1
|
Chen L, Xiong Y, Chopp M, Zhang Y. Engineered exosomes enriched with select microRNAs amplify their therapeutic efficacy for traumatic brain injury and stroke. Front Cell Neurosci 2024; 18:1376601. [PMID: 38566841 PMCID: PMC10985177 DOI: 10.3389/fncel.2024.1376601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke stand as prominent causes of global disability and mortality. Treatment strategies for stroke and TBI are shifting from targeting neuroprotection toward cell-based neurorestorative strategy, aiming to augment endogenous brain remodeling, which holds considerable promise for the treatment of TBI and stroke. Compelling evidence underscores that the therapeutic effects of cell-based therapy are mediated by the active generation and release of exosomes from administered cells. Exosomes, endosomal derived and nano-sized extracellular vesicles, play a pivotal role in intercellular communication. Thus, we may independently employ exosomes to treat stroke and TBI. Systemic administration of mesenchymal stem cell (MSC) derived exosomes promotes neuroplasticity and neurological functional recovery in preclinical animal models of TBI and stroke. In this mini review, we describe the properties of exosomes and recent exosome-based therapies of TBI and stroke. It is noteworthy that the microRNA cargo within exosomes contributes to their therapeutic effects. Thus, we provide a brief introduction to microRNAs and insight into their key roles in mediating therapeutic effects. With the increasing knowledge of exosomes, researchers have "engineered" exosome microRNA content to amplify their therapeutic benefits. We therefore focus our discussion on the therapeutic benefits of recently employed microRNA-enriched engineered exosomes. We also discuss the current opportunities and challenges in translating exosome-based therapy to clinical applications.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| |
Collapse
|
2
|
Derakhshani A, Taheri F, Geraminia N, Mohammadipoor-ghasemabad L, Sabzalizadeh M, Vafee F, Afarinesh MR, Sheibani V. Amelioration of behavioral and histological impairments in somatosensory cortex injury rats by limbal mesenchymal stem cell transplantation. Transl Neurosci 2024; 15:20220346. [PMID: 39156044 PMCID: PMC11330157 DOI: 10.1515/tnsci-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Cortical lesions can cause major sensory and motor impairments, representing a significant challenge in neuroscience and clinical medicine. Limbal mesenchymal stem cells (LMSCs), renowned for their remarkable ability to proliferate and distinct characteristics within the corneal epithelium, offer a promising opportunity for regenerative treatments. This study aimed to assess whether the transplantation of LMSCs could improve tactile ability in rats with lesions of the barrel cortex. Methods In this experimental study, we divided 21 rats into three groups: a control group, a lesion group with cortical cold lesion induction but no stem cell treatment, and a group receiving LMSC transplantation following cold lesion induction. We conducted 3-week sensory assessments using a texture discrimination test and an open-field test. We also performed Nissl staining to assess changes on the cellular level. Results Rats in the LMSC transplantation group demonstrated significant improvements in their ability to discrimination textures during the second and third weeks compared to those in the lesion group. The open-field test results showed an increased exploratory behavior of rats in the LMSC transplantation group by the third week compared to the lesion group. Additionally, Nissl staining revealed cellular alterations in the damaged cortex, with a significant distinction observed between rats in the LMSCs and lesion group. Conclusion The findings suggest that LMSC transplantation enhances sensory recovery in rats with cortical lesions, particularly their ability to discriminate textures. LMSC transplantation benefits brain tissue reparation after a cold lesion on the somatosensory cortex.
Collapse
Affiliation(s)
- Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farahnaz Taheri
- Neurology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Geraminia
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
| | - Lily Mohammadipoor-ghasemabad
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Vafee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, P. O. Box: 76198-13159, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Tang L, Xu Y, Wang L, Pan J. Adipose-derived stem cell exosomes ameliorate traumatic brain injury through the NLRP3 signaling pathway. Neuroreport 2023; 34:677-684. [PMID: 37506308 PMCID: PMC10399942 DOI: 10.1097/wnr.0000000000001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The exosomes of mesenchymal stem cells have immunoregulatory properties and can effectively mitigate secondary neuroinflammation due to traumatic brain injury (TBI). In this study, we found that adipose-derived stem cell exosomes (ADSCs-Exo) could reduce the inflammatory response after traumatic brain injury by reducing NLRP3 inflammasome secretion by microglial. ADSCs-Exo were monitored by Western blot and electron microscopy. An in-vitro lipopolysaccharide (LPS)-caused primary microglia model and a TBI rat model were constructed. Functional recovery was examined using the modified neurological severity score and foot fault tests. Inflammasome inactivation in LPS-stimulated microglial, ADSCs-Exo can reduce the secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor α. Compared with PBS-processed controls, the sensorimotor functional recovery was significantly improved by exosome treatment after injury at 14-35 days. Additionally, NLRP3 inflammasome was stimulated within 24 h after TBI. ADSCs-Exo application led to remarkable down-expression of NLRP3 and caspase-1. ADSCs-Exo can ameliorate LPS-induced inflammatory activation by reducing microglial pro-inflammatory cytokines. Moreover, the neuroprotective effect of ADSCs-Exo may be partially attributed to the inhibition thereof on the formation of NLRP3-mediated inflammasome. Such findings imply a potential function of ADSCs-Exo in treating TBI.
Collapse
Affiliation(s)
- Linjun Tang
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Yong Xu
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Liangwei Wang
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Jingjing Pan
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| |
Collapse
|
4
|
Dong X, Dong JF, Zhang J. Roles and therapeutic potential of different extracellular vesicle subtypes on traumatic brain injury. Cell Commun Signal 2023; 21:211. [PMID: 37596642 PMCID: PMC10436659 DOI: 10.1186/s12964-023-01165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/13/2023] [Indexed: 08/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related disability and death around the world, but the clinical stratification, diagnosis, and treatment of complex TBI are limited. Due to their unique properties, extracellular vesicles (EVs) are emerging candidates for being biomarkers of traumatic brain injury as well as serving as potential therapeutic targets. However, the effects of different extracellular vesicle subtypes on the pathophysiology of traumatic brain injury are very different, or potentially even opposite. Before extracellular vesicles can be used as targets for TBI therapy, it is necessary to classify different extracellular vesicle subtypes according to their functions to clarify different strategies for EV-based TBI therapy. The purpose of this review is to discuss contradictory effects of different EV subtypes on TBI, and to propose treatment ideas based on different EV subtypes to maximize their benefits for the recovery of TBI patients. Video Abstract.
Collapse
Affiliation(s)
- Xinlong Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ. Mesenchymal Stromal Cells-Derived Exosome and the Roles in the Treatment of Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:469-489. [PMID: 35103872 DOI: 10.1007/s10571-022-01201-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
Collapse
Affiliation(s)
- Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Paez-Mayorga J, Campa-Carranza JN, Capuani S, Hernandez N, Liu HC, Chua CYX, Pons-Faudoa FP, Malgir G, Alvarez B, Niles JA, Argueta LB, Shelton KA, Kezar S, Nehete PN, Berman DM, Willman MA, Li XC, Ricordi C, Nichols JE, Gaber AO, Kenyon NS, Grattoni A. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat Commun 2022; 13:7951. [PMID: 36572684 PMCID: PMC9792517 DOI: 10.1038/s41467-022-35629-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of the Chinese Academy of Sciences (UCAS), Shijingshan, Beijing, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Gulsah Malgir
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bella Alvarez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jean A Niles
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Lissenya B Argueta
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah Kezar
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Dora M Berman
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Xian C Li
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Norma S Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Capuani S, Hernandez N, Paez-Mayorga J, Dogra P, Wang Z, Cristini V, Chua CYX, Nichols JE, Grattoni A. Localization of drug biodistribution in a 3D-bioengineered subcutaneous neovascularized microenvironment. Mater Today Bio 2022; 16:100390. [PMID: 36033374 PMCID: PMC9403502 DOI: 10.1016/j.mtbio.2022.100390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/13/2023] Open
Abstract
Local immunomodulation has shown the potential to control the immune response in a site-specific manner for wound healing, cancer, allergy, and cell transplantation, thus abrogating adverse effects associated with systemic administration of immunotherapeutics. Localized immunomodulation requires confining the biodistribution of immunotherapeutics on-site for maximal immune control and minimal systemic drug exposure. To this end, we developed a 3D-printed subcutaneous implant termed 'NICHE', consisting of a bioengineered vascularized microenvironment enabled by sustained drug delivery on-site. The NICHE was designed as a platform technology for investigating local immunomodulation in the context of cell therapeutics and cancer vaccines. Here we studied the ability of the NICHE to localize the PK and biodistribution of different model immunomodulatory agents in vivo. For this, we first performed a mechanistic evaluation of the microenvironment generated within and surrounding the NICHE, with emphasis on the parameters related to molecular transport. Second, we longitudinally studied the biodistribution of ovalbumin, cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA4Ig), and IgG delivered locally via NICHE over 30 days. Third, we used our findings to develop a physiologically-based pharmacokinetic (PBPK) model. Despite dense and mature vascularization within and surrounding the NICHE, we showed sustained orders of magnitude higher molecular drug concentrations within its microenvironment as compared to systemic circulation and major organs. Further, the PBPK model was able to recapitulate the biodistribution of the 3 molecules with high accuracy (r > 0.98). Overall, the NICHE and the PBPK model represent an adaptable platform for the investigation of local immunomodulation strategies for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of Chinese Academy of Science (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | | | - Joan E. Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
9
|
Villarreal-Martinez L, MartÍnez-Garza LE, Rodriguez-Sanchez IP, Alvarez-Villalobos N, Guzman-Gallardo F, Pope-Salazar S, Salinas-Silva C, Cepeda-Cepeda MG, Garza-Bedolla A, Dominguez-Varela IA, Villarreal-Martinez DZ, Treviño-Villarreal JH, Gomez-Almaguer D. Correlation Between CD133+ Stem Cells and Clinical Improvement in Patients with Autism Spectrum Disorders Treated with Intrathecal Bone Marrow-derived Mononuclear Cells. INNOVATIONS IN CLINICAL NEUROSCIENCE 2022; 19:78-86. [PMID: 35958968 PMCID: PMC9341312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental pathologies characterized by social and communication deficits, for which treatments are limited. Cell therapies, including intrathecal (IT) administration of bone marrow (BM) mononuclear cells (BM-MNC), improves symptoms in patients with ASD. Twenty-four patients diagnosed with ASD, according to the Diagnostic and Statistical Manual of Mental Disorders Text Revision Fourth Edition (DSM-IV-TR) criteria, were autologously treated with IT BM-MNC, and the clinical effect was evaluated using the Childhood Autism Rating Scale (CARS) on Days 30 (n=24) and 180 (n=14) post-treatment. IT BM-MNC improved clinical outcomes by Day 30 (p=0.0039), and those benefits remained and were further accentuated by Day 180 post-treatment (n=14; p=<0.0001). Clinical benefit at Days 30 (p=0.001; r= -0.51) and 180 (p=0.01; r= -0.60) posttreatment positively correlated with the enrichment of a putative BM stem cell population expressing the cluster of differentiation 133+ (CD133+) surface marker.
Collapse
Affiliation(s)
- Laura Villarreal-Martinez
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Laura Elia MartÍnez-Garza
- Drs. Martínez-Garza and Rodriguez-Sanchez are with the Genetics Department, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Iram Pablo Rodriguez-Sanchez
- Drs. Martínez-Garza and Rodriguez-Sanchez are with the Genetics Department, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Neri Alvarez-Villalobos
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Fernando Guzman-Gallardo
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Sulia Pope-Salazar
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Cynthia Salinas-Silva
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Maria Guadalupe Cepeda-Cepeda
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Alejandra Garza-Bedolla
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Irving Armando Dominguez-Varela
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Daniel Zacarias Villarreal-Martinez
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Jose Humberto Treviño-Villarreal
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - David Gomez-Almaguer
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| |
Collapse
|
10
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
12
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
13
|
Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J Stem Cells 2021; 13:776-794. [PMID: 34367477 PMCID: PMC8316862 DOI: 10.4252/wjsc.v13.i7.776] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
Collapse
Affiliation(s)
- Aida Nasirishargh
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Kaitlin Clark
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Sabrina V Lazar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
14
|
Andersen CR, Wolf J, Jennings K, Prough DS, Hawkins BE. Accelerated Failure Time Survival Model to Analyze Morris Water Maze Latency Data. J Neurotrauma 2020; 38:435-445. [PMID: 32829672 PMCID: PMC7875609 DOI: 10.1089/neu.2020.7089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) induces cognitive deficits clinically and in animal models. Learning and memory testing is critical when evaluating potential therapeutic strategies and treatments to manage the effects of TBI. We evaluated three data analysis methods for the Morris water maze (MWM), a learning and memory assessment widely used in the neurotrauma field, to determine which statistical tool is optimal for MWM data. Hidden platform spatial MWM data aggregated from three separate experiments from the same laboratory were analyzed using 1) a logistic regression model, 2) an analysis of variance (ANOVA) model, and 3) an accelerated failure time (AFT) time-to-event model. The logistic regression model showed no significant evidence of differences between treatments among any swims over all days of the study, p > 0.11. Although the ANOVA model found significant evidence of differences between sham and TBI groups on three out of four swims on the third day, results are potentially biased due to the failure of this model to account for censoring. The time-to-event AFT model showed significant differences between sham and TBI over all swims on the third day, p < 0.045, taking censoring into account. We suggest AFT models should be the preferred analytical methodology for latency to platform associated with MWM studies.
Collapse
Affiliation(s)
- Clark R Andersen
- The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, Texas, USA.,Office of Biostatistics, Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jordan Wolf
- The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kristofer Jennings
- Office of Biostatistics, Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| | - Donald S Prough
- The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bridget E Hawkins
- The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.,School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
15
|
Paez‐Mayorga J, Capuani S, Farina M, Lotito ML, Niles JA, Salazar HF, Rhudy J, Esnaola L, Chua CYX, Taraballi F, Corradetti B, Shelton KA, Nehete PN, Nichols JE, Grattoni A. Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000670. [PMID: 32864893 DOI: 10.1002/adhm.202000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Indexed: 12/14/2022]
Abstract
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously implanted in rats and NHP and the amount and maturity of penetrating blood vessels assessed via histopathological analysis. In rats, MSCs drive the strongest angiogenic response at early time points, with the highest vessel density and endothelial nitric oxide synthase (eNOS) expression. In NHP, PRP and MSCs result in similar vessel densities but incorporation of PRP ensues higher levels of eNOS expression. Overall, enrichment with PRP and MSCs yields extensive, mature vascularization of subcutaneous cell encapsulation devices. It is postulated that the individual properties of PRP and MSCs can be leveraged in a synergistic approach for maximal vascularization of cell encapsulation platforms.
Collapse
Affiliation(s)
- Jesus Paez‐Mayorga
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- School of Medicine and Health Sciences Tecnologico de Monterrey Monterrey NL 64849 Mexico
| | - Simone Capuani
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Marco Farina
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Electronics and Telecommunications Politecnico di Torino Torino TO 10129 Italy
| | - Maria Luisa Lotito
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino TO 10129 Italy
| | - Jean A. Niles
- University of Texas Medical Branch Galveston TX 77550 USA
| | - Hector F. Salazar
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Jessica Rhudy
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Lucas Esnaola
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | | | - Francesca Taraballi
- Regenerative Medicine Program Houston Methodist Research Institute Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston TX 77030 USA
| | - Bruna Corradetti
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea Wales SA2 8QA UK
| | - Kathryn A. Shelton
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
| | - Pramod N. Nehete
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston Houston TX 77030 USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Surgery Houston Methodist Hospital Houston TX 77030 USA
- Department of Radiation Oncology Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
16
|
Ghai V, Fallen S, Baxter D, Scherler K, Kim TK, Zhou Y, Meabon JS, Logsdon AF, Banks WA, Schindler AG, Cook DG, Peskind ER, Lee I, Wang K. Alterations in Plasma microRNA and Protein Levels in War Veterans with Chronic Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1418-1430. [PMID: 32024417 PMCID: PMC7249467 DOI: 10.1089/neu.2019.6826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Blast-related mild traumatic brain injury (mTBI) is considered the "signature" injury of the wars in Iraq and Afghanistan. Identifying biomarkers that could aid in diagnosis and assessment of chronic mTBI are urgently needed, as little progress has been made toward identifying blood-based biomarkers of repetitive mTBI in the chronic state. Addressing this knowledge gap is especially important in the population of military veterans who are receiving assessment and care often years after their last exposure. Circulating microRNAs (miRNAs), especially those encapsulated in extracellular vesicles (EVs), have gained interest as a source of biomarkers for neurological conditions. To identify biomarkers for chronic mTBI, we used next generation sequencing (NGS) to analyze miRNAs in plasma and plasma-derived EVs from 27 Iraq and Afghanistan war veterans with blast-related chronic mTBI, 11 deployed veteran non-TBI controls, and 31 civilian controls. We identified 32 miRNAs in plasma and 45 miRNAs in EVs that significantly changed in the chronic mTBI cohort compared with control groups. These miRNAs were predominantly associated with pathways involved in neuronal function, vascular remodeling, blood-brain barrier integrity, and neuroinflammation. In addition, the plasma proteome was analyzed and showed that the concentrations of C-reactive protein (CRP) and membrane metalloendopeptidase (MME) were elevated in chronic mTBI samples. These plasma miRNAs and proteins could potentially be used as biomarkers and provide insights into the molecular processes associated with the long-term health outcomes associated with blast-related chronic mTBI.
Collapse
Affiliation(s)
- Vikas Ghai
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - David Baxter
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | - James S. Meabon
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, and Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aric F. Logsdon
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA
| | - William A. Banks
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA
| | - Abigail G. Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA
| | - David G. Cook
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine R. Peskind
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, and Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA.,Address correspondence to: Kai Wang, PhD, Hood-Price Lab, Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109-5263, USA
| |
Collapse
|
17
|
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2020; 30:839-855. [PMID: 31203262 DOI: 10.1515/revneuro-2019-0002] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
18
|
Effect of peripheral blood-derived mesenchymal stem cells on macrophage polarization and Th17/Treg balance in vitro. Regen Ther 2020; 14:275-283. [PMID: 32455158 PMCID: PMC7232039 DOI: 10.1016/j.reth.2020.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have always been the center of the experimental exploration of regenerative therapy together with other stem cells. Among with, peripheral blood-derived mesenchymal stem cells (PBMSCs) have been regarded as promising in clinical applications for its convenience of acquisition from peripheral blood. However, few reported experiments so far to elucidate the exact mechanisms of how PBMSC influence regeneration. As the ability of immunomodulatory is one of the crucial features that influence MSC to reconstruct impaired tissue, we decided to focus on the immunomodulatory abilities of PBMSCs and conducted experiments associated with macrophages and T lymphocytes, which are two main cell types that dominate the innate and acquired immunity. Therefore, a basis can be made from these experiments for applications of PBMSCs in regenerative therapy in the future. Methods A Transwell system was used for the coculturing of PBMSCs with macrophages. T lymphocytes were cultured directly with PBMSCs. Flow cytometry and immunochemistry were conducted for identifying the phenotypes. Immunomagnetic microspheres, ELISA and RT-qPCR were used to detect the expressions of relevant molecules or mRNAs. Results After coculturing PBMSCs with M0, the anti-inflammatory IL-10 was increased whereas the proinflammatory TNF-α decreased; the expression of CD11b, CD68, CD206, Arg-1, IL-10 and CCL-22 was up-regulated whereas IL-1β down-regulated. The expression of TGF-β, RORγt, Foxp3 and IL-10 was increased in the cocultured lymphocytes whereas IL-17 and IL-6 decreased; the ratio of CD4+IL-17+ Th17/CD25+Foxp3+ Treg was reduced. Conclusion The findings demonstrated that PBMSCs promoted the anti-inflammatory features of macrophages and the Th17/Treg system. PBMSCs are able to inhibit inflammation associated with these two immune cell systems, and thus provide insight into how PBMSCs achieve their immunomodulatory ability. Anti-inflammatory effect of peripheral blood-derived mesenchymal stem cells. Co-culture promotes the polarization of M2 macrophages. Co-culture alters the balance of Th17/Tregs.
Collapse
|
19
|
Zhang B, Zhang J, Zhu D, Kong Y. Mesenchymal stem cells rejuvenate cardiac muscle after ischemic injury. Aging (Albany NY) 2020; 11:63-72. [PMID: 30613028 PMCID: PMC6339792 DOI: 10.18632/aging.101718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that transplantation of mesenchymal stem cells (MSCs) enhances myocardial regeneration after myocardial infarction (MI), primarily resulting from the production and release of trophic growth factors and cytokines by MSCs. However, effects of MSCs or a subtype of MSCs on the ageing of injured cardiac muscle cells (CMCs) are limitedly known. Here, we addressed this question. CD146+ MSCs were isolated from total MSCs (tMSCs), and their effects on injured CMCs were assessed. In vivo, transplantation of isogenic CD146+ MSCs into MI-mice increased the proliferation of CMCs and reduced apoptosis of CMCs in a significantly higher degree than transplantation of tMSCs, resulting in significant improvement of the heart function. In vitro, CMCs were co-cultured under hypoxia condition with CD146+MSCs or tMSCs. We found that CD146+MSCs increased the proliferation of CMCs and reduced apoptosis of CMCs in a significantly higher degree, compared to tMSCs, likely resulting from reduction of aging-associated cellular reactive oxygen species in CMCs. Together, these data suggest that MSCs rejuvenate CMCs after ischemic injury and a subtype of MSCs, CD146+ MSCs, appears to have higher potential in coordinating this process.
Collapse
Affiliation(s)
- Busheng Zhang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing Zhang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Zhu
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ye Kong
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
20
|
Wu K, Huang D, Zhu C, Kasanga EA, Zhang Y, Yu E, Zhang H, Ni Z, Ye S, Zhang C, Hu J, Zhuge Q, Yang J. NT3 P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther 2019; 10:311. [PMID: 31651375 PMCID: PMC6814101 DOI: 10.1186/s13287-019-1428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The attainment of extensive neurological function recovery remains the key challenge for the treatment of traumatic brain injury (TBI). Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been shown to improve neurological function recovery after TBI. However, the survival of BMSCs after transplantation in early-stage TBI is limited, and much is unknown about the mechanisms mediating this neurological function recovery. Secretion of neurotrophic factors, including neurotrophin 3 (NT3), is one of the critical factors mediating BMSC neurological function recovery. Gene mutation of NT3 (NT3P75-2) has been shown to enhance the biological function of NT3 via the reduction of the activation of the P75 signal pathway. Thus, we investigated whether NT3P75-2 gene-modified BMSCs could enhance the survival of BMSCs and further improve neurological function recovery after TBI. METHODS The ability of NT3P75-2 induction to improve cell growth rate of NSC-34 and PC12 cells in vitro was first determined. BMSCs were then infected with three different lentiviruses (green fluorescent protein (GFP), GFP-NT3, or GFP-NT3P75-2), which stably express GFP, GFP-NT3, or GFP-NT3P75-2. At 24 h post-TBI induction in mice, GFP-labeled BMSCs were locally transplanted into the lesion site. Immunofluorescence and histopathology were performed at 1, 3, and/or 7 days after transplantation to evaluate the survival of BMSCs as well as the lesion volume. A modified neurological severity scoring system and the rotarod test were chosen to evaluate the functional recovery of the mice. Cell growth rate, glial activation, and signaling pathway analyses were performed to determine the potential mechanisms of NT3P75-2 in functional recovery after TBI. RESULTS Overall, NT3P75-2 improved cell growth rate of NSC-34 and PC12 cells in vitro. In addition, NT3P75-2 significantly improved the survival of transplanted BMSCs and neurological function recovery after TBI. Overexpression of NT3P75-2 led to a significant reduction in the activation of glial cells, brain water content, and brain lesion volume after TBI. This was associated with a reduced activation of the p75 neurotrophin receptor (P75NTR) and the c-Jun N-terminal kinase (JNK) signal pathway due to the low affinity of NT3P75-2 for the receptor. CONCLUSIONS Taken together, our results demonstrate that administration of NT3P75-2 gene-modified BMSCs dramatically improves neurological function recovery after TBI by increasing the survival of BMSCs and ameliorating the inflammatory environment, providing a new promising treatment strategy for TBI.
Collapse
Affiliation(s)
- Ke Wu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dongdong Huang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Can Zhu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Ying Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Enxing Yu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hengli Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhihui Ni
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sheng Ye
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunli Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiangnan Hu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Qichuan Zhuge
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
21
|
Chrostek MR, Fellows EG, Guo WL, Swanson WJ, Crane AT, Cheeran MC, Low WC, Grande AW. Efficacy of Cell-Based Therapies for Traumatic Brain Injuries. Brain Sci 2019; 9:E270. [PMID: 31658732 PMCID: PMC6826445 DOI: 10.3390/brainsci9100270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injuries (TBIs) are a leading cause of death and disability. Additionally, growing evidence suggests a link between TBI-induced neuroinflammation and neurodegenerative disorders. Treatments for TBI patients are limited, largely focused on rehabilitation therapy, and ultimately, fail to provide long-term neuroprotective or neurorestorative benefits. Because of the prevalence of TBI and lack of viable treatments, new therapies are needed which can promote neurological recovery. Cell-based treatments are a promising avenue because of their potential to provide multiple therapeutic benefits. Cell-based therapies can promote neuroprotection via modulation of inflammation and promote neurorestoration via induction of angiogenesis and neurogenesis. Neural stem/progenitor cell transplantations have been investigated in preclinical TBI models for their ability to directly contribute to neuroregeneration, form neural-like cells, and improve recovery. Mesenchymal stem cells (MSCs) have been investigated in clinical trials through multiple different routes of administration. Intravenous administration of MSCs appears most promising, demonstrating a robust safety profile, correlation with neurological improvements, and reductions in systemic inflammation following TBI. While still preliminary, evidence suggests cell-based therapies may become a viable treatment for TBI based on their ability to promote neuroregeneration and reduce inflammation.
Collapse
Affiliation(s)
- Matthew R Chrostek
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Emily G Fellows
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Winston L Guo
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - William J Swanson
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Andrew T Crane
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Maxim C Cheeran
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA.
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Hu Y, Chen W, Wu L, Jiang L, Qin H, Tang N. Hypoxic preconditioning improves the survival and neural effects of transplanted mesenchymal stem cells via CXCL12/CXCR4 signalling in a rat model of cerebral infarction. Cell Biochem Funct 2019; 37:504-515. [PMID: 31368195 DOI: 10.1002/cbf.3423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 11/11/2022]
Abstract
The treatment of neural deficiency after cerebral infarction is challenging, with limited therapeutic options. The transplantation of mesenchymal stem cells (MSCs) to the ischemic penumbra is a potential therapeutic approach. In the present study, a cerebral infarction model was generated by performing middle cerebral artery occlusion (MCAO) in SD rats. The expression of CXCR4 increased, and the number of MSCs migrating to the peri-infarct area was higher in rats transplanted with preconditioned MSCs than in rats transplanted with untreated MSCs. The rate of apoptosis, as evaluated by TUNEL staining and immunoblotting assays, was reduced in rats receiving preconditioned MSCs. A significant amelioration of neural regeneration and improved neurological function were observed in rats injected with preconditioned MSCs compared with those injected with untreated MSCs. However, the application of an siRNA targeting CXCL12 significantly inhibited the protective role of preconditioned MSCs against apoptosis and promoted the migration of MSCs to the ischemic area, leading to impaired neuronal regeneration and limited recovery of neuronal function. Hypoxic preconditioning of MSCs prior to transplantation suppressed apoptosis and increased their migration abilities, leading to the promotion of neuronal regeneration and improvement in neural function after transplantation. This preconditioning strategy may be considered as a potential approach for the modification of MSCs prior to cell transplantation therapy in patients with cerebral infarction. SIGNIFICANCE OF THE STUDY: We found that hypoxic preconditioning of MSCs improved their ability to promote neuronal regeneration and the recovery of neuronal function. Moreover, we showed that CXCR4 inhibited apoptosis, improved cell homing, and promoted neuronal differentiation, without influencing angiogenesis. Our study provides a relatively safe preconditioning method for potential use for cell transplantation therapy in ischemic cerebral infarction. The results presented here will facilitate the development of novel strategies and techniques to improve the tolerance and migration ability of transplanted cells for the treatment of cerebral infarction sequelae.
Collapse
Affiliation(s)
- Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| | - Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| | - Lin Wu
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
- Scientific Laboratorial Centre Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lingfei Jiang
- Graduate College of Guangxi University of traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongling Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nong Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| |
Collapse
|
23
|
Lee HF, Lin JS, Chang CF. Acute Kahweol Treatment Attenuates Traumatic Brain Injury Neuroinflammation and Functional Deficits. Nutrients 2019; 11:nu11102301. [PMID: 31569604 PMCID: PMC6835740 DOI: 10.3390/nu11102301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions worldwide with devastating long-term effects on health and cognition. Emerging data suggest that targeting the immune response may offer promising strategies to alleviate TBI outcomes; kahweol, an anti-inflammatory diterpene that remains in unfiltered coffee, has been shown to be beneficial in neuronal recovery. Here, we examined whether kahweol could alleviate brain trauma-induced injury in a mouse model of TBI and its underlying mechanisms. TBI was induced by controlled cortical impact (CCI) and various doses of kahweol were intraperitoneally administered following injury. Contusion volume, brain edema, neurobehavioral deficits, and protein expression and activity were evaluated in both short-term and long-term recovery. We found that kahweol treatments significantly reduced secondary brain injury and improved neurobehavioral outcomes in TBI mice. These changes were accompanied by the attenuation of proinflammatory cytokine secretion, decreased microglia/macrophage activation, and reduction of neutrophil and leukocyte infiltration. In addition, continuous kahweol treatment further improved short-term TBI outcomes compared to single-dosage. Collectively, our data showed that kahweol protects against TBI by reducing immune responses and may serve as a potential therapeutic intervention for TBI patients.
Collapse
Affiliation(s)
- Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
| | - Jhih Syuan Lin
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Che-Feng Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
24
|
Interleukin-1 in cerebrospinal fluid for evaluating the neurological outcome in traumatic brain injury. Biosci Rep 2019; 39:BSR20181966. [PMID: 30898979 PMCID: PMC6465413 DOI: 10.1042/bsr20181966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Severe traumatic brain injury (TBI) is associated with unfavorable outcomes secondary to injury from activation of the inflammatory cascade, the release of excitotoxic neurotransmitters, and changes in the reactivity of cerebral vessels, causing ischemia. Inflammation induced by TBI is complex, individual-specific, and associated with morbidity and mortality. The aim of the present study was to discover the differentially expressed cerebrospinal fluid (CSF) proteins and identify which can improve the clinical outcomes in TBI patients. Methods In the present study, we reported 145 patients with TBI and found the change in patients’ leukocytes in serum and interleukin-1 (IL-1) in CSF, which strongly correlated with the neurological outcome. In terms of results of leukocytes in blood and IL-1 in CSF, we retained the patient’s CSF specimens and conducted a proteomic analysis. Results A total of 119 differentially expressed proteins were detected between samples of TBI and the normal, which were commonly expressed in all samples, indicating the differentially expressed proteins. When the patients’ Glasgow outcome score (GOS) improved, IL-1 was down-regulated, and when the patients’ GCS score deteriorated, IL-1 was up-regulated accompanied with the progression in TBI. Conclusion The differentially expressed proteins in CSF may be the novel therapeutic targets for TBI treatment. The leukocytes in blood samples and the IL-1 in CSF may be two important indicators for predicting the prognosis of TBI patients.
Collapse
|
25
|
Hu J, Chen L, Huang X, Wu K, Ding S, Wang W, Wang B, Smith C, Ren C, Ni H, ZhuGe Q, Yang J. Calpain inhibitor MDL28170 improves the transplantation-mediated therapeutic effect of bone marrow-derived mesenchymal stem cells following traumatic brain injury. Stem Cell Res Ther 2019; 10:96. [PMID: 30876457 PMCID: PMC6420775 DOI: 10.1186/s13287-019-1210-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/16/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Background Studies have shown that transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) protects against brain damage. However, the low survival number of transplanted BMSCs remains a pertinent challenge and can be attributed to the unfavorable microenvironment of the injured brain. It is well known that calpain activation plays a critical role in traumatic brain injury (TBI)-mediated inflammation and cell death; previous studies showed that inhibiting calpain activation is neuroprotective after TBI. Thus, we investigated whether preconditioning with the calpain inhibitor, MDL28170, could enhance the survival of BMSCs transplanted at 24 h post TBI to improve neurological function. Methods TBI rat model was induced by the weight-drop method, using the gravitational forces of a free falling weight to produce a focal brain injury. MDL28170 was injected intracranially at the lesion site at 30 min post TBI, and the secretion levels of neuroinflammatory factors were assessed 24 h later. BMSCs labeled with green fluorescent protein (GFP) were locally administrated into the lesion site of TBI rat brains at 24 h post TBI. Immunofluorescence and histopathology were performed to evaluate the BMSC survival and the TBI lesion volume. Modified neurological severity scores were chosen to evaluate the functional recovery. The potential mechanisms by which MDL28170 is involved in the regulation of inflammation signaling pathway and cell apoptosis were determined by western blot and immunofluorescence staining. Results Overall, we found that a single dose of MDL28170 at acute phase of TBI improved the microenvironment by inhibiting the inflammation, facilitated the survival of grafted GFP-BMSCs, and reduced the grafted cell apoptosis, leading to the reduction of lesion cavity. Furthermore, a significant neurological function improvement was observed when BMSCs were transplanted into a MDL28170-preconditioned TBI brains compared with the one without MDL28170-precondition group. Conclusions Taken together, our data suggest that MDL28170 improves BMSC transplantation microenvironment and enhances the neurological function restoration after TBI via increased survival rate of BMSCs. We suggest that the calpain inhibitor, MDL28170, could be pursued as a new combination therapeutic strategy to advance the effects of transplanted BMSCs in cell-based regenerative medicine. Electronic supplementary material The online version of this article (10.1186/s13287-019-1210-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangnan Hu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Lefu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xujun Huang
- Department of Intensive Care Unit (ICU), Hengdian Wenrong Hospital, Jinhua, 322100, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weikan Wang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Brian Wang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Charity Smith
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
26
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Pan D, Chang X, Xu M, Zhang M, Zhang S, Wang Y, Luo X, Xu J, Yang X, Sun X. UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush. J Chem Neuroanat 2019; 96:134-139. [PMID: 30639447 DOI: 10.1016/j.jchemneu.2019.01.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Traumatic optic neuropathy or glaucoma lead to retinal ganglion cells loss and cause blindness, and there is no effective therapy strategy by far. Mesenchymal cells from the Wharton's jelly of the umbilical cord (umbilical cord mesenchymal stem cells, UMSCs) and UMSC-derived exosomes (UMSC-Exos) are promising candidates for allogeneic therapy in regenerative medicine, but their effort on optic nerve injury and the underlying mechanism remains undefined. In the present study, we investigated the functions of UMSC-Exos in a rat optic nerve crush (ONC) model. After three times of treatments with an interval of one week, we found that the UMSC-Exos significantly promoted Brn3a+ retinal ganglion cells (RGCs) survival in retinal ganglion cell layer compared with PBS controls. UMSC-Exos also significantly promoted GFAP+ glia cells activation in retina and optic nerve. However, no increase of GAP43+ axon counts in the optic nerve was found after UMSC-Exos treatment. Thus, our results demonstrate that UMSC-derived exosomes may play a role in neuroprotection by promoting the RGCs survival and glia cells activation but not the axon regeneration.
Collapse
Affiliation(s)
- Dongyan Pan
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University School of Medicine, Shanghai, China; Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China; Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xin Chang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Mengqiao Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mingke Zhang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China
| | - Shoumei Zhang
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China.
| | - Xiangqun Yang
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
28
|
Duru LN, Quan Z, Qazi TJ, Qing H. Stem cells technology: a powerful tool behind new brain treatments. Drug Deliv Transl Res 2018; 8:1564-1591. [PMID: 29916013 DOI: 10.1007/s13346-018-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Lucienne N Duru
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Talal Jamil Qazi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China. .,Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
29
|
Trattnig C, Üçal M, Tam-Amersdorfer C, Bucko A, Zefferer U, Grünbacher G, Absenger-Novak M, Öhlinger KA, Kraitsy K, Hamberger D, Schaefer U, Patz S. MicroRNA-451a overexpression induces accelerated neuronal differentiation of Ntera2/D1 cells and ablation affects neurogenesis in microRNA-451a-/- mice. PLoS One 2018; 13:e0207575. [PMID: 30462722 PMCID: PMC6248975 DOI: 10.1371/journal.pone.0207575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/02/2018] [Indexed: 12/22/2022] Open
Abstract
MiR-451a is best known for its role in erythropoiesis and for its tumour suppressor features. Here we show a role for miR-451a in neuronal differentiation through analysis of endogenous and ectopically expressed or silenced miR-451a in Ntera2/D1 cells during neuronal differentiation. Furthermore, we compared neuronal differentiation in the dentate gyrus of hippocampus of miR-451a-/- and wild type mice. MiR-451a overexpression in lentiviral transduced Ntera2/D1 cells was associated with a significant shifting of mRNA expression of the developmental markers Nestin, βIII Tubulin, NF200, DCX and MAP2 to earlier developmental time points, compared to control vector transduced cells. In line with this, accelerated neuronal network formation in AB.G.miR-451a transduced cells, as well as an increase in neurite outgrowth both in number and length was observed. MiR-451a targets genes MIF, AKT1, CAB39, YWHAZ, RAB14, TSC1, OSR1, POU3F2, TNS4, PSMB8, CXCL16, CDKN2D and IL6R were, moreover, either constantly downregulated or exhibited shifted expression profiles in AB.G.miR-451a transduced cells. Lentiviral knockdown of endogenous miR-451a expression in Ntera2/D1 cells resulted in decelerated differentiation. Endogenous miR-451a expression was upregulated during development in the hippocampus of wildtype mice. In situ hybridization revealed intensively stained single cells in the subgranular zone and the hilus of the dentate gyrus of wild type mice, while genetic ablation of miR-451a was observed to promote an imbalance between proliferation and neuronal differentiation in neurogenic brain regions, suggested by Ki67 and DCX staining. Taken together, these results provide strong support for a role of miR-451a in neuronal maturation processes in vitro and in vivo.
Collapse
Affiliation(s)
- Christa Trattnig
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | - Angela Bucko
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Gerda Grünbacher
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | | | | | - Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Daniel Hamberger
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
- * E-mail:
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University, Graz, Austria
| |
Collapse
|
30
|
Gao W, Ju YN, Chen JF, Zhou Q, Song CY, Wang YZ, Cao HL, Yang WC. Adrenomedullin Reduces Secondary Injury and Improves Outcome in Rats with Fluid Percussion Brain Injury. World Neurosurg 2018; 119:e765-e773. [DOI: 10.1016/j.wneu.2018.07.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
|
31
|
Nasser M, Ballout N, Mantash S, Bejjani F, Najdi F, Ramadan N, Soueid J, Zibara K, Kobeissy F. Transplantation of Embryonic Neural Stem Cells and Differentiated Cells in a Controlled Cortical Impact (CCI) Model of Adult Mouse Somatosensory Cortex. Front Neurol 2018; 9:895. [PMID: 30405520 PMCID: PMC6208009 DOI: 10.3389/fneur.2018.00895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death worldwide. Depending on the severity of the injury, TBI can reflect a broad range of consequences such as speech impairment, memory disturbances, and premature death. In this study, embryonic neural stem cells (ENSC) were isolated from E14 mouse embryos and cultured to produce neurospheres which were induced to generate differentiated cells (DC). As a cell replacement treatment option, we aimed to transplant ENSC or DC into the adult injured C57BL/6 mouse cortex controlled cortical impact (CCI) model, 7 days post-trauma, in comparison to saline injection (control). The effect of grafted cells on neuroinflammation and neurogenesis was investigated at 1 and 4 weeks post-transplantation. Results showed that microglia were activated following mild CCI, but not enhanced after engraftment of ENSC or DC. Indeed, ipsilateral lesioned somatosensory area expressed high levels of Iba-1+ microglia within the different groups after 1 and 4 weeks. On the other hand, treatment with ENSC or DC demonstrated a significant reduction in astrogliosis. The levels of GFAP expressing astrocytes started decreasing early (1 week) in the ENSC group and then were similarly low at 4 weeks in both ENSC and DC. Moreover, neurogenesis was significantly enhanced in ENSC and DC groups. Indeed, a significant increase in the number of DCX expressing progenitor cells was observed at 1 week in the ENSC group, and in DC and ENSC groups at 4 weeks. Furthermore, the number of mature neuronal cells (NeuN+) significantly increased in DC group at 4 weeks whereas they decreased in ENSC group at 1 week. Therefore, injection of ENSC or DC post-CCI caused decreased astrogliosis and suggested an increased neurogenesis via inducing neural progenitor proliferation and expression rather than neuronal maturation. Thus, ENSC may play a role in replacing lost cells and brain repair following TBI by improving neurogenesis and reducing neuroinflammation, reflecting an optimal environment for transplanted and newly born cells.
Collapse
Affiliation(s)
- Mohammad Nasser
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Sarah Mantash
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Farah Najdi
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Naify Ramadan
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
32
|
Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H. Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer's Disease. Neurochem Res 2018; 43:2165-2177. [PMID: 30259257 DOI: 10.1007/s11064-018-2641-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by excessive accumulation of the amyloid-β peptide (Aβ) in the brain, which has been considered to mediate the neuroinflammation process. Microglial activation is the main component of neuroimmunoregulation. In recent years, exosomes isolated from human umbilical cord mesenchymal stem cells (hucMSC-exosomes) have been demonstrated to mimic the therapeutic effects of hucMSCs in many inflammation-related diseases. In this study, exosomes from the supernatant of hucMSCs were injected into AD mouse models. We observed that hucMSC-exosomes injection could repair cognitive disfunctions and help to clear Aβ deposition in these mice. Moreover, we found that hucMSC-exosomes injection could modulate the activation of microglia in brains of the mice to alleviated neuroinflammation. The levels of pro-inflammatory cytokines in peripheral blood and brains of mice were increased and the levels of anti-inflammatory cytokines were decreased. We also treated BV2 cells with hucMSC-exosomes in culture medium. HucMSC-exosomes also had inflammatory regulating effects to alternatively activate microglia and modulate the levels of inflammatory cytokines in vitro.
Collapse
Affiliation(s)
- Mao Ding
- Medicine School, Shandong University, Jinan, 250012, China
| | - Yang Shen
- Medicine School, Shandong University, Jinan, 250012, China
| | - Ping Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Zhaohong Xie
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Shunliang Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - ZhengYu Zhu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yongtao Lyu
- Department of Neurology Medicine, Shandong Provincial Third Hospital, Jinan, 250031, China
| | - Dewei Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Linlin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - JianZhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| | - Hui Yang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
33
|
Nichols JE, La Francesca S, Niles JA, Vega SP, Argueta LB, Frank L, Christiani DC, Pyles RB, Himes BE, Zhang R, Li S, Sakamoto J, Rhudy J, Hendricks G, Begarani F, Liu X, Patrikeev I, Pal R, Usheva E, Vargas G, Miller A, Woodson L, Wacher A, Grimaldo M, Weaver D, Mlcak R, Cortiella J. Production and transplantation of bioengineered lung into a large-animal model. Sci Transl Med 2018; 10:10/452/eaao3926. [DOI: 10.1126/scitranslmed.aao3926] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
Abstract
The inability to produce perfusable microvasculature networks capable of supporting tissue survival and of withstanding physiological pressures without leakage is a fundamental problem facing the field of tissue engineering. Microvasculature is critically important for production of bioengineered lung (BEL), which requires systemic circulation to support tissue survival and coordination of circulatory and respiratory systems to ensure proper gas exchange. To advance our understanding of vascularization after bioengineered organ transplantation, we produced and transplanted BEL without creation of a pulmonary artery anastomosis in a porcine model. A single pneumonectomy, performed 1 month before BEL implantation, provided the source of autologous cells used to bioengineer the organ on an acellular lung scaffold. During 30 days of bioreactor culture, we facilitated systemic vessel development using growth factor–loaded microparticles. We evaluated recipient survival, autograft (BEL) vascular and parenchymal tissue development, graft rejection, and microbiome reestablishment in autografted animals 10 hours, 2 weeks, 1 month, and 2 months after transplant. BEL became well vascularized as early as 2 weeks after transplant, and formation of alveolar tissue was observed in all animals (n = 4). There was no indication of transplant rejection. BEL continued to develop after transplant and did not require addition of exogenous growth factors to drive cell proliferation or lung and vascular tissue development. The sterile BEL was seeded and colonized by the bacterial community of the native lung.
Collapse
Affiliation(s)
- Joan E. Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | | | - Jean A. Niles
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Stephanie P. Vega
- Department of Microbiology and Immunology, UTMB, Galveston, TX 77555, USA
| | | | - Luba Frank
- Department of Radiology, UTMB, Galveston, TX 77555, USA
| | - David C. Christiani
- Pulmonary Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Richard B. Pyles
- Galveston National Laboratory, Assay Development Core, UTMB, Galveston, TX 77555, USA
| | - Blanca E. Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruyang Zhang
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Su Li
- Environmental, Occupational Medicine, Epidemiology Department, TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jason Sakamoto
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jessica Rhudy
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Greg Hendricks
- Radiology Division of Cell Biology, University of Massachusetts Medical School, Worchester, MA 01605, USA
| | - Filippo Begarani
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Xuewu Liu
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Igor Patrikeev
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Rahul Pal
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Emiliya Usheva
- University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Grace Vargas
- Center for Biomedical Engineering, UTMB, Galveston, TX 77555, USA
| | - Aaron Miller
- Galveston National Laboratory, Assay Development Core, UTMB, Galveston, TX 77555, USA
| | - Lee Woodson
- Department of Anesthesiology, UTMB, Galveston, TX 77555, USA
| | - Adam Wacher
- Department of Anesthesiology, UTMB, Galveston, TX 77555, USA
| | - Maria Grimaldo
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Daniil Weaver
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Ron Mlcak
- Shriners Hospital for Children, Galveston, TX 77550, USA
| | | |
Collapse
|
34
|
Dewan S, Schimmel S, Borlongan CV. Treating childhood traumatic brain injury with autologous stem cell therapy. Expert Opin Biol Ther 2018; 18:515-524. [PMID: 29421958 PMCID: PMC6086119 DOI: 10.1080/14712598.2018.1439473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Neonatal traumatic brain injury (TBI) is a significant cause of developmental disorders. Autologous stem cell therapy may enhance neonatal brain plasticity towards repair of the injured neonatal brain. AREAS COVERED The endogenous neonatal anti-inflammatory response can be enhanced through the delivery of anti-inflammatory agents. Stem cell therapy stands as a robust approach for sequestering the inflammation-induced cell death in the injured brain. Here, we discuss the use of umbilical cord blood cells and bone marrow stromal cells for acute and chronic treatment of experimental neonatal TBI. Autologous stem cell transplantation may dampen neuroinflammation. Clinical translation of this stem cell therapy will require identifying the therapeutic window post-injury and harvesting ample supply of transplantable autologous stem cells. Stem cell banking of cryopreserved cells may allow readily available transplantable cells and circumvent the unpredictable nature of neonatal TBI. Harnessing the anti-inflammatory properties of stem cells is key in combating the progressive neurodegeneration after the initial injury. EXPERT OPINION Combination treatments, such as with hypothermia, may enhance the therapeutic effects of stem cells. Stem cell therapy has immense potential as a stand-alone or adjunctive therapy for treating neuroinflammation associated with neonatal TBI acutely and for preventing further progression of the injury.
Collapse
Affiliation(s)
- Shyam Dewan
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | - Samantha Schimmel
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosugery and Brain Repair, University of South Florida Morsani College of Medicine. 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| |
Collapse
|
35
|
El Ayachi I, Zhang J, Zou XY, Li D, Yu Z, Wei W, O’Connell KM, Huang GTJ. Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods. J Tissue Eng Regen Med 2018; 12:e1836-e1851. [PMID: 29139614 PMCID: PMC6482049 DOI: 10.1002/term.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/02/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) give rise to neural stem/progenitor cells, serving as a good source for neural regeneration. Here, we established transgene-free (TF) iPSCs from dental stem cells (DSCs) and determined their capacity to differentiate into functional neurons in vitro. Generated TF iPSCs from stem cells of apical papilla and dental pulp stem cells underwent two methods-embryoid body-mediated and direct induction, to guide TF-DSC iPSCs along with H9 or H9 Syn-GFP (human embryonic stem cells) into functional neurons in vitro. Using the embryoid body-mediated method, early stage neural markers PAX6, SOX1, and nestin were detected by immunocytofluorescence or reverse transcription-real time polymerase chain reaction (RT-qPCR). At late stage of neural induction measured at Weeks 7 and 9, the expression levels of neuron-specific markers Nav1.6, Kv1.4, Kv4.2, synapsin, SNAP25, PSD95, GAD67, GAP43, and NSE varied between stem cells of apical papilla iPSCs and H9. For direct induction method, iPSCs were directly induced into neural stem/progenitor cells and guided to become neuron-like cells. The direct method, while simpler, showed cell detachment and death during the differentiation process. At early stage, PAX6, SOX1 and nestin were detected. At late stage of differentiation, all five genes tested, nestin, βIII-tubulin, neurofilament medium chain, GFAP, and Nav, were positive in many cells in cultures. Both differentiation methods led to neuron-like cells in cultures exhibiting sodium and potassium currents, action potential, or spontaneous excitatory postsynaptic potential. Thus, TF-DSC iPSCs are capable of undergoing guided neurogenic differentiation into functional neurons in vitro, thereby may serve as a cell source for neural regeneration.
Collapse
Affiliation(s)
- Ikbale El Ayachi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Zhang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xiao-Ying Zou
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
- Department of Cariology, Endodontology and Operative Dentistry, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
| | - Dong Li
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Wei
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Kristen M.S. O’Connell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - George T.-J. Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. RECENT FINDINGS Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
37
|
Eve DJ, Sanberg PR, Buzanska L, Sarnowska A, Domanska-Janik K. Human Somatic Stem Cell Neural Differentiation Potential. Results Probl Cell Differ 2018; 66:21-87. [DOI: 10.1007/978-3-319-93485-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
38
|
Fu Q, Liu Y, Liu X, Zhang Q, Chen L, Peng J, Ao J, Li Y, Wang S, Song G, Yu L, Liu J, Zhang T. Engrafted peripheral blood-derived mesenchymal stem cells promote locomotive recovery in adult rats after spinal cord injury. Am J Transl Res 2017; 9:3950-3966. [PMID: 28979672 PMCID: PMC5622241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Spinal cord injury (SCI) is a severe trauma of central nervous system (CNS). Numerous stem cells have been applied for SCI therapy. Peripheral blood-derived mesenchymal stem cells (PBMSCs) have captured researchers' attention by virtue of pluripotency and effectiveness. However, little work has been performed on whether PBMSCs play roles and what role, if any, in the lesion microenvironment. Through the investigation of the differentiation, neuroprotection and immunoloregulation of engrafted PBMSCs, we found that the expression of glial fibrillary acidic protein (GFAP) was inhibited. Meanwhile, myelin basic protein (MBP), neurofilament protein-200 (NF-200) and microtubule associated protein-2 (MAP-2) were promoted after PBMSC transplantation (PBMSCT) by immunohistochemistry. Though engrafted PKH26+PBMSCs could survive in vivo for at least 8 w, they could not respectively express GFAP, MBP and neuronal specific neucleoprotein (NeuN) by immunofluorescence. Additionally, Flow cytometry demonstrated that the number of CD4+IL17+Th17 cells decreased while CD4+CD25+Foxp3+Treg ones increased after PBMSCT (P < 0.01). Immunohistochemistry and Elisa both showed a lower expression of IL-6 and IL-17a while a higher expression of TGF-β after PBMSCT (P < 0.05). RT-PCR indicated that Th17-relevant genes including RORγT, IL-6 and IL-21 were inhibited and resulted in the decrease of IL-23a and IL-22 secretion (P < 0.05); Treg-relevant genes including FoxP3 and TGF-β and the secretion of IL-10 were improved (P < 0.05). Accordingly, we concluded that the PBMSCT-relevant therapy took effect not through the differentiation of PBMSCs into CNS cells, but through regulating Th17/Treg-relevant gene expression, inhibiting Th17-relevant gene expression and meanwhile promoting Treg-relevant gene expression, and eventually resulted in promotion of the functional recovery of SCI rats.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu, Sichuan, China
| | - Yi Liu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Xiu Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical CollegeZunyi, Guizhou, China
| | - Long Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Experimental Centre, Affiliated Dongfeng General Hospital of Hubei University of MedicineShiyan, Hubei, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Yuwan Li
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Shengmin Wang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Gongyu Song
- Department of Human Anatomy, Zunyi Medical CollegeZunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Jinwei Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| |
Collapse
|
39
|
Jackson ML, Srivastava AK, Cox CS. Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. J Surg Res 2017. [PMID: 28624058 DOI: 10.1016/j.jss.2017.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND No treatment is available to reverse injury associated with traumatic brain injury (TBI). Progenitor cell therapies show promise in both preclinical and clinical studies. We conducted a meta-analysis of preclinical studies using progenitor cells to treat TBI. METHODS EMBASE, MEDLINE, Cochrane Review, Biosis, and Google Scholar were searched for articles using prespecified search strategies. Studies meeting inclusion criteria underwent data extraction. Analysis was performed using Review Manager 5.3 according to a fixed-effects model, and all studies underwent quality scoring. RESULTS Of 430 abstracts identified, 38 met inclusion criteria and underwent analysis. Average quality score was 4.32 of 8 possible points. No study achieved a perfect score. Lesion volume (LV) and neurologic severity score (NSS) outcomes favored cell treatment with standard mean difference (SMD) of 0.86 (95% CI: 0.64-1.09) and 1.36 (95% CI: 1.11-1.60), respectively. Rotarod and Morris water maze outcomes also favored treatment with improvements in SMD of 0.34 (95% CI: 0.02-0.65) and 0.46 (95% CI: 0.17-74), respectively. Although LV and NSS were robust to publication bias assessments, rotarod and Morris water maze tests were not. Heterogeneity (I2) ranged from 74%-85% among the analyses, indicating a high amount of heterogeneity among studies. Precision as a function of quality score showed a statistically significant increase in the size of the confidence interval as quality improved. CONCLUSIONS Our meta-analysis study reveals an overall positive effect of progenitor cell therapies on LV and NSS with a trend toward improved motor function and spatial learning in different TBI animal models.
Collapse
Affiliation(s)
- Margaret L Jackson
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas.
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| |
Collapse
|
40
|
Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA. Isolation of Mesenchymal Stromal Cells From Peripheral Blood of ST Elevation Myocardial Infarction Patients. Artif Organs 2017; 41:654-666. [DOI: 10.1111/aor.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Rachel Smith
- Swansea University Medical School, Institute of Life Science
| | | | - Omar Aldalati
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Alex J. Chase
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Gareth Morgan
- Swansea University Medical School, Institute of Life Science
| | | |
Collapse
|
41
|
Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury. Front Cell Neurosci 2017; 11:55. [PMID: 28293177 PMCID: PMC5329010 DOI: 10.3389/fncel.2017.00055] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Exosomes are endosomal origin membrane-enclosed small vesicles (30-100 nm) that contain various molecular constituents including proteins, lipids, mRNAs and microRNAs. Accumulating studies demonstrated that exosomes initiated and regulated neuroinflammation, modified neurogenic niches and neurogenesis, and were even of potential significance in treating some neurological diseases. These tiny extracellular vesicles (EVs) can derive from some kinds of multipotent cells such as mesenchymal stem cells (MSCs) that have been confirmed to be a potentially promising therapy for traumatic brain injury (TBI) in experimental models and in preclinical studies. Nevertheless, subsequent studies demonstrated that the predominant mechanisms of MSCs's contributions to brain tissue repairment and functional recovery after TBI were not the cell replacement effects but likely the secretion-based paracrine effects produced by EVs such as MSCs-derived exosomes. These nanosized exosomes derived from MSCs cannot proliferate, are easier to preserve and transfer and have lower immunogenicity, compared with transplanted exogenous MSCs. These reports revealed that MSCs-derived exosomes might promise to be a new and valuable therapeutic strategy for TBI than MSCs themselves. However, the concrete mechanisms involved in the positive effects induced by MSCs-derived exosomes in TBI are still ambiguous. In this review, we intend to explore the potential effects of MSCs-derived exosomes on neuroinflammation and neurogenesis in TBI and, especially, on therapy.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 422nd HospitalZhanjiang, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University)Changsha, China
| | - Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Jun He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
42
|
Hsuan YCY, Lin CH, Chang CP, Lin MT. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 2016; 6:e00526. [PMID: 27781140 PMCID: PMC5064338 DOI: 10.1002/brb3.526] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation has been reported to improve neurological function following neural injury. Many physiological and molecular mechanisms involving MSC therapy-related neuroprotection have been identified. METHODS A review is presented of articles that pertain to MSC therapy and diverse brain injuries including stroke, neural trauma, and heat stroke, which were identified using an electronic search (e.g., PubMed), emphasize mechanisms of MSC therapy-related neuroprotection. We aim to discuss neuroprotective mechanisms that underlie the beneficial effects of MSCs in treating stroke, neural trauma, and heatstroke. RESULTS MSC therapy is promising as a means of augmenting brain repair. Cell incorporation into the injured tissue is not a prerequisite for the beneficial effects exerted by MSCs. Paracrine signaling is believed to be the most important mediator of MSC therapy in brain injury. The multiple mechanisms of action of MSCs include enhanced angiogenesis and neurogenesis, immunomodulation, and anti-inflammatory effects. Microglia are the first source of the inflammatory cascade during brain injury. Cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, are significantly produced by microglia in the brain after experimental brain injury. The proinflammatory M1 phenotype of microglia is associated with tissue destruction, whereas the anti-inflammatory M2 phenotype of microglia facilitates repair and regeneration. MSC therapy may improve outcomes of ischemic stroke, neural trauma, and heatstroke by inhibiting the activity of M1 phenotype of microglia but augmenting the activity of M2 phenotype of microglia. CONCLUSION This review offers a testable platform for targeting microglial-mediated cytokines in clinical trials based upon the rational design of MSC therapy in the future. MSCs that are derived from the placenta provide a great choice for stem cell therapy. Although targeting the microglial activation is an important approach to reduce the burden of the injury, it is not the only one. This review focuses on this specific aspect.
Collapse
Affiliation(s)
| | | | - Ching-Ping Chang
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW There is an urgent need for effective therapies to restore neurologic function and decrease disability following traumatic brain injury (TBI). Here, emerging findings on the mechanisms of post-TBI neural repair and regeneration, as well as therapeutic implications, are selectively reviewed. RECENT FINDINGS Recent discoveries include the characterization of the inhibitory signaling systems within the injury site, postinjury stem cell niche activation, the role of serotonin signaling in repair, and environment enrichment. A potentially transformative finding has been the identification of exosomes, nano-sized extracellular vesicles which have key roles in cell signaling, and might serve as novel biomarkers and as vehicles for targeted delivery of repair-inducing molecules. SUMMARY In the experimental setting, post-TBI repair can be promoted by modulation of inhibitory signaling, neurotrophic factor administration, and amplified serotonin signaling; additional strategies include mobilization of endogenous stem cell populations, exogenous cell-based therapies, and environmental enhancement. Feasibility, safety, and efficacy of these approaches need further investigation in humans. Studies are also needed to evaluate biomarkers based on molecular traces of neural repair and regeneration, which could transform prognostic and predictive modeling of post-TBI recovery trajectories.
Collapse
|
44
|
Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 2016; 111:69-81. [PMID: 27539657 DOI: 10.1016/j.neuint.2016.08.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Multipotent human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after experimental traumatic brain injury (TBI). The present study was designed to investigate whether systemic administration of cell-free exosomes generated from hMSCs cultured in 2-dimensional (2D) conventional conditions or in 3-dimensional (3D) collagen scaffolds promote functional recovery and neurovascular remodeling in rats after TBI. Wistar rats were subjected to TBI induced by controlled cortical impact; 24 h later tail vein injection of exosomes derived from hMSCs cultured under 2D or 3D conditions or an equal number of liposomes as a treatment control were performed. The modified Morris water maze, neurological severity score and footfault tests were employed to evaluate cognitive and sensorimotor functional recovery. Animals were sacrificed at 35 days after TBI. Histological and immunohistochemical analyses were performed for measurements of lesion volume, neurovascular remodeling (angiogenesis and neurogenesis), and neuroinflammation. Compared with liposome-treated control, exosome-treatments did not reduce lesion size but significantly improved spatial learning at 33-35 days measured by the Morris water maze test, and sensorimotor functional recovery, i.e., reduced neurological deficits and footfault frequency, observed at 14-35 days post injury (p < 0.05). Exosome treatments significantly increased the number of newborn endothelial cells in the lesion boundary zone and dentate gyrus, and significantly increased the number of newborn mature neurons in the dentate gyrus as well as reduced neuroinflammation. Exosomes derived from hMSCs cultured in 3D scaffolds provided better outcome in spatial learning than exosomes from hMSCs cultured in the 2D condition. In conclusion, hMSC-generated exosomes significantly improve functional recovery in rats after TBI, at least in part, by promoting endogenous angiogenesis and neurogenesis and reducing neuroinflammation. Thus, exosomes derived from hMSCs may be a novel cell-free therapy for TBI, and hMSC-scaffold generated exosomes may selectively enhance spatial learning.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Mark Katakowski
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Changsheng Qu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Meser Ali
- Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
45
|
Xian B, Zhang Y, Peng Y, Huang J, Li W, Wang W, Zhang M, Li K, Zhang H, Zhao M, Liu X, Huang B. Adult Human Peripheral Blood Mononuclear Cells Are Capable of Producing Neurocyte or Photoreceptor-Like Cells That Survive in Mouse Eyes After Preinduction With Neonatal Retina. Stem Cells Transl Med 2016; 5:1515-1524. [PMID: 27458266 DOI: 10.5966/sctm.2015-0395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
: Adult human peripheral blood mononuclear cells (hPBMCs) exhibit pluripotency in vitro and so may be a valuable cell source for regenerative therapies. The efficacy of such therapies depends on the survival, differentiation, migration, and integration capacity of hPBMCs in specific tissues. In this study, we examined these capacities of transplanted hPBMCs in mouse retina as well functional improvement after transplant. We isolated hPBMCs and preinduced them for 4 days in media preconditioned with postnatal day 1 rat retina explants. Preinduction increased the proportions of hPBMCs expressing neural stem cell, neural progenitor cell, or photoreceptor markers as revealed by immunofluorescent staining, flow cytometry, and quantitative real-time polymerase chain reaction. Preinduced hPBMCs were transplanted into the subretinal space of retinal degenerative slow (RDS) and retinal degeneration 1 (RD1) mice. At 1, 3, and 6 months after transplantation, treated eyes of RDS mice were collected and cell phenotype was studied by immunofluorescent staining. Preinduced hPBMCs survived in the subretinal space; migrated away from the injection site and into multiple retinal layers; and expressed neural stem cell, neuronal, and photoreceptor markers. Finally, we assessed RD1 retinal function after subretinal transplantation and found significant improvement at 3 months after transplantation. The ease of harvesting, viability in vivo, capacity to express neuronal and photoreceptor proteins, and capacity for functional enhancement suggest that hPBMCs are potential candidates for cell replacement therapy to treat retinal degenerative diseases. SIGNIFICANCE This study provides support for the use of peripheral blood mononuclear cells (PBMCs) as a potential source of pluripotent stem cells for treating retinal degeneration. First, this study demonstrated that PBMCs can differentiate into retinal neuron-like cells in vitro and in vivo. Second, some transplanted cells expressed markers for neural progenitors, mature neurons, or photoreceptors at 1, 3, and 6 months after subretinal injection. Finally, this study showed that PBMC transplantation can improve the function of a degenerated retina.
Collapse
Affiliation(s)
- Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yichi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wencong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Yu J, Liu XL, Cheng QG, Lu SS, Xu XQ, Zu QQ, Liu S. G-CSF and hypoxic conditioning improve the proliferation, neural differentiation and migration of canine bone marrow mesenchymal stem cells. Exp Ther Med 2016; 12:1822-1828. [PMID: 27588100 DOI: 10.3892/etm.2016.3535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Transplantation using bone marrow mesenchymal stem cells (BMSCs) is emerging as a potential regenerative therapy after ischemic attacks in the brain. However, it has been questioned because very few transplanted BMSCs are detected homing to and survived in the ischemic region. Improving the cell viability and migration ability under the complex ischemic condition seems very important. The aim of our study is to identify whether hypoxic condition and granulocyte colony-stimulating factor (G-CSF) could improve the cell survival and migration ability of transplanted cells or hypoxic condition could promote BMSC's neural differentiation. BMSCs were treated under either normoxic (21% O2) or hypoxic (1% O2) (HP-BMSCs) conditions, no significant apoptosis was observed in hypoxic precondition (HP) group, our study confirmed that HP improves BMSCs proliferation and migration. Meanwhile, neural induction of BMSCs under hypoxic condition exhibited significant superior results than normoxic condition. Additionally, the addition of G-CSF in HP-BMSCs culture media promoted HP efficiency on BMSCs. These findings shed light on novel efficient strategy on the prosperity of BMSCs. Hypoxic preconditioning and cultured with G-CSF may become a promising therapeutics for cell-based therapy in the treatments of ischemia stroke.
Collapse
Affiliation(s)
- Jing Yu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xing-Long Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qi-Guang Cheng
- Department of Radiology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Shan-Shan Lu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Quan Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing-Quan Zu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sheng Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
47
|
Sun D. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury. Neural Regen Res 2016; 11:18-22. [PMID: 26981070 PMCID: PMC4774215 DOI: 10.4103/1673-5374.169605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
48
|
Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage. ACS APPLIED MATERIALS & INTERFACES 2016; 8:563-573. [PMID: 26654444 DOI: 10.1021/acsami.5b09588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine.
Collapse
Affiliation(s)
- Huaqiong Li
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Chashan Higher Education Zone, Wenzhou 325035, China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences , 16 Xinsan Road, Wenzhou 325011, China
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Feng Wen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Huizhi Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Mintu Pal
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Yuekun Lai
- National Engineering Laboratory of Modern Silk, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123, China
| | - Allan Zijian Zhao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences , 16 Xinsan Road, Wenzhou 325011, China
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
49
|
Mohammad M, Yaseen N, Al-Joubory A, Abdullah R, Mahmood N, Ahmed AA, Al-Shammari A. Production of Neural Progenitors from Bone Marrow Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/scd.2016.61001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Yi T, Kim SN, Lee HJ, Kim J, Cho YK, Shin DH, Tak SJ, Moon SH, Kang JE, Ji IM, Lim HJ, Lee DS, Jeon MS, Song SU. Manufacture of Clinical-Grade Human Clonal Mesenchymal Stem Cell Products from Single Colony Forming Unit-Derived Colonies Based on the Subfractionation Culturing Method. Tissue Eng Part C Methods 2015; 21:1251-62. [PMID: 26421757 DOI: 10.1089/ten.tec.2015.0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell products derived from mesenchymal stem cells (MSCs) have been widely used in clinical trials, and a few products have been already commercialized. However, the therapeutic effects of clinical-grade MSCs are still controversial owing to mixed results from recent clinical trials. A potential solution to overcome this hurdle may be to use clonal stem cells as the starting cell material to increase the homogeneity of the final stem cell products. We have previously developed an alternative isolation and culture protocol for establishing a population of clonal MSCs (cMSCs) from single colony forming unit (CFU)-derived colonies. In this study, we established a good manufacturing practice (GMP)-compatible procedure for the clinical-grade production of human bone marrow-derived cMSCs based on the subfractionation culturing method. We optimized the culture procedures to expand and obtain a clonal population of final MSC products from single CFU-derived colonies in a GMP facility. The characterization results of the final cMSC products met our preset criteria. Animal toxicity tests were performed in a good laboratory practice facility, and showed no toxicity or tumor formation in vivo. These tests include single injection toxicity, multiple injection toxicity, biodistribution analysis, and tumorigenicity tests in vivo. No chromosomal abnormalities were detected by in situ karyotyping using oligo-fluorescence in situ hydridization (oligo-FISH), providing evidence of genetic stability of the clinical-grade cMSC products. The manufacture and quality control results indicated that our GMP methodology could produce sufficient clonal population of MSC products from a small amount of bone marrow aspirate to treat a number of patients.
Collapse
Affiliation(s)
- TacGhee Yi
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,2 Inha Research Institute for Medical Science, Inha University School of Medicine , Incheon, Republic of Korea.,3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Si-na Kim
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Hyun-Joo Lee
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Junghee Kim
- 4 Drug Development Program, Department of Biomedical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Yun-Kyoung Cho
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Dong-Hee Shin
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,2 Inha Research Institute for Medical Science, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun-Ji Tak
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun-Hwa Moon
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Ji-Eun Kang
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - In-Mi Ji
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Huyn-Ja Lim
- 3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| | - Dong-Soon Lee
- 5 Department of Pathology, Seoul National University School of Medicine , Seoul, Republic of Korea
| | - Myung-Shin Jeon
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea
| | - Sun U Song
- 1 Translational Research Center, Inha University School of Medicine , Incheon, Republic of Korea.,3 SCM Lifescience Co., Ltd. , Incheon, Republic of Korea
| |
Collapse
|