1
|
Zamora C, Diaz-Torne C, Ortiz MA, Moya P, Park HS, Pitarch C, Cantó E, Osuna-Gomez R, Mulet M, Garcia-Arguinzonis M, Collado D, Corominas H, Vidal S. Platelet-Derived Soluble CD40L and Its Impact on Immune Modulation and Anti-IL6R Antibody Treatment Outcome in Rheumatoid Arthritis. Cells 2025; 14:625. [PMID: 40358149 PMCID: PMC12071919 DOI: 10.3390/cells14090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Platelets (PLTs) from healthy donors (HD) modulate T lymphocyte responses but PLTs from rheumatoid arthritis (RA) patients contribute to persistent systemic inflammation. This suggests that PLTs from RA patients and HD have different immunomodulatory effects. METHODS Using cell culture, flow cytometry, proteomics, and ELISA, we compared PLTs from HD and RA patients and their effects on T lymphocyte activation and cytokine production. RESULTS HD PLTs suppressed T lymphocyte proliferation and IFNγ and TNF production, while RA PLTs exhibited reduced suppressive capacity. In the presence of RA PLTs, IFNγ levels correlated with T lymphocyte proliferation, greater disease activity, and anti-citrullinated protein antibodies (ACPA). Proteomic analysis revealed that RA PLTs show upregulation of proteins linked to acute-phase response and complement activation. RA PLTs secreted higher levels of soluble CD40L (sCD40L) and PDGF-BB that correlated with enhanced IFNγ production. Seropositive RA patients had higher levels of sCD40L, and these levels were predictive of disease remission in RA patients treated with anti-IL6R. sCD40L was found to enhance T lymphocyte activation and to contribute to increased pro-inflammatory cytokine production. CONCLUSIONS This study highlights the diminished ability of RA PLTs to suppress T lymphocyte activation and that sCD40L can be a potential biomarker and therapeutic target in RA.
Collapse
Affiliation(s)
- Carlos Zamora
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| | - Cesar Diaz-Torne
- Rheumatology Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.S.P.); (C.P.); (H.C.)
| | - Maria Angels Ortiz
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| | - Patricia Moya
- Rheumatology Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.S.P.); (C.P.); (H.C.)
| | - Hye Sang Park
- Rheumatology Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.S.P.); (C.P.); (H.C.)
| | - Concepció Pitarch
- Rheumatology Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.S.P.); (C.P.); (H.C.)
| | - Elisabet Cantó
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| | - Ruben Osuna-Gomez
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| | - Maria Mulet
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| | | | | | - Hector Corominas
- Rheumatology Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.S.P.); (C.P.); (H.C.)
- Department of Medicine, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut Recerca Hospital Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.A.O.); (E.C.); (R.O.-G.); (M.M.)
| |
Collapse
|
2
|
Seledtsov VI, Pyshenko AA, Lyubavskaya TY, Seledtsova IA, von Delwig AA. Blood Coagulation Favors Anti-Inflammatory Immune Responses in Whole Blood. Hematol Rep 2025; 17:19. [PMID: 40277843 PMCID: PMC12026462 DOI: 10.3390/hematolrep17020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND We studied the effects of human blood coagulation on antioxidant activity and the cellular secretion of immunoregulatory molecules in vitro. METHODS Reactive oxygen species (ROS) activity and cytokine content were determined in plasma and serum blood samples incubated with lipopolysaccharide (LPS) for 3 h or 18 h. RESULTS Coagulation process significantly decreased ROS activity induced by LPS in blood samples from healthy donors. Human serum was found to have significantly higher antioxidant activity than plasma. Blood coagulation markedly reduced LPS-induced secretion of TNF-α by cells, without significantly affecting the secretion of interleukin-1 (IL-1), IL-6, IL-8, or C-reactive protein (CRP). Blood clotting led to an increase in LPS-induced release of vascular endothelial growth factor (VEGF) by blood cells. A significant increase in procalcitonin levels was also observed in serum samples. CONCLUSIONS Blood clotting enhances the antioxidant and anti-inflammatory functions of immunoreactive blood cells.
Collapse
Affiliation(s)
- Victor I. Seledtsov
- Federal State Budgetary Scientific Institution, Russian Scientific Center for Surgery Named after Academician B.V. Petrovsky, 119991 Moscow, Russia; (A.A.P.); (T.Y.L.); (I.A.S.); (A.A.v.D.)
| | | | | | | | | |
Collapse
|
3
|
Tamagne M, Khelfa M, Many S, Neyrinck-Leglantier D, Delorme AS, Pinheiro MK, Andrieu M, Cleophax S, Pirenne F, Vingert B. Interactions with and activation of immune cells by CD41a + extracellular vesicles. Front Immunol 2025; 16:1509078. [PMID: 40028321 PMCID: PMC11868057 DOI: 10.3389/fimmu.2025.1509078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction The immunological profiles of CD4+ T lymphocytes (TLs) from patients with hematological malignancies differ between patients who have and have not received transfusions. There may be several reasons for these differences, including the presence of extracellular vesicles (EVs) derived from plasma membrane budding and present in the platelet concentrates. Indeed, EVs can modulate the immune system through interactions with many immune cells, but the underlying mechanisms remain incompletely understood. Methods We therefore investigated how interactions with CD41a+ EVs cause immune cells to change phenotype and function. CD41a+ EVs were cultured with TLs, B lymphocytes, and monocytes. Given the potential involvement of monocytes in leukemia progression, we performed a new original multi-omics study to confirm the protein changes and gene activation observed following interaction with CD41a+ EVs. Results The CD41a+ EVs had immunomodulatory effects on all these cell types but this effect depended on the numbers of EVs. CD4+ TLs required large numbers of CD41a+ EVs for activation, whereas monocytes were the most sensitive. With the new multi-omics technique, we confirmed the direct effects of CD41a+ EVs on protein phenotype and gene activation. Conclusion Transfusion EVs should be considered during the immunological follow-up of patients after transfusion to detect immunological effects on malignant hemopathies, and during the development of new immunotherapies.
Collapse
Affiliation(s)
- Marie Tamagne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| | - Mehdi Khelfa
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| | - Souganya Many
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | | | - Adèle Silane Delorme
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| | - Marion Klea Pinheiro
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| | - Muriel Andrieu
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| | - Benoît Vingert
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Etablissement Français du Sang, Ivry sur Seine, France
| |
Collapse
|
4
|
Liu Y, Jiang H, Kang T, Shi X, Liu X, Li C, Hou X, Li M. Platelets-related signature based diagnostic model in rheumatoid arthritis using WGCNA and machine learning. Front Immunol 2023; 14:1204652. [PMID: 37426641 PMCID: PMC10327425 DOI: 10.3389/fimmu.2023.1204652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background and aim Rheumatoid arthritis (RA) is an autoinflammatory disease that may lead to severe disability. The diagnosis of RA is limited due to the need for biomarkers with both reliability and efficiency. Platelets are deeply involved in the pathogenesis of RA. Our study aims to identify the underlying mechanism and screening for related biomarkers. Methods We obtained two microarray datasets (GSE93272 and GSE17755) from the GEO database. We performed Weighted correlation network analysis (WGCNA) to analyze the expression modules in differentially expressed genes identified from GSE93272. We used KEGG, GO and GSEA enrichment analysis to elucidate the platelets-relating signatures (PRS). We then used the LASSO algorithm to develop a diagnostic model. We then used GSE17755 as a validation cohort to assess the diagnostic performance by operating Receiver Operating Curve (ROC). Results The application of WGCNA resulted in the identification of 11 distinct co-expression modules. Notably, Module 2 exhibited a prominent association with platelets among the differentially expressed genes (DEGs) analyzed. Furthermore, a predictive model consisting of six genes (MAPK3, ACTB, ACTG1, VAV2, PTPN6, and ACTN1) was constructed using LASSO coefficients. The resultant PRS model demonstrated excellent diagnostic accuracy in both cohorts, as evidenced by area under the curve (AUC) values of 0.801 and 0.979. Conclusion We elucidated the PRSs occurred in the pathogenesis of RA and developed a diagnostic model with excellent diagnostic potential.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Clinical Medicine, Peking Union Medical College, Beijing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixu Jiang
- Department of Rheumatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianlun Kang
- Department of Rheumatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Shi
- Department of Rheumatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Liu
- Department of Rheumatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology, Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiujuan Hou
- Department of Rheumatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Li
- Department of Rheumatology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Saber MM. Coexpression of PD-L1/PD-1 with CXCR3/CD36 and IL-19 Increase in Extranodal Lymphoma. J Immunol Res 2023; 2023:4556586. [PMID: 36726488 PMCID: PMC9886470 DOI: 10.1155/2023/4556586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
Many studies have demonstrated that PD-L1/PD-1 signaling is an immune evasion mechanism in tumors. PD-L1/PD-1 coexpression with CXCR3/CD36 in peripheral lymphocytes in lymphoma still needs to be clarified. The current study investigated PD-L1/PD-1 coexpression with CXCR3/CD36 in circulating lymphocytes, serum IL-19 levels, and their correlation with clinical outcome and extranodal involvement in lymphoma. Subjects and Methods. The coexpression of PD-L1/PD-1 with CXCR3/CD36 on circulating lymphocytes was analyzed by flow cytometry in 78 lymphoma patients before and after therapy and in 50 healthy controls. The concentration levels of IL-19 in serum were assessed by an ELISA. Results. PD-L1 and PD-1 were expressed on circulating CXCR3+ and CD36+ lymphocytes in lymphoma and were significantly higher in patients with extranodal involvement than in lymphoma patients without extranodal involvement (P < 0.001). Elevated IL-19 levels were observed in lymphoma patients and increased significantly in extranodal involvement (P < 0.001). High percentages of PD-L1+CXCR3+ and PD-1+CXCR3+ lymphocytes were associated with high LDH levels, hepatomegaly, lymphedema, advanced tumor stage, and recurrence. Furthermore, patients with splenomegaly and generalized lymphadenopathy had high percentages of PD-L1+CXCR3+ lymphocytes. In addition, levels of PD-L1/PD-1 coexpression with CXCR3 and IL-19 were significantly associated with bone marrow, lung, and lymph vessel involvement. Further analysis revealed that high percentages of PD-L1+CD36+ and PD-1+CD36+ lymphocytes were associated with lung and bone marrow involvement. Patients with high levels of PD-L1/PD-1 coexpression with CXCR3 and IL-19 had inferior event-free survival (EFS) compared with that in lymphoma patients with low levels. EFS was decreased in patients with high percentages of PD-L1+CD36+ and PD-1+CD36+ lymphocytes. When using the receiver operating characteristic (ROC) curve, the superiority of IL-19 (area under the curve (AUC): 0.993) and PD-L1+CXCR3+% (AUC: 0.961) to PD-1+CXCR3+% (AUC: 0.805), PD-L1+CD36+% (AUC: 0.694), and PD-1+CD36+% (AUC 0.769) was evident in the diagnosis of extranodal involvement, identifying lymphoma patients with extranodal involvement from patients without extranodal involvement. Conclusions. Coexpression of PD-L1/PD-1 with CXCR3/CD36 in circulating lymphocytes and serum IL-19 levels contributes to poor prognosis and might be potential markers for extranodal involvement in lymphoma.
Collapse
Affiliation(s)
- Manal Mohamed Saber
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| |
Collapse
|
6
|
Albayati S, Li N, Unsworth AJ, Liverani E. Platelet-lymphocyte co-culture serves as an ex vivo platform of dynamic heterotypic cross-talk. J Cell Commun Signal 2022; 16:661-675. [PMID: 35414144 PMCID: PMC9733731 DOI: 10.1007/s12079-022-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Platelets are well known for their roles in hemostasis and thrombosis, and are increasingly recognized for their abilities to interact with white blood cells during inflammatory diseases, via secreted soluble factors as well as cell-cell contact. This interaction has been investigated in animal models and patient samples and has shown to be implicated in patient outcomes in several diseases. Platelet-leukocyte co-cultures are widely used to study platelet-leukocyte interactions ex vivo. However, there is a paucity with regard to the systematic characterization of cell activation and functional behaviors of platelets and leukocytes in these co-cultures. Hence we aimed to characterize a model of platelet-leukocyte co-culture ex vivo. Human peripheral blood mononuclear cell (PBMC) and platelets were isolated and co-cultured for 5 days at 37 °C in the presence or absence of anti-CD3/CD28 antibodies or PHA. We evaluated PF-4 secretion and p-selectin expression in platelets as markers of platelet activation. Lymphocyte activation was assessed by cell proliferation and cell population phenotyping, in addition to platelet-lymphocyte aggregation. Platelet secretion and p-selectin expression is maintained throughout the co-culture, indicating that platelets were viable and reactive over the 5 days. Similarly PBMCs were viable and maintained proliferative capacity. Finally, dynamic heterotypic conjugation between platelets and T lymphocytes was also observed throughout co-culture (with a peak at days 3 and 4) upon T lymphocyte activation. In conclusion, this in vitro model can successfully mimic the in vivo interaction between platelets and T lymphocytes, and can be used to confirm and/or support in vivo results.
Collapse
Affiliation(s)
- Samara Albayati
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA.
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
7
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|
8
|
Choudhuri S, Garg NJ. Platelets, Macrophages, and Thromboinflammation in Chagas Disease. J Inflamm Res 2022; 15:5689-5706. [PMID: 36217453 PMCID: PMC9547606 DOI: 10.2147/jir.s380896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease (CD) is a major health problem in the Americas and an emerging health problem in Europe and other nonendemic countries. Several studies have documented persistence of the protozoan parasite Trypanosoma cruzi, and oxidative and inflammatory stress are major pathogenic factor. Mural and cardiac thrombi, cardiac arrhythmias, and cardiomyopathy are major clinical features of CD. During T. cruzi infection, parasite-released factors induce endothelial dysfunction along with platelet (PLT) and immune-cell activation. PLTs have a fundamental role in maintaining hemostasis and preventing bleeding after vascular injury. Excessive activation of PLTs and coagulation cascade can result in thrombosis and thromboembolic events, which are recognized to occur in seropositive individuals in early stages of CD when clinically symptomatic heart disease is not apparent. Several host and parasite factors have been identified to signal hypercoagulability and increase the risk of ischemic stroke in early phases of CD. Further, PLT interaction with immune cells and their role in host defense against pathogens and inflammatory processes have only recently been recognized and evolving. In the context of parasitic diseases, PLTs function in directly responding to T. cruzi infection, and PLT interactions with immune cells in shaping the proinflammatory or immunoregulatory function of monocytes, macrophages, and neutrophils remains elusive. How T. cruzi infection alters systemic microenvironment conditions to influence PLT and immune-cell interactions is not understood. In this review, we discuss the current literature, and extrapolate the mechanistic situations to explain how PLT and innate immune cell (especially monocytes and macrophages) interactions might be sustaining hypercoagulability and thromboinflammation in chronic CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int J Mol Sci 2022; 23:ijms23158370. [PMID: 35955503 PMCID: PMC9368989 DOI: 10.3390/ijms23158370] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Besides their primary role in hemostasis, platelets contain a plethora of immunomodulatory molecules that profoundly affect the entire process of wound repair. Therefore, platelet derivatives, such as platelet-rich plasma or platelet lysate, have been widely employed with promising results in the treatment of chronic wounds. Platelet derivatives provide growth factors, cytokines, and chemokines targeting resident and immigrated cells belonging to the innate and adaptive immune system. The recruitment and activation of neutrophils and macrophages is critical for pathogen clearance in the early phase of wound repair. The inflammatory response begins with the release of cytokines, such as TGF-β, aimed at damping excessive inflammation and promoting the regenerative phase of wound healing. Dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wound. In this review, we summarize the role of the different immune cells involved in wound healing, particularly emphasizing the function of platelet and platelet derivatives in orchestrating the immunological response.
Collapse
|
10
|
Mariscal A, Zamora C, Díaz-Torné C, Ortiz MÀ, de Agustín JJ, Reina D, Estrada P, Moya P, Corominas H, Vidal S. Increase of Circulating Monocyte-Platelet Conjugates in Rheumatoid Arthritis Responders to IL-6 Blockage. Int J Mol Sci 2022; 23:5748. [PMID: 35628558 PMCID: PMC9144642 DOI: 10.3390/ijms23105748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Platelets (PLT) bind to a significant percentage of circulating monocytes and this immunomodulatory interaction is increased in several inflammatory and autoimmune conditions. The therapeutic blockage of IL-6 with Tocilizumab (TCZ) alters PLT and the phenotype and function of monocytes in rheumatoid arthritis (RA). However, the relationship between monocyte−PLT conjugates (CD14+PLT+) and clinical and immunological variables and the regulation of this interaction by IL-6 blockage are still unknown. Here, we compared the presence of monocyte−PLT conjugates (CD14+PLT+) and membrane CD162 expression using flow cytometry, and, by ELISA, the markers of PLT activation (sCD62P and sCD40L) in healthy donors (HD) and patients with long-standing RA before TCZ (baseline). We found higher percentages and absolute counts of CD14+PLT+, and higher plasmatic levels of sCD62P and sCD40L but lower CD162 expression on monocytes from RA patients than those from HD. Additionally, the levels of CD14+PLT+ inversely correlated with inflammatory parameters. Interestingly, 95% of patients with lower percentages of CD14+PLT+ and only 63% of patients with higher percentages of CD14+PLT+ achieved a EULAR-defined response at four weeks (p = 0.036). After TCZ, the percentage of CD14+PLT+ increased in 92% of RA patients who achieved 12 w-remission (p < 0.001). Our results suggest that the binding of PLTs has a modulatory effect, accentuated by the increased binding of PLTs to monocytes in response to the therapeutic blockage of IL-6.
Collapse
Affiliation(s)
- Anaís Mariscal
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Carlos Zamora
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| | - César Díaz-Torné
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.C.)
| | - Mᵃ Àngels Ortiz
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| | | | - Delia Reina
- Rheumatology Department, Hospital Moisès Broggi, Sant Joan Despí, 08970 Barcelona, Spain; (D.R.); (P.E.)
| | - Paula Estrada
- Rheumatology Department, Hospital Moisès Broggi, Sant Joan Despí, 08970 Barcelona, Spain; (D.R.); (P.E.)
| | - Patricia Moya
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.C.)
| | - Héctor Corominas
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (P.M.); (H.C.)
| | - Sílvia Vidal
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| |
Collapse
|
11
|
Carnaz Simões AM, Holmström MO, Aehnlich P, Rahbech A, Peeters MJW, Radziwon-Balicka A, Zamora C, Wirenfeldt Klausen T, Skov V, Kjær L, Ellervik C, Fassi DE, Vidal S, Hasselbalch HC, Andersen MH, thor Straten P. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Front Immunol 2022; 13:866610. [PMID: 35603202 PMCID: PMC9120544 DOI: 10.3389/fimmu.2022.866610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells in the bone marrow, and patients often harbor elevated numbers of circulating platelets (PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly elevated in MPN patients. Advanced disease stage and CALR mutation associated with the highest aggregate frequencies with a predominance of PLT-binding to antigen-experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN patients. JAK2 and CALR exon 9 mutations - the two predominant driver mutations in MPN - are targets for natural T cell responses in MPN patients. Moreover, MPN patients have more infections compared to background. Thus, PLT binding to antigen experienced CD8 T cells could play a role in the inadequacy of the immune system to control MPN disease progression and prevent recurrent infections.
Collapse
Affiliation(s)
- Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Anne Rahbech
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Marlies J. W. Peeters
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Aneta Radziwon-Balicka
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Carlos Zamora
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tobias Wirenfeldt Klausen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Data and Innovation Support, Region Zealand, Sorø, Denmark
| | - Daniel El Fassi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Silvia Vidal
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Al-Tamimi AO, Yusuf AM, Jayakumar MN, Ansari AW, Elhassan M, AbdulKarim F, Kannan M, Halwani R, Ahmad F. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19. Int J Lab Hematol 2022; 44:712-721. [PMID: 35266284 PMCID: PMC9111479 DOI: 10.1111/ijlh.13829] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
Introduction Coagulation dysfunction and thromboembolism emerge as strong comorbidity factors in severe COVID‐19. However, it is unclear when particularly platelet activation markers and coagulation factors dysregulated during the pathogenesis of COVID‐19. Here, we sought to assess the levels of coagulation and platelet activation markers at moderate and severe stages of COVID‐19 to understand the pathogenesis. Methods To understand this, hospitalized COVID‐19 patients with (severe cases that required intensive care) or without pneumonia (moderate cases) were recruited. Phenotypic and molecular characterizations were performed employing basic coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), D‐Dimer, and tissue factor pathway inhibitor (TFPI). The flow cytometry‐based multiplex assays were performed to assess FXI, anti‐thrombin, prothrombin, fibrinogen, FXIII, P‐selectin, sCD40L, plasminogen, tissue plasminogen activator (tPA), plasminogen activator inhibitor‐1 (PAI‐1), and D‐Dimer. Results The investigations revealed induction of plasma P‐selectin and CD40 ligand (sCD40L) in moderate COVID‐19 cases, which were significantly abolished with the progression of COVID‐19 severity. Moreover, a profound reduction in plasma tissue factor pathway inhibitor (TFPI) and FXIII were identified particularly in the severe COVID‐19. Further analysis revealed fibrinogen induction in both moderate and severe patients. Interestingly, an elevated PAI‐1 more prominently in moderate, and tPA particularly in severe COVID‐19 cases were observed. Particularly, the levels of fibrinogen and tPA directly correlated with the severity of the disease. Conclusions In summary, induction of soluble P‐selectin, sCD40L, fibrinogen, and PAI‐1 suggests the activation of platelets and coagulation system at the moderate stage before COVID‐19 patients require intensive care. These findings would help in designing better thromboprophylaxis to limit the COVID‐19 severity.
Collapse
Affiliation(s)
- Abaher O Al-Tamimi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Ayesha M Yusuf
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Manju N Jayakumar
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Abdul W Ansari
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Dermatology Institute, Translational Research Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Mona Elhassan
- Department of Internal Medicine, Rashid Hospital, Dubai, UAE
| | | | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rabih Halwani
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
13
|
Zhu A, Real F, Zhu J, Greffe S, de Truchis P, Rouveix E, Bomsel M, Capron C. HIV-Sheltering Platelets From Immunological Non-Responders Induce a Dysfunctional Glycolytic CD4+ T-Cell Profile. Front Immunol 2022; 12:781923. [PMID: 35222352 PMCID: PMC8873581 DOI: 10.3389/fimmu.2021.781923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Immunological non-responders (InRs) are HIV-infected individuals in whom the administration of combination antiretroviral therapy (cART), although successful in suppressing viral replication, cannot properly reconstitute patient circulating CD4+ T-cell number to immunocompetent levels. The causes for this immunological failure remain elusive, and no therapeutic strategy is available to restore a proper CD4+ T-cell immune response in these individuals. We have recently demonstrated that platelets harboring infectious HIV are a hallmark of InR, and we now report on a causal connection between HIV-containing platelets and T-cell dysfunctions. We show here that in vivo, platelet–T-cell conjugates are more frequent among CD4+ T cells in InRs displaying HIV-containing platelets (<350 CD4+ T cells/μl blood for >1 year) as compared with healthy donors or immunological responders (IRs; >350 CD4+ T cells/μl). This contact between platelet containing HIV and T cell in the conjugates is not infectious for CD4+ T cells, as coculture of platelets from InRs containing HIV with healthy donor CD4+ T cells fails to propagate infection to CD4+ T cells. In contrast, when macrophages are the target of platelets containing HIV from InRs, macrophages become infected. Differential transcriptomic analyses comparing InR and IR CD4+ T cells reveal an upregulation of genes involved in both aerobic and anaerobic glycolysis in CD4+ T cells from InR vs. IR individuals. Accordingly, InR platelets containing HIV induce a dysfunctional increase in glycolysis-mediated energy production in CD4+ T cells as compared with T cells cocultured with IR platelets devoid of virus. In contrast, macrophage metabolism is not affected by platelet contact. Altogether, this brief report demonstrates a direct causal link between presence of HIV in platelets and T-cell dysfunctions typical of InR, contributing to devise a platelet-targeted therapy for improving immune reconstitution in these individuals.
Collapse
Affiliation(s)
- Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France
| | - Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France
| | - Jaja Zhu
- Service d’Hématologie, Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
- Université Versailles Saint Quentin-en-Yvelines (UVSQ), Université Paris Saclay, Versailles, France
| | - Ségolène Greffe
- Service d’Hématologie, Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
| | - Pierre de Truchis
- Université Versailles Saint Quentin-en-Yvelines (UVSQ), Université Paris Saclay, Versailles, France
- Service d’Infectiologie, Hôpital Raymond Poincaré (AP-HP), Garches, France
| | - Elisabeth Rouveix
- Service d’Hématologie, Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
- Université Versailles Saint Quentin-en-Yvelines (UVSQ), Université Paris Saclay, Versailles, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France
- *Correspondence: Morgane Bomsel, ; Claude Capron,
| | - Claude Capron
- Service d’Hématologie, Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
- Université Versailles Saint Quentin-en-Yvelines (UVSQ), Université Paris Saclay, Versailles, France
- *Correspondence: Morgane Bomsel, ; Claude Capron,
| |
Collapse
|
14
|
Paletta A, Di Diego García F, Varese A, Erra Diaz F, García J, Cisneros JC, Ludueña G, Mazzitelli I, Pisarevsky A, Cabrerizo G, López Malizia Á, Rodriguez AG, Lista N, Longueira Y, Sabatté J, Geffner J, Remes Lenicov F, Ceballos A. Platelets modulate CD4 + T Cell function in Covid-19 Through A PD-L1 Dependent Mechanism. Br J Haematol 2022; 197:283-292. [PMID: 35076084 DOI: 10.1111/bjh.18062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Severe COVID-19 is associated with a systemic inflammatory response and progressive CD4+ T cell lymphopenia and dysfunction. We evaluated whether platelets might contribute to CD4+ T cell dysfunction in COVID-19. We observed a high frequency of CD4+ T cell-platelet aggregates in COVID-19 inpatients that inversely correlated with lymphocyte counts. Platelets from COVID-19 inpatients but not from healthy donors (HD) inhibited the up-regulation of CD25 expression and TNF-α production by CD4+ T cells. In addition, IFN-γ production was increased by platelets from HD but not from COVID-19 inpatients. A high expression of PD-L1 was found in platelets from COVID-19 patients to be inversely correlated with IFN-γ production by activated CD4+ T cells co-cultured with platelets. We also found that a PD-L1 blocking antibody significantly restored platelet-ability to stimulate IFN-γ production by CD4+ T cells. Our study suggests that platelets might contribute to disease progression in COVID-19 not only by promoting thrombotic and inflammatory events, but also by affecting CD4+ T cells functionality.
Collapse
Affiliation(s)
- Ana Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Facundo Di Diego García
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Fernando Erra Diaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Julián García
- División C, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
| | - Juan Carlos Cisneros
- Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
| | - Guillermina Ludueña
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Andrea Pisarevsky
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Argentina
| | - Gonzalo Cabrerizo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Álvaro López Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Alejandra G Rodriguez
- Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
| | - Nicolás Lista
- Unidad de Terapia Intensiva, Hospital de Enfermedades Infecciosas Francisco Muñiz, Buenos Aires, Argentina
| | - Yesica Longueira
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Dai XP, Wu FY, Cui C, Liao XJ, Jiao YM, Zhang C, Song JW, Fan X, Zhang JY, He Q, Wang FS. Increased Platelet-CD4+ T Cell Aggregates Are Correlated With HIV-1 Permissiveness and CD4+ T Cell Loss. Front Immunol 2021; 12:799124. [PMID: 34987521 PMCID: PMC8720770 DOI: 10.3389/fimmu.2021.799124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-1 infection is associated with persistent inflammation, which contributes to disease progression. Platelet-T cell aggregates play a critical role in maintaining inflammation. However, the phenotypic characteristics and clinical significance of platelet-CD4+ T cell aggregates remain unclear in different HIV-infected populations. In this study, we quantified and characterized platelet-CD4+ T cell aggregates in the peripheral blood of treatment-naïve HIV-1-infected individuals (TNs), immunological responders to antiretroviral therapy (IRs), immunological non-responders to antiretroviral therapy (INRs), and healthy controls (HCs). Flow cytometry analysis and immunofluorescence microscopy showed increased platelet-CD4+ T cell aggregate formation in TNs compared to HCs during HIV-1 infection. However, the frequencies of platelet-CD4+ T cell aggregates decreased in IRs compared to TNs, but not in INRs, which have shown severe immunological dysfunction. Platelet-CD4+ T cell aggregate frequencies were positively correlated with HIV-1 viral load but negatively correlated with CD4+ T cell counts and CD4/CD8 ratios. Furthermore, we observed a higher expression of CD45RO, HIV co-receptors, HIV activation/exhaustion markers in platelet-CD4+ T cell aggregates, which was associated with HIV-1 permissiveness. High levels of caspase-1 and caspase-3, and low levels of Bcl-2 in platelet-CD4+ T cell aggregates imply the potential role in CD4+ T cell loss during HIV-1 infection. Furthermore, platelet-CD4+ T cell aggregates contained more HIV-1 gag viral protein and HIV-1 DNA than their platelet-free CD4+ T cell counterparts. The platelet-CD4+ T cell aggregate levels were positively correlated with plasma sCD163 and sCD14 levels. Our findings demonstrate that platelet-CD4+ T cell aggregate formation has typical characteristics of HIV-1 permissiveness and is related to immune activation during HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Peng Dai
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Feng-Ying Wu
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Cui
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Xue-Jiao Liao
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Qing He
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Fu-Sheng Wang
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| |
Collapse
|
16
|
Ranjan B, Sun W, Park J, Mishra K, Schmidt F, Xie R, Alipour F, Singhal V, Joanito I, Honardoost MA, Yong JMY, Koh ET, Leong KP, Rayan NA, Lim MGL, Prabhakar S. DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nat Commun 2021; 12:5849. [PMID: 34615861 PMCID: PMC8494900 DOI: 10.1038/s41467-021-26085-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Feature selection (marker gene selection) is widely believed to improve clustering accuracy, and is thus a key component of single cell clustering pipelines. Existing feature selection methods perform inconsistently across datasets, occasionally even resulting in poorer clustering accuracy than without feature selection. Moreover, existing methods ignore information contained in gene-gene correlations. Here, we introduce DUBStepR (Determining the Underlying Basis using Stepwise Regression), a feature selection algorithm that leverages gene-gene correlations with a novel measure of inhomogeneity in feature space, termed the Density Index (DI). Despite selecting a relatively small number of genes, DUBStepR substantially outperformed existing single-cell feature selection methods across diverse clustering benchmarks. Additionally, DUBStepR was the only method to robustly deconvolve T and NK heterogeneity by identifying disease-associated common and rare cell types and subtypes in PBMCs from rheumatoid arthritis patients. DUBStepR is scalable to over a million cells, and can be straightforwardly applied to other data types such as single-cell ATAC-seq. We propose DUBStepR as a general-purpose feature selection solution for accurately clustering single-cell data.
Collapse
Affiliation(s)
- Bobby Ranjan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Wenjie Sun
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Jinyu Park
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Kunal Mishra
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Ronald Xie
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Fatemeh Alipour
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Vipul Singhal
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Ignasius Joanito
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Mohammad Amin Honardoost
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Medicine, School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Jacy Mei Yun Yong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Ee Tzun Koh
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Nirmala Arul Rayan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Michelle Gek Liang Lim
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore.
| |
Collapse
|
17
|
Gao Q, Li Z, Mo X, Wu Y, Zhou H, Peng J. Combined procalcitonin and hemogram parameters contribute to early differential diagnosis of Gram-negative/Gram-positive bloodstream infections. J Clin Lab Anal 2021; 35:e23927. [PMID: 34363413 PMCID: PMC8418508 DOI: 10.1002/jcla.23927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Hemogram parameters and procalcitonin (PCT) play auxiliary roles in the diagnosis and outcome of sepsis. However, it is not clear whether these indicators can quickly distinguish bacterial classification or guide the choice of empirical antibiotics. Methods We retrospectively enrolled 381 patients with bloodstream infections (BSI), divided into Gram‐positive bloodstream infections (GP‐BSI) and Gram‐negative bloodstream infections (GN‐BSI). Demographic parameters, hemogram parameters, and PCT were recorded and compared between the two groups. Results The mean platelet volume (MPV), platelet distribution width (PDW), and PCT in the GN‐BSI group were significantly higher than those in the GP‐BSI group, while the platelet count (PLT), plateletcrit, platelet count‐to‐white blood cell count ratio (PWR), platelet count‐to‐neutrophil count ratio (PNR), platelet count‐to‐PCT ratio (PLT/PCT), and mean platelet volume‐to‐PCT ratio (MPV/PCT) were significantly lower in the GN‐BSI group. Multivariate stepwise logistic regression analysis revealed that the independent predictors of GN‐BSI were MPV, PWR, and PCT. The areas under the curve (AUC) for this prediction model was 0.79, with sensitivity =0.75 and specificity =0.71. Conclusions There were significant differences in terms of PCT, platelet parameters, and platelet‐related index‐PCT ratio between GN‐BSI and GP‐BSI. Combined PCT and hemogram parameters are more conducive to the early differential diagnosis of bacterial classification of BSI.
Collapse
Affiliation(s)
- Qiqing Gao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuohong Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xichao Mo
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua Wu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zamora C, Riudavets M, Anguera G, Alserawan L, Sullivan I, Barba A, Serra J, Ortiz MA, Gallardo P, Perea L, Gavira J, Barnadas A, Majem M, Vidal S. Circulating leukocyte-platelet complexes as a predictive biomarker for the development of immune-related adverse events in advanced non-small cell lung cancer patients receiving anti-PD-(L)1 blocking agents. Cancer Immunol Immunother 2021; 70:1691-1704. [PMID: 33388994 PMCID: PMC10991171 DOI: 10.1007/s00262-020-02793-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anti-PD-(L)1 blocking agents can induce immune-related adverse events (irAEs), which can compromise treatment continuation. Since circulating leukocyte-platelet (PLT) complexes contribute to inflammatory and autoimmune diseases, we aimed to analyze the role of these complexes as predictors of irAEs in non-small cell lung cancer (NSCLC) patients receiving anti-PD-(L)1. MATERIALS AND METHODS Twenty-six healthy donors (HD) and 87 consecutive advanced NSCLC patients treated with anti-PD-(L)1 were prospectively included. Percentages of circulating leukocyte-PLT complexes were analyzed by flow cytometry and compared between HD and NSCLC patients. The association of leukocyte-PLT complexes with the presence and severity of irAEs was analyzed. RESULTS NSCLC patients had higher percentages of circulating leukocyte-PLT complexes. Higher percentages of monocytes with bound PLT (CD14 + PLT +) were observed in patients who received prior therapies while CD4 + T lymphocytes with bound PLT (CD4 + PLT +) correlated with platelets counts. The CD4 + PLT + high percentage group presented a higher rate of dermatological irAEs while the CD4 + PLT + low percentage group showed a higher rate of non-dermatological irAEs (p < 0.001). A lower frequency of grade ≥ 2 irAEs was observed in the CD4 + PLT + high percentage group (p < 0.05). Patients with CD4 + PLT + low and CD14 + PLT + high percentages presented a higher rate of grade ≥ 3 irAEs and predominantly developed non-dermatological irAEs (p < 0.01). CONCLUSIONS Our results suggest that circulating leukocyte-PLT complexes and the combination of CD4 + PLT + and CD14 + PLT + percentages can be used as a predictive biomarker of the development and severity of irAEs in advanced NSCLC patients receiving anti-PD-(L)1 agents.
Collapse
Affiliation(s)
- Carlos Zamora
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Mariona Riudavets
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Georgia Anguera
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Letícia Alserawan
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Andrés Barba
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Jorgina Serra
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - M Angels Ortiz
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Pablo Gallardo
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Lidia Perea
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Javier Gavira
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain.
| | - Silvia Vidal
- Group of Immunology-Inflammatory Diseases, Biomedical Research Institut Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
19
|
Matei E, Aschie M, Mitroi AF, Ghinea MM, Gheorghe E, Petcu L, Dobrin N, Chisoi A, Mihaela M. Biomarkers involved in evaluation of platelets function in South-Eastern Romanian patients with hematological malignancies subtypes. Medicine (Baltimore) 2021; 100:e25944. [PMID: 34011073 PMCID: PMC8137019 DOI: 10.1097/md.0000000000025944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT At present, various researches presented how subtypes of hematological malignancies are related to stages of the immune response, because the activated immune system represents a promising form in cancer treatment. This study explores the relationship between the adaptive immune system (T cells), and the coagulation system (platelets, platelet membrane glycoproteins, platelets derivate microparticles) which seems to play an important role in host immune defense of patients with acute myeloblastic leukemia (AML) or B cell lymphoma (BCL), 2 of the most common hematological malignancies subtypes.Blood samples (n = 114) obtained from patients with AML or BCL were analyzed for platelet membrane glycoproteins (CD42b, CD61), glycoprotein found on the surface of the T helper cells (CD4+), protein complex-specific antigen for T cells (CD3+), platelet-derived microparticles (CD61 PMP) biomarkers by flow cytometry, and hematological parameters were quantified by usual methods.In patients with AML, the means of the percentage of the expressions of the molecules on platelet surfaces (CD61 and CD42b, P < .01; paired T test) were lower as compared to both control subgroups. The expression of cytoplasmic granules content (CD61 PMP) had a significantly higher value in patients with AML reported to controlling subgroups (P < .01; paired T test), which is suggesting an intravascular activation of platelets.The platelet activation status was presented in patients with low stage BCL because CD61 and CD42b expressions were significantly higher than control subgroups, but the expression of CD 61 PMP had a significantly decreased value reported to control subgroups (all P < .01; paired T test). T helper/inducer lineage CD4+ and T lymphoid lineage CD3+ expressions presented significant differences between patients with AML or low stage BCL reported to control subgroups (all P < .01; paired T test).Platelet-lymphocyte interactions are involved in malignant disorders, and CD61, CD42b present on platelet membranes, as functionally active surface receptors mediate the adhesion of active platelets to lymphocytes, endothelial cells, and cancer cells.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Blood Platelets/immunology
- Blood Platelets/metabolism
- CD3 Complex/blood
- Cell Adhesion/immunology
- Cell-Derived Microparticles
- Female
- Flow Cytometry
- Humans
- Integrin beta3/blood
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/immunology
- Lymphocyte Activation
- Lymphocyte Count
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/immunology
- Male
- Middle Aged
- Platelet Activation/immunology
- Platelet Count
- Platelet Glycoprotein GPIb-IX Complex/analysis
- Romania
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
- Clinical Service of Pathology
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
- Clinical Service of Pathology
| | - Mihaela Maria Ghinea
- Internal Medicine-Hematology Department, “Sf. Apostol Andrei” Emergency County Hospital
| | - Emma Gheorghe
- Medicine Faculty, “Ovidius” University of Constanta, Constanta, Romania
| | - Lucian Petcu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
| | - Nicolae Dobrin
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
- Internal Medicine-Hematology Department, “Sf. Apostol Andrei” Emergency County Hospital
| | - Manea Mihaela
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, CEDMOG
| |
Collapse
|
20
|
Vulliamy P, Kornblith LZ, Kutcher ME, Cohen MJ, Brohi K, Neal MD. Alterations in platelet behavior after major trauma: adaptive or maladaptive? Platelets 2021; 32:295-304. [PMID: 31986948 PMCID: PMC7382983 DOI: 10.1080/09537104.2020.1718633] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/01/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Platelets are damage sentinels of the intravascular compartment, initiating and coordinating the primary response to tissue injury. Severe trauma and hemorrhage induce profound alterations in platelet behavior. During the acute post-injury phase, platelets develop a state of impaired ex vivo agonist responsiveness independent of platelet count, associated with systemic coagulopathy and mortality risk. In patients surviving the initial insult, platelets become hyper-responsive, associated with increased risk of thrombotic events. Beyond coagulation, platelets constitute part of a sterile inflammatory response to injury: both directly through release of immunomodulatory molecules, and indirectly through modifying behavior of innate leukocytes. Both procoagulant and proinflammatory aspects have implications for secondary organ injury and multiple-organ dysfunction syndromes. This review details our current understanding of adaptive and maladaptive alterations in platelet biology induced by severe trauma, mechanisms underlying these alterations, potential platelet-focused therapies, and existing knowledge gaps and their research implications.
Collapse
Affiliation(s)
- Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - Lucy Z. Kornblith
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California
| | - Matthew E. Kutcher
- Division of Trauma, Critical Care, and Acute Care Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mitchell J. Cohen
- Department of Surgery, University of Colorado, Aurora, Colorado
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, Colorado
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - Matthew D. Neal
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
21
|
Zamora C, Cantó E, Vidal S. The Dual Role of Platelets in the Cardiovascular Risk of Chronic Inflammation. Front Immunol 2021; 12:625181. [PMID: 33868242 PMCID: PMC8046936 DOI: 10.3389/fimmu.2021.625181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic inflammatory diseases often exhibit cardiovascular risk. This risk is associated with the systemic inflammation that persists in these patients, causing a sustained endothelial activation. Different mechanisms have been considered responsible for this systemic inflammation, among which activated platelets have been regarded as a major player. However, in recent years, the role of platelets has become controversial. Not only can this subcellular component release pro- and anti-inflammatory mediators, but it can also bind to different subsets of circulating lymphocytes, monocytes and neutrophils modulating their function in either direction. How platelets exert this dual role is not yet fully understood.
Collapse
Affiliation(s)
| | | | - Sílvia Vidal
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
22
|
Melgaço JG, Brito e Cunha D, Azamor T, da Silva AMV, Tubarão LN, Gonçalves RB, Monteiro RQ, Missailidis S, da Costa Neves PC, Ano Bom APD. Cellular and Molecular Immunology Approaches for the Development of Immunotherapies against the New Coronavirus (SARS-CoV-2): Challenges to Near-Future Breakthroughs. J Immunol Res 2020; 2020:8827670. [PMID: 33426096 PMCID: PMC7753942 DOI: 10.1155/2020/8827670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2), termed COVID-19, has been highlighted as the most important infectious disease of our time, without a vaccine and treatment available until this moment, with a big impact on health systems worldwide, and with high mortality rates associated with respiratory viral disease. The medical and scientific communities have also been confronted by an urgent need to better understand the mechanism of host-virus interaction aimed at developing therapies and vaccines. Since this viral disease can trigger a strong innate immune response, causing severe damage to the pulmonary tract, immunotherapies have also been explored as a means to verify the immunomodulatory effect and improve clinical outcomes, whilst the comprehensive COVID-19 immunology still remains under investigation. In this review, both cellular and molecular immunopathology as well as hemostatic disorders induced by SARS-CoV-2 are summarized. The immunotherapeutic approaches based on the most recent clinical and nonclinical studies, emphasizing their effects for the treatment of COVID-19, are also addressed. The information presented elucidates helpful insights aiming at filling the knowledge gaps around promising immunotherapies that attempt to control the dysfunction of host factors during the course of this infectious viral disease.
Collapse
Affiliation(s)
- Juliana Gil Melgaço
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Danielle Brito e Cunha
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamiris Azamor
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andrea Marques Vieira da Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Neves Tubarão
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafael Braga Gonçalves
- Laboratório de Bioquímica Estrutural, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sotiris Missailidis
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Tecnologia de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia Cristina da Costa Neves
- Laboratório de Tecnologia de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Albayati S, Vemulapalli H, Tsygankov AY, Liverani E. P2Y 12 antagonism results in altered interactions between platelets and regulatory T cells during sepsis. J Leukoc Biol 2020; 110:141-153. [PMID: 33242353 DOI: 10.1002/jlb.3a0220-097r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sepsis is a complex clinical condition resulting from a serious bloodstream infection. With mortality rates as high as 50%, improved treatments are needed. Regulatory T cells (Tregs), a subset of T lymphocytes, promote the resolution of inflammation. Septic patients have elevated levels of circulating Tregs. Platelets influence the proliferation and activation of Tregs in vitro. However, modulating platelet-Tregs interaction during sepsis may restraing Treg proliferation, leading to the restoration of immunologic homeostasis. P2Y12 is a purinergic receptor present on platelets and T lymphocytes. Blocking P2Y12 improves the outcome of sepsis. We investigated whether blocking P2Y12 alters platelet-Treg interaction in vivo. We used the murine model of sepsis, cecal ligation, and puncture (CLP) and we blocked P2Y12 using the P2Y12 antagonist, clopidogrel. Twenty-four hours after surgery, we measured Treg population sizes in the spleens of the Sham, CLP, and CLP + clopidogrel groups. We investigated the effect of blocking P2Y12 in vitro using cocultures of human platelets and T cells with or without anti-CD3/CD28. P2Y12 was blocked using AR-C69931MX. Treg population sizes were reduced in the septic mice treated with clopidogrel compared with untreated septic mice. Aggregation of platelets and CD4+ T cells was reduced in treated CLP mice compared with untreated CLP mice. P2Y12 antagonism changes how platelets influence T cells in vitro, depending on T-cell activation. In conclusion, blockade of the P2Y12 signaling pathway restrains Treg proliferation in vivo and in vitro. Targeting platelets to control Treg proliferation and activity may be a promising strategy for treating sepsis.
Collapse
Affiliation(s)
- Samara Albayati
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Harika Vemulapalli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.,Department of Microbiology and Immunology Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| |
Collapse
|
24
|
Polasky C, Wendt F, Pries R, Wollenberg B. Platelet Induced Functional Alteration of CD4 + and CD8 + T Cells in HNSCC. Int J Mol Sci 2020; 21:ijms21207507. [PMID: 33053760 PMCID: PMC7588893 DOI: 10.3390/ijms21207507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets (PLT) are the second most abundant cell type in human blood and exert various immune-regulatory functions under both physiological and pathological conditions. In fact, immune cell regulation via platelets has been demonstrated in several studies within the past decade. However, the exact mechanisms behind T cell regulation remain poorly understood. We questioned whether the formation of aggregates of platelets and T cells has an impact on T-cell functions. In the present study, we stimulated PBMC cultures with anti-CD3 and anti-CD28 mABs and cultured them at a PLT: PBMC ratio of 1:1 or 100:1. After 24, 48, and 72 h, PD-1, PD-L1 expression, and proliferation were analyzed on T cells using flow cytometry. Cytokine production was measured in PHA stimulated CD4 cells after 6 h. We found a significant platelet-mediated decrease in PD-1 and PD-L1 expression, proliferation, as well as IFN-γ and TNF-α production. Perturbations also at least partially remained after spatial separation of PLTs from PBMCs in Transwell-assays. T cell-platelet aggregates showed similar levels of activation markers, proliferation, and secreted cytokines as their non-complexed counterparts. Results indicate a platelet mediated regulation of T cells via direct and indirect contact, but only mediocre effects of the complex formation itself.
Collapse
Affiliation(s)
- Christina Polasky
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany; (F.W.); (R.P.)
- Correspondence: ; Tel.: +49-451-500-42129
| | - Franziska Wendt
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany; (F.W.); (R.P.)
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany; (F.W.); (R.P.)
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University Hospital MRI, Technical University, 81675 München, Germany;
| |
Collapse
|
25
|
Mulet M, Zamora C, Porcel JM, Nieto JC, Pajares V, Muñoz-Fernandez AM, Calvo N, Esquerda A, Vidal S. Experimental supporting data on the influence of platelet-derived factors of malignant pleural effusions on T cell effector functions and their relevance in predicting prognosis of lung adenocarcinoma patients with pleural metastasis. Data Brief 2020; 32:106266. [PMID: 32984462 PMCID: PMC7494457 DOI: 10.1016/j.dib.2020.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
The data described in this article are supplementary to our primary article "Platelet factor 4 regulates T cell effector functions in malignant pleural effusions". Malignant pleural effusion (MPE) is a common complication of advanced lung adenocarcinoma (LAC) associated with a poor life expectancy [1]. Several challenges need to be addressed to identify non-invasive molecular biomarkers that help to predict the prognosis of LAC patients with MPE [2]. In the primary publication, we proposed that platelet-derived factors, especially platelet factor 4 (PF4), can negatively regulate T lymphocyte activation and granzyme B expression in pleural metastasis and its levels were associated with a worse prognosis. Here, we provide data on the influence of other platelet-derived factors, including transforming growth factor β (TGF-β), vascular endothelial factor (VEGF), and P-selectin on T lymphocyte response in MPE and their relevance as prognostic factors in lung cancer patients with pleural metastasis. Pleural fluids from 35 lung adenocarcinoma (LAC) and 20 heart failure (HF) patients were collected by thoracentesis and its platelet-derived factors' content was measured by specific enzyme-linked immunosorbent assay (ELISAs). Correlations between pleural levels of platelet-derived factors and T cell functions were analyzed by Pearson coefficients. Kaplan-Meier curves were used to estimate the effect of pleural concentrations of platelet-derived factors on overall survival of LAC patients with pleural metastasis. These analyses showed that the concentration of platelet-derived factors was not associated with T cell proliferation and cytotoxicity. Furthermore, their levels do not predict the survival of LAC with MPE.
Collapse
Affiliation(s)
- Maria Mulet
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Zamora
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, Lleida, Spain
| | - Juan C. Nieto
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Virginia Pajares
- Department Pneumology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Nuria Calvo
- Department Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aureli Esquerda
- Department of Laboratory Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, Lleida, Spain
| | - Silvia Vidal
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
26
|
Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, Petrey AC, Tolley ND, Guo L, Cody M, Weyrich AS, Yost CC, Rondina MT, Campbell RA. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136:1317-1329. [PMID: 32573711 PMCID: PMC7483430 DOI: 10.1182/blood.2020007214] [Citation(s) in RCA: 690] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to understand the pathogenesis of coronavirus disease 2019 (COVID-19). In particular, thrombotic complications in patients with COVID-19 are common and contribute to organ failure and mortality. Patients with severe COVID-19 present with hemostatic abnormalities that mimic disseminated intravascular coagulopathy associated with sepsis, with the major difference being increased risk of thrombosis rather than bleeding. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters platelet function to contribute to the pathophysiology of COVID-19 remains unknown. In this study, we report altered platelet gene expression and functional responses in patients infected with SARS-CoV-2. RNA sequencing demonstrated distinct changes in the gene-expression profile of circulating platelets of COVID-19 patients. Pathway analysis revealed differential gene-expression changes in pathways associated with protein ubiquitination, antigen presentation, and mitochondrial dysfunction. The receptor for SARS-CoV-2 binding, angiotensin-converting enzyme 2 (ACE2), was not detected by messenger RNA (mRNA) or protein in platelets. Surprisingly, mRNA from the SARS-CoV-2 N1 gene was detected in platelets from 2 of 25 COVID-19 patients, suggesting that platelets may take-up SARS-COV-2 mRNA independent of ACE2. Resting platelets from COVID-19 patients had increased P-selectin expression basally and upon activation. Circulating platelet-neutrophil, -monocyte, and -T-cell aggregates were all significantly elevated in COVID-19 patients compared with healthy donors. Furthermore, platelets from COVID-19 patients aggregated faster and showed increased spreading on both fibrinogen and collagen. The increase in platelet activation and aggregation could partially be attributed to increased MAPK pathway activation and thromboxane generation. These findings demonstrate that SARS-CoV-2 infection is associated with platelet hyperreactivity, which may contribute to COVID-19 pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Jesse W Rowley
- Molecular Medicine Program
- Department of Internal Medicine
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute
| | | | | | - Li Guo
- Molecular Medicine Program
| | - Mark Cody
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Andrew S Weyrich
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
| | - Christian C Yost
- Molecular Medicine Program
- Department of Pediatrics, University of Utah, Salt Lake City, UT; and
| | - Matthew T Rondina
- Molecular Medicine Program
- Department of Internal Medicine
- Department of Pathology, and
- Department of Internal Medicine, George E. Wahlen Department of Veterans Affairs (VA) Medical Center, and
- Geriatric Research, Education, and Clinical Center (GRECC), VA Salt Lake City Healthcare System, Salt Lake City, UT
| | | |
Collapse
|
27
|
Meikle CK, Meisler AJ, Bird CM, Jeffries JA, Azeem N, Garg P, Crawford EL, Kelly CA, Gao TZ, Wuescher LM, Willey JC, Worth RG. Platelet-T cell aggregates in lung cancer patients: Implications for thrombosis. PLoS One 2020; 15:e0236966. [PMID: 32776968 PMCID: PMC7416940 DOI: 10.1371/journal.pone.0236966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-leukocyte aggregates (PLAs) are associated with increased thrombosis risk. The influence of PLA formation is especially important for cancer patients, since thrombosis accounts for approximately 10% of cancer-associated deaths. Our objective was to characterize and quantify PLAs in whole blood samples from lung cancer patients compared to healthy volunteers with the intent to analyze PLA formation in the context of lung cancer-associated thrombosis. Consenting lung cancer patients (57) and healthy volunteers (56) were enrolled at the Dana Cancer Center at the University of Toledo Health Science Campus. Peripheral blood samples were analyzed by flow cytometry. Patient medical history was reviewed through electronic medical records. Most importantly, we found lung cancer patients to have higher percentages of platelet-T cell aggregates (PTCAs) than healthy volunteers among both CD4+ T lymphocyte and CD8+ T lymphocyte populations. Our findings demonstrate that characterization of PTCAs may have clinical utility in differentiating lung cancer patients from healthy volunteers and stratifying lung cancer patients by history of thrombosis.
Collapse
Affiliation(s)
- Claire K. Meikle
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Adam J. Meisler
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Cara M. Bird
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Joseph A. Jeffries
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Nabila Azeem
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Priyanka Garg
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Erin L. Crawford
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Clare A. Kelly
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Tess Z. Gao
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Leah M. Wuescher
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - James C. Willey
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Randall G. Worth
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| |
Collapse
|
28
|
Sanz-Martínez MT, Moga E, Sánchez Martínez MA, Zamora Atenza C, Vidal S, Juárez C, Puig L. High Levels of Platelet-Lymphocyte Complexes in Patients with Psoriasis Are Associated with a Better Response to Anti-TNF-α Therapy. J Invest Dermatol 2020; 140:1176-1183. [PMID: 31778714 DOI: 10.1016/j.jid.2019.08.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is currently considered to be an immune-mediated disease whose patho-mechanisms involve platelet activation, which seems to correlate with the activity of the disease. Platelet activation is associated with the formation of platelet-lymphocyte complexes (PLyC), although their significance remains unknown. Moreover, biological treatments that target tumor necrosis factor-α (TNF-α) reduce platelet activation. To clarify the significance of PLyC, we compared their levels in patients with psoriasis with those of healthy donors and determined whether platelet binding modifies the secretion of IL-17A by T helper cells. Finally, we assessed the effect of anti-TNF-α treatment on PLyC in responder and non-responder patients with psoriasis. Ours results demonstrated an increase in PLyC in patients with psoriasis. Moreover, the percentage of IL-17-secreting cells was observed to be higher in the platelet-lymphocyte complex population, and these cells tended to secrete greater amounts of IL-17A. Psoriasis patients treated with anti-TNF-α normalized platelet-lymphocyte complex values, and the basal percentage of platelet-T helper lymphocyte complexes was significantly higher in the responder group. In conclusion, PLyC are increased in psoriasis patients, and the number of complexes decreases in response to anti-TNF-α treatment, specifically in the responder group of patients. This finding suggests that PLyC are a prognostic biomarker of response to anti-TNF-α therapy, but prospective studies are necessary to verify these results in patients with psoriasis.
Collapse
Affiliation(s)
| | - Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Carlos Zamora Atenza
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cándido Juárez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
29
|
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease in which a variety of circulating pro-inflammatory cells and dysregulated molecules are involved in disease aetiology and progression. Platelets are an important cellular element in the circulation that can bind several dysregulated molecules (such as collagen, thrombin and fibrinogen) that are present both in the synovium and the circulation of patients with RA. Platelets not only respond to dysregulated molecules in their environment but also transport and express their own inflammatory mediators, and serve as regulators at the boundary between haemostasis and immunity. Activated platelets also produce microparticles, which further convey signalling molecules and receptors to the synovium and circulation, thereby positioning these platelet-derived particles as strategic regulators of inflammation. These diverse functions come together to make platelets facilitators of cellular crosstalk in RA. Thus, the receptor functions, ligand binding potential and dysregulated signalling pathways in platelets are becoming increasingly important for treatment in RA. This Review aims to highlight the role of platelets in RA and the need to closely examine platelets as health indicators when designing effective pharmaceutical targets in this disease.
Collapse
|
30
|
Couturier J, Nuotio-Antar AM, Agarwal N, Wilkerson GK, Saha P, Kulkarni V, Lakhashe SK, Esquivel J, Nehete PN, Ruprecht RM, Sastry KJ, Meyer JM, Hill LR, Lake JE, Balasubramanyam A, Lewis DE. Lymphocytes upregulate CD36 in adipose tissue and liver. Adipocyte 2019; 8:154-163. [PMID: 31035848 PMCID: PMC6768236 DOI: 10.1080/21623945.2019.1609202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CD36 is a multifunctional scavenger receptor and lipid transporter implicated in metabolic and inflammatory pathologies, as well as cancer progression. CD36 is known to be expressed by adipocytes and monocytes/macrophages, but its expression by T cells is not clearly established. We found that CD4 and CD8 T cells in adipose tissue and liver of humans, monkeys, and mice upregulated CD36 expression (ranging from ~5–40% CD36+), whereas little to no CD36 was expressed by T cells in blood, spleen, and lymph nodes. CD36 was expressed predominantly by resting CD38-, HLA.DR-, and PD-1- adipose tissue T cells in monkeys, and increased during high-fat feeding in mice. Adipose tissue and liver promote a distinct phenotype in resident T cells characterized by CD36 upregulation.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alli M. Nuotio-Antar
- US Department of Agriculture/Agricultural Research Center, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Pradip Saha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Viraj Kulkarni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Samir K. Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Juan Esquivel
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Pramod N. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Ruth M. Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - K. Jagannadha Sastry
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer M. Meyer
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lori R. Hill
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordan E. Lake
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E. Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Cognasse F, Laradi S, Berthelot P, Bourlet T, Marotte H, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Inflammatory Response to Stress. Front Immunol 2019; 10:1478. [PMID: 31316518 PMCID: PMC6611140 DOI: 10.3389/fimmu.2019.01478] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Blood platelets play a central hemostatic role, (i) as they repair vascular epithelial damage, and (ii) they play immune defense roles, as they have the capacity to produce and secrete various cytokines, chemokines, and related products. Platelets sense and respond to local dangers (infectious or not). Platelets, therefore, mediate inflammation, express and use receptors to bind infectious pathogen moieties and endogenous ligands, among other components. Platelets contribute to effective pathogen clearance. Damage-associated molecular patterns (DAMPs) are danger signals released during inflammatory stress, such as burns, trauma and infection. Each pathogen is recognized by its specific molecular signature or pathogen-associated molecular pattern (PAMP). Recent data demonstrate that platelets have the capacity to sense external danger signals (DAMPs or PAMPs) differentially through a distinct type of pathogen recognition receptor (such as Toll-like receptors). Platelets regulate the innate immune response to pathogens and/or endogenous molecules, presenting several types of “danger” signals using a complete signalosome. Platelets, therefore, use complex tools to mediate a wide range of functions from danger sensing to tissue repair. Moreover, we noted that the secretory capacity of stored platelets over time and the development of stress lesions by platelets upon collection, processing, and storage are considered stress signals. The key message of this review is the “inflammatory response to stress” function of platelets in an infectious or non-infectious context.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Philippe Berthelot
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Thomas Bourlet
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Hubert Marotte
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Department of Rheumatology, University Hospital of Saint-Etienne, Saint-Étienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Étienne, France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Institut National de Transfusion Sanguine, Paris, France
| | | |
Collapse
|
32
|
Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front Med (Lausanne) 2019; 6:76. [PMID: 31106204 PMCID: PMC6499166 DOI: 10.3389/fmed.2019.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP) on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and the polymer has been recognized as a therapeutic target for interference with blood coagulation and vascular hyperpermeability. PolyP content and chain length depend on the specific cell type and energy status, which may affect cellular functions. PolyP metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic cells and mammalian systems have remained enigmatic. In this review, we will present an overview of polyP functions, focusing on intra- and extracellular roles of the polymer and discuss open questions that emerge from the current knowledge on polyP regulation.
Collapse
Affiliation(s)
- Reiner K W Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorena Hänel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Allende
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Zamora C, Toniolo E, Diaz-Torné C, Cantó E, Magallares B, Ortiz MA, Perea L, Corominas H, Vidal S. Association of Platelet Binding to Lymphocytes with B Cell Abnormalities and Clinical Manifestations in Systemic Lupus Erythematosus. Mediators Inflamm 2019; 2019:2473164. [PMID: 30944545 PMCID: PMC6421767 DOI: 10.1155/2019/2473164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with the polyclonal activation of B lymphocytes and the production of autoantibodies that cause immune complex-related inflammation. Immunological factors derived from platelets modulate B cell function in SLE disease. However, platelets do not only modify the immune system by soluble factors. The binding of platelets to lymphocytes can modulate immune response. Thus, we speculate that the binding of platelets to lymphocytes in SLE patients may play a role in abnormal B lymphocyte response and the pathogenesis of SLE. We observed that levels of lymphocytes with bound platelets were higher in SLE patients than in healthy donors (HD). In SLE patients, the percentage of B lymphocytes with bound platelets positively correlated with plasmatic levels of IgG, IgA, IL-10, and soluble CD40L and negatively correlated with IgM levels, though not in HD. Preswitched memory B lymphocytes were the subpopulation with more bound platelets. Lymphocytes with bound platelets from both HD and SLE patients had major levels of CD86 and BAFFR and a greater production of IL-10 than lymphocytes without bound platelets. However, only B lymphocytes with bound platelets from SLE patients had increased levels of IgG and IgA on their surface. SLE patients with a suggestive renal manifestation had the highest levels of B and T lymphocytes with bound platelets. These results suggest that the binding of platelets to lymphocytes plays a role in SLE disease and that controlling this binding may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Carlos Zamora
- Department of Immunology, Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
| | - Elide Toniolo
- Unit of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cesar Diaz-Torné
- Unit of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elisabet Cantó
- Department of Immunology, Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
| | - Berta Magallares
- Unit of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ma Angels Ortiz
- Department of Immunology, Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
| | - Lidia Perea
- Department of Immunology, Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
| | - Hector Corominas
- Unit of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
| |
Collapse
|
34
|
Erre GL, Paliogiannis P, Castagna F, Mangoni AA, Carru C, Passiu G, Zinellu A. Meta-analysis of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in rheumatoid arthritis. Eur J Clin Invest 2019; 49:e13037. [PMID: 30316204 DOI: 10.1111/eci.13037] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND We conducted a meta-analysis to review the available evidence regarding the associations between peripheral blood neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) and the presence of rheumatoid arthritis (RA). METHODS PubMed, Web of Science and Scopus, from inception to January 2018, were searched for studies reporting on NLR and PLR in RA in comparison with healthy subjects. Standardized mean difference (SMD) was calculated with a confidence interval (CI) of 95%. RESULTS Thirteen NLR studies (1550 RA patients and 1128 healthy controls) and 8 PLR studies (380 RA patients and 305 healthy controls) were included in the meta-analysis. NLR and PLR were significantly higher in patients with RA when compared to controls (SMD = 0.79, 95% CI 0.55-1.03; P < 0.001 and SMD = 0.66, 95% CI 0.43-0.88; P < 0.001, respectively). CONCLUSIONS The NLR and PLR are significantly associated with the presence of RA. Further studies are required to ascertain the potential clinical use of these simple and relatively inexpensive markers in RA diagnosis.
Collapse
Affiliation(s)
- Gian Luca Erre
- UOC Reumatologia, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero-Universitaria di Sassari e Università di Sassari, Sassari, Italy
| | | | - Floriana Castagna
- UOC Reumatologia, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero-Universitaria di Sassari e Università di Sassari, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Ciriaco Carru
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Giuseppe Passiu
- UOC Reumatologia, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero-Universitaria di Sassari e Università di Sassari, Sassari, Italy
| | - Angelo Zinellu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
35
|
Paliogiannis P, Satta R, Deligia G, Farina G, Bassu S, Mangoni AA, Carru C, Zinellu A. Associations between the neutrophil-to-lymphocyte and the platelet-to-lymphocyte ratios and the presence and severity of psoriasis: a systematic review and meta-analysis. Clin Exp Med 2018; 19:37-45. [PMID: 30478648 DOI: 10.1007/s10238-018-0538-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022]
Abstract
The diagnosis of psoriasis, an immune-mediated disease that affects 2% of the population in Western countries, is largely based on history and clinical examination. The aim of this systematic review and meta-analysis was to investigate the associations between the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) and the presence and clinical severity of psoriasis. A systematic literature search was conducted in PubMed, Web of Science, and Scopus, from inception to January 2018. Twelve case-control studies enrolling 1067 psoriasis patients (537 males and 530 females) and 799 healthy controls (404 males and 395 females) were included in the meta-analysis. The NLR was evaluated in all the studies, while the PLR was assessed in four studies. Pooled results showed that both the NLR and the PLR values were significantly higher in patients with psoriasis (SMD = 0.69, 95% CI 0.53-1.85, p < 0.001, and SMD = 0.40, 95% CI 0.12-0.68, p = 0.006, respectively). There were no significant differences in NLR values according to the severity of disease (p = 0.52). The NLR and the PLR are significantly associated with the presence, but not with the severity, of psoriasis. Further studies are required to determine the additional utility of these haematological indexes in the diagnosis of psoriasis.
Collapse
Affiliation(s)
- Panagiotis Paliogiannis
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Rosanna Satta
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giovanni Deligia
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giuseppina Farina
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Stefania Bassu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy.
| |
Collapse
|
36
|
Cafaro G, Bartoloni E, Alunno A, Gerli R. Platelets: a potential target for rheumatoid arthritis treatment? Expert Rev Clin Immunol 2018; 15:1-3. [PMID: 30392437 DOI: 10.1080/1744666x.2019.1544071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Giacomo Cafaro
- a Section of Rheumatology, Department of Medicine , University of Perugia , Perugia , Italy
| | - Elena Bartoloni
- a Section of Rheumatology, Department of Medicine , University of Perugia , Perugia , Italy
| | - Alessia Alunno
- a Section of Rheumatology, Department of Medicine , University of Perugia , Perugia , Italy
| | - Roberto Gerli
- a Section of Rheumatology, Department of Medicine , University of Perugia , Perugia , Italy
| |
Collapse
|
37
|
Martin GE, Pace M, Thornhill JP, Phetsouphanh C, Meyerowitz J, Gossez M, Brown H, Olejniczak N, Lwanga J, Ramjee G, Kaleebu P, Porter K, Willberg CB, Klenerman P, Nwokolo N, Fox J, Fidler S, Frater J. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA. Front Immunol 2018; 9:928. [PMID: 29780387 PMCID: PMC5946760 DOI: 10.3389/fimmu.2018.00928] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3+CD4+ cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32low, CD32+CD14+, and CD32high). Of note, CD4 negative enrichment kits remove the majority of CD4+CD32+ T cells, potentially skewing subsequent analyses if used. CD32high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3+CD4+CD32+ phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32+ T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Morgane Gossez
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julianne Lwanga
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | | | - Kholoud Porter
- Research Department of Infection and Population Health, University College London, London, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Zamora C, Canto E, Nieto JC, Garcia-Planella E, Gordillo J, Ortiz MA, Suarez-Calvet X, Perea L, Julia G, Juarez C, Vidal S. Inverse Association Between Circulating Monocyte-Platelet Complexes and Inflammation in Ulcerative Colitis Patients. Inflamm Bowel Dis 2018; 24:818-828. [PMID: 29529212 DOI: 10.1093/ibd/izx106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating monocytes from active ulcerative colitis (UC) patients produced high levels of tumor necrosis factor-alpha(TNFα) and interleukin(IL)-6 after Toll-like receptors (TLR) stimulation. Since platelets (PLT) can bind to leukocytes, thereby decreasing inflammatory cytokine production, UC patients may exhibit different levels of monocyte-platelet complexes depending on disease activity. METHODS We compared among healthy donors, active (onset flare and relapse), and inactive UC patients the presence of circulating monocyte-platelet complexes (CD14+PLT+) and membrane CD162 expression by flow cytometry. Lipopolysaccharide- binding protein, TNFα, and IL-10 were compared by ELISA. Binding of CD14+PLT+ to human umbilical vein endothelial cells (HUVECs) were analyzed by immunofluorescence. RESULTS Onset flare UC patients had the lowest levels of CD14+PLT+. Membrane CD162, crucial for the PLT binding, was downregulated only on monocytes from onset flare UC patients. Membrane CD162 expression on CD14+ cells inversely correlated with lipopolysaccharide binding protein levels. As an expected consequence, more CD14+PLT+ than CD14+PLT- from onset flare UC patients bound to activated HUVECs. TNFα tended to negatively correlate with CD14+PLT+ in relapse and inactive UC patients, whereas IL-10 positively correlated with CD14+PLT+ in all UC patients (r = -0.43, P = 0.1 and r = 0.61, P = 0.01, respectively). The anti-inflammatory role of PLT binding to monocytes was confirmed in cocultures of PLT and monocytes. These cocultures increased the percentage of CD14+PLT+ and IL-10 production, and decreased TNFα production. These anti-inflammatory effects were abolished when we blocked the binding of PLT with neutralizing anti-CD62P antibody. CONCLUSIONS Decreased CD162 expression associated with endotoxemia reduced the binding of PLT to monocytes through membrane CD162-CD62P, favoring the inflammatory response of onset flare UC patients.
Collapse
Affiliation(s)
- Carlos Zamora
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Canto
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan C Nieto
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Garcia-Planella
- Gastroenterology and Hepatology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Gordillo
- Gastroenterology and Hepatology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mª Angels Ortiz
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Suarez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Institut de Recerca Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Perea
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Germà Julia
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Candido Juarez
- Dep. of Immunology Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Dep. of Immunology, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 2018; 38:959-974. [PMID: 29492586 PMCID: PMC5954012 DOI: 10.1007/s00296-018-4001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
Collapse
|
40
|
Zamora C, Cantó E, Nieto JC, Bardina J, Diaz-Torné C, Moya P, Magallares B, Ortiz MA, Julià G, Juarez C, Llobet JM, Vidal S. Binding of Platelets to Lymphocytes: A Potential Anti-Inflammatory Therapy in Rheumatoid Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3099-3108. [PMID: 28250158 DOI: 10.4049/jimmunol.1601708] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022]
Abstract
Soluble factors released from platelets can modulate the immune response of leukocytes. We and others have recently found that T lymphocytes with bound platelets have reduced proliferation and IFN-γ and IL-17 production. Thus, we speculate that if we induce the binding of platelets to lymphocytes, we will be able to regulate the inflammatory response. When we cocultured platelets with lymphocytes at different ratios, we were able to increase the percentage of lymphocytes with bound platelets. The coculture of platelets with lymphocytes in the presence of stimulation decreased the production of IFN-γ and TNF-α, T cell proliferation, and the expression of CD25, PD-L1, and SLAM. However, this coculture increased CD39 expression. All of these effects were dependent on the dose of platelets and operated indistinctly with platelets from different healthy donors. When platelets were cocultured in the same compartment with lymphocytes, we observed less IFN-γ and TNF-α production and T lymphocyte proliferation than in cultures with platelets separated from lymphocytes by a 0.4-μm pore size filter. The binding of platelets to lymphocytes was blocked with anti-P-selectin Abs, and when this occurred we observed higher IFN-γ and TNF-α production than in nonblocked conditions. The cocultures of platelets with synovial fluid cells from rheumatoid arthritis patients reduced inflammatory cytokine production and increased IL-10 production. These results suggest that platelet binding to lymphocytes effectively regulates T lymphocyte function. This mechanism could be easily applied to reduce inflammatory responses.
Collapse
Affiliation(s)
- Carlos Zamora
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
| | - Elisabet Cantó
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Juan C Nieto
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jorge Bardina
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Cesar Diaz-Torné
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Unitat Reumatologia, Hospital de la Santa Creu i Sant Pau, 08026 Barcelona, Spain; and
| | - Patricia Moya
- Unitat Reumatologia, Hospital de la Santa Creu i Sant Pau, 08026 Barcelona, Spain; and
| | - Berta Magallares
- Unitat Reumatologia, Hospital de la Santa Creu i Sant Pau, 08026 Barcelona, Spain; and
| | - M Angels Ortiz
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Germà Julià
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Candido Juarez
- Departament Immunologia, Hospital de la Santa Creu i Sant Pau, 08026 Barcelona, Spain
| | - Josep M Llobet
- Unitat Reumatologia, Hospital de la Santa Creu i Sant Pau, 08026 Barcelona, Spain; and
| | - Silvia Vidal
- Departament Immunologia, Institut Recerca Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
| |
Collapse
|
41
|
|
42
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
43
|
Geys L, Vranckx C, Lijnen HR, Scroyen I. CD36 deficiency blunts effects of diet on regulatory T cells in murine gonadal adipose tissue and mesenteric lymph nodes. Cell Immunol 2015; 298:33-6. [PMID: 26344897 DOI: 10.1016/j.cellimm.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023]
Abstract
The effect of cluster of differentiation (CD)36 on regulatory T cells (Treg) was investigated in gonadal (GN) adipose tissues and mesenteric lymph nodes (MLN) of wild-type (WT) and CD36 deficient (CD36(-/-)) mice kept on standard fat (SFD, lean) or on high fat diet (HFD, obese). GN adipose tissue mass was smaller, but MLN size larger for obese CD36(-/-) versus obese WT mice. Overall, the reduction of Treg cells in GN adipose tissue and MLN after a HFD is much more prominent in WT than CD36(-/-) mice. Moreover, CD36(-/-) mice may be protected against obesity-related chronic inflammation.
Collapse
Affiliation(s)
- Lotte Geys
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000 Leuven, Belgium
| | - Christine Vranckx
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000 Leuven, Belgium
| | - Henri Roger Lijnen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000 Leuven, Belgium.
| | - Ilse Scroyen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000 Leuven, Belgium
| |
Collapse
|
44
|
Starossom SC, Veremeyko T, Yung AWY, Dukhinova M, Au C, Lau AY, Weiner HL, Ponomarev ED. Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation. Circ Res 2015; 117:779-92. [PMID: 26294656 DOI: 10.1161/circresaha.115.306847] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases, such as multiple sclerosis (MS), is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T-cell differentiation toward pathogenic T helper-1/T helper-17 phenotypes are not completely understood. OBJECTIVE We investigated the role of platelets in the modulation of CD4 T-cell functions in patients with MS and in mice with experimental autoimmune encephalitis, an animal model for MS. METHODS AND RESULTS We found that early in MS and experimental autoimmune encephalitis, platelets degranulated and produced soluble factors serotonin (5-hydroxytryptamine), platelet factor 4, and platelet-activating factor, which specifically stimulated differentiation of T cells toward pathogenic T helper-1, T helper-17, and interferon-γ/interleukin-17-producing CD4 T cells. At the later stages of MS and experimental autoimmune encephalitis, platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet-CD4 T-cell aggregates involved the interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T-cell activation, proliferation, and production of interferon-γ. Blocking of formation of platelet-CD4 T-cell aggregates during progression of experimental autoimmune encephalitis substantially enhanced proliferation of CD4 T cells in the central nervous system and the periphery leading to exacerbation of the disease. CONCLUSION Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of central nervous system autoimmune inflammation.
Collapse
Affiliation(s)
- Sarah C Starossom
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Tatyana Veremeyko
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Amanda W Y Yung
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Marina Dukhinova
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Cheryl Au
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Alexander Y Lau
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Howard L Weiner
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Eugene D Ponomarev
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
45
|
Activated platelet-T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells. AIDS 2015; 29:1297-308. [PMID: 26002800 PMCID: PMC4502988 DOI: 10.1097/qad.0000000000000701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite successfully suppressed viremia by treatment, patients with high levels of biomarkers of coagulation/inflammation are at an increased risk of developing non-AIDS defining serious illnesses such as cardiovascular diseases. Thus, there is a relationship between persistent immune activation and coagulation/inflammation, although the mechanisms are poorly understood. Platelets play an important role in this process. Although interactions between platelets and elements of the innate immune system, such as monocytes, are well described, little is known about the interaction between platelets and the adaptive immune system. DESIGN We investigated the interaction of a component of the coagulation system, platelets, and the adaptive immune system T cells. METHODS Healthy controls and combination antiretroviral therapy (cART)-treated HIV-infected patients with viral loads of less than 40 copies/ml for more than 15 months were analysed for platelet-T-cell conjugate formation. RESULTS Platelets can form conjugates with T cells and were preferentially seen in CD4 and CD8 T-cell subsets with more differentiated phenotypes [memory, memory/effector and terminal effector memory (TEM)]. Compared with healthy controls, these conjugates in patients with HIV infection were more frequent, more often composed of activated platelets (CD42bCD62P), and were significantly associated with the D-dimer serum levels. CONCLUSION These data support a model in which platelet-T-cell conjugates may play a critical role in the fast recruitment of antigen-experienced T cells to the place of injury. This mechanism can contribute in maintaining a state of coagulation/inflammation observed in these patients contributing to the pathology of the disease.
Collapse
|
46
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 2015; 6:70. [PMID: 25750642 PMCID: PMC4335469 DOI: 10.3389/fimmu.2015.00070] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Small fragments circulating in the blood were formally identified by the end of the nineteenth century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the twentieth century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such, however, they were acknowledged as immunizing (to specific HPA and HLA markers): the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as 1930s, platelets entered the arsenal of medicines were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an “immune cell”? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages). The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of immune cells.
Collapse
Affiliation(s)
- Olivier Garraud
- Institut National de la Transfusion Sanguine , Paris , France ; EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| |
Collapse
|
48
|
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12:1764-75. [PMID: 25224706 DOI: 10.1111/jth.12730] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
Collapse
Affiliation(s)
- J M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Kuo HH, Fan R, Dvorina N, Chiesa-Vottero A, Baldwin WM. Platelets in early antibody-mediated rejection of renal transplants. J Am Soc Nephrol 2014; 26:855-63. [PMID: 25145937 DOI: 10.1681/asn.2013121289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibody-mediated rejection is a major complication in renal transplantation. The pathologic manifestations of acute antibody-mediated rejection that has progressed to functional impairment of a renal transplant have been defined in clinical biopsy specimens. However, the initial stages of the process are difficult to resolve with the unavoidable variables of clinical studies. We devised a model of renal transplantation to elucidate the initial stages of humoral rejection. Kidneys were orthotopically allografted to immunodeficient mice. After perioperative inflammation subsided, donor-specific alloantibodies were passively transferred to the recipient. Within 1 hour after a single transfer of antibodies, C4d was deposited diffusely on capillaries, and von Willebrand factor released from endothelial cells coated intravascular platelet aggregates. Platelet-transported inflammatory mediators platelet factor 4 and serotonin accumulated in the graft at 100- to 1000-fold higher concentrations compared with other platelet-transported chemokines. Activated platelets that expressed P-selectin attached to vascular endothelium and macrophages. These intragraft inflammatory changes were accompanied by evidence of acute endothelial injury. Repeated transfers of alloantibodies over 1 week sustained high levels of platelet factor 4 and serotonin. Platelet depletion decreased platelet mediators and altered the accumulation of macrophages. These data indicate that platelets augment early inflammation in response to donor-specific antibodies and that platelet-derived mediators may be markers of evolving alloantibody responses.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Departments of Immunology and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | - Ran Fan
- Departments of Immunology and
| | | | | | | |
Collapse
|