1
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
2
|
Shi XF, Zhang JL, Liu K, Wang L, Wang HP, Wu HY. Detection of serum major histocompatibility complex I (HLA-1) and β2-microglobulin (β2M) in pre-eclampsia using isobaric tags for relative and absolute quantitation (iTRAQ). Int J Gynaecol Obstet 2024; 165:1072-1084. [PMID: 38149341 DOI: 10.1002/ijgo.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE The purpose of this preliminary investigation into the pathogenesis of pre-eclampsia was to screen the differential proteins in the serum of pregnant women with normal pregnancy and early-onset pre-eclampsia using isobaric tags for relative and absolute quantitation (iTRAQ), so as to identify serum biomarkers for the early diagnosis of pre-eclampsia. METHODS We examined the peripheral serum of 58 normal pregnant women and 42 pregnant women with early-onset pre-eclampsia using iTRAQ; the differentially expressed proteins were screened for bioinformatics analysis; and the expression of candidate proteins human leukocyte antigen-1 (HLA-1) and β2-microglobulin (β2M) in placental tissues was detected using western blot. RESULTS We identified a total of 63 differential proteins in the serum of patients from the normal control group and the pre-eclampsia group, and this included 24 up-regulated proteins and 39 down-regulated proteins. The western blot results of placental tissue showed reduced HLA-1 expression (1.12 ± 0.23) in the placenta in the pre-eclampsia group as compared with the normal control group (1.34 ± 0.22). Consistent with the results observed in the serum, β2M in the placenta in the pre-eclampsia group was significantly elevated (1.05 ± 0.47) in comparison with the normal group (0.75 ± 0.33) (P < 0.05). CONCLUSION In this study, we found that iTRAQ technology was useful for identifying differentially expressed proteins in the peripheral serum of pregnant women with pre-eclampsia, and that HLA-1 and β2M, which may be involved in the occurrence of pre-eclampsia, show promise as predictive markers of pre-eclampsia.
Collapse
Affiliation(s)
- Xu-Feng Shi
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jing-Li Zhang
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Kan Liu
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Li Wang
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Huan-Ping Wang
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hai-Ying Wu
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chen Z, Zhou X, Qu H, Zhang X, Kwak-Kim J, Wang W. Characteristics and functions of memory regulatory T cells in normal pregnancy cycle and pregnancy complications. J Reprod Immunol 2024; 163:104235. [PMID: 38574576 DOI: 10.1016/j.jri.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Regulatory T cells (Tregs) are activated and expanded after exposure to fetal-specific (paternal) antigens. A proportion of Tregs differentiate into memory Tregs (mTregs), exhibiting immune memory function and exerting more potent immunosuppression than naive Tregs (nTregs). However, it is unclear how mTregs are regulated during normal and pathological pregnancies (e.g., gestational diabetes mellitus (GDM) and preeclampsia (PE)). In this study, PD-1, HLA-G, and HLA-DR expressions on memory CD4+ T cells, naive CD4+ T cells, Tregs, mTregs, and nTregs in healthy non-pregnant women (n=20), healthy first (n=20), second (n=20), and third-trimester women (n=20), postpartum women (n=20), GDM (n=20), and PE patients (n=20) were analyzed. The proportion of mTregs out of Tregs was increased (P<0.05) in the first trimester compared with that in non-pregnancy and reduced in the second and third trimesters. The proportions of PD-1+ Tregs and mTregs were significantly increased during the first trimester compared to those of non-pregnancy (P<0.01), reached their maximum in the second trimester. Moreover, the proportions of HLA-G+ memory CD4+ T cells, Tregs, and mTregs were increased in the first and second trimesters (P<0.01), reached their maximum in the third trimester. GDM patients were characterized by significantly lower percentages of PD-1+ and HLA-G+ mTregs (P<0.01), while PE patients were characterized by significantly lower percentages of HLA-G+ mTregs (P<0.01), compared with the healthy third-trimester women. In general, as demonstrated by this study, mTregs increase in number and enhance maternal-fetal immunoregulation during pregnancy, and their dysfunction can result in pregnancy complications such as GMD or PE.
Collapse
Affiliation(s)
- Zeyang Chen
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China; School of Medicine, Qingdao University, Qingdao 266000, PR China
| | - Xiaojiao Zhou
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Hongmei Qu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
5
|
Zhang YN, Wu Q, Deng YH. Phenotypic characterisation of regulatory T cells in patients with gestational diabetes mellitus. Sci Rep 2024; 14:4881. [PMID: 38418860 PMCID: PMC10902321 DOI: 10.1038/s41598-023-47638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication that occurs during pregnancy. Emerging evidence suggests that immune abnormalities play a pivotal role in the development of GDM. Specifically, regulatory T cells (Tregs) are considered a critical factor in controlling maternal-fetal immune tolerance. However, the specific characteristics and alterations of Tregs during the pathogenesis of GDM remain poorly elucidated. Therefore, this study aimed to investigate the changes in Tregs among pregnant women diagnosed with GDM compared to healthy pregnant women. A prospective study was conducted, enrolling 23 healthy pregnant women in the third trimester and 21 third-trimester women diagnosed with GDM. Participants were followed up until the postpartum period. The proportions of various Treg, including Tregs, mTregs, and nTregs, were detected in the peripheral blood of pregnant women from both groups. Additionally, the expression levels of PD-1, HLA-G, and HLA-DR on these Tregs were examined. The results revealed no significant differences in the proportions of Tregs, mTregs, and nTregs between the two groups during the third trimester and postpartum period. However, GDM patients exhibited significantly reduced levels of PD-1+ Tregs (P < 0.01) and HLA-G+ Tregs (P < 0.05) in the third trimester compared to healthy pregnant women in the third trimester. Furthermore, GDM patients demonstrated significantly lower levels of PD-1+ mTregs (P < 0.01) and HLA-G+ (P < 0.05) mTregs compared to healthy pregnant women in the third trimester. Overall, the proportion of Tregs did not exhibit significant changes during the third trimester in GDM patients compared to healthy pregnant women. Nevertheless, the observed dysregulation of immune regulation function in Tregs and mTregs may be associated with the development of GDM in pregnant women.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qin Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Yi-Hui Deng
- School of Chinese Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China.
| |
Collapse
|
6
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
7
|
Wang W, Zhou X, Zhang Y, Chen Z, Huang J, Zhang X, Kwak-Kim J. The characteristics of antigenic specificity of memory regulatory t cells in women with unexplained recurrent pregnancy loss. J Reprod Immunol 2022; 154:103694. [PMID: 36063659 DOI: 10.1016/j.jri.2022.103694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) proliferate after encountering the fetal antigen, which plays an important role in maintaining maternal-fetal tolerance. Activated Tregs increase number and function after antigen encounter and develop memory. Upon subsequent antigen exposure, Treg cells re-expand more rapidly. However, the characteristics of memory regulatory T cells (mTregs) during normal pregnancy and unexplained recurrent pregnancy loss (URPL) have not been elucidated well. In this study, we analyzed the proportion of Tregs and mTregs in the peripheral blood and their surface expression of PD-1, CCR6, and HLA-G in normal non-pregnant (n = 20) and pregnant (n = 20) women, and non-pregnant (n = 20) and pregnant URPL (n = 20) women. We found that the proportions of mTregs in lymphocytes, CD3+ T cells, CD4+ T cells, and Tregs were lower in pregnant URPL patients than in normal pregnant women. The proportions of CD4+CD45RO+ Th cells in lymphocytes, CD3+ T, and CD4+ T cells in the pregnant URPL group were the highest among the four groups (P < 0.05). There were no significant differences among the other three groups (P > 0.05). The proportions of CD4+/CCR6+/mTregs, CD4+/PD-1+/mTregs, CD4+/HLA-G+/mTregs were significantly lower in the non-pregnant normal group and non-pregnant URPL group than in normal pregnant group and pregnant URPL group (P < 0.05, respectively). The proportions of CD4+/CCR6+ mTregs, CD4+/PD-1+/mTregs, CD4+/HLA-G+/mTregs were lower in pregnant URPL group than in normal pregnant group (P < 0.05, respectively). These findings indicate that fetal antigen-specific mTregs play an important role in pregnancy maintenance, and the dysregulation of mTreg may contribute to URPL.
Collapse
Affiliation(s)
- Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Reproduction Medical Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China.
| | - Xiaojiao Zhou
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China; School of Medicine, Qingdao Universityō, 38 Dengzhou Road, Qingdao 266000, PR China
| | - Yi Zhang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Zeyang Chen
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Department of Gynecology, Weihai Central Hospital, 3 Mishan East Road, Weihai 264400, PR China
| | - Jinxia Huang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
8
|
Asemani Y, Najafi S, Ezzatifar F, Zolbanin NM, Jafari R. Recent highlights in the immunomodulatory aspects of Treg cell-derived extracellular vesicles: special emphasis on autoimmune diseases and transplantation. Cell Biosci 2022; 12:67. [PMID: 35606869 PMCID: PMC9125934 DOI: 10.1186/s13578-022-00808-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
In order to maintain immunological tolerance to self and non-self antigens, one’s T regulatory (Treg) cells play a critical role in the regulation of detrimental inflammation. Treg cells inhibit the immune system in a variety of ways, some of which are contact-dependent and the others are soluble factors. Extracellular vesicles (EVs) are mainly secretory membrane structures that play a pivotal role in intercellular communication in both the local and systemic environments, enabling the transport of proteins, lipids, and nucleic acids between immune and non-immune cells. A number of studies have shown that Treg-derived EVs are specially formulated intercellular exchanging devices capable of regulating immunological responses by producing a cell-free tolerogenic milieu. Some of the processes suggested include miRNA-induced gene shutdown and upmodulation, surface protein activity, and enzyme transfer. Instead of being influenced by external circumstances like Tregs, exosomes’ cohesive structure allows them to transmit their charge intact across the blood–brain barrier and deliver it to the target cell with particular receptors. These properties have resulted in the use of Treg-derived EVs' immunomodulatory effects moving beyond laboratory research and into preclinical applications in animal models of a variety of inflammatory, autoimmune, and transplant rejection disorders. However, insufficient evidence has been produced to permit enrollment in human clinical studies. As such, we begin our research by introducing the most potent immunosuppressive elements discovered in Treg-derived EVs elucidating likely mechanisms of action in inhibiting immunological responses. Following that, we address recent research on the potential of suppressive EVs to regulate autoimmune inflammatory responses and improve tissue transplant survival.
Collapse
|
9
|
Khamri W, Gudd C, Liu T, Nathwani R, Krasniqi M, Azam S, Barbera T, Trovato FM, Possamai L, Triantafyllou E, Seoane RC, Lebosse F, Singanayagam A, Kumar N, Bernsmeier C, Mukherjee S, McPhail M, Weston CJ, Antoniades CG, Thursz MR. Suppressor CD4 + T cells expressing HLA-G are expanded in the peripheral blood from patients with acute decompensation of cirrhosis. Gut 2022; 71:1192-1202. [PMID: 34344786 PMCID: PMC9120410 DOI: 10.1136/gutjnl-2021-324071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Identifying components of immuneparesis, a hallmark of chronic liver failure, is crucial for our understanding of complications in cirrhosis. Various suppressor CD4+ T cells have been established as potent inhibitors of systemic immune activation. Here, we establish the presence, regulation and mechanism of action of a suppressive CD4+ T cell subset expressing human leucocyte antigen G (HLA-G) in patients with acute decompensation of cirrhosis (AD). DESIGN Flow cytometry was used to determine the proportion and immunophenotype of CD4+HLA-G+ T cells from peripheral blood of 20 healthy controls (HCs) and 98 patients with cirrhosis (28 with stable cirrhosis (SC), 20 with chronic decompensated cirrhosis (CD) and 50 with AD). Transcriptional and functional signatures of cell-sorted CD4+HLA-G+ cells were delineated by NanoString technology and suppression assays, respectively. The role of immunosuppressive cytokine interleukin (IL)-35 in inducing this population was investigated through in vitro blockade experiments. Immunohistochemistry (IHC) and cultures of primary human Kupffer cells (KCs) were performed to assess cellular sources of IL-35. HLA-G-mediated T cell suppression was explored using neutralising antibodies targeting co-inhibitory pathways. RESULTS Patients with AD were distinguished by an expansion of a CD4+HLA-G+CTLA-4+IL-35+ immunosuppressive population associated with disease severity, clinical course of AD, infectious complications and poor outcome. Transcriptomic analyses excluded the possibility that these were thymic-derived regulatory T cells. IHC analyses and in vitro cultures demonstrate that KCs represent a potent source of IL-35 which can induce the observed HLA-G+ phenotype. These exert cytotoxic T lymphocyte antigen-4-mediated impaired responses in T cells paralleled by an HLA-G-driven downregulation of T helper 17-related cytokines. CONCLUSION We have identified a cytokine-driven peripherally derived suppressive population that may contribute to immuneparesis in AD.
Collapse
Affiliation(s)
- Wafa Khamri
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Cathrin Gudd
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Tong Liu
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Rooshi Nathwani
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Marigona Krasniqi
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Sofia Azam
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Thomas Barbera
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Francesca M Trovato
- Department of Inflammation Biology, Institute of Liver Studies, King’s College London, London, UK
| | - Lucia Possamai
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Evangelos Triantafyllou
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Rocio Castro Seoane
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Fanny Lebosse
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Arjuna Singanayagam
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Naveenta Kumar
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Christine Bernsmeier
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK,Department of Inflammation Biology, Institute of Liver Studies, King’s College London, London, UK
| | - Sujit Mukherjee
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Mark McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King’s College London, London, UK
| | - Chris J Weston
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Charalambos Gustav Antoniades
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Mark R Thursz
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| |
Collapse
|
10
|
HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int J Mol Sci 2022; 23:ijms23062925. [PMID: 35328349 PMCID: PMC8948858 DOI: 10.3390/ijms23062925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
HLA-G is an HLA-class Ib molecule that is involved in the establishment of tolerance at the maternal/fetal interface during pregnancy. The expression of HLA-G is highly restricted in adults, but the de novo expression of this molecule may be observed in different hematological and solid tumors and is related to cancer progression. Indeed, tumor cells expressing high levels of HLA-G are able to suppress anti-tumor responses, thus escaping from the control of the immune system. HLA-G has been proposed as an immune checkpoint (IC) molecule due to its crucial role in tumor progression, immune escape, and metastatic spread. We here review data available in the literature in which the interaction between HLA-G and other IC molecules is reported, in particular PD-1, CTLA-4, and TIM-3, but also IDO and TIGIT. Clinical trials using monoclonal antibodies against HLA-G and other IC are currently ongoing with cancer patients where antibodies and inhibitors of PD-1 and CTLA-4 showed encouraging results. With this background, we may envisage that combined therapies using antibodies targeting HLA-G and another IC may be successful for clinical purposes. Indeed, such immunotherapeutic protocols may achieve a better rescue of effective anti-tumor immune response, thus improving the clinical outcome of patients.
Collapse
|
11
|
Negrini S, Contini P, Murdaca G, Puppo F. HLA-G in Allergy: Does It Play an Immunoregulatory Role? Front Immunol 2022; 12:789684. [PMID: 35082780 PMCID: PMC8784385 DOI: 10.3389/fimmu.2021.789684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Allergy is an inflammatory process determined by a cascade of immune events characterized by T-helper 2 lymphocytes polarization leading to interleukin-4 upregulation, IgE secretion, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, are known to play a key immunoregulatory role and their involvement in allergic diseases is supported by increasing literature data. HLA-G expression and secretion is specifically induced in peripheral blood mononuclear cells of allergic patients after in vitro incubation with the causal allergen. Elevated levels of soluble HLA-G molecules are detected in serum of patients with allergic rhinitis correlating with allergen-specific IgE levels, clinical severity, drug consumption and response to allergen-specific immunotherapy. HLA-G genetic polymorphisms confer susceptibility to allergic asthma development and high levels of soluble HLA-G molecules are found in plasma and bronchoalveolar lavage fluid of patients with allergic asthma correlating with allergen-specific IgE levels. Interestingly, allergic pregnant women have lower plasma sHLA-G levels than non-allergic women during the 3rd trimester of pregnancy and at delivery. Finally, in allergic patients with atopic dermatitis HLA-G molecules are expressed by T cells, monocytes-macrophages and Langerhans cells infiltrating the dermis. Although at present is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are specifically expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation.
Collapse
Affiliation(s)
- Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Dynamic changes in regulatory T cells during normal pregnancy, recurrent pregnancy loss, and gestational diabetes. J Reprod Immunol 2022; 150:103492. [DOI: 10.1016/j.jri.2022.103492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
13
|
Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 2022; 111:237-260. [PMID: 33847419 PMCID: PMC8511357 DOI: 10.1002/jlb.5ru1120-787rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Preeclampsia, defined as new-onset hypertension accompanied by proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal morbidity and mortality worldwide. The pathophysiology of this major multi-systemic syndrome includes defective deep placentation, oxidative stress, endothelial dysfunction, the presence of an anti-angiogenic state, and intravascular inflammation, among others. In this review, we provide a comprehensive overview of the cellular immune responses involved in the pathogenesis of preeclampsia. Specifically, we summarize the role of innate and adaptive immune cells in the maternal circulation, reproductive tissues, and at the maternal-fetal interface of women affected by this pregnancy complication. The major cellular subsets involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, NK cells, monocytes, macrophages, and neutrophils. We also summarize the literature on those immune cells that have been less characterized in this clinical condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models of preeclampsia to further support the role of immune cells in this disease. Finally, we highlight the existing gaps in knowledge of the immunobiology of preeclampsia that require further investigation. The goal of this review is to promote translational research leading to clinically relevant strategies that can improve adverse perinatal outcomes resulting from the obstetrical syndrome of preeclampsia.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eun D. Lee
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
14
|
Jørgensen N, Lænkholm AV, Sækmose SG, Hansen LB, Hviid TVF. Peripheral blood immune markers in breast cancer: Differences in regulatory T cell abundance are related to clinical parameters. Clin Immunol 2021; 232:108847. [PMID: 34506945 DOI: 10.1016/j.clim.2021.108847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer development is among other factors driven by tumor immune escape and tumor-mediated changes in the immune response. Investigating systemic immune changes may provide important knowledge for the improvement of patient prognosis and treatment opportunities. METHODS The systemic immune profile of patients with ER-positive breast cancer (n = 22) and healthy controls (n = 30) was investigated based on complete blood counts, flow cytometric analysis of T cell subsets including regulatory T cells (Tregs), and immune assays investigating soluble (s)HLA-G and the cytokine profile in plasma. We further examined the correlation between the immune markers and clinical parameters including tumor size, tumor grade and lymph node involvement. RESULTS Results indicated that breast cancer patients possessed a higher amount of neutrophils and monocytes and fewer lymphocytes and eosinophils compared with healthy controls. Breast cancer patients had significantly more CD25+CD127low Tregs than controls, and both lymphocyte and Treg numbers were negatively correlated with tumor size. Furthermore, Treg numbers were elevated in grade I tumors compared with grade II tumors and with healthy controls. No difference in sHLA-G levels was observed between patients and controls. Higher levels of IL-6 and TNF-α were observed in breast cancer patients. Cytokine and sHLA-G levels were not associated with clinical parameters. CONCLUSION The results of this exploratory study contribute to the elucidation of the systemic immune response in breast cancer indicating a potential use of peripheral immune cell counts and Tregs to distinguish patients from healthy controls and as potential diagnostic and prognostic biomarkers to be investigated in future studies.
Collapse
Affiliation(s)
- Nanna Jørgensen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Pathology, Zealand University Hospital, Sygehusvej 9, 4000 Roskilde, Denmark
| | - Susanne Gjørup Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77, 4700 Næstved, Denmark
| | - Lone Bak Hansen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Plastic and Breast Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
15
|
Song Y, Wang N, Chen L, Fang L. Tr1 Cells as a Key Regulator for Maintaining Immune Homeostasis in Transplantation. Front Immunol 2021; 12:671579. [PMID: 33981317 PMCID: PMC8109434 DOI: 10.3389/fimmu.2021.671579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The immune system is composed of effectors and regulators. Type 1 regulatory T (Tr1) cells are classified as a distinct subset of T cells, and they secret high levels of IL-10 but lack the expression of the forkhead box P3 (Foxp3). Tr1 cells act as key regulators in the immune network, and play a central role in maintaining immune homeostasis. The regulatory capacity of Tr1 cells depends on many mechanisms, including secretion of suppressive cytokines, cell-cell contacts, cytotoxicity and metabolic regulation. A breakdown of Tr1-cell-mediated tolerance is closely linked with the pathogenesis of various diseases. Based on this observation, Tr1-cell therapy has emerged as a successful treatment option for a number of human diseases. In this review, we describe an overview of Tr1 cell identification, functions and related molecular mechanisms. We also discuss the current protocols to induce/expand Tr1 cells in vitro for clinical application, and summarize the recent progress of Tr1 cells in transplantation.
Collapse
Affiliation(s)
- Yun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Ning Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.,Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Westin AT, Gardinassi LG, Soares EG, Da Silva JS, Donadi EA, Da Silva Souza C. HLA-G, cytokines, and cytokine receptors in the non-aggressive basal cell carcinoma microenvironment. Arch Dermatol Res 2021; 314:247-256. [PMID: 33811555 DOI: 10.1007/s00403-021-02218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
Non-aggressive basal cell carcinoma (BCC) growth is slow and might be mediated by the immune system. This study analysed the human leukocyte antigen (HLA)-G expression and cytokine profile in non-aggressive BCC subtypes from distinct locations. HLA-G was evaluated via immunohistochemistry and cytokine expression was analysed by a quantitative real-time polymerase chain reaction in 26 primary BCC samples, including nodular BCC (nBCC, n = 16) and superficial BCC (n = 10) from cephalic (ceBCC, n = 12) and non-cephalic (n = 14) locations, and by bioinformatics analysis of public GEO databases. Inflammatory infiltrate was concentrated around the tumour nests. HLA-G-positive inflammatory cells (53.85%) were more abundant than HLA-G-positive tumour cells (21.54%, p < 0.001). HLA-G immunoreactivity was predominantly cytoplasmic in BCC cells and was primarily associated with lymphocytes and macrophages surrounding the tumour. nBCC showed a higher percentage of HLA-G-positive tumour cells (p = 0.04), and ceBCC showed stronger intensity (p = 0.04). IFN-gamma and IL-10 expression were 1.95 and 1.22-fold higher, respectively, relative to that in normal skin, with a positive correlation between them (r = 0.61; p = 0.002). IL-23 expression was higher in nBCC (p = 0.04) and positively correlated (r = 0.47; p = 0.05) with slight intensity of HLA-G-positive tumour cells. The up-regulation of IL23A and IL10RB and down-regulation of IFNGR1 and IL4R gene expression in BCC compared to levels in adjacent tissues were demonstrated in the GSE125285 dataset. The exhibited cytokine profile was consistent with the induction of HLA-G expression in non-aggressive BCC subtypes. HLA-G expression in tumour cells and inflammatory cells surrounding BCCs supports the generation of inhibitory signals on various immune cells that exert anti-tumour responses.
Collapse
Affiliation(s)
- Andrezza Telles Westin
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Goiânia, Goiás, Brazil
| | - Edson Garcia Soares
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Santana Da Silva
- Immunology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Antonio Donadi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cacilda Da Silva Souza
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,Divisão de Dermatologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brasil.
| |
Collapse
|
17
|
Li X, Sheng Z, Sun Y, Wang Y, Xu M, Zhang Z, Li H, Shao L, Zhang Y, Yu J, Ma C, Gao C, Hou M, Ni H, Peng J, Ma J, Feng Q. Human leukocyte antigen-G upregulates immunoglobulin-like transcripts and corrects dysfunction of immune cells in immune thrombocytopenia. Haematologica 2021; 106:770-781. [PMID: 32079695 PMCID: PMC7927897 DOI: 10.3324/haematol.2018.204040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I antigen with potent immune-inhibitory function. HLA-G benefit patients in allotransplantation and autoimmune diseases by interacting with its receptors, immunoglobulinlike transcripts. Here we observed significantly less HLA-G in plasma from immune thrombocytopenia (ITP) patients positive for anti-platelet autoantibodies compared with autoantibodies-negative patients or healthy controls, while we found that HLA-G is positively correlated with platelet counts in both patients and healthy controls. We also found less membranebound HLA-G and immunoglobulin-like transcripts on CD4+ and CD14+ cells in patients. Recombinant HLA-G upregulated immunoglobulin-like transcript 2 expression on CD4+ and immunoglobulin-like transcript 4 on CD14+ cells. HLA-G upregulated IL-4 and IL-10, and downregulated tumor necrosis factor-a, IL-12 and IL-17 secreted by patient peripheral blood mononuclear cells, suggesting a stimulation of Th2 differentiation and downregulation of Th1 and Th17 immune response. HLA-G-modulated dendritic cells from ITP patients showed decreased expression of CD80 and CD86, and suppressed CD4+ T-cell proliferation compared to unmodulated cells. Moreover, HLA-G-modulated cells from patients induced less platelet apoptosis. HLA-G administration also significantly alleviated thrombocytopenia in a murine model of ITP. In conclusion, our data demonstrated that impaired expression of HLA-G and immunoglobulin-like transcripts is involved in the pathogenesis of ITP; recombinant HLA-G can correct this abnormality via upregulation of immunoglobulin-like transcripts, indicating that HLA-G can be a diagnostic marker and a therapeutic option for ITP.
Collapse
Affiliation(s)
- Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanxin Sun
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqi Zhang
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada,Department of Laboratory Medicine, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada,Canadian Blood Services Center for Innovation, Toronto, Ontario, Canada
| | - Jun Peng
- Department of Medical Oncology, Shandong Provincial Institute of Cancer Prevention and Treatment, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,Department of Medical Oncology, Tianjin Medical University, Tianjin, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
18
|
Anna F, Bole-Richard E, LeMaoult J, Escande M, Lecomte M, Certoux JM, Souque P, Garnache F, Adotevi O, Langlade-Demoyen P, Loustau M, Caumartin J. First immunotherapeutic CAR-T cells against the immune checkpoint protein HLA-G. J Immunother Cancer 2021; 9:e001998. [PMID: 33737343 PMCID: PMC7978334 DOI: 10.1136/jitc-2020-001998] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CAR-T cells immunotherapy is a breakthrough in the treatment of hematological malignancies such as acute lymphoblastic leukemia (ALL) and B-cell malignancies. However, CAR-T therapies face major hurdles such as the lack of tumor-specific antigen (TSA), and immunosuppressive tumor microenvironment sometimes caused by the tumorous expression of immune checkpoints (ICPs) such as HLA-G. Indeed, HLA-G is remarkable because it is both a potent ICP and a TSA. HLA-G tumor expression causes immune escape by impairing innate and adaptive immune responses and by inducing a suppressive microenvironment. Yet, to date, no immunotherapy targets it. METHODS We have developed two anti-HLA-G third-generation CARs based on new anti-HLA-G monoclonal antibodies. RESULTS Anti-HLA-G CAR-T cells were specific for immunosuppressive HLA-G isoforms. HLA-G-activated CAR-T cells polarized toward T helper 1, and became cytotoxic against HLA-G+ tumor cells. In vivo, anti-HLA-G CAR-T cells were able to control and eliminate HLA-G+ tumor cells. The interaction of tumor-HLA-G with interleukin (IL)T2-expressing T cells is known to result in effector T cell functional inhibition, but anti-HLA-G CAR-T cells were insensitive to this inhibition and still exerted their function even when expressing ILT2. Lastly, we show that anti-HLA-G CAR-T cells differentiated into long-term memory effector cells, and seemed not to lose function even after repeated stimulation by HLA-G-expressing tumor cells. CONCLUSION We report for the first time that HLA-G, which is both a TSA and an ICP, constitutes a valid target for CAR-T cell therapy to specifically target and eliminate both tumor cells and HLA-G+ suppressive cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, CD/metabolism
- Cell Differentiation
- Coculture Techniques
- Cytotoxicity, Immunologic
- HLA-G Antigens/immunology
- HLA-G Antigens/metabolism
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/therapy
- Leukocyte Immunoglobulin-like Receptor B1/metabolism
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/transplantation
- Mice, Inbred NOD
- Mice, SCID
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Time Factors
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Elodie Bole-Richard
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Joel LeMaoult
- Service de Recherche en Hémato-Immunologie (SRHI), CEA, Paris, France
- Université de Paris, Paris, Île-de-France, France
| | | | | | - Jean-Marie Certoux
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Philippe Souque
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Francine Garnache
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | | | | | | |
Collapse
|
19
|
Xu D, Zhu Y, Li L, Xu Y, Yan W, Dai M, Gan L. Evaluation of Maternal Serum sHLA-G Levels for Trisomy 18 Fetuses Screening at Second Trimester. Front Genet 2021; 11:497264. [PMID: 33574829 PMCID: PMC7870785 DOI: 10.3389/fgene.2020.497264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) has been widely acknowledged to play critical roles in fetal-maternal maintenance. However, the significance of using maternal serum sHLA-G to detect prenatal chromosomal abnormality has not been investigated. In China, prenatal screening using maternal α-fetoprotein (AFP), unconjugated estriol (uE3), and free β subunit human chorionic gonadotropin (β-hCG) in the second trimester has been widely applied. In this study, we evaluated the use of sHLA-G as a screening marker, compared with traditional second trimester prenatal screening. Serum samples from 1,019 singleton women in their second trimester were assessed. Among them, 139 infants were confirmed with trisomy 21 (T21) by karyotyping, 83 were confirmed with trisomy 18 (T18), and the remaining 797 infants had no abnormalities. The sHLA-G levels in maternal sera were significantly lower in pregnant women with T18 fetuses (median: 47.8 U/ml, range: 9.8-234.2 U/ml) and significantly higher in those with T21 fetuses (median: 125.7 U/ml, range: 28.7-831.7 U/ml), compared with the normal controls (median: 106.3 U/ml, range: 50.5-1136.4 U/ml) (p < 0.001). The risk values of the screening of T21 or T18 fetuses were assessed using mean and standard deviation log10 analyte multiples of median (MoM) which showed that the predictive values of sHLA-G were the same as free β-hCG, and superior to AFP and uE3 for T18 screening. Logistic regression analysis revealed that sHLA-G MoM was the highest risk factor associated with pregnant women carrying T18 fetuses [Exp(B): 171.26, 95% CI: 36.30-807.97, p < 0.001]. Receiver operating characteristic (ROC) analysis revealed that the area under ROC curve for sHLA-G MoM was 0.915 (95% CI, 0.871-0.959, p < 0.001), for AFP MoM was 0.796 (95% CI, 0.730-0.861, p < 0.001), for free β-hCG MoM was 0.881 (95% CI, 0.829-0.934, p < 0.001), and for uE3 MoM was 0.876 (95% CI, 0.828-0.923, p < 0.001) in the T18 group. sHLA-G MoM demonstrated the best sensitivity and negative predictive value. For the first time, our findings reveal that sHLA-G is a better second trimester screening marker for the detection of T18 fetuses and the combined application of sHLA-G with AFP, free β-hCG, and uE3 could improve clinical screening for T18 fetuses.
Collapse
Affiliation(s)
- Danping Xu
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Yiyang Zhu
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Lanfang Li
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Yingping Xu
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Weihua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Meizhen Dai
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| | - Linghong Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wezhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Contini P, Murdaca G, Puppo F, Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front Immunol 2020; 11:1613. [PMID: 32983083 PMCID: PMC7484697 DOI: 10.3389/fimmu.2020.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic cells with immunoregulatory functions are present in small percentages of patients with physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune cells have been detected in several conditions in which the immune system plays an important role, such as infectious, neoplastic, and autoimmune diseases as well as in complications from transplants and pregnancy. These observations strongly support the hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms underlying the pathogenesis of these disorders.
Collapse
Affiliation(s)
- P Contini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Gori S, Soczewski E, Fernández L, Grasso E, Gallino L, Merech F, Colado A, Borge M, Pérez Leirós C, Salamone G, Ramhorst R. Decidualization Process Induces Maternal Monocytes to Tolerogenic IL-10-Producing Dendritic Cells (DC-10). Front Immunol 2020; 11:1571. [PMID: 32973738 PMCID: PMC7461786 DOI: 10.3389/fimmu.2020.01571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 01/11/2023] Open
Abstract
Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14– immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.
Collapse
Affiliation(s)
- Soledad Gori
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Elizabeth Soczewski
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Laura Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Esteban Grasso
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lucila Gallino
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fatima Merech
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana Colado
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mercedes Borge
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Gabriela Salamone
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
22
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
23
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
da Silva CR, Sampaio LHF, Costa MB, de Paula Carneiro Cysneiros MA, Sadissou IA, de Oliveira Rodrigues Castilho ML, de Moraes JB, Donadi EA, Wastoswki IJ. Analysis of HLA-G protein expression in leprosy. Immunogenetics 2020; 72:333-337. [PMID: 32556498 DOI: 10.1007/s00251-020-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to evaluate the expression of human leukocyte antigen G (HLA-G) in leprosy. Biopsy and serum samples were collected from 18 patients presenting with leprosy and from healthy controls. Samples were analyzed using immunohistochemistry and ELISA techniques. HLA-G expression was observed in biopsy samples of all patients. The healthy control samples were consistently negative for HLA-G expression. Control plasma samples displayed significantly higher HLA-G expression than those from the patients (p < 0.01). These results are the first demonstration of the expression of HLA-G in leprosy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Isabela Jubé Wastoswki
- Universidade Estadual de Goiás (UEG), Goiânia, Goiás, Brazil. .,Molecular Immunology Laboratory/UEG-UnU Laranjeiras, Av. Prof. Alfredo de Castro, S/N, Chácara do Governador, Goiânia, Goiás, CEP: 74855-130, Brazil.
| |
Collapse
|
25
|
Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol Immunol 2020; 17:693-704. [PMID: 32467619 DOI: 10.1038/s41423-020-0471-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is a state of immunological balance during which the mother and the developing fetus must tolerate each other while maintaining sufficient immunocompetence to ward off potential threats. The site of closest contact between the mother and fetus is the decidua, which represents the maternal-fetal interface. Many of the immune cell subsets present at the maternal-fetal interface have been well described; however, the importance of the maternal T cells in this compartment during late gestation and its complications, such as preterm labor and birth, has only recently been established. Moreover, pioneer and recent studies have indicated that fetal T cells are activated in different subsets of preterm labor and may elicit distinct inflammatory responses in the amniotic cavity, leading to preterm birth. In this review, we describe the established and proposed roles for maternal T cells at the maternal-fetal interface in normal term parturition, as well as the demonstrated contributions of such cells to the pathological process of preterm labor and birth. We also summarize the current knowledge of and proposed roles for fetal T cells in the pathophysiology of the preterm labor syndrome. It is our hope that this review provides a solid conceptual framework highlighting the importance of maternal and fetal T cells in late gestation and catalyzes new research questions that can further scientific understanding of these cells and their role in preterm labor and birth, the leading cause of neonatal mortality and morbidity worldwide.
Collapse
|
26
|
Shah NM, Imami N, Kelleher P, Barclay WS, Johnson MR. Pregnancy-related immune suppression leads to altered influenza vaccine recall responses. Clin Immunol 2019; 208:108254. [PMID: 31470087 DOI: 10.1016/j.clim.2019.108254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Abstract
Pregnancy is a risk factor for severe influenza infection. Despite achieving seroprotective antibody titres post immunisation fewer pregnant women experience a reduction in influenza-like illness compared to non-pregnant cohorts. This may be due to the effects that immune-modulation in pregnancy has on vaccine efficacy leading to a less favourable immunologic response. To understand this, we investigated the antigen-specific cellular responses and leukocyte phenotype in pregnant and non-pregnant women who achieved seroprotection post immunisation. We show that pregnancy is associated with better antigen-specific inflammatory (IFN-γ) responses and an expansion of central memory T cells (Tcm) post immunisation, but low-level pregnancy-related immune regulation (HLA-G, PIBF) and associated reduced B-cell antibody maintenance (TGF-β) suggest poor immunologic responses compared to the non-pregnant. Thus far, studies of influenza vaccine immunogenicity have focused on the induction of antibodies but understanding additional vaccine-related cellular responses is needed to fully appreciate how pregnancy impacts on vaccine effectiveness.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Peter Kelleher
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Mark R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
27
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jørgensen N, Persson G, Hviid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol 2019; 10:911. [PMID: 31134056 PMCID: PMC6517506 DOI: 10.3389/fimmu.2019.00911] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells, a subpopulation of suppressive T cells, are potent mediators of self-tolerance and essential for the suppression of triggered immune responses. The immune modulating capacity of these cells play a major role in both transplantation, autoimmune disease, allergy, cancer and pregnancy. During pregnancy, low numbers of regulatory T cells are associated with pregnancy failure and pregnancy complications such as pre-eclampsia. On the other hand, in cancer, low numbers of immunosuppressive T cells are correlated with better prognosis. Hence, maternal immune tolerance toward the fetus during pregnancy and the escape from host immunosurveillance by cancer seem to be based on similar immunological mechanisms being highly dependent on the balance between immune activation and suppression. As regulatory T cells hold a crucial role in several biological processes, they may also be promising subjects for therapeutic use. Especially in the field of cancer, cell therapy and checkpoint inhibitors have demonstrated that immune-based therapies have a very promising potential in treatment of human malignancies. However, these therapies are often accompanied by adverse autoimmune side effects. Therefore, expanding the knowledge to recognize the complexities of immune regulation pathways shared across different immunological scenarios is extremely important in order to improve and develop new strategies for immune-based therapy. The intent of this review is to highlight the functional characteristics of regulatory T cells in the context of mechanisms of immune regulation in pregnancy and cancer, and how manipulation of these mechanisms potentially may improve therapeutic options.
Collapse
Affiliation(s)
| | | | - Thomas Vauvert F. Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Zhao J, Qi YJ, Wang X, Jiao Y, Gong HM, Zhang JX, Jiang DY. Transforming Growth Factor-β Partially Reversed the Immunosuppressive Effect of Mesenchymal Stem Cells in Mice. Transplant Proc 2018; 50:3851-3857. [PMID: 30577277 DOI: 10.1016/j.transproceed.2018.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) possess powerful immunosuppression capacity. Transforming growth factor-β (TGF-β) is a well-known anti-inflammatory cytokine and plays an important role in various inflammatory processes. We hypothesized that TGF-β could synergize with MSCs in suppressing immune responses, and therefore established a mouse skin graft model to evaluate the effect of MSCs and MSCs combined with TGF-β on transplantation immunity in vivo. METHODS Balb/c and C57BL/6 mice were used to establish the skin graft model. The recipients were divided into 3 groups and received intravenous bone marrow mesenchymal stem cells (BMSCs), BMSCs pretreated with TGF-β, and 0.9% saline solution, respectively. Skin graft survival time, pathological detection, the ratio of CD4+CD25+Foxp3+Treg cell of spleens, and the level of IFN-γ, IL-2, IL-10, and TGF-β expression were tested. RESULTS The survival time of skin grafts were prolonged in both BMSC (12.5 ± 1.35 days) and BMSC-TGF-β (10.6 ± 1.90 days) recipients compared to the blank control recipients (8.0 ± 1.05 days). The ratio of CD4+CD25+Foxp3+Treg cell of spleens from BMSC and BMSC-TGF-β recipients was higher than that of the blank control, and the upregulated proliferation in the BMSC group occurred earlier and was prolonged compared to the BMSC-TGF-β group. The expression of IFN-γ and IL-2 was inhibited in both the BMSC and BMSC-TGF-β groups compared to the blank, while the expression of IL-10 and TGF-β was boosted. In contrast to the BMSC group, the BMSC-TGF-β group exhibited a weaker effect on the expression of cytokines. CONCLUSION TGF-β partially reversed the immunosuppressive effect of MSCs in vivo. This immunoregulatory feature may have potential applications for treating transplant rejection.
Collapse
Affiliation(s)
- J Zhao
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Y-J Qi
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - X Wang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Y Jiao
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - H-M Gong
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - J-X Zhang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - D-Y Jiang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
30
|
Bortolotti D, Rossignoli F, Rotola A, Campioni D, Cultrera R, Grisendi G, Dominici M, Rizzo R. Human Herpes simplex 1 virus infection of endometrial decidual tissue-derived MSC alters HLA-G expression and immunosuppressive functions. Hum Immunol 2018; 79:800-808. [PMID: 30118778 DOI: 10.1016/j.humimm.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Mesenchymal stromal/stem cells have immunosuppressive functions. Our previous results demonstrated that one of the players of this immunomodulation can be ascribed to the Human Leukocyte Antigen-G. HLA-G, a non classical HLA class I antigen, is involved in immune tolerance during pregnancy, organ transplantation, autoimmune and inflammatory diseases. In this study we wanted to verify whether human endometrial decidual tissue derived (EDT)-MSC could express HLA-G. Additionally we assessed the permissivity to Human Herpesvirus infections, using HSV-1 as a model, and the possible effect on EDT-MSC immunosuppressive functions towards peripheral blood mononuclear cell (PBMC) proliferation. METHODS We analyzed immune-inhibitory functions and HLA-G expression in human EDT-MSC before and after HSV-1 infection. RESULTS We observed that EDT-MSC express HLA-G molecules, that partly are responsible for the immune-inhibitory functions of EDT-MSC towards PBMC proliferation. EDT-MSC are permissive for a productive infection by HSV-1, that decreases HLA-G expression and affects EDT-MSC immune-inhibitory functions. CONCLUSIONS We demonstrate that EDT-MSC are susceptible to HSV-1 infection, that reduces HLA-G expression and their immune-inhibitory function. These data could have a clinical implication in the use of EDT-MSC as an immunosuppressant, in particular in steroid-refractory GvHD after allogeneic hematopoietic stem cell transplantation and in autoimmune diseases.
Collapse
Affiliation(s)
- Daria Bortolotti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Filippo Rossignoli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Rotola
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Diana Campioni
- Department of Specialist Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosario Cultrera
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Rizzo
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
31
|
Saurabh A, Chakraborty S, Kumar P, Mohan A, Bhatnagar AK, Rishi N, Mitra DK. Inhibiting HLA-G restores IFN-γ and TNF-α producing T cell in pleural Tuberculosis. Tuberculosis (Edinb) 2018; 109:69-79. [PMID: 29559123 DOI: 10.1016/j.tube.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/22/2017] [Accepted: 01/28/2018] [Indexed: 01/19/2023]
Abstract
Human Leukocyte Antigen-G (HLA-G), a non-classical, class Ib molecule, has been shown to mediate immunoregulatory functions by inducing apoptosis, inhibits cytotoxicity and differentiation by modulating cytokine secretion. Due to its immune-suppressive function, it facilitates tolerance in feto-maternal interface and transplantation. In contrary, it favours immune evasion of microbes and tumors by inhibiting immune and inflammatory responses. In Tuberculosis (TB), we previously reported differential expression of HLA-G and its receptor Ig-like transcript -2 (ILT-2) in disseminated vs. localized Tuberculosis. The present study explores the impact of HLA-G inhibition on the function of T cells and monocytes, in TB Pleural Effusion (PE), a localized form of TB. Blocking of HLA-G resulted in significant increase in IFN-γ and TNF-α production by CD3+ T cells. Additionally, we observed that HLA-G influences the apoptosis and cytotoxic effect of T cells from TB- PE patients. Next, we checked the impact of interaction between HLA-G and ILT-4 receptor in monocytes derived from TB-PE patients upon blocking and observed significant increase in IFN-γ production. The present study reveals for the first time HLA-G mediated suppression of Th1 cytokines, especially, IFN-γ and TNF-α in TB-PE patients.
Collapse
Affiliation(s)
- Abhinav Saurabh
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, New Delhi, India; Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sushmita Chakraborty
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Prabin Kumar
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, New Delhi, India; Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Anuj K Bhatnagar
- Rajan Babu Institute for Pulmonary Medicine and Tuberculosis, GTB Nagar, Delhi, India
| | - Narayan Rishi
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
32
|
The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124:44-53. [DOI: 10.1016/j.jri.2017.10.045] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
|
33
|
Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1640-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Abstract
OBJECTIVE(S) To assess the frequency and function of HIV-1-specific HLA-G (histocompatibility antigen class I, G) CD8 T cells in HIV-1 controllers and progressors. DESIGN We performed an observational cross-sectional cohort analysis in untreated (n = 47) and treated (n = 17) HIV-1 patients with different rates of disease progression and n = 14 healthy individuals. METHODS We evaluated the frequency, the proportion and the function of total and virus-specific HLA-G CD8 T cells by tetramer or intracellular cytokine staining, followed by flow cytometric analysis. Cytokine secretion of sorted CD8 T-cell subsets was evaluated by Luminex assays. RESULTS The proportion and the absolute frequency of HLA-G HIV-1-specific CD8 T cells were directly associated with CD4 T-cell counts and inversely correlated with viral loads, whereas total or HLA-G-negative HIV-1-specific CD8 T cells were not. In functional assays, HLA-G CD8 T cells from HIV-1-negative individuals had higher abilities to produce the antiviral (C-C chemokine receptor type 5) ligands MIP-1β (macrophage inflammatory protein-1ß), MIP-1α and Rantes. CONCLUSION HLA-G HIV-1-specific CD8 T cells may represent a previously unrecognized correlate of HIV-1 immune control.
Collapse
|
35
|
Barnie PA, Zhang P, Lv H, Wang D, Su X, Su Z, Xu H. Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders. Exp Ther Med 2016; 13:378-388. [PMID: 28352304 DOI: 10.3892/etm.2016.4018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) were originally described as a heterogeneous population of immature cells derived from myeloid progenitors with immune-suppressive functions in tumor-bearing hosts. In recent years, increasing number of studies have described various populations of myeloid cells with MDSC-like properties in murine models of cancer and autoimmune diseases. These studies have observed that the populations of MDSCs are increased during inflammation and autoimmune conditions. In addition, MDSCs can effectively suppress T cell responses and modulate the activity of natural killer cells and other myeloid cells. MDSCs have also been implicated in the induction of regulatory T cell production. Furthermore, these cells have the potential to suppress the autoimmune response, thereby limiting tissue injury. Myeloid regulatory cells (Mregs) are recently attracting increasing attention, since they function in proinflammatory and immune suppression in autoimmune diseases, as well as in various types of cancer. Currently, research focus is directed from MDSCs to Mregs in cancer and autoimmune diseases. The present study reviewed the suppressive roles of MDSCs in various autoimmune murine models, the immune modulation of MDSCs to T helper 17 lymphocytes, as well as the proinflammatory and immunosuppressive roles of Mregs in various types of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Prince Amoah Barnie
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Biomedical and Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Pan Zhang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hongxiang Lv
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Dan Wang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaolian Su
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaoliang Su
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Huaxi Xu
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
36
|
Rodi M, Dimisianos N, de Lastic AL, Sakellaraki P, Deraos G, Matsoukas J, Papathanasopoulos P, Mouzaki A. Regulatory Cell Populations in Relapsing-Remitting Multiple Sclerosis (RRMS) Patients: Effect of Disease Activity and Treatment Regimens. Int J Mol Sci 2016; 17:ijms17091398. [PMID: 27571060 PMCID: PMC5037678 DOI: 10.3390/ijms17091398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) of autoimmune etiology that results from an imbalance between CNS-specific T effector cells and peripheral suppressive mechanisms mediated by regulatory cells (RC). In this research, we collected blood samples from 83 relapsing remitting MS (RRMS) patients and 45 healthy persons (HC), to assess the sizes of their RC populations, including CD4⁺CD25(high)Foxp3⁺ (nTregs), CD3⁺CD4⁺HLA(-)G⁺, CD3⁺CD8⁺CD28(-), CD3⁺CD56⁺, and CD56(bright) cells, and how RC are affected by disease activity (acute phase or remission) and types of treatment (methylprednisolone, interferon, or natalizumab). In addition, we isolated peripheral blood mononuclear cells (PBMC) and cultured them with peptides mapping to myelin antigens, to determine RC responsiveness to autoantigens. The results showed decreased levels of nTregs in patients in the acute phase ± methylprednisolone and in remission + natalizumab, but HC levels in patients in remission or receiving interferon. Patients + interferon had the highest levels of CD3⁺CD4⁺HLA(-)G⁺ and CD3⁺CD8⁺CD28(-) RC, and patients in the acute phase + methylprednisolone the lowest. Patients in remission had the highest levels of CD3⁺CD56⁺, and patients in remission + natalizumab the highest levels of CD56(bright) cells. Only nTregs responded to autoantigens in culture, regardless of disease activity or treatment. The highest suppressive activity was exhibited by nTregs from patients in remission. In conclusion, in RRMS disease activity and type of treatment affect different RC populations. nTregs respond to myelin antigens, indicating that it is possible to restore immunological tolerance through nTreg induction.
Collapse
Affiliation(s)
- Maria Rodi
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Nikolaos Dimisianos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Panagiota Sakellaraki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - George Deraos
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - John Matsoukas
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - Panagiotis Papathanasopoulos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
37
|
Wang Y, Tian J, Wang S. The potential therapeutic role of myeloid-derived suppressor cells in autoimmune arthritis. Semin Arthritis Rheum 2016; 45:490-5. [DOI: 10.1016/j.semarthrit.2015.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/22/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022]
|
38
|
Pankratz S, Ruck T, Meuth SG, Wiendl H. CD4(+)HLA-G(+) regulatory T cells: Molecular signature and pathophysiological relevance. Hum Immunol 2016; 77:727-33. [PMID: 26826445 DOI: 10.1016/j.humimm.2016.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
The regulation of potentially harmful immune responses by regulatory T (Treg) cells is essential for maintaining peripheral immune tolerance and homeostasis. Especially CD4(+) Treg cells have been regarded as pivotal regulators of autoreactive and inflammatory responses as well as inducers of immune tolerance by using a variety of immune suppressive mechanisms. Besides the well-known classical CD4(+)CD25(+)FoxP3(+) Treg cells, CD4(+) T cells expressing the immune tolerizing molecule human leukocyte antigen G (HLA-G) have been recently described as another potent thymus-derived Treg (tTreg) cell subset. Albeit both tTreg subsets share common molecular characteristics, the mechanisms of their immunosuppressive function differ fundamentally. Dysfunction and numerical abnormalities of classical CD4(+) tTreg cells have been implicated in the pathogenesis of several immune-mediated diseases such as multiple sclerosis (MS). Clearly, a deeper understanding of the various CD4(+) tTreg subsets and also the underlying mechanisms of impaired immune tolerance in these disorders are essential for the development of potential therapeutic strategies. This review focuses on the current knowledge on defining features and functioning of HLA-G(+)CD4(+) tTreg cells as well as their emerging role in various pathologies with special emphasis on the pathogenesis of MS. Furthermore, future research possibilities together with potential therapeutic applications are discussed.
Collapse
Affiliation(s)
- Susann Pankratz
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Tobias Ruck
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
39
|
Differential expression of HLA-G and ILT-2 receptor in human tuberculosis: Localized versus disseminated disease. Hum Immunol 2016; 77:746-53. [PMID: 26776460 DOI: 10.1016/j.humimm.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
Abstract
Human leukocyte antigen-G (HLA-G) is an anti-inflammatory and immunosuppressive molecule that can modulate immune cell activation. The role of HLA-G in tuberculosis, an immune-mediated and chronic bacterial disease remains to be elucidated. We investigated the expression profile of soluble and membrane bound HLA-G in pulmonary TB (PTB), TB pleural effusion (TB-PE, localized disease) and Miliary TB (disseminated form). The expression of HLA-G receptor, ILT-2 was also determined on the immune cells. We observed that the plasma sHLA-G levels were significantly increased in Miliary TB than in TB-PE patients. In contrast, immunophenotyping revealed that the percent frequency of CD3(+) T cells expressing HLA-G was significantly reduced in Miliary TB as compared to TB-PE, whereas frequency of CD14(+) monocytes expressing HLA-G was significantly higher in TB-PE patients. Strikingly in the TB-PE cases, comparison of disease site, i.e. pleural effusion with peripheral blood showed increased expression of both soluble and surface HLA-G, whereas ILT-2 expressing cells were reduced at the local disease site. Furthermore, we demonstrated that in TB-PE cases, HLA-G expression on CD3(+) T cells was influenced by broad spectrum MMP inhibitor. Thus, differential expression of HLA-G could potentially be a useful biomarker to distinguish different states of TB disease.
Collapse
|
40
|
Content of HLA-G(+) T Cells in the Peripheral Blood from Healthy Women and Breast Cancer Patients. Bull Exp Biol Med 2015; 159:649-51. [PMID: 26468020 DOI: 10.1007/s10517-015-3038-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 01/05/2023]
Abstract
The number of CD3(+)CD56-HLA-G(+) cells in the peripheral blood of breast cancer patients was shown to increase by 2 times. Our results and published data suggest that the increase in the relative content of CD3(+)CD56-HLA-G(+) cells in the circulating blood in breast cancer contributes to tumor development due to suppression of antitumor immunity.
Collapse
|
41
|
Ostapchuk YO, Cetin EA, Perfilyeva YV, Yilmaz A, Skiba YA, Chirkin AP, Omarbaeva NA, Talaeva SG, Belyaev NN, Deniz G. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-β in healthy donors and breast cancer patients. Cell Immunol 2015; 298:37-46. [PMID: 26362675 DOI: 10.1016/j.cellimm.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
Human natural killer (NK) cells are not only professional cytotoxic cells integrated into effector branch of innate immunity, but they are also regulatory cells, managing different immune processes. Immunoregulatory NK cells, expressing HLA-G and IL-10, have been generated in vitro from human hematopoietic progenitors and found in vivo among decidual NK cells of pregnant women. Human peripheral blood NK cells have been shown to acquire suppressive properties after HLA-G uptake during trogocytosis. Moreover, it has been shown that circulating NK cells contain a trace amount of cells producing TGF-β and IL-10, which exert a suppressive influence upon innate and adaptive immunity. In this study, we report on a minor subset of peripheral blood HLA-G(+) NK cells possessing suppressive activity toward effector functions of NK cells. Further we demonstrate an increased number of circulating HLA-G(+), IL-10(+), and TGF-β(+) NK cells in breast cancer patients which might impair efficiency of anti-tumor immunity.
Collapse
Affiliation(s)
- Yekaterina O Ostapchuk
- M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry, Laboratory of Molecular Immunology and Immunobiotechnology, Almaty, Kazakhstan.
| | - Esin Aktas Cetin
- Istanbul University, Institute of Experimental Medicine, Immunology Department, Istanbul, Turkey
| | - Yuliya V Perfilyeva
- M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry, Laboratory of Molecular Immunology and Immunobiotechnology, Almaty, Kazakhstan
| | - Abdullah Yilmaz
- Istanbul University, Institute of Experimental Medicine, Immunology Department, Istanbul, Turkey
| | - Yuriy A Skiba
- M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry, Laboratory of Genome, Almaty, Kazakhstan
| | - Alexandr P Chirkin
- M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry, Laboratory of Genome, Almaty, Kazakhstan
| | - Nazgul A Omarbaeva
- Research Institute of Oncology and Radiology, Mammalogy Center, Almaty, Kazakhstan
| | - Shynar G Talaeva
- Research Institute of Oncology and Radiology, Mammalogy Center, Almaty, Kazakhstan
| | - Nikolai N Belyaev
- M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry, Laboratory of Molecular Immunology and Immunobiotechnology, Almaty, Kazakhstan
| | - Gunnur Deniz
- Istanbul University, Institute of Experimental Medicine, Immunology Department, Istanbul, Turkey
| |
Collapse
|
42
|
Yi X, Li W, Li H, Jie S. Circulating regulatory T cells in patients with severe fever with thrombocytopenia syndrome. Infect Dis (Lond) 2015; 47:294-301. [PMID: 25712790 DOI: 10.3109/00365548.2014.987812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging infectious disease caused by SFTS virus (SFTSV). Immunologic factors have been proved to be related to the occurrence and development of SFTS; however, their role still remains to be further elucidated. METHODS Samples from 30 patients with laboratory-confirmed SFTS and 15 healthy controls were subjected to flow cytometry to detect the proportion of CD4+/total lymphocytes, CD4 + CD25+/CD4 + cells and CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in circulating blood and to evaluate their potential function in the development of SFTS. RESULTS The data showed that a reduced proportion of CD4+/total lymphocytes and CD4 + CD25+/CD4 + cells was observed in patients with SFTS compared with healthy controls. In contrast, the percentage of CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in the patients in the SFTS group was significantly elevated. Furthermore, we investigated the dynamic changes of the circulating regulatory T cells (Tregs) in patients with SFTS at different stages. The results showed that the proportion of CD4+/total lymphocytes and CD4 + CD25+/CD4 + cells in the non-severe group was prominently higher than that in patients with severe SFTS. Conversely, the proportion of CD4 + CD25+ Foxp3+/CD4 + CD25+ cells was lower in the non-severe group than in the severe group. Additionally, the circulating Tregs reverted to normal ranges during the convalescent phase of SFTSV infection. Moreover, the Tregs level correlated with various clinical parameters. CONCLUSION We demonstrated that SFTSV infection resulted in a robust circulating Treg response in patients with SFTS. Our investigation suggested that the proportions of CD4+/total lymphocytes and CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in circulating blood could serve as sensitive indices to evaluate the changes in Tregs in SFTS and predict the progression of SFTS.
Collapse
|
43
|
|
44
|
Djurisic S, Hviid TVF. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia. Front Immunol 2014; 5:652. [PMID: 25566263 PMCID: PMC4274990 DOI: 10.3389/fimmu.2014.00652] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Despite decades of research, the highly prevalent pregnancy complication preeclampsia, “the disease of theories,” has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of genetic predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus–oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA-G is believed to be involved in modulating immune responses in the context of vascular remodeling during pregnancy as well as in dampening potential harmful immune attacks raised against the semi-allogeneic fetus. In addition, HLA-G genetic variants are associated with both membrane-bound and soluble forms of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia.
Collapse
Affiliation(s)
- Snezana Djurisic
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| |
Collapse
|
45
|
Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G Molecules in Autoimmune Diseases and Infections. Front Immunol 2014; 5:592. [PMID: 25477881 PMCID: PMC4235267 DOI: 10.3389/fimmu.2014.00592] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023] Open
Abstract
Human leukocyte antigen (HLA)-G molecule, a non-classical HLA-Ib molecule, is less polymorphic when compared to classical HLA class I molecules. Human leukocyte antigen-G (HLA-G) was first detected on cytotrophoblast cells at the feto-maternal interface but its expression is prevalent during viral infections and several autoimmune diseases. HLA-G gene is characterized by polymorphisms at the 3' un-translated region and 5' upstream regulatory region that regulate its expression and are associated with autoimmune diseases and viral infection susceptibility, creating an unbalanced and pathologic environment. This review focuses on the role of HLA-G genetic polymorphisms, mRNA, and protein expression in autoimmune conditions and viral infections.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria Arcispedale S. Anna, Ferrara, Italy
| |
Collapse
|
46
|
Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensébé L, Deschaseaux F. Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2014; 31:2296-303. [PMID: 23922260 DOI: 10.1002/stem.1494] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022]
Abstract
Both human leukocyte antigen G (HLA-G) and multipotential mesenchymal stem/stromal cells (MSCs) exhibit immunomodulatory functions. In allogeneic tranplantation, the risks of acute and chronic rejection are still high despite improvement in immunosuppressive treatments, and the induction of a state of tolerance to alloantigens is not achieved. Immunomodulatory properties of MSCs and HLA-G in human allogeneic tranplantation to induce tolerance appears attractive and promising. Interestingly, we and others have demonstrated that MSCs can express HLA-G. In this review, we focus on the expression of HLA-G by MSCs and discuss how to ensure and improve the immunomodulatory properties of MSCs by selectively targeting MSCs expressing HLA-G (MSCs(HLA-G+)). We also discuss the possible uses of MSCs(HLA-G+) for therapeutic purposes, notably, to overcome acute and chronic immune rejection in solid-organ allogeneic transplantation in humans. Since MSCs are phenotypically and functionally heterogeneous, it is of primary interest to have specific markers ensuring that they have strong immunosuppressive potential and HLA-G may be a valuable candidate.
Collapse
Affiliation(s)
- Abderrahim Naji
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Morandi F, Pistoia V. Interactions between HLA-G and HLA-E in Physiological and Pathological Conditions. Front Immunol 2014; 5:394. [PMID: 25202308 PMCID: PMC4141331 DOI: 10.3389/fimmu.2014.00394] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/31/2014] [Indexed: 01/08/2023] Open
Abstract
HLA-G and HLA-E are immunoregulatory molecules that belong to HLA-Ib family. The role of these molecules in the control of the immune response has been extensively analyzed, both in physiological and pathological conditions. We have here summarized data present in the literature regarding the interaction of these molecules in different settings. These data suggested that HLA-G and -E co-operate in physiological conditions (i.e., establishment of an immune tolerance at maternal/fetal interface during pregnancy), whereas their role in the course of tumors or autoimmune/inflammatory diseases may be different or even opposite. Future studies aimed at investigating the interaction between HLA-G and HLA-E will help to clarify mechanism(s) underlying the regulation of immune effector cells in health and disease.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini , Genoa , Italy
| | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini , Genoa , Italy
| |
Collapse
|
48
|
Amodio G, Sales de Albuquerque R, Gregori S. New insights into HLA-G mediated tolerance. ACTA ACUST UNITED AC 2014; 84:255-63. [PMID: 25132109 DOI: 10.1111/tan.12427] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human Leukocyte Antigen G (HLA-G) is a nonclassical HLA class I molecule with well-characterized immunomodulatory activities. HLA-G was first described as a regulatory molecule that allows the fetus to elude the maternal immune response. In the last decade it has become evident that HLA-G is involved in modulating both innate and adaptive immune responses, in maintaining tolerance in autoimmune and inflammatory diseases and after transplantation, and in promoting immune escape in cancer and infectious diseases. HLA-G exerts its modulatory/regulatory functions directly by interacting with specific inhibitory receptors. The expression of HLA-G is finely tuned by genetic variations in the noncoding region of the locus. The recent discovery of dendritic cells-10 (DC-10) as naturally occurring HLA-G-expressing dendritic cells opens new perspectives in the identification of the molecular and cellular mechanisms underlying HLA-G-mediated tolerance. An overview on the HLA-G-mediated inhibition of innate and adaptive immune cells, on the genetic influence on HLA-G expression, and on HLA-G-expressing DC-10 is presented. Moreover, we discuss the central and critical role of DC-10 in the HLA-G-mediated tolerance.
Collapse
Affiliation(s)
- G Amodio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
49
|
Pankratz S, Bittner S, Herrmann AM, Schuhmann MK, Ruck T, Meuth SG, Wiendl H. Human CD4+ HLA-G+ regulatory T cells are potent suppressors of graft-versus-host disease in vivo. FASEB J 2014; 28:3435-45. [PMID: 24744146 DOI: 10.1096/fj.14-251074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4(+) T cells expressing the immunotolerizing molecule HLA-G have been described as a unique human thymus-derived regulatory T (tTreg) cell subset involved in immunoregulation and parenchymal homeostasis during infectious and autoimmune inflammation. We compared properties and molecular characteristics of human CD4(+)HLA-G(+) with those of CD4(+)CD25(+)FoxP3-expressing tTreg cells using in vitro studies of T-cell receptor (TCR) signaling, single-cell electrophysiology, and functional in vivo studies. Both tTreg populations are characterized by alterations in proximal-signaling pathways on TCR stimulation and a hyperpolarization of the plasma membrane when compared to conventional CD4(+) T cells. However, both clearly differ in phenotype and pattern of secreted cytokines, which results in distinct mechanisms of suppression: While CD4(+)HLA-G(+) cells secrete high levels of inhibitory molecules (IL-10, soluble HLA-G, IL-35), CD4(+)CD25(+)FoxP3(+) cells express these molecules at significantly lower levels and seem to exert their function mainly in a contact-dependent manner via cyclic adenosine-monophosphate. Finally we demonstrate that human CD4(+)HLA-G(+) tTreg cells significantly ameliorated graft-versus-host disease in a humanized mouse model as a first proof of their in vivo relevance. Our data further characterize and establish CD4(+)HLA-G(+) cells as a potent human tTreg population that can modulate polyclonal adaptive immune responses in vivo and thus being a promising candidate for potential clinical applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven G Meuth
- Department of Neurology and Institute of Physiology I, Department of Neuropathophysiology, University of Münster, Münster, Germany; and
| | | |
Collapse
|
50
|
Hsu P, Nanan RKH. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol 2014; 5:125. [PMID: 24734032 PMCID: PMC3975095 DOI: 10.3389/fimmu.2014.00125] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal–maternal interface – the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3+ regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4+HLA-G+ suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy.
Collapse
Affiliation(s)
- Peter Hsu
- Charles Perkins Centre Nepean , Penrith, NSW , Australia ; Department of Allergy and Immunology, The Children's Hospital at Westmead , Sydney, NSW , Australia ; Sydney Medical School, The University of Sydney , Sydney, NSW , Australia
| | - Ralph Kay Heinrich Nanan
- Charles Perkins Centre Nepean , Penrith, NSW , Australia ; Sydney Medical School, The University of Sydney , Sydney, NSW , Australia
| |
Collapse
|