURNS & TRAUMA 2024; 12:tkad054. [PMID: 38444636 PMCID: PMC10910847 DOI: 10.1093/burnst/tkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 03/07/2024]
Abstract
Background The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.
Collapse
Affiliation(s)
- Yajun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Wengang Hu
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing, 404031, China
| | - Hao Sheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, The Army Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
10
|
Davenport LM, Letson HL, Dobson GP. Lung Protection After Severe Thermal Burns With Adenosine, Lidocaine, and Magnesium (ALM) Resuscitation and Importance of Shams in a Rat Model. J Burn Care Res 2024; 45:216-226. [PMID: 37602979 PMCID: PMC10768784 DOI: 10.1093/jbcr/irad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 08/22/2023]
Abstract
The management of severe burns remains a complex challenge. Adenosine, lidocaine, and magnesium (ALM) resuscitation therapy has been shown to protect against hemorrhagic shock and traumatic injury. The aim of the present study was to investigate the early protective effects of small-volume ALM fluid resuscitation in a rat model of 30% total body surface area (TBSA) thermal injury. Male Sprague-Dawley rats (320-340 g; n = 25) were randomly assigned to: 1) Sham (surgical instrumentation and saline infusion, without burn, n = 5), 2) Saline resuscitation group (n = 10), or 3) ALM resuscitation group (n = 10). Treatments were initiated 15-min after burn trauma, including 0.7 mL/kg 3% NaCl ± ALM bolus and 0.25-0.5 mL/kg/h 0.9% NaCl ± ALM drip, with animals monitored to 8.25-hr post-burn. Hemodynamics, cardiac function, blood chemistry, hematology, endothelial injury markers and histopathology were assessed. Survival was 100% for Shams and 90% for both ALM and Saline groups. Shams underwent significant physiological, immune and hematological changes over time as a result of surgical traums. ALM significantly reduced malondialdehyde levels in the lungs compared to Saline (P = .023), and showed minimal alveolar destruction and inflammatory cell infiltration (P < .001). ALM also improved cardiac function and oxygen delivery (21%, P = .418 vs Saline), reduced gut injury (P < .001 vs Saline), and increased plasma adiponectin (P < .001 vs baseline). Circulating levels of the acute phase protein alpha 1-acid glycoprotein (AGP) increased 1.6-times (P < .001), which may have impacted ALM's therapeutic efficacy. We conclude that small-volume ALM therapy significantly reduced lung oxidative stress and preserved alveolar integrity following severe burn trauma. Further studies are required to assess higher ALM doses with longer monitoring periods.
Collapse
Affiliation(s)
- Lisa M Davenport
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia
| |
Collapse
|
11
|
Huang R, Yao Y, Tong X, Wang L, Qian W, Lu J, Zhang W, Liu Y, Wang S, Xian S, Zhu Y, Huang J, Guo X, Gu M, Lv H, Bi W, Meng C, Chang Z, Zhang J, Xu D, Ji S. Tracing the evolving dynamics and research hotspots of microbiota and immune microenvironment from the past to the new era. Microbiol Spectr 2023; 11:e0013523. [PMID: 37768071 PMCID: PMC10581186 DOI: 10.1128/spectrum.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like the inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. This article aims to review the documents in this field and summarize the research hotspots as well as developing processes. Gut microbiota and immune microenvironment-related documents from 1976 to 2022 were obtained from the Web of Science Core Collection database. Bibliometrics was used to assess the core authors and journals, most contributive countries and affiliations together with hotspots in this field and keyword co-occurrence analysis. Data were visualized to help comprehension. Nine hundred and twelve documents about gut microbiota and immune microenvironment were retrieved, and the annual publications increased gradually. The most productive author, country, and affiliation were "Zitvogel L," USA and "UNIV TEXAS MD ANDERSON CANC CTR," respectively. FRONTIERS IN IMMUNOLOGY, CANCERS, and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCE were the periodicals with most publications. Keyword co-occurrence analysis identified three clusters, including gut microbiota, inflammation, and IBD. Combined with the visualized analysis of documents and keyword co-occurrence as well as literature reading, we recognized three key topics of gut microbiota: cancer and therapy; immunity, inflammation and IBD; acute injuries and metabolic diseases. This article revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.IMPORTANCEGut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. While the application of bibliometrics in the field of gut microbiota and immune microenvironment still remains blank, which focused more on the regulation of the gut microbiota on the immune microenvironment of different kinds of diseases. Here, we intended to review and summarize the presented documents in gut microbiota and immune microenvironment field by bibliometrics. And we revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Lv
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wenshuai Bi
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Chenwei Meng
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
12
|
Singh VK, Almpani M, Wheeler KM, Rahme LG. Interconnections of Pseudomonas aeruginosa Quorum-Sensing Systems in Intestinal Permeability and Inflammation. mBio 2023; 14:e0352422. [PMID: 36786582 PMCID: PMC10127598 DOI: 10.1128/mbio.03524-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Quorum sensing (QS) is a highly conserved microbial communication mechanism based on the production and sensing of secreted signaling molecules. The recalcitrant pathogen Pseudomonas aeruginosa is a problematic nosocomial pathogen with complex interconnected QS systems controlling multiple virulence functions. The relevance of QS in P. aeruginosa pathogenesis is well established; however, the regulatory interrelationships of the three major QS systems, LasR/LasI, MvfR (PqsR)/PqsABCD, and RhlR/RhlI, have been studied primarily in vitro. It is, therefore, unclear how these relationships translate to the host environment during infection. Here, we use a collection of P. aeruginosa QS mutants of the three major QS systems to assess the interconnections and contributions in intestinal inflammation and barrier function in vivo. This work reveals that MvfR, not LasR or RhlR, promotes intestinal inflammation during infection. In contrast, we find that P. aeruginosa-driven murine intestinal permeability is controlled by an interconnected QS network involving all three regulators, with MvfR situated upstream of LasR and RhlR. This study demonstrates the importance of understanding the interrelationships of the QS systems during infection and provides critical insights for developing successful antivirulence strategies. Moreover, this work provides a framework to interrogate QS systems in physiologically relevant settings. IMPORTANCE Pseudomonas aeruginosa is a common multidrug-resistant bacterial pathogen that seriously threatens critically ill and immunocompromised patients. Intestinal colonization by this pathogen is associated with elevated mortality rates. Disrupting bacterial communication is a desirable anti-infective approach since these systems coordinate multiple acute and chronic virulence functions in P. aeruginosa. Here, we investigate the role of each of the three major communication systems in the host intestinal functions. This work reveals that P. aeruginosa influences intestinal inflammation and permeability through distinct mechanisms.
Collapse
Affiliation(s)
- Vijay K. Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Kelsey M. Wheeler
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Chen X, Zhang P, Zhang Y, Fan S, Wei Y, Yang Z, Wang F, Peng X. Potential Effect of Glutamine in the Improvement of Intestinal Stem Cell Proliferation and the Alleviation of Burn-Induced Intestinal Injury via Activating YAP: A Preliminary Study. Nutrients 2023; 15:nu15071766. [PMID: 37049605 PMCID: PMC10097377 DOI: 10.3390/nu15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Burn injury is a common form of traumatic injury that leads to high mortality worldwide. A severe burn injury usually induces gut barrier dysfunction, partially resulting from the impairment in the proliferation and self-renewal of intestinal stem cells (ISCs) post burns. As a main energy substance of small intestinal enterocytes, glutamine (Gln) is important for intestinal cell viability and growth, while its roles in ISCs-induced regeneration after burns are still unclear. To demonstrate the potential effects of Gln in improving ISCs proliferation and alleviating burn-induced intestinal injury, in this study, we verified that Gln significantly alleviated small intestine injury in burned mice model. It showed that Gln could significantly decrease the ferroptosis of crypt cells in the ileum, promote the proliferation of ISCs, and repair the crypt. These effects of Gln were also confirmed in the mouse small intestine organoids model. Further research found that Yes-associated protein (YAP) is suppressed after burn injury, and Gln could improve cell proliferation and accelerate the renewal of the damaged intestinal mucosal barrier after burns by activating YAP. YAP is closely associated with the changes in intestinal stem cell proliferation after burn injury and could be served as a potential target for severe burns.
Collapse
Affiliation(s)
- Xia Chen
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yajuan Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhifan Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
14
|
Huang Z, Huang Y, Chen J, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jia B. The role and therapeutic potential of gut microbiome in severe burn. Front Cell Infect Microbiol 2022; 12:974259. [DOI: 10.3389/fcimb.2022.974259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
Severe burn is a serious acute trauma that can lead to significant complications such as sepsis, multiple organ failure, and high mortality worldwide. The gut microbiome, the largest microbial reservoir in the human body, plays a significant role in this pathogenic process. Intestinal dysbiosis and disruption of the intestinal mucosal barrier are common after severe burn, leading to bacterial translocation to the bloodstream and other organs of the body, which is associated with many subsequent severe complications. The progression of some intestinal diseases can be improved by modulating the composition of gut microbiota and the levels of its metabolites, which also provides a promising direction for post-burn treatment. In this article, we summarised the studies describing changes in the gut microbiome after severe burn, as well as changes in the function of the intestinal mucosal barrier. Additionally, we presented the potential and challenges of microbial therapy, which may provide microbial therapy strategies for severe burn.
Collapse
|
15
|
Circulating mtDNA and Impaired Intestinal Barrier after Gastrointestinal Surgery Are Correlated with Postoperative SIRS. Genes (Basel) 2022; 13:genes13111933. [PMID: 36360170 PMCID: PMC9689839 DOI: 10.3390/genes13111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Background: This prospective study aimed to explore the correlation between circulating mitochondrial DNA (mtDNA), intestinal barrier function impairment, and postoperative SIRS in patients undergoing gastrointestinal surgery. Methods: Patients were recruited into this study after signing an informed consent form. Circulating mitochondrial DNA and serum DAO concentrations were measured preoperatively and on day 1 and day 7 postoperatively. Postoperative vitals, routine tests, and biochemical indicators were recorded in detail. Results: Forty patients undergoing gastrointestinal surgery were recruited for and completed this study. Patients were divided into non-fever, fever, and SIRS groups according to their postoperative temperature and other corresponding indexes. The mtDNA was expressed as the number of PCR cycles using three specific sequences. Circulating mtDNA tended to increase in patients after gastrointestinal surgery, but the difference was not significant. Nevertheless, mtDNA in the SIRS group was significantly higher than in patients in the fever and non-fever groups (p < 0.05). Serum DAO showed a trend of increase on the first day after surgery compared with that before surgery, but the difference was not significant (p > 0.05). However, patients in the SIRS group showed a significant increase (p < 0.05) compared with the others. Both circulating mtDNA and DAO showed a downward trend on the seventh day after surgery. Conclusions: Circulating mtDNA presented a trend of increase after gastrointestinal surgery, and the degree of the increased fold was related to the extent of the inflammation response. In general, the intestinal barrier damage indicator DAO was the same as mtDNA and tended to increase after gastrointestinal surgery and then gradually decrease, which may play a synergistic role in inducing postoperative fever and SIRS.
Collapse
|
16
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors—corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models—were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xingwei Zhang, ; Qibin Jiao,
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xingwei Zhang, ; Qibin Jiao,
| |
Collapse
|
17
|
Zhou B, Te Ba, Wang L, Gao Y, He Q, Yan Z, Wang H, Shen G. Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response. Burns 2022; 48:1213-1220. [PMID: 34903409 DOI: 10.1016/j.burns.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Burns are a common traumatic injuries with considerable morbidity and mortality rates. Post-burn intestinal injuries are closely related to oxidative stress and inflammatory response. The aim of the current study was to investigate the combined effect of sodium butyrate (NaB) and probiotics (PROB) on severe burn-induced oxidative stress and inflammatory response and the underlying mechanism of action. Sprague-Dawley rats with severe burns were treated with NaB with or without PROB. Pathomorphology of skin and small intestine tissue was observed using hematoxylin and eosin staining and severe burn-induced apoptosis in small intestine tissue was examined via terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The release of factors related to inflammation was quantified using ELISA kits and qRT-PCR and levels of oxidative stress markers were evaluated using biochemical assays. Furthermore, mitochondrial morphological changes in small intestinal epithelial cells were observed using transmission electron microscopy. In addition, the underlying mechanism associated with the combined effect of NaB and PROB on severe burn-induced oxidative stress and inflammatory response was investigated using western blotting. The combination of NaB and PROB exerted protective effects against severe burn-induced intestinal barrier injury by reducing the levels of diamine oxidase and intestinal fatty acid binding protein. Combined NaB and PROB treatment inhibited severe burn-induced oxidative stress by increasing superoxide dismutase levels and decreasing those of malondialdehyde and myeloperoxidase levels. Severe burn-induced inflammation was suppressed by combined NaB and PROB administration, as demonstrated by the decreased mRNA expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and high mobility group box-1 in the small intestine. In addition, this study showed that combined NaB and PROB administration increased nuclear factor-erythroid 2-related factor 2 (Nrf2) protein expression and decreased the phosphorylation of nuclear factor (NF)-κB and extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, our findings indicate that combined NaB and PROB treatment may inhibit severe burn-induced inflammation and oxidative stress in the small intestine by regulating HMGB1/NF-κB and ERK1/2/Nrf2 signaling, thereby providing a new therapeutic strategy for intestinal injury induced by severe burn.
Collapse
Affiliation(s)
- Biao Zhou
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Te Ba
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Lingfeng Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Yixuan Gao
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Qiaoling He
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Zengqiang Yan
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Hongyu Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
18
|
Zhang Q, Luo P, Xia F, Tang H, Chen J, Zhang J, Liu D, Zhu Y, Liu Y, Gu L, Zheng L, Li Z, Yang F, Dai L, Liao F, Xu C, Wang J. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. Cell Chem Biol 2022; 29:1248-1259.e6. [PMID: 35858615 DOI: 10.1016/j.chembiol.2022.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is a systemic inflammatory response syndrome with high mortality and morbidity worldwide. In this study, we demonstrate that capsaicin not only suppresses inflammation in lipopolysaccharide (LPS)-induced macrophages, but also effectively inhibits endotoxemia or sepsis-related inflammation in vivo. We have designed and synthesized a series of capsaicin-based probes, which permit the profiling of the target proteins of capsaicin using activity-based protein profiling (ABPP). Among the identified protein targets, we discover that capsaicin directly binds to and inhibits PKM2 and LDHA, and further suppresses the Warburg effect in inflammatory macrophages. Moreover, capsaicin targets COX-2 and downregulates its expression in vivo and in vitro. Taken together, the present findings indicate that capsaicin alleviates the inflammation response and the Warburg effect in a TRPV1-independent manner by targeting PKM2-LDHA and COX-2 in sepsis. Thus, capsaicin may function as a novel agent for sepsis and inflammation treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China; Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Piao Luo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China; Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liuhai Zheng
- Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Zhijie Li
- Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Fan Yang
- Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Lingyun Dai
- Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Fulong Liao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Geriatrics, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China.
| |
Collapse
|
19
|
Mazumder S, Bindu S, De R, Debsharma S, Pramanik S, Bandyopadhyay U. Emerging role of mitochondrial DAMPs, aberrant mitochondrial dynamics and anomalous mitophagy in gut mucosal pathogenesis. Life Sci 2022; 305:120753. [PMID: 35787999 DOI: 10.1016/j.lfs.2022.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
Gastroduodenal inflammation and ulcerative injuries are increasing due to expanding socio-economic stress, unhealthy food habits-lifestyle, smoking, alcoholism and usage of medicines like non-steroidal anti-inflammatory drugs. In fact, gastrointestinal (GI) complications, associated with the prevailing COVID-19 pandemic, further, poses a challenge to global healthcare towards safeguarding the GI tract. Emerging evidences have discretely identified mitochondrial dysfunctions as common etiological denominators in diseases. However, it is worth realizing that mitochondrial dysfunctions are not just consequences of diseases. Rather, damaged mitochondria severely aggravate the pathogenesis thereby qualifying as perpetrable factors worth of prophylactic and therapeutic targeting. Oxidative and nitrosative stress due to endogenous and exogenous stimuli triggers mitochondrial injury causing production of mitochondrial damage associated molecular patterns (mtDAMPs), which, in a feed-forward loop, inflicts inflammatory tissue damage. Mitochondrial structural dynamics and mitophagy are crucial quality control parameters determining the extent of mitopathology and disease outcomes. Interestingly, apart from endogenous factors, mitochondria also crosstalk and in turn get detrimentally affected by gut pathobionts colonized during luminal dysbiosis. Although mitopathology is documented in various pre-clinical/clinical studies, a comprehensive account appreciating the mitochondrial basis of GI mucosal pathologies is largely lacking. Here we critically discuss the molecular events impinging on mitochondria along with the interplay of mitochondria-derived factors in fueling mucosal pathogenesis. We specifically emphasize on the potential role of aberrant mitochondrial dynamics, anomalous mitophagy, mitochondrial lipoxidation and ferroptosis as emerging regulators of GI mucosal pathogenesis. We finally discuss about the prospect of mitochondrial targeting for next-generation drug discovery against GI disorders.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India; Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India.
| |
Collapse
|
20
|
Orthopedic Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer's Disease Patients: A Prospective Observational Cohort Study. Ann Surg 2022; 276:270-280. [PMID: 35766370 PMCID: PMC9259038 DOI: 10.1097/sla.0000000000005489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: To investigate gut microbiota and intestinal barrier function changes after orthopedic surgery in elderly patients with either normal cognition (NC) or a prodromal Alzheimer disease phenotype (pAD) comprising either subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI). Background: Homeostatic disturbances induced by surgical trauma and/or stress can potentially alter the gut microbiota and intestinal barrier function in elderly patients before and after orthopedic surgery. Methods: In this prospective cohort study, 135 patients were subject to preoperative neuropsychological assessment and then classified into: NC (n=40), SCD (n=58), or aMCI (n=37). Their gut microbiota, bacterial endotoxin (lipopolysaccharide), tight junction (TJ) protein, and inflammatory cytokines in blood were measured before surgery and on postsurgical day 1, 3, and 7 (or before discharge). Results: The short-chain fatty acid (SCFA)-producing bacteria were lower while the gram-negative bacteria, lipopolysaccharide and TJ were higher preoperatively in both the SCD and aMCI (pAD) groups compared with the NC group. After surgery, a decrease in SCFA-producing bacteria, and an increase in both gram-negative bacteria and plasma claudin were significant in the pAD groups relative to the NC group. SCFA-producing bacteria were negatively correlated with TJ and cytokines in pAD patients on postsurgical day 7. Furthermore, surgery-induced perioperative metabolic stress and inflammatory responses were associated with gut microbiota alterations. Conclusions: Surgery exacerbates both preexisting microbiota dysbiosis and intestinal barrier dysfunction in pAD patients, all of which may be associated with systemic inflammation and, in turn, may lead to further cognitive deterioration.
Collapse
|
21
|
Yin Y, Liu K, Li G. Protective Effect of Prim-O-Glucosylcimifugin on Ulcerative Colitis and Its Mechanism. Front Pharmacol 2022; 13:882924. [PMID: 35662727 PMCID: PMC9158503 DOI: 10.3389/fphar.2022.882924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal epithelial immune dysfunction or imbalance in the homeostasis of intestinal flora can lead to the occurrence or exacerbation of ulcerative colitis (UC). Prim-O-glucosylcimifugin (POG) is an extract of Chinese traditional medicine (TCM) Saposhnikov, which has analgesic, anti-inflammatory, and antioxidant effects. The present work discussed how the POG alternated ulcerative colitis (UC) along with its underlying mechanism. This was clarified by performing animal studies in a mice model, wherein UC was induced by dextran sulfate sodium (DSS). In vivo studies have found that POG increased clinical score, colonic length, and weight of mice in the ulcerative colitis model. It repaired the pathological injury of an intestinal mucosa within mice while inhibiting the inflammatory factor levels such as IL-1β, TNF-α, and IL-6. Meanwhile, by16SrDNA sequencing analysis, it was found that POG regulated the richness of intestinal microbiota structure and repaired the intestinal immune barrier by upregulating the expression levels of tight junction proteins Occludin, Claudin-3, and ZO-1. To further confirm the above results, we found in in vitro studies that POG also protected lipopolysaccharide- (LPS-) induced RAW264.7 cells. POG dramatically suppressed inflammatory factor production (including TNF-α, IL-1β, and IL-6) within LPS-treated RAW264.7 cells by inhibiting the activation of ERK1/2, AKT, JNK1/2, IκB-α, P38, and P65 phosphorylation. In conclusion, POG plays a protective role against UC by inhibiting the activation of pro-inflammatory signaling pathways MAPK, AKT, and NF-κB; repairing the integrity of the intestinal barrier; and regulating the diversity and abundance of intestinal flora.
Collapse
Affiliation(s)
- Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
22
|
Yang X, Chatterjee V, Zheng E, Reynolds A, Ma Y, Villalba N, Tran T, Jung M, Smith DJ, Wu MH, Yuan SY. Burn Injury-Induced Extracellular Vesicle Production and Characteristics. Shock 2022; 57:228-242. [PMID: 35613455 PMCID: PMC9246995 DOI: 10.1097/shk.0000000000001938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Extracellular vesicles (EVs) are nano-sized membrane-bound particles containing biologically active cargo molecules. The production and molecular composition of EVs reflect the physiological state of parent cells, and once released into the circulation, they exert pleiotropic functions via transferring cargo contents. Thus, circulating EVs not only serve as biomarkers, but also mediators in disease processes or injury responses. In the present study, we performed a comprehensive analysis of plasma EVs from burn patients and healthy subjects, characterizing their size distribution, concentration, temporal changes, cell origins, and cargo protein contents. Our results indicated that burn injury induced a significant increase in circulating EVs, the response peaked at the time of admission and declined over the course of recovery. Importantly, EV production correlated with injury severity, as indicated by the total body surface area and depth of burn, requirement for critical care/ICU stay, hospitalization length, wound infection, and concurrence of sepsis. Burn patients with inhalation injury showed a higher level of EVs than those without inhalation injury. We also evaluated patient demographics (age and sex) and pre-existing conditions (hypertension, obesity, and smoking) and found no significant correlation between these conditions and overall EV production. At the molecular level, flow cytometric analysis showed that the burn-induced EVs were largely derived from leukocytes and endothelial cells (ECs), which are known to be activated postburn. Additionally, a high level of zona-occludens-1 (ZO-1), a major constituent of tight junctions, was identified in burn EV cargos, indicative of injury in tissues that form barriers via tight junctions. Moreover, when applied to endothelial cell monolayers, burn EVs caused significant barrier dysfunction, characterized by decreased transcellular barrier resistance and disrupted cell-cell junction continuity. Taken together, these data suggest that burn injury promotes the production of EVs containing unique cargo proteins in a time-dependent manner; the response correlates with injury severity and worsened clinical outcomes. Functionally, burn EVs serve as a potent mediator capable of reducing endothelial barrier resistance and impairing junction integrity, a pathophysiological process underlying burn-associated tissue dysfunction. Thus, further in-depth characterization of circulating EVs will contribute to the development of new prognostic tools or therapeutic targets for advanced burn care.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amanda Reynolds
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Thanh Tran
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Michelle Jung
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - David J. Smith
- Department of Plastic Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
23
|
Zhang W, Liao Y, Lou J, Zhuang M, Yan H, Li Q, Deng Y, Xu X, Wen D, Sun Y. CircRNA_Maml2 promotes the proliferation and migration of intestinal epithelial cells after severe burns by regulating the miR-93-3p/FZD7/Wnt/β-catenin pathway. BURNS & TRAUMA 2022; 10:tkac009. [PMID: 35265724 PMCID: PMC8900685 DOI: 10.1093/burnst/tkac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Background Circular RNA (circRNA) plays key regulatory roles in the development of many diseases. However the biological functions and potential molecular mechanisms of circRNA in the injury and repair of intestinal mucosa in mice after severe burns are yet to be elucidated. Methods Cell counting kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), wound healing and transwell assays were used to detect cell proliferation and migration ability. Real-time quantitative PCR was used to identify the expression of circRNA, microRNA and messenger RNA. Nuclear and cytoplasmic separation experiments were employed to perceive the location of circRNA_Maml2. Finally, in vitro and in vivo experiments were conducted to study the repairing effect of circRNA_Maml2 on the intestinal mucosa of mice after severe burns. Results When compared with the control group, the expression of circRNA_Maml2 was significantly reduced in the severe burn group. Furthermore, overexpression of circRNA_Maml2 promoted the proliferation and migration of CT26.wt cells in vivo and the repair of damaged intestinal mucosa in vitro. CircRNA_Maml2 acted as a sponge adsorption molecule for miR-93-3p to enhance the expression of frizzled class receptor 7 and activate the downstream Wnt/β-catenin pathway, thereby promoting the repair of the intestinal mucosa. Conclusions Our findings demonstrate that circRNA_Maml2 regulates the miR-93-3p/FZD7/Wnt/β-catenin pathway and promotes the repair of damaged intestinal mucosa. Hence, circRNA_Maml2 is a potential therapeutic target to promote intestinal mucosal repair.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Yu Liao
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Jiaqi Lou
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Hao Yan
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Qi Li
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Yuequ Deng
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Xiaohu Xu
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Dandan Wen
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.,Department of Burn Surgery, the 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
24
|
Chen C, Lin Z, Zhang X, Zhang X, Cheng Z, Jin T, Liu T, Deng L, Guo J, Wang G, Xia Q. Extracellular histones cause intestinal epithelium injury and disrupt its barrier function in vitro and in vivo. Toxicology 2022; 469:153117. [PMID: 35122914 DOI: 10.1016/j.tox.2022.153117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
Extracellular histones are cytotoxic to various cells and have been extensively proven a vital mediator of multiple organ injuries. However, the effect of extracellular histones on the intestine remains largely unknown. This study aimed to clarify the effect of extracellular histones on the intestine. IEC-6, a cell line of rat small intestinal epithelial crypt, and C57BL/6 or ICR mice were treated with histones. The IEC-6 cells treated with histones from 20 μg/mL to 200 μg/mL for 0-24 h displayed a decline of cell viability and an increase of cell death in a concentration- and time-dependent manner. Moreover, histones (100 μg/mL) induced IEC-6 apoptosis through activating caspase 3 and necroptosis through up-regulation of receptor-interacting serine/threonine protein kinase 1 and 3 (RIPK1 and RIPK3), phosphorylated mixed-lineage kinase domain-like protein (p-MLKL) along with the decrease of caspase-8. Histones treatment disturbed zonular occludens 1 (ZO-1) expression and increased permeability of IEC-6 cell monolayer. In vivo, histones 50 mg/kg injection caused mice intestinal edema, loss apex of villus, epithelial lifting down the sides of the villi, and increased neutrophil infiltration. Elevation of serum intestinal fatty acid binding protein (I-FABP), D-lactate, or Diamine oxidase (DAO) and loss of tight junction protein, ZO-1, at 3 h and 6 h after histones injection strongly indicated severe intestinal epithelium injury, which led to increased permeability of the intestine. In conclusion, extracellular histones cause intestinal epithelial damage via direct cytotoxicity. Consequently, intestinal epithelial tight junction and barrier integrity are disrupted, which may play pivotal roles in diverse diseases.
Collapse
Affiliation(s)
- Chanjuan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziqi Lin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaoxin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenxing Cheng
- The Medical School, Southeast University, Nanjing, 210009, China; Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia Guo
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guozheng Wang
- The Medical School, Southeast University, Nanjing, 210009, China
| | - Qing Xia
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
26
|
Qin C, Jiang Y, Chen X, Bian Y, Wang Y, Xie K, Yu Y. Dexmedetomidine protects against burn-induced intestinal barrier injury via the MLCK/p-MLC signalling pathway. Burns 2021; 47:1576-1585. [PMID: 33933302 DOI: 10.1016/j.burns.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Evidence suggests that sedative dexmedetomidine can prevent intestinal dysfunction. However, the specific mechanisms of its protective effects against burn-induced intestinal barrier injury remain unclear. We aimed to explore the possible positive effects of dexmedetomidine on burn-induced intestinal barrier injury and the effects the myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) signalling pathway in an experimental model of burn injury. METHODS In this study, the plasma concentration of fluorescein isothiocyanate-labelled dextran (FITC-dextran) was measured. Histological changes were evaluated using haematoxylin and eosin (HE) staining. Tight junction proteins were evaluated by western blot and immunofluorescence analyses to assess the structural integrity of intestinal tight junctions. The level of inflammation was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS The results shows that the increase in intestinal permeability caused by burn injury is accompanied by histological damage to the intestine, decreases in the expression of the tight junction proteins Zonula Occludens-1 (ZO-1) and Occludin, increases in inflammatory cytokine levels and elevation of both MLCK protein expression and MLC phosphorylation. After dexmedetomidine treatment, the burn-induced changes were ameliorated. CONCLUSIONS In conclusion, dexmedetomidine exerted an anti-inflammatory effect and protected tight junction complexes against burn‑induced intestinal barrier damage by inhibiting the MLCK/p-MLC signalling pathways.
Collapse
Affiliation(s)
- Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Xing Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nankai University, Tianjin, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China.
| |
Collapse
|
27
|
Niu M, Chen P. Crosstalk between gut microbiota and sepsis. BURNS & TRAUMA 2021; 9:tkab036. [PMID: 34712743 PMCID: PMC8547143 DOI: 10.1093/burnst/tkab036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is an overwhelming inflammatory response to microbial infection. Sepsis management remains a clinical challenge. The role of the gut microbiome in sepsis has gained some attention. Recent evidence has demonstrated that gut microbiota regulate host physiological homeostasis mediators, including the immune system, gut barrier function and disease susceptibility pathways. Therefore, maintenance or restoration of microbiota and metabolite composition might be a therapeutic or prophylactic target against critical illness. Fecal microbiota transplantation and supplementation of probiotics are microbiota-based treatment methods that are somewhat limited in terms of evidence-based efficacy. This review focuses on the importance of the crosstalk between the gastrointestinal ecosystem and sepsis to highlight novel microbiota-targeted therapies to improve the outcomes of sepsis treatment.
Collapse
Affiliation(s)
- Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Li J, Li Q, Gao N, Wang Z, Li F, Li J, Shan A. Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro. Food Funct 2021; 12:9632-9641. [PMID: 34664577 DOI: 10.1039/d1fo00277e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of the study was to explore the effect of exopolysaccharides (EPSs) of Lactobacillus rhamnosus GG (LGG) on the antioxidative and antiapoptotic activities of intestinal porcine epithelial cells (IPEC-J2). EPSs exhibited promising antioxidative activities, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical (˙OH) and superoxide anion radical (O2˙-) scavenging, as well as ferrous ion chelating ability. Moreover, EPSs of LGG could effectively alleviate the IPEC-J2 oxidative damage induced by H2O2 through the Bcl-2-associated (Bax)/B cell lymphoma-2 (Bcl-2) and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-erythroid 2-related factor-2 (Nrf2) signaling pathways and up-regulated the intracellular tight junction (TJ)-related proteins. In addition, EPSs significantly improved the survival rates of H2O2-damaged IPEC-J2 cells and had no cytotoxic activity, suggesting that EPSs produced by LGG may be an effective drug for relieving oxidative stress. Our study provided a theoretical basis for exploration of the application of probiotic secondary metabolites in practice.
Collapse
Affiliation(s)
- Jinze Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Qiuke Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Zhihua Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Feng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| |
Collapse
|
29
|
Integrated analysis of dysregulated microRNA and mRNA expression in intestinal epithelial cells following ethanol intoxication and burn injury. Sci Rep 2021; 11:20213. [PMID: 34642361 PMCID: PMC8510995 DOI: 10.1038/s41598-021-99281-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gut barrier dysfunction is often implicated in pathology following alcohol intoxication and burn injury. MicroRNAs (miRNAs) are negative regulators of gene expression that play a central role in gut homeostasis, although their role after alcohol and burn injury is poorly understood. We performed an integrated analysis of miRNA and RNA sequencing data to identify a network of interactions within small intestinal epithelial cells (IECs) which could promote gut barrier disruption. Mice were gavaged with ~ 2.9 g/kg ethanol and four hours later given a ~ 12.5% TBSA full thickness scald injury. One day later, IECs were harvested and total RNA extracted for RNA-seq and miRNA-seq. RNA sequencing showed 712 differentially expressed genes (DEGs) (padj < 0.05) in IECs following alcohol and burn injury. Furthermore, miRNA sequencing revealed 17 differentially expressed miRNAs (DEMs) (padj < 0.1). Utilizing the miRNet, miRDB and TargetScan databases, we identified both validated and predicted miRNA gene targets. Integration of small RNA sequencing data with mRNA sequencing results identified correlated changes in miRNA and target expression. Upregulated miRNAs were associated with decreased proliferation (miR-98-3p and miR-381-3p) and cellular adhesion (miR-29a-3p, miR-429-3p and miR3535), while downregulated miRNAs were connected to upregulation of apoptosis (Let-7d-5p and miR-130b-5p) and metabolism (miR-674-3p and miR-185-5p). Overall, these findings suggest that alcohol and burn injury significantly alters the mRNA and miRNA expression profile of IECs and reveals numerous miRNA–mRNA interactions that regulate critical pathways for gut barrier function after alcohol and burn injury.
Collapse
|
30
|
Abstract
ABSTRACT Burn injuries are a common form of traumatic injury that leads to significant morbidity and mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal bacterial microbiome is a key component of regulating the immune response and recovery from burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and multiple organ failure. Microbial dysbiosis has been linked to multiple disease states; however, its role in exacerbating acute traumatic injuries, such as burn, is poorly understood. In this article, we review studies that document changes in the intestinal microbiome after burn injury, assess the implications in post-burn pathogenesis, and the potential for further discovery and research.
Collapse
Affiliation(s)
- Marisa E. Luck
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Caroline J. Herrnreiter
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
31
|
Qin C, Jiang Y, Yu M, Bian Y, Yu Y. Exploration of Potential Molecular Targets of Dexmedetomidine in the Intestinal Repair of Burnt Rats. J Inflamm Res 2021; 14:3197-3206. [PMID: 34285543 PMCID: PMC8286122 DOI: 10.2147/jir.s315952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background More and more burn survivors were suffering from varying degrees of damage to the intestinal barrier. Dexmedetomidine (Dex) was frequently used as sedative in more cases, but it was found to have repair effect on intestinal barrier dysfunction recently. This study aimed to explore the potential specific targets of Dex in intestinal barrier repair in burn rats model. Methods Male adult SD rats were used to establish 40% TBSA III degree scald model in our study. The samples were divided into four groups: burn rats (Burn), burn rats with Dex medication (Burn-Dex), sham rats (Sham) and sham rats with Dex medication (Sham-Dex). And plasma FITC-dextran and diamine oxidase (DAO) were detected to determine the intestinal permeability. Differentially expressed proteins were further adopted to protein-protein interaction network analysis, Gene Ontology analysis (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results It showed that 40% TBSA III degree scald model was successfully constructed. And plasma FITC-dextran and DAO decreased significantly after Dex administration. Additionally, differentially expressed genes Psmb10, Psmb7 among the experimental groups were screened, which were significantly enriched in proteasome and other several pathways. Conclusion The results above suggested that Q4KM35 and Q9JHW0, which are encoded by Psmb10 and Psmb7, respectively, are two possible protein targets of Dex in intestinal barrier repair.
Collapse
Affiliation(s)
- Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, 300071, People's Republic of China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| | - Mingdong Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| |
Collapse
|
32
|
Pantalone D, Bergamini C, Martellucci J, Alemanno G, Bruscino A, Maltinti G, Sheiterle M, Viligiardi R, Panconesi R, Guagni T, Prosperi P. The Role of DAMPS in Burns and Hemorrhagic Shock Immune Response: Pathophysiology and Clinical Issues. Review. Int J Mol Sci 2021; 22:7020. [PMID: 34209943 PMCID: PMC8268351 DOI: 10.3390/ijms22137020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Severe or major burns induce a pathophysiological, immune, and inflammatory response that can persist for a long time and affect morbidity and mortality. Severe burns are followed by a "hypermetabolic response", an inflammatory process that can be extensive and become uncontrolled, leading to a generalized catabolic state and delayed healing. Catabolism causes the upregulation of inflammatory cells and innate immune markers in various organs, which may lead to multiorgan failure and death. Burns activate immune cells and cytokine production regulated by damage-associated molecular patterns (DAMPs). Trauma has similar injury-related immune responses, whereby DAMPs are massively released in musculoskeletal injuries and elicit widespread systemic inflammation. Hemorrhagic shock is the main cause of death in trauma. It is hypovolemic, and the consequence of volume loss and the speed of blood loss manifest immediately after injury. In burns, the shock becomes evident within the first 24 h and is hypovolemic-distributive due to the severely compromised regulation of tissue perfusion and oxygen delivery caused by capillary leakage, whereby fluids shift from the intravascular to the interstitial space. In this review, we compare the pathophysiological responses to burns and trauma including their associated clinical patterns.
Collapse
Affiliation(s)
- Desirè Pantalone
- ESA-European Space Agency Headquarter, 24 Rue de Général Bertrand, 75345 Paris, France
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Firenze, Italy
| | - Carlo Bergamini
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Jacopo Martellucci
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Giovanni Alemanno
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Alessandro Bruscino
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Gherardo Maltinti
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Maximilian Sheiterle
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Riccardo Viligiardi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Roberto Panconesi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Tommaso Guagni
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| | - Paolo Prosperi
- Trauma Team, Acute Care Surgery and Trauma Unit, Careggi University Hospital, Largo A. Brambilla 3, 50134 Florence, Italy; (C.B.); (J.M.); (G.A.); (A.B.); (G.M.); (M.S.); (R.V.); (R.P.); (T.G.); (P.P.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Advances in the care of inhalational injuries have not kept pace with advances that have been seen in the treatment of cutaneous burns. There is not yet a standard of care for best outcomes for airway management of patients with known or suspected inhalational injuries. Clinicians must decide if to intubate the patient, and if so, whether to intubate early or late in their presentation. Unnecessary intubation affects morbidity and mortality. This review will summarize literature that highlights present practices in the treatment of patients with inhalation injuries. RECENT FINDINGS There have been promising investigations into biomarkers that can be used to quantify a patient's risk and better target therapies. Grading systems serve to better stratify the burn victim's prognosis and then direct their care. Special ventilator modes can assist in ventilating burn patients with inhalation injuries that experience difficulties in oxygenating. SUMMARY Inhalational injuries are a significant source of morbidity and mortality in thermally injured patients. Treatment modalities, such as modified ventilator settings, alteration in fluid resuscitation, and a standardized grading system may improve morbidity and mortality.
Collapse
|
34
|
[Laparostoma-Avoidance and treatment of complications]. Chirurg 2021; 92:283-296. [PMID: 33351159 DOI: 10.1007/s00104-020-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The open abdomen (OA) is an established concept for treating severe abdominal diseases. The most frequent reasons for placement of an open abdomen are abdominal sepsis (e.g. from intestinal perforation or anastomotic leakage), severe abdominal organ injury and abdominal compartment syndrome. The pathophysiology is much more complex than the surgeon's eye can see in an OA. The temporary closure of the abdominal wall ensures sufficient drainage of infected ascites, protection of the intestinal loops and conditioning of the abdominal wall in order to be able carry out definitive closure of the abdominal wall at the end of the surgical treatment. Negative peritoneal pressure therapy combined with fascia traction (with or without mesh) is well-established in the management of an open abdomen.
Collapse
|
35
|
Yao Q, Li H, Fan L, Zhang Y, Zhao S, Zheng N, Wang J. Dietary Regulation of the Crosstalk between Gut Microbiome and Immune Response in Inflammatory Bowel Disease. Foods 2021; 10:foods10020368. [PMID: 33567698 PMCID: PMC7915342 DOI: 10.3390/foods10020368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), a chronic, recurring inflammatory response, is a growing global public health issue. It results from the aberrant crosstalk among environmental factors, gut microbiota, the immune system, and host genetics, with microbiota serving as the core of communication for differently-sourced signals. In the susceptible host, dysbiosis, characterized by the bloom of facultative anaerobic bacteria and the decline of community diversity and balance, can trigger an aberrant immune response that leads to reduced tolerance against commensal microbiota. In IBD, such dysbiosis has been profoundly proven in animal models, as well as clinic data analysis; however, it has not yet been conclusively ascertained whether dysbiosis actually promotes the disease or is simply a consequence of the inflammatory disorder. Better insight into the complex network of interactions between food, the intestinal microbiome, and host immune response will, therefore, contribute significantly to the diagnosis, treatment, and management of IBD. In this article, we review the ways in which the mutualistic circle of dietary nutrients, gut microbiota, and the immune system becomes anomalous during the IBD process, and discuss the roles of bacterial factors in shaping the intestinal inflammatory barrier and adjusting immune capacity.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
36
|
Liu X, Chen Y, You B, Peng Y, Chen Y, Yang Z, Zhang Y, Chen J. Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator. BURNS & TRAUMA 2021; 9:tkaa042. [PMID: 33501367 PMCID: PMC7809362 DOI: 10.1093/burnst/tkaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Background Gut ischemia and hypoxia post severe burn leads to breakdown of intestinal epithelial
barrier and enteric bacterial translocation (EBT), resulting in serious complications,
such as systemic inflammatory response syndrome, sepsis and multiple organ failure.
Cystic fibrosis transmembrane conductance regulator (CFTR) is known to be downregulated
by hypoxia and modulate junctional complexes, which are crucial structures maintaining
the intestinal barrier. This study aimed to investigate whether CFTR plays a role in
both regulating the intestinal barrier and mediating EBT post severe burn, as well as
the signaling pathways involved in these processes. Methods An in vitro Caco-2 cell model subjected to hypoxic injury and an
in vivo mouse model with a 30% total body surface area full-thickness
dermal burn were established. DF 508 mice (mice with F508del CFTR gene mutation) were
used as an in vivo model to further demonstrate the role of CFTR in maintaining normal
intestinal barrier function. QRT-PCR, western blot, ELISA, TER assay and
immunofluorescence staining were used to detect the expression and localization of CFTR
and tight junction proteins, as well as the function of tight junctions. Results Our data indicated that, in Caco-2 cells, the hypoxia condition significantly reduced
CFTR expression; activated extracellular signal-regulated kinase and nuclear factor-κB
signaling; elevated secretion of inflammatory factors (tumor necrosis factor-α,
interleukin-1β and interleukin-8); downregulated zonula occludens-1, occludin and
E-cadherin expression; decreased transepithelial electrical resistance values; and led
to a cellular mislocation of ZO-1. More importantly, knockdown of CFTR caused similar
alterations. The upregulation of inflammatory factors and downregulation of tight
junction proteins (ZO-1 and occludin) induced by knockdown of CFTR could be reversed by
specific extracellular signal-regulated kinase or nuclear factor-κB inhibition. In
support of the in vitro data, exuberant secretion of pro-inflammatory
mediators and EBT was observed in the intestine of severely burnt mice in
vivo. EBT occurred in DF508 mice (mice with the F508del CFTR gene mutation),
accompanied by augmented tumor necrosis factor-α, interleukin-1β and interleukin-8
levels in the ileum compared to wildtype mice. In addition, vitamin D3 was shown to
protect the intestinal epithelial barrier from hypoxic injury. Conclusions Collectively, the present study illustrated that CFTR and downstream signaling were
critical in modulating the intestinal epithelial junction and EBT post severe burn.
Collapse
Affiliation(s)
- Xinzhu Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China.,Department of Burn and Plastic Surgery, No. 958 Hospital of Army, Southwest Hospital, Third Military Medical University (Army Military Medical University), Jian Xin Dong Street, Chongqing 400020, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| |
Collapse
|
37
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Sumsuzzman DM, Choi J, Khan ZA, Hong Y. Protective Effects of Melatonin against Severe Burn-Induced Distant Organ Injury: A Systematic Review and Meta-Analysis of Experimental Studies. Antioxidants (Basel) 2020; 9:antiox9121196. [PMID: 33261180 PMCID: PMC7760393 DOI: 10.3390/antiox9121196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Extensive burns result in a local wound response and distant-organ injury (DOI) caused by oxidative-stress and inflammation. Melatonin (MT) shows promise in alleviating oxidative-stress and inflammation, but its role in thermal injury is largely unexplored. The present systematic review and meta-analysis were designed to assess the effects of MT on oxidative-stress and inflammatory markers against severe burn-induced DOI. Mean difference (MD)/standard mean difference (SMD) with 95% confidence interval (CI) were estimated using fixed-effect/random-effects models. Eighteen experimental studies met the inclusion criteria. Compared with the control group, MT significantly decreased the levels of malondialdehyde (SMD, −1.03; 95% CI, −1.30, −0.76, p < 0.00001) and 4-hydroxynonenal (MD, −1.06; 95% CI, −1.57, −0.56, p < 0.0001). Additionally, MT increased the levels of glutathione (SMD, 1.94; 95% CI, 1.27, 2.61, p < 0.00001) and superoxide-dismutase (SMD, 0.76; 95% CI, 0.08, 1.45, p = 0.03). Finally, MT significantly decreased the levels of tumor necrosis factor-α (SMD, −1.34; 95% CI, −1.92 to −0.77; p < 0.00001) and C-reactive protein (MD, −12.67; 95% CI, −16.72 to −8.62; p < 0.00001). Meta-analysis indicates that severe burn followed by immediate MT (10 mg/kg) intervention shows significant beneficial effects after 24-h against DOI by regulating oxidative-stress and the inflammatory response.
Collapse
Affiliation(s)
- Dewan Md. Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea; (D.M.S.); (J.C.)
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea;
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea; (D.M.S.); (J.C.)
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea;
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea;
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea; (D.M.S.); (J.C.)
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea;
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Correspondence: ; Tel.: +82-55-320-3681; Fax: +82-55-329-1678
| |
Collapse
|
39
|
Adiliaghdam F, Cavallaro P, Mohad V, Almpani M, Kühn F, Gharedaghi MH, Najibi M, Rahme LG, Hodin RA. Targeting the gut to prevent sepsis from a cutaneous burn. JCI Insight 2020; 5:137128. [PMID: 33004693 PMCID: PMC7566703 DOI: 10.1172/jci.insight.137128] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Severe burn injury induces gut barrier dysfunction and subsequently a profound systemic inflammatory response. In the present study, we examined the role of the small intestinal brush border enzyme, intestinal alkaline phosphatase (IAP), in preserving gut barrier function and preventing systemic inflammation after burn wound infection in mice. Mice were subjected to a 30% total body surface area dorsal burn with or without intradermal injection of Pseudomonas aeruginosa. Mice were gavaged with 2000 units of IAP or vehicle at 3 and 12 hours after the insult. We found that both endogenously produced and exogenously supplemented IAP significantly reduced gut barrier damage, decreased bacterial translocation to the systemic organs, attenuated systemic inflammation, and improved survival in this burn wound infection model. IAP attenuated liver inflammation and reduced the proinflammatory characteristics of portal serum. Furthermore, we found that intestinal luminal contents of burn wound-infected mice negatively impacted the intestinal epithelial integrity compared with luminal contents of control mice and that IAP supplementation preserved monolayer integrity. These results indicate that oral IAP therapy may represent an approach to preserving gut barrier function, blocking proinflammatory triggers from entering the portal system, preventing gut-induced systemic inflammation, and improving survival after severe burn injuries.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Cavallaro
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vidisha Mohad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Shriners Hospital for Children, Boston, Massachusetts, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Kühn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of General, Visceral and Transplant Surgery, Hospital of the University of Munich, Munich, Germany
| | - Mohammad Hadi Gharedaghi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mehran Najibi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Shriners Hospital for Children, Boston, Massachusetts, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Song H, Sui H, Zhang Q, Wang P, Wang F. Cucurbitacin E Induces Autophagy-Involved Apoptosis in Intestinal Epithelial Cells. Front Physiol 2020; 11:1020. [PMID: 32982778 PMCID: PMC7479753 DOI: 10.3389/fphys.2020.01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis plays a crucial role in maintaining the structural and functional integrity of the intestinal epithelial barrier. Autophagy mediates injury to and repair of the intestinal epithelial barrier through multiple pathways in pathophysiological conditions. Our earlier study has found that cucurbitacin E (CuE) regulates the proliferation, migration, and permeability of human intestinal epithelial cells (IECs); however, its effects and mechanisms on apoptosis and autophagy are still unclear. This study reported CuE induced apoptosis and promoted autophagy of IECs in a concentration-dependent manner. The results showed that CuE could inhibit the expression of apoptosis-related protein Bcl-2 and drove activation of caspase-3 and cleavage of its substrate poly (ADP-ribose) polymerase. CuE also facilitated the expression of endoplasmic reticulum stress-related proteins, CHOP and Grp78, and autophagy-related proteins, Beclin1 and LC3, while inhibiting the phosphorylation of AKT and mammalian target of rapamycin (mTOR). An autophagy inhibitor, 3-methyladenine, reduced CuE-induced apoptosis. These results suggest that CuE may induce apoptosis and autophagy in IECs via the PI3K/AKT/mTOR signaling pathway and that autophagy following endoplasmic reticulum stress participates in the pro-apoptotic process induced by CuE.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Pharmacy, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, China.,Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
41
|
Burn resuscitation strategy influences the gut microbiota-liver axis in swine. Sci Rep 2020; 10:15655. [PMID: 32973266 PMCID: PMC7515893 DOI: 10.1038/s41598-020-72511-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluid resuscitation improves clinical outcomes of burn patients; however, its execution in resource-poor environments may have to be amended with limited-volume strategies. Liver dysfunction is common in burn patients and gut dysbiosis is an understudied aspect of burn sequelae. Here, the swine gut microbiota and liver transcripts were investigated to determine the impact of standard-of-care modified Brooke (MB), limited-volume colloid (LV-Co), and limited-volume crystalloid (LV-Cr) resuscitation on the gut microbiota, and to evaluate its' potential relationship with liver dysfunction. Independent of resuscitation strategy, bacterial diversity was reduced 24 h post-injury, and remained perturbed at 48 h. Changes in community structure were most pronounced with LV-Co, and correlated with biomarkers of hepatocellular damage. Hierarchical clustering revealed a group of samples that was suggestive of dysbiosis, and LV-Co increased the risk of association with this group. Compared with MB, LV-Co and LV-Cr significantly altered cellular stress and ATP pathways, and gene expression of these perturbed pathways was correlated with major dysbiosis-associated bacteria. Taken together, LV-Co resuscitation exacerbated the loss of bacterial diversity and increased the risk of dysbiosis. Moreover, we present evidence of a linkage between liver (dys)function and the gut microbiota in the acute setting of burn injury.
Collapse
|
42
|
Supplementation with yeast culture improves the integrity of intestinal tight junction proteins via NOD1/NF‐κB P65 pathway in weaned piglets and H2O2-challenged IPEC-J2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Corcione S, Lupia T, De Rosa FG. Microbiome in the setting of burn patients: implications for infections and clinical outcomes. BURNS & TRAUMA 2020; 8:tkaa033. [PMID: 32821744 PMCID: PMC7428410 DOI: 10.1093/burnst/tkaa033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Indexed: 01/02/2023]
Abstract
Burn damage can lead to a state of immune dysregulation that facilitates the development of infections in patients. The most deleterious impact of this dysfunction is the loss of the skin’s natural protective barrier. Furthermore, the risk of infection is exacerbated by protracted hospitalization, urinary catheters, endotracheal intubation, inhalation injury, arterial lines and central venous access, among other mainstays of burn care. Currently, infections comprise the leading cause of mortality after major burn injuries, which highlights the improvements observed over the last 50 years in the care provided to burn victims. The need to implement the empirical selection of antibiotic therapy to treat multidrug-resistant bacteria may concomitantly lead to an overall pervasiveness of difficult-to-treat pathogens in burn centres, as well as the propagation of antimicrobial resistance and the ultimate dysregulation of a healthy microbiome. While preliminary studies are examining the variability and evolution of human and mice microbiota, both during the early and late phase burn injury, one must consider that abnormal microbiome conditions could influence the systemic inflammatory response. A better understanding of the changes in the post-burn microbiome might be useful to interpret the provenance and subsequent development of infections, as well as to come up with inferences on the prognosis of burn patients. This review aims to summarise the current findings describing the microbiological changes in different organs and systems of burn patients and how these alterations affect the risks of infections, complications, and, ultimately, healing.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | | |
Collapse
|
44
|
Boldeanu L, Boldeanu MV, Bogdan M, Meca AD, Coman CG, Buca BR, Tartau CG, Tartau LM. Immunological approaches and therapy in burns (Review). Exp Ther Med 2020; 20:2361-2367. [PMID: 32765715 PMCID: PMC7401720 DOI: 10.3892/etm.2020.8932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Burns have become an important public health problem in the last two decades, with just over a quarter of a million deaths annually. Major burns are accompanied by a strong inflammatory response, which will most often lead to systemic response inflammatory syndrome, followed by sepsis and finally induce multiple organ failure. The main mechanism involved in wound healing after burns is the inflammatory process, characterized by the recruitment of myeloid and T cells and by the involvement of numerous cytokines, chemokines, complement fractions, as well as various growth factors. Inflammasomes, protein-based cytosolic complexes, activated during metabolic stress or infection, play a role in modulating and improving the defense capacity of the innate immune system. Nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has been studied predominantly and several hypotheses have been issued. Restoring the balance between the pro-inflammatory response and the anti-inflammatory activity is the key element to effective therapy in burns. Severe burns require nutritional support and pharmacotherapy not only for burn area but for different pathological complications of burn injury. In-depth research is required to find new ways to modulate the defense capacity, to prevent the complications of abnormal immune response and to treat burn injuries efficiently.
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy, 200349 Craiova, Romania.,Department of Medico Science SRL, Stem Cell Bank Unit, 200690 Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea Daniela Meca
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Corneliu George Coman
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Beatrice Rozalina Buca
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cosmin Gabriel Tartau
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Mititelu Tartau
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
45
|
Wang Y, Armato U, Wu J. Targeting Tunable Physical Properties of Materials for Chronic Wound Care. Front Bioeng Biotechnol 2020; 8:584. [PMID: 32596229 PMCID: PMC7300298 DOI: 10.3389/fbioe.2020.00584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds caused by infections, diabetes, and radiation exposures are becoming a worldwide growing medical burden. Recent progress highlighted the physical signals determining stem cell fates and bacterial resistance, which holds potential to achieve a better wound regeneration in situ. Nanoparticles (NPs) would benefit chronic wound healing. However, the cytotoxicity of the silver NPs (AgNPs) has aroused many concerns. This review targets the tunable physical properties (i.e., mechanical-, structural-, and size-related properties) of either dermal matrixes or wound dressings for chronic wound care. Firstly, we discuss the recent discoveries about the mechanical- and structural-related regulation of stem cells. Specially, we point out the currently undocumented influence of tunable mechanical and structural properties on either the fate of each cell type or the whole wound healing process. Secondly, we highlight novel dermal matrixes based on either natural tropoelastin or synthetic elastin-like recombinamers (ELRs) for providing elastic recoil and resilience to the wounded dermis. Thirdly, we discuss the application of wound dressings in terms of size-related properties (i.e., metal NPs, lipid NPs, polymeric NPs). Moreover, we highlight the cytotoxicity of AgNPs and propose the size-, dose-, and time-dependent solutions for reducing their cytotoxicity in wound care. This review will hopefully inspire the advanced design strategies of either dermal matrixes or wound dressings and their potential therapeutic benefits for chronic wounds.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China
- Department of Burn and Plastic Surgery, Air Force Hospital of PLA Central Theater Command, Datong, China
| | - Ubaldo Armato
- Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona Medical School Verona, Verona, Italy
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| |
Collapse
|
46
|
Wen H, Xing L, Sun K, Xiao C, Meng X, Yang J. Loganin attenuates intestinal injury in severely burned rats by regulating the toll-like receptor 4/NF-κB signaling pathway. Exp Ther Med 2020; 20:591-598. [PMID: 32537017 DOI: 10.3892/etm.2020.8725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Severe burns may lead to intestinal inflammation and oxidative stress, resulting in intestinal barrier damage and gut dysfunction. Loganin, an iridoid glycoside compound, has been isolated from Cornus officinalis Sieb. et Zucc; however, its role in the treatment of burn injury is yet to be fully elucidated. Therefore, the present study examined the effect of loganin administration on burn-induced intestinal inflammation and oxidative stress after severe burns in male Sprague-Dawley rats. Histological injury was assessed by hematoxylin and eosin staining. Furthermore, cytokine expression in intestinal tissues was measured by ELISA and reverse transcription-quantitative PCR. Antioxidative activities were assessed by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). Apoptosis was detected by flow cytometry. Apoptosis-related proteins, toll-like receptor 4 (TLR4) protein and NF-κB translocation were examined by western blotting. Immunohistochemical staining was used to observe TLR4 and NF-κB p65 expression in intestinal tissues. The present study suggested that loganin administration significantly reduced burn injury-induced intestinal histological changes, tumor necrosis factor-α, interleukin (IL)-6 and IL-1β production and oxidative stress, evidenced by decreased ROS levels and MDA content (P<0.05). Furthermore, loganin increased SOD, CAT and GSH-Px levels and intestinal epithelial cell apoptosis. Loganin treatment also significantly inhibited activation of the TLR4/NF-κB signaling pathway in the intestine of severely burned rats (P<0.05). In conclusion, loganin reduced burns-induced intestinal inflammation and oxidative stress, potentially by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hailing Wen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Liang Xing
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kui Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Changshuan Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiangxi Meng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jingzhe Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
47
|
Song Y, Li Y, Xiao Y, Hu W, Wang X, Wang P, Zhang X, Yang J, Huang Y, He W, Huang C. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. BURNS & TRAUMA 2019; 7:37. [PMID: 31890716 PMCID: PMC6933641 DOI: 10.1186/s41038-019-0177-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Background The intestinal barrier integrity can be disrupted due to burn injury, which is responsible for local and systemic inflammatory responses. Anti-inflammation strategy is one of the proposed therapeutic approaches to control inflammatory cascade at an early stage. Interleukin-17A (IL-17A) plays a critical role in inflammatory diseases. However, the role of IL-17A in the progression of burn-induced intestinal inflammation is poorly understood. In this study, we aimed to investigate the effect of IL-17A and associated pro-inflammatory cytokines that were deeply involved in the pathogenesis of burn-induced intestinal inflammatory injury, and furthermore, we sought to determine the early source of IL-17A in the intestine. Methods Mouse burn model was successfully established with infliction of 30% total body surface area scald burn. The histopathological manifestation, intestinal permeability, zonula occludens-1 expression, pro-inflammatory cytokines were determined with or without IL-17A-neutralization. Flow cytometry was used to detect the major source of IL-17A+ cells in the intestine. Results Burn caused intestinal barrier damage, increase of intestinal permeability, alteration of zonula occludens-1 expressions, elevation of IL-17A, IL-6, IL-1β and tumor necrosis factor-α (TNF-α), whereas IL-17A neutralization dramatically alleviated burn-induced intestinal barrier disruption, maintained zonula occludens-1 expression, and noticeably, inhibited pro-inflammatory cytokines elevation. In addition, we observed that the proportion of intestinal IL-17A+Vγ4+ T subtype cells (but not IL-17A+Vγ1+ T subtype cells) were increased in burn group, and neutralization of IL-17A suppressed this increase. Conclusions The main original findings of this study are intestinal mucosa barrier is disrupted after burn through affecting the expression of pro-inflammatory cytokines, and a protective role of IL-17A neutralization for intestinal mucosa barrier is determined. Furthermore, Vγ4+ T cells are identified as the major early producers of IL-17A that orchestrate an inflammatory response in the burn model. These data suggest that IL-17A blockage may provide a unique target for therapeutic intervention to treat intestinal insult after burn.
Collapse
Affiliation(s)
- Yajun Song
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Yang Li
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Ya Xiao
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Wengang Hu
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Xu Wang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Pei Wang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Xiaorong Zhang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Jiacai Yang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Yong Huang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Weifeng He
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Chibing Huang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
48
|
Song H, Zhang J, He W, Wang P, Wang F. Activation of Cofilin Increases Intestinal Permeability via Depolymerization of F-Actin During Hypoxia in vitro. Front Physiol 2019; 10:1455. [PMID: 31849705 PMCID: PMC6901426 DOI: 10.3389/fphys.2019.01455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical barriers play a key role in maintaining the normal function of the intestinal mucosa. The barrier function of intestinal epithelial cells is significantly damaged after severe hypoxia. However, the molecular mechanisms underlying this hypoxia-induced damage are still not completely clear. Through the establishment of an in vitro cultured intestinal epithelial cell monolayer model (Caco-2), we treated cells with hypoxia or drugs [jasplakinolide or latrunculin A (LatA)] to detect changes in the transepithelial electrical resistance (TER), the expression of the cellular tight junction (TJ) proteins zonula occludens-1 (ZO-1) and occludin, the distribution of F-actin, the ratio of F-actin/G-actin content, and the expression of the cofilin protein. The results showed that hypoxia and drug treatment could both induce a significant reduction in the TER of the intestinal epithelial cell monolayer and a significant reduction in the expression of the ZO-1 and occludin protein. Hypoxia and LatA could cause a significant reduction in the ratio of F-actin/G-actin content, whereas jasplakinolide caused a significant increase in the ratio of F-actin/G-actin content. After hypoxia, cofilin phosphorylation was decreased. We concluded that the barrier function of the intestinal epithelial cell monolayer was significantly damaged after severe burn injury. The molecular mechanism might be that hypoxia-induced F-actin depolymerization and an imbalance between F-actin and G-actin through cofilin activation resulted in reduced expression and a change in the distribution of cellular TJ proteins.
Collapse
Affiliation(s)
- Huapei Song
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jian Zhang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wen He
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pei Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengjun Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|