1
|
Pan T, Lee JW. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:34-41. [PMID: 39170960 PMCID: PMC11332830 DOI: 10.1016/j.pccm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 08/23/2024]
Abstract
Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.
Collapse
Affiliation(s)
- Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jae Woo Lee
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90230, USA
| |
Collapse
|
2
|
Uskoković V, Wu VM. Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5824. [PMID: 36079205 PMCID: PMC9456825 DOI: 10.3390/ma15175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp), the most abundant biological material among mammals, has been recently demonstrated to possess moderate antibacterial properties. Metagenomics provides a series of tools for analyzing the simultaneous interaction of materials with larger communities of microbes, which may aid in optimizing the antibacterial activity of a material such as HAp. Here, a microbiome intrinsic to the sample of sandy soil collected from the base of an African Natal plum (Carissa macrocarpa) shrub surrounding the children's sandbox at the Arrowhead Park in Irvine, California was challenged with HAp nanoparticles and analyzed with next-generation sequencing for hypervariable 16S ribosomal DNA base pair homologies. HAp nanoparticles overwhelmingly reduced the presence of Gram-negative phyla, classes, orders, families, genera and species, and consequently elevated the relative presence of their Gram-positive counterparts. Thermodynamic, electrostatic and chemical bonding arguments were combined in a model proposed to explain this selective affinity. The ability of amphiphilic surface protrusions of lipoteichoic acid in Gram-positive bacteria and mycolic acid in mycobacteria to increase the dispersibility of the bacterial cells and assist in their resistance to capture by the solid phase is highlighted. Within the Gram-negative group, the variability of the distal, O-antigen portion of the membrane lipopolysaccharide was shown to be excessive and the variability of its proximal, lipid A portion insufficient to explain the selectivity based on chemical sequence arguments. Instead, flagella-driven motility proves to be a factor favoring the evasion of binding to HAp. HAp displayed a preference toward binding to less pathogenic bacteria than those causative of disease in humans, while taxa having a positive agricultural effect were largely captured by HAp, indicating an evolutionary advantage this may have given it as a biological material. The capacity to selectively sequester Gram-negative microorganisms and correspondingly alter the composition of the microbiome may open up a new avenue in environmental and biomedical applications of HAp.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
3
|
Deletion Mutants of Francisella Phagosomal Transporters FptA and FptF Are Highly Attenuated for Virulence and Are Protective Against Lethal Intranasal Francisella LVS Challenge in a Murine Model of Respiratory Tularemia. Pathogens 2021; 10:pathogens10070799. [PMID: 34202420 PMCID: PMC8308642 DOI: 10.3390/pathogens10070799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily of transporters was identified as critical to pathogenesis and potential targets for attenuation and vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVSΔfptA and LVSΔfptF were highly attenuated with LD50 values of >20 times that of LVS when administered intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS and were associated with reduced organ burdens and reduced pathology. The immune responses to LVSΔfptA and LVSΔfptF were characterized by decreased levels of IL-10 and IL-1β in the BALF versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS. These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and the modulation of the host immune response.
Collapse
|
4
|
In Vivo Intradermal Delivery of Bacteria by Using Microneedle Arrays. Infect Immun 2018; 86:IAI.00406-18. [PMID: 29986891 DOI: 10.1128/iai.00406-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 01/23/2023] Open
Abstract
Infectious diseases propagated by arthropod vectors, such as tularemia, are commonly initiated via dermal infection of the skin. However, due to the technical difficulties in achieving accurate and reproducible dermal deposition, intradermal models are less commonly used. To overcome these limitations, we used microneedle arrays (MNAs), which are micron-scale polymeric structures, to temporarily disrupt the barrier function of the skin and deliver a bacterial inoculum directly to the dermis of an animal. MNAs increase reliability by eliminating leakage of the inoculum or blood from the injection site, thereby providing a biologically relevant model for arthropod-initiated disease. Here, we validate the use of MNAs as a means to induce intradermal infection using a murine model of tularemia initiated by Francisella novicida We demonstrate targeted delivery of the MNA bolus to the dermal layer of the skin, which subsequently led to innate immune cell infiltration. Additionally, F. novicida-coated MNAs were used to achieve lethality in a dose-dependent manner in C57BL/6 mice. The immune profile of infected mice mirrored that of established F. novicida infection models, consisting of markedly increased serum levels of interleukin-6 and keratinocyte chemoattractant, splenic T-cell depletion, and an increase in splenic granulocytes, together confirming that MNAs can be used to reproducibly induce tularemia-like pathogenesis in mice. When MNAs were used to immunize mice using an attenuated F. novicida mutant (F. novicida ΔlpxD1), all immunized mice survived a lethal subcutaneous challenge. Thus, MNAs can be used to effectively deliver viable bacteria in vivo and provide a novel avenue to study intradermally induced microbial diseases in animal models.
Collapse
|
5
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
6
|
Interleukin-18 Is Critical for Mucosa-Associated Invariant T Cell Gamma Interferon Responses to Francisella Species In Vitro but Not In Vivo. Infect Immun 2018; 86:IAI.00117-18. [PMID: 29507084 DOI: 10.1128/iai.00117-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate T cells that express a semi-invariant Vα chain paired with limited Vβ chains. MAIT cells are activated by riboflavin metabolite derivatives presented by the nonpolymorphic major histocompatibility complex class I (MHC-I)-like molecule MR1. The precise mechanisms required to activate MAIT cells are an area of intense interest. Here we used two closely related intracellular pathogens with distinct inflammasome activation phenotypes to probe the role of innate cytokines in MAIT cell activation. Using an in vitro assay containing transgenic murine MAIT cells, we show that macrophages infected with Francisella novicida, a strong inflammasome activator, released high levels of interleukin-18 (IL-18) and stimulated high levels of MAIT cell gamma interferon (IFN-γ) through a partially MR1-independent pathway. In contrast, macrophages infected with Francisella tularensis live vaccine strain (LVS), a weak inflammasome activator, generated little IL-18 and stimulated low MAIT cell IFN-γ through an MR1-dependent pathway. By manipulating the quantities of IL-18 in these cultures, we show that the IL-18 concentration is sufficient to influence the magnitude of MAIT cell IFN-γ production. Correspondingly, infected IL-18-deficient macrophages failed to induce substantial MAIT cell IFN-γ. In contrast, we found that MAIT cell IFN-γ production in the lungs of IL-18-deficient mice was not significantly different from that in WT mice during F. tularensis LVS pulmonary infection. Overall, we demonstrate that while IL-18 is essential for the MAIT cell IFN-γ response in vitro, it is not essential for MAIT cell IFN-γ production during in vivo LVS pulmonary infection, suggesting that additional signals can drive MAIT cell IFN-γ production in vivo.
Collapse
|
7
|
Keskin A, Bursali A, Snow DE, Dowd SE, Tekin S. Assessment of bacterial diversity in Hyalomma aegyptium, H. marginatum and H. excavatum ticks through tag-encoded pyrosequencing. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:461-475. [PMID: 29124413 DOI: 10.1007/s10493-017-0186-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Ticks are among the most significant human-biting ectoparasites and they play a major role in transmission of many pathogenic agents to humans. In the present study, three species of Hyalomma ticks, Hyalomma aegyptium, H. marginatum and H. excavatum, were examined for the presence of zoonotic bacteria, both male and female ticks alike. Examination of microbial diversity with tag-encoded pyrosequencing indicates that H. marginatum and H. excavatum were more diversity rich than H. aegyptium. Although numerous pathogenic and non-pathogenic bacterial genera were detected, including Acidovorax, Bacillus, Bacteroides, Bdellovibrio, Clostridium, Curvibacter, Escherichia, Flavobacterium, Limnohabitans, Paenibacillus, Ralstonia, Sarcina, Sediminibacterium, Segetibacter Stenotrophomonas and Variovorax, the predominant zoonotic bacteria represented in these ticks were genera Borrelia, Francisella, and Rickettsia. To the authors' knowledge, this work represents the first detection of Yersinia enterocolitica in the tick H. excavatum, raising questions regarding the vector competency of this tick, as well as associations of different disease representations perhaps through previously unforeseen routes of pathogen introduction. Likewise, similar questions are related to the presence of Legionella pneumophila in one H. excavatum sample.
Collapse
Affiliation(s)
- Adem Keskin
- Department of Biology, Faculty of Science & Art, Gaziosmanpasa University, 60250, Tasliciftlik, Tokat, Turkey
| | - Ahmet Bursali
- Department of Biology, Faculty of Science & Art, Gaziosmanpasa University, 60250, Tasliciftlik, Tokat, Turkey
| | - David E Snow
- MR DNA (Molecular Research), 503 Clovis Road, Shallowater, TX, 79363, USA
| | - Scot E Dowd
- MR DNA (Molecular Research), 503 Clovis Road, Shallowater, TX, 79363, USA
| | - Saban Tekin
- Department of Molecular Biology and Genetics, Faculty of Science & Art, Gaziosmanpasa University, 60250, Tasliciftlik, Tokat, Turkey.
- Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey.
| |
Collapse
|
8
|
Ryan DA, Degardin M, Alam S, Kissner TL, Hale M, Cameron MD, Rebek M, Ajami D, Saikh KU, Rebek J. Rational design of peptide derivatives for inhibition of MyD88-mediated toll-like receptor signaling in human peripheral blood mononuclear cells and epithelial cells exposed to Francisella tularensis. Chem Biol Drug Des 2017; 90:1190-1205. [PMID: 28599094 DOI: 10.1111/cbdd.13039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
Abstract
Small molecules were developed to attenuate proinflammatory cytokines resulting from activation of MyD88-mediated toll-like receptor (TLR) signaling by Francisella tularensis. Fifty-three tripeptide derivatives were synthesized to mimic a key BB-loop region involved in toll-like/interleukin-1 receptor recognition (TIR) domain interactions. Compounds were tested for inhibition of TNF-α, IFN-γ, IL-6, and IL-1β in human peripheral blood mononuclear cells (PBMCs) and primary human bronchial epithelial cells exposed to LPS extracts from F. tularensis. From 53 compounds synthesized and tested, ten compounds were identified as effective inhibitors of F. tularensisLPS-induced cytokines. Compound stability testing in the presence of human liver microsomes and human serum resulted in the identification of tripeptide derivative 7 that was a potent, stable, and drug-like small molecule. Target corroboration using a cell-based reporter assay and competition experiments with MyD88 TIR domain protein supported that the effect of 7 was through MyD88 TIR domain interactions. Compound 7 also attenuated proinflammatory cytokines in human peripheral blood mononuclear cells and bronchial epithelial cells challenged with a live vaccine strain of F. tularensis at a multiplicity of infection of 1:5. Small molecules that target TIR domain interactions in MyD88-dependent TLR signaling represent a promising strategy toward host-directed adjunctive therapeutics for inflammation associated with biothreat agent-induced sepsis.
Collapse
Affiliation(s)
- Daniel A Ryan
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa Degardin
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shahabuddin Alam
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Teri L Kissner
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Martha Hale
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Mitra Rebek
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dariush Ajami
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kamal U Saikh
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Julius Rebek
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Freudenberger Catanzaro KC, Champion AE, Mohapatra N, Cecere T, Inzana TJ. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice. Front Microbiol 2017; 8:935. [PMID: 28611741 PMCID: PMC5447757 DOI: 10.3389/fmicb.2017.00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ1212-1218. The subcultured mutant F. novicida Δ1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Δ1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.
Collapse
Affiliation(s)
- Kelly C Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Anna E Champion
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Nrusingh Mohapatra
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas Cecere
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States.,Department of Biomedical Sciences, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
10
|
Protective Role for Macrophages in Respiratory Francisella tularensis Infection. Infect Immun 2017; 85:IAI.00064-17. [PMID: 28373354 DOI: 10.1128/iai.00064-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis causes lethal pneumonia following infection of the lungs by targeting macrophages for intracellular replication; however, macrophages stimulated with interferon gamma (IFN-γ) can resist infection in vitro We therefore hypothesized that the protective effect of IFN-γ against F. tularensisin vivo requires macrophages receptive to stimulation. We found that the lethality of pulmonary F. tularensis LVS infection was exacerbated under conditions of alveolar macrophage depletion and in mice with a macrophage-specific defect in IFN-γ signaling (termed mice with macrophages insensitive to IFN-γ [MIIG mice]). We previously found that treatment with exogenous interleukin 12 (IL-12) protects against F. tularensis infection; this protection was lost in MIIG mice. MIIG mice also exhibited reduced neutrophil recruitment to the lungs following infection. Systemic neutrophil depletion was found to render wild-type mice highly sensitive to respiratory F. tularensis infection, and depletion beginning at 3 days postinfection led to more pronounced sensitivity than depletion beginning prior to infection. Furthermore, IL-12-mediated protection required NADPH oxidase activity. These results indicate that lung macrophages serve a critical protective role in respiratory F. tularensis LVS infection. Macrophages require IFN-γ signaling to mediate protection, which ultimately results in recruitment of neutrophils to further aid in survival from infection.
Collapse
|
11
|
Chou AY, Kennett NJ, Melillo AA, Elkins KL. Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes Infect 2016; 19:91-100. [PMID: 27965147 DOI: 10.1016/j.micinf.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Respiratory infection of mice with Francisella novicida has recently been used as a model for the highly virulent human pathogen Francisella tularensis. Similar to F. tularensis, even small doses of F. novicida administered by respiratory routes are lethal for inbred laboratory mice. This feature obviously limits study of infection-induced immunity. Parenteral sublethal infections of mice with F. novicida are feasible, but the resulting immune responses are incompletely characterized. Here we use parenteral intradermal (i.d.) and intraperitoneal (i.p.) F. novicida infections of C57BL/6J mice to determine the role of B cells in controlling primary and secondary F. novicida infections. Despite developing comparable levels of F. novicida-primed T cells, B cell knockout mice were much more susceptible to both primary i.d. infection and secondary i.p. challenge than wild type (normal) C57BL/6J mice. Transfer of F. novicida-immune sera to either wild type C57BL/6J mice or to B cell knockout mice did not appreciably impact survival of subsequent lethal F. novicida challenge. However, F. novicida-immune mice that were depleted of T cells after priming but just before challenge survived and cleared secondary i.p. F. novicida challenge. Collectively these results indicate that B cells, if not serum antibodies, play a major role in controlling F. novicida infections in mice.
Collapse
Affiliation(s)
- Alicia Y Chou
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Nikki J Kennett
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Amanda A Melillo
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States.
| |
Collapse
|
12
|
Makara MA, Hoang KV, Ganesan LP, Crouser ED, Gunn JS, Turner J, Schlesinger LS, Mohler PJ, Rajaram MVS. Cardiac Electrical and Structural Changes During Bacterial Infection: An Instructive Model to Study Cardiac Dysfunction in Sepsis. J Am Heart Assoc 2016; 5:e003820. [PMID: 27620887 PMCID: PMC5079037 DOI: 10.1161/jaha.116.003820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/18/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sepsis patients with cardiac dysfunction have significantly higher mortality. Although several pathways are associated with myocardial damage in sepsis, the precise cause(s) remains unclear and treatment options are limited. This study was designed to develop a new model to investigate the early events of cardiac damage during sepsis progression. METHODS AND RESULTS Francisella tularensis subspecies novicida (Ft.n) is a Gram-negative intracellular pathogen causing severe sepsis syndrome in mice. BALB/c mice (N=12) were sham treated or infected with Ft.n through the intranasal route. Serial electrocardiograms were recorded at multiple time points until 96 hours. Hearts were then harvested for histology and gene expression studies. Similar to septic patients, we illustrate both cardiac electrical and structural phenotypes in our murine Ft.n infection model, including prominent R' wave formation, prolonged QRS intervals, and significant left ventricular dysfunction. Notably, in infected animals, we detected numerous microlesions in the myocardium, previously observed following nosocomial Streptococcus infection and in sepsis patients. We show that Ft.n-mediated microlesions are attributed to cardiomyocyte apoptosis, increased immune cell infiltration, and expression of inflammatory mediators (tumor necrosis factor, interleukin [IL]-1β, IL-8, and superoxide dismutase 2). Finally, we identify increased expression of microRNA-155 and rapid degradation of heat shock factor 1 following cardiac Ft.n infection as a primary cause of myocardial inflammation and apoptosis. CONCLUSIONS We have developed and characterized an Ft.n infection model to understand the pathogenesis of cardiac dysregulation in sepsis. Our findings illustrate novel in vivo phenotypes underlying cardiac dysfunction during Ft.n infection with significant translational impact on our understanding of sepsis pathophysiology.
Collapse
Affiliation(s)
- Michael A Makara
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Ky V Hoang
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Latha P Ganesan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Elliot D Crouser
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Joanne Turner
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
13
|
Richard K, Vogel SN, Perkins DJ. Type I interferon licenses enhanced innate recognition and transcriptional responses to Franciscella tularensis live vaccine strain. Innate Immun 2016; 22:363-72. [PMID: 27231145 DOI: 10.1177/1753425916650027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
The innate inflammatory response to Francisella tularensis (Ft) in macrophages is significantly governed by the expression of type I interferon (IFN). Previously, the proteolytic processing and maturation of pro-IL-1β protein was shown to depend upon type I IFN expression. We show in this report that paracrine type I IFN can profoundly enhance innate recognition and TLR-dependent transcriptional responses to Ft infection upstream of its role in inflammasome regulation in both primary human monocyte-derived macrophages and primary murine peritoneal macrophages but not murine bone marrow-derived macrophages. This type I IFN-enhanced response is synergistic with TLR2 transcriptional responses, partially TLR2-independent, but strictly MyD88-dependent.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Jondle CN, Sharma A, Simonson TJ, Larson B, Mishra BB, Sharma J. Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3088-96. [PMID: 26912318 PMCID: PMC4936400 DOI: 10.4049/jimmunol.1501790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
C-type lectin receptors (CLRs), the carbohydrate-recognizing molecules, orchestrate host immune response in homeostasis and in inflammation. In the present study we examined the function of macrophage galactose-type lectin-1 (MGL1), a mammalian CLR, in pneumonic sepsis, a deadly immune disorder frequently associated with a nonresolving hyperinflammation. In a murine model of pneumonic sepsis using pulmonary infection with Klebsiella pneumoniae, the expression of MGL1 was upregulated in the lungs of K. pneumoniae-infected mice, and the deficiency of this CLR in MGL1(-/-) mice resulted in significantly increased mortality to infection than in the MGL1-sufficient wild-type mice, despite a similar bacterial burden. The phagocytic cells from MGL1(-/-) mice did not exhibit any defects in bacterial uptake and intracellular killing and were fully competent in neutrophil extracellular trap formation, a recently identified extracellular killing modality of neutrophils. Instead, the increased susceptibility of MGL1(-/-) mice seemed to correlate with severe lung pathology, indicating that MGL1 is required for resolution of pulmonary inflammation. Indeed, the MGL1(-/-) mice exhibited a hyperinflammatory response, massive pulmonary neutrophilia, and an increase in neutrophil-associated immune mediators. Concomitantly, MGL1-deficient neutrophils exhibited an increased influx in pneumonic lungs of K. pneumoniae-infected mice. Taken together, these results show a previously undetermined role of MGL1 in controlling neutrophilia during pneumonic infection, thus playing an important role in resolution of inflammation. To our knowledge, this is the first study depicting a protective function of MGL1 in an acute pneumonic bacterial infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Atul Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Tanner J Simonson
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Benjamin Larson
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Bibhuti B Mishra
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
15
|
Rennert K, Otto P, Funke H, Huber O, Tomaso H, Mosig AS. A human macrophage-hepatocyte co-culture model for comparative studies of infection and replication of Francisella tularensis LVS strain and subspecies holarctica and mediasiatica. BMC Microbiol 2016; 16:2. [PMID: 26739172 PMCID: PMC4704405 DOI: 10.1186/s12866-015-0621-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Francisella tularensis, a gram-negative bacterium replicates intracellularly within macrophages and efficiently evades the innate immune response. It is able to infect and replicate within Kupffer cells, specialized tissue macrophages of the liver, and to modulate the immune response upon infection to its own advantage. Studies on Francisella tularensis liver infection were mostly performed in animal models and difficult to extrapolate to the human situation, since human infections and clinical observations are rare. RESULTS Using a human co-culture model of macrophages and hepatocytes we investigated the course of infection of three Francisella tularensis strains (subspecies holarctica--wildtype and live vaccine strain, and mediasiatica--wildtype) and analyzed the immune response triggered upon infection. We observed that hepatocytes support the intracellular replication of Franciscella species in macrophages accompanied by a specific immune response inducing TNFα, IL-1β, IL-6 and fractalkine (CX3CL1) secretion and the induction of apoptosis. CONCLUSIONS We could demonstrate that this human macrophage/hepatocyte co-culture model reflects strain-specific virulence of Francisella tularensis. We developed a suitable tool for more detailed in vitro studies on the immune response upon liver cell infection by F. tularensis.
Collapse
Affiliation(s)
- Knut Rennert
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany.
| | - Peter Otto
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Harald Funke
- Molecular Hemostaseology, Jena University Hospital, 07743, Jena, Germany.
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| |
Collapse
|
16
|
Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL, Durrant DM, Metzger DW, Khanna KM, Joyce S. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease. PLoS Pathog 2015; 11:e1004975. [PMID: 26068662 PMCID: PMC4465904 DOI: 10.1371/journal.ppat.1004975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022] Open
Abstract
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia—because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice. NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Collapse
Affiliation(s)
- Timothy M. Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Basak B. Cicek
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Maria A. Osina
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Douglas M. Durrant
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Alarmin function of galectin-9 in murine respiratory tularemia. PLoS One 2015; 10:e0123573. [PMID: 25898318 PMCID: PMC4405590 DOI: 10.1371/journal.pone.0123573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a complex immune disorder that is characterized by systemic hyperinflammation. Alarmins, which are multifunctional endogenous factors, have been implicated in exacerbation of inflammation in many immune disorders including sepsis. Here we show that Galectin-9, a host endogenous β-galactoside binding lectin, functions as an alarmin capable of mediating inflammatory response during sepsis resulting from pulmonary infection with Francisella novicida, a Gram negative bacterial pathogen. Our results show that this galectin is upregulated and is likely released during tissue damage in the lungs of F. novicida infected septic mice. In vitro, purified recombinant galectin-9 exacerbated F. novicida-induced production of the inflammatory mediators by macrophages and neutrophils. Concomitantly, Galectin-9 deficient (Gal-9-/-) mice exhibited improved lung pathology, reduced cell death and reduced leukocyte infiltration, particularly neutrophils, in their lungs. This positively correlated with overall improved survival of F. novicida infected Gal-9-/- mice as compared to their wild-type counterparts. Collectively, these findings suggest that galectin-9 functions as a novel alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.
Collapse
|
18
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
19
|
Bauler TJ, Chase JC, Wehrly TD, Bosio CM. Virulent Francisella tularensis destabilize host mRNA to rapidly suppress inflammation. J Innate Immun 2014; 6:793-805. [PMID: 24902499 DOI: 10.1159/000363243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022] Open
Abstract
Highly virulent bacterial pathogens have evolved rapid means to suppress host inflammatory responses by unknown mechanisms. Here, we use virulent Francisella tularensis, the cause of lethal tularemia in humans, as a model to elucidate these mechanisms. We show that following infection of murine macrophages F. tularensis rapidly and selectively destabilizes mRNA containing adenylate-uridylate-rich elements that encode for cytokines and chemokines important in controlling bacterial infection. Degradation of host mRNA encoding interleukin (IL)-1β, IL-6 and CXCL1 did not require viable bacteria or de novo protein synthesis, but did require escape of intracellular organisms from endocytic vesicles into the host cytosol. The specific targeting of host mRNA encoding inflammatory cytokines and chemokines for decay by a bacterial pathogen has not been previously reported. Thus, our findings represent a novel strategy by which a highly virulent pathogen modulates host inflammatory responses critical to the evasion of innate immunity.
Collapse
Affiliation(s)
- Timothy J Bauler
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Mont., USA
| | | | | | | |
Collapse
|
20
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|
21
|
Cao W, Chen W, Liang X, Zhou J, Wei C, Cui S, Liu J. All-trans-retinoic acid ameliorates the inflammation by inducing transforming growth factor beta 1 and interleukin 10 in mouse epididymitis. Am J Reprod Immunol 2014; 71:312-21. [PMID: 24410928 DOI: 10.1111/aji.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Epididymitis, one of the most common urological diseases, can lead to the destruction of the epididymal duct and cause transient or permanent sterility. The aim of this study was to investigate the functions and related mechanisms of all trans retinoic acid (atRA) in alleviating the acute inflammation of epididymitis. METHOD OF STUDY The mouse model of the epididymitis was induced by injecting Escherichia coli into the cauda epididymis. atRA was administrated for five consecutive days through intraperitoneal injection. The expression levels of inflammatory cytokines were measured by real-time PCR and Western blot. In addition, cultured primary mouse epididymal epithelial cells were treated with different concentrations of atRA and RAR antagonists to identify whether the effect of atRA was mediated through RAR. RESULTS Our results demonstrate that atRA ameliorates the inflammation in mouse epididymitis by decreasing the expression of the pro-inflammatory cytokines and increasing the expression of anti-inflammatory factors including TGF-β1 and IL-10. Our results show that the upregulating effect of atRA on TGF-β1 was mediated by RARα, and the enhancing effect of atRA on IL-10 expression was mediated via RARβ. CONCLUSION These new results suggest that atRA is involved in regulating the inflammatory response of epididymis.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis 2013; 209:1837-46. [PMID: 24353272 DOI: 10.1093/infdis/jit820] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nosocomial infections with Klebsiella pneumoniae are a frequent cause of Gram-negative bacterial sepsis. To understand the functioning of host innate immune components in this disorder, we examined a previously uninvestigated role of the C-type lectin receptor Mincle in pneumonic sepsis caused by K. pneumoniae. METHODS Disease progression in wild-type and Mincle(-/-) mice undergoing pulmonary infection with K. pneumoniae was compared. RESULTS Whereas the wild-type mice infected with a sublethal dose of bacteria could resolve the infection with bacterial clearance and regulated host response, the Mincle(-/-) mice were highly susceptible with a progressive increase in bacterial burden, despite their ability to mount an inflammatory response that turned to an exaggerated hyperinflammation with the onset of severe pneumonia. This correlated with severe lung pathology with a massive accumulation of neutrophils in their lungs. Importantly, Mincle(-/-) neutrophils displayed a defective ability to phagocytize nonopsonic bacteria and an impaired ability to form extracellular traps (NETs), an important neutrophil function against invading pathogens, including K. pneumoniae. CONCLUSION Our results demonstrate protective role of Mincle in host defense against K. pneumoniae pneumonia by coordinating bacterial clearance mechanisms of neutrophils. A novel role for Mincle in the regulation of neutrophil NET formation may have implications in chronic disease conditions characterized by deregulated NET formation.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | | | | | | | | |
Collapse
|
23
|
Chou AY, Kennett NJ, Nix EB, Schmerk CL, Nano FE, Elkins KL. Generation of protection against Francisella novicida in mice depends on the pathogenicity protein PdpA, but not PdpC or PdpD. Microbes Infect 2013; 15:816-27. [PMID: 23880085 DOI: 10.1016/j.micinf.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 01/24/2023]
Abstract
Previous results suggest that mutations in most genes in the Francisella pathogenicity island (FPI) attenuate the bacterium. Using a mouse model, here we determined the impact of mutations in pdpA, pdpC, and pdpD in Francisella novicida on in vitro replication in macrophages, and in vivo immunogenicity. In contrast to most FPI genes, deletion of pdpC (FnΔpdpC) and pdpD (FnΔpdpD) from F. novicida did not impact growth in mouse bone-marrow derived macrophages. Nonetheless, both FnΔpdpC and FnΔpdpD were highly attenuated when administered intradermally. Infected mice produced relatively normal anti-F. novicida serum antibodies. Further, splenocytes from infected mice controlled intramacrophage Francisella replication, indicating T cell priming, and mice immunized by infection with FnΔpdpC or FnΔpdpD survived secondary lethal parenteral challenge with either F. novicida or Francisella tularensis LVS. In contrast, deletion of pdpA (FnΔpdpA) ablated growth in macrophages in vitro. FnΔpdpA disseminated and replicated poorly in infected mice, accompanied by development of some anti-F. novicida serum antibodies. However, primed Th1 cells were not detected, and vaccinated mice did not survive even low dose challenge with either F. novicida or LVS. Taken together, these results suggest that successful priming of Th1 cells, and protection against lethal challenge, depends on expression of PdpA.
Collapse
Affiliation(s)
- Alicia Y Chou
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike, HFM-431, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
24
|
Targeting the "Rising DAMP" during a Francisella tularensis Infection. Antimicrob Agents Chemother 2013; 57:4222-4228. [PMID: 23796927 DOI: 10.1128/aac.01885-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Antibiotic efficacy is greatly enhanced the earlier it is administered following infection with a bacterial pathogen. However, in a clinical setting antibiotic treatment usually commences following the onset of symptoms, which in some cases (e.g., biothreat agents) may be too late. In a BALB/c murine intranasal model of infection for Francisella tularensis SCHU S4 infection, we demonstrate during a time course experiment that proinflammatory cytokines and the damage-associated molecular pattern HMGB1 were not significantly elevated above naive levels in tissue or sera until 72 h postinfection. HMGB1 was identified as a potential therapeutic target that could extend the window of opportunity for the treatment of tularemia with antibiotics. Antibodies to HMGB1 were administered in conjunction with a delayed/suboptimal levofloxacin treatment of F. tularensis We found in the intranasal model of infection that treatment with anti-HMGB1 antibody, compared to an isotype IgY control antibody, conferred a significant survival benefit and decreased bacterial loads in the spleen and liver but not the lung (primary loci of infection) 4 days into infection. We also observed an increase in the production of gamma interferon in all tested organs. These data demonstrate that treatment with anti-HMGB1 antibody is beneficial in enhancing the effectiveness of current antibiotics in treating tularemia. Strategies of this type, involving antibiotics in combination with immunomodulatory drugs, are likely to be essential for the development of a postexposure therapeutic for intracellular pathogens.
Collapse
|
25
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
26
|
Steichen AL, Binstock BJ, Mishra BB, Sharma J. C-type lectin receptor Clec4d plays a protective role in resolution of Gram-negative pneumonia. J Leukoc Biol 2013; 94:393-8. [PMID: 23709686 DOI: 10.1189/jlb.1212622] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pneumonia is frequently associated with sepsis, characterized by a nonresolving hyperinflammation. However, specific host components of the pulmonary milieu that regulate the perpetuation of inflammation and tissue destruction observed in this immune disorder are not clearly understood. We examined the function of Clec4d, an orphan mammalian CLR, in Gram negative pneumonic sepsis caused by KPn. Whereas the WT mice infected with a sublethal dose of bacteria could resolve the infection, the Clec4d(-/-) mice were highly susceptible with a progressive increase in bacterial burden, hyperinflammatory response typical of sepsis, and severe lung pathology. This correlated with a massive accumulation of neutrophils in lungs of infected Clec4d(-/-) mice, which was in contrast with their WT counterparts, where neutrophils transiently infiltrated the lungs. Interestingly, the Clec4d(-/-) neutrophils did not exhibit any defect in bacterial clearance. These results suggest that Clec4d plays an important role in resolution of inflammation, possibly by facilitating neutrophil turnover in lungs. This is the first report depicting the physiological function of Clec4d in a pathological condition. The results can have implications not only in sepsis but also in other inflammatory diseases, where nonresolving inflammation is the root cause of disease development.
Collapse
Affiliation(s)
- Anthony L Steichen
- Department of Microbiology and Immunology, The University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | |
Collapse
|
27
|
Mishra BB, Li Q, Steichen AL, Binstock BJ, Metzger DW, Teale JM, Sharma J. Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PLoS One 2013; 8:e59616. [PMID: 23527230 PMCID: PMC3603908 DOI: 10.1371/journal.pone.0059616] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/16/2013] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex immune disorder with a mortality rate of 20–50% and currently has no therapeutic interventions. It is thus critical to identify and characterize molecules/factors responsible for its development. We have recently shown that pulmonary infection with Francisella results in sepsis development. As extensive cell death is a prominent feature of sepsis, we hypothesized that host endogenous molecules called alarmins released from dead or dying host cells cause a hyperinflammatory response culminating in sepsis development. In the current study we investigated the role of galectin-3, a mammalian β-galactoside binding lectin, as an alarmin in sepsis development during F. novicida infection. We observed an upregulated expression and extracellular release of galectin-3 in the lungs of mice undergoing lethal pulmonary infection with virulent strain of F. novicida but not in those infected with a non-lethal, attenuated strain of the bacteria. In comparison with their wild-type C57Bl/6 counterparts, F. novicida infected galectin-3 deficient (galectin-3−/−) mice demonstrated significantly reduced leukocyte infiltration, particularly neutrophils in their lungs. They also exhibited a marked decrease in inflammatory cytokines, vascular injury markers, and neutrophil-associated inflammatory mediators. Concomitantly, in-vitro pre-treatment of primary neutrophils and macrophages with recombinant galectin-3 augmented F. novicida-induced activation of these cells. Correlating with the reduced inflammatory response, F. novicida infected galectin-3−/− mice exhibited improved lung architecture with reduced cell death and improved survival over wild-type mice, despite similar bacterial burden. Collectively, these findings suggest that galectin-3 functions as an alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.
Collapse
Affiliation(s)
- Bibhuti B. Mishra
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Qun Li
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Anthony L. Steichen
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brandilyn J. Binstock
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | | | - Judy M. Teale
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jyotika Sharma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bradburne CE, Verhoeven AB, Manyam GC, Chaudhry SA, Chang EL, Thach DC, Bailey CL, van Hoek ML. Temporal transcriptional response during infection of type II alveolar epithelial cells with Francisella tularensis live vaccine strain (LVS) supports a general host suppression and bacterial uptake by macropinocytosis. J Biol Chem 2013; 288:10780-91. [PMID: 23322778 DOI: 10.1074/jbc.m112.362178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F. tularensis. A549 cells were infected and analyzed for global transcriptional response at multiple time points up to 16 h following infection. At 15 min and 2 h, a strong transcriptional response was observed including cytoskeletal rearrangement, intracellular transport, and interferon signaling. However, at later time points (6 and 16 h), very little differential gene expression was observed, indicating a general suppression of the host response consistent with other reported cell lines and murine tissues. Genes for macropinocytosis and actin/cytoskeleton rearrangement were highly up-regulated and common to the 15 min and 2 h time points, suggesting the use of this method for bacterial entry into cells. We demonstrate macropinocytosis through the uptake of FITC-dextran and amiloride inhibition of Francisella LVS uptake. Our results suggest that macropinocytosis is a potential mechanism of intracellular entry by LVS and that the host cell response is suppressed during the first 2-6 h of infection. These results suggest that the attenuated Francisella LVS induces significant host cell signaling at very early time points after the bacteria's interaction with the cell.
Collapse
Affiliation(s)
- Christopher E Bradburne
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Varnum SM, Webb-Robertson BJM, Pounds JG, Moore RJ, Smith RD, Frevert CW, Skerrett SJ, Wunschel D. Proteomic analysis of bronchoalveolar lavage fluid proteins from mice infected with Francisella tularensis ssp. novicida. J Proteome Res 2012; 11:3690-703. [PMID: 22663564 DOI: 10.1021/pr3001767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.
Collapse
Affiliation(s)
- Susan M Varnum
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Silva MT, Pestana NTS. The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 2012; 218:325-37. [PMID: 22795971 DOI: 10.1016/j.imbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 01/14/2023]
Abstract
Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | | |
Collapse
|
31
|
Sharma J, Mares CA, Li Q, Morris EG, Teale JM. Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb Pathog 2011; 51:39-47. [PMID: 21440052 PMCID: PMC3090489 DOI: 10.1016/j.micpath.2011.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
The virulence mechanisms of Francisella tularensis, the causative agent of severe pneumonia in humans and a CDC category A bioterrorism agent, are not fully defined. As sepsis is the leading cause of mortality associated with respiratory infections, we determined whether, in the absence of any known bacterial toxins, a deregulated host response resulting in sepsis syndrome is associated with lethality of respiratory infection with the virulent human Type A strain SchuS4 of F. tularensis. The C57BL/6 mice infected intranasally with a lethal dose of SchuS4 exhibited high bacterial burden in systemic organs and blood indicative of bacteremia. In correlation, infected mice displayed severe tissue pathology and associated cell death in lungs, liver and spleen. Consistent with our studies with murine model strain Francisella novicida, infection with SchuS4 caused an initial delay in upregulation of inflammatory mediators followed by development of severe sepsis characterized by exaggerated cytokine release, upregulation of cardiovascular injury markers and sepsis mediator alarmins S100A9 and HMGB1. This study shows that pulmonary tularemia caused by the Type A strain of F. tularensis results in a deregulated host response leading to severe sepsis and likely represents the major cause of mortality associated with this virulent pathogen.
Collapse
Affiliation(s)
- Jyotika Sharma
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Chris A. Mares
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Qun Li
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Elizabeth G. Morris
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Judy M. Teale
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
32
|
Sharma J, Mishra BB, Li Q, Teale JM. TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu. Cell Immunol 2011; 269:69-73. [PMID: 21497800 PMCID: PMC3106127 DOI: 10.1016/j.cellimm.2011.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/06/2011] [Accepted: 03/24/2011] [Indexed: 01/21/2023]
Abstract
The bacterial determinants of pulmonary Francisella induced inflammatory responses and their interaction with host components are not clearly defined. In this study, proteomic and immunoblot analyses showed presence of a cytoplasmic protein elongation factor Tu (EF-Tu) in the membrane fractions of virulent Francisella novicida, LVS and SchuS4, but not in an attenuated F. novicida mutant. EF-Tu was immunodominant in mice vaccinated and protected from virulent F. novicida. Moreover, recombinant EF-Tu induced macrophages to produce inflammatory cytokines in a TLR4 dependent manner. This study shows immune stimulatory properties of a cytoplasmic protein EF-Tu expressed on the membrane of virulent Francisella strains.
Collapse
Affiliation(s)
- Jyotika Sharma
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249-1644, United States.
| | | | | | | |
Collapse
|
33
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
34
|
Mares CA, Sharma J, Ojeda SS, Li Q, Campos JA, Morris EG, Coalson JJ, Teale JM. Attenuated response of aged mice to respiratory Francisella novicida is characterized by reduced cell death and absence of subsequent hypercytokinemia. PLoS One 2010; 5:e14088. [PMID: 21124895 PMCID: PMC2990712 DOI: 10.1371/journal.pone.0014088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pneumonia and pulmonary infections are major causes of mortality among the growing elderly population. Age associated attenuations of various immune parameters, involved with both innate and adaptive responses are collectively known as immune senescence. These changes are likely to be involved with differences in host susceptibility to disease between young and aged individuals. Methodology/Principal Findings The objective of this study was to assess potential age related differences in the pulmonary host response in mice to the Gram-negative respiratory pathogen, Francisella novicida. We intranasally infected mice with F. novicida and compared various immune and pathological parameters of the pulmonary host response in both young and aged mice. Conclusions/Significance We observed that 20% of aged mice were able to survive an intranasal challenge with F. novicida while all of their younger cohorts died consistently within 4 to 6 days post infection. Further experiments revealed that all of the aged mice tested were initially able to control bacterial replication in the lungs as well as at distal sites of replication compared with young mice. In addition, the small cohort of aged survivors did not progress to a severe sepsis syndrome with hypercytokinemia, as did all of the young adult mice. Finally, a lack of widespread cell death in potential aged survivors coupled with a difference in cell types recruited to sites of infection within the lung confirmed an altered host response to Francisella in aged mice.
Collapse
Affiliation(s)
- Chris A. Mares
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jyotika Sharma
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sandra S. Ojeda
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Qun Li
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jocelyn A. Campos
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Elizabeth G. Morris
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jacqueline J. Coalson
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Judy M. Teale
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Defect in efferocytosis leads to alternative activation of macrophages in Francisella infections. Immunol Cell Biol 2010; 89:167-72. [PMID: 20585334 DOI: 10.1038/icb.2010.81] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The macrophage is a versatile cell type that can sense and respond to a particular need based on the conditions of the microenvironment. Some studies have recently suggested that pathogens can directly influence the polarization of macrophages. As Francisella infections are characterized by intense necrotic infiltrates in the lung as well as in distal sites of infection, we sought to investigate whether pulmonary Francisella infections could cause the polarization of alternatively activated macrophages (M2/aaMs). Our results indicate that Francisella infections can cause the polarization of M2/aaM in vivo and that macrophages can be polarized toward an M2/aaM phenotype more potently if dead cell debris is used for stimulation in the presence and absence of Francisella infections. Finally, we also demonstrate that efferocytosis is inhibited in macrophages infected with Francisella, thus providing a potential explanation for the lack of clearance and eventual accumulation of dead cell debris associated with this disease.
Collapse
|
36
|
Silva MT. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 2010; 88:885-96. [PMID: 20566623 DOI: 10.1189/jlb.0410205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
37
|
Oyston PCF, Griffiths R. Francisella virulence: significant advances, ongoing challenges and unmet needs. Expert Rev Vaccines 2010; 8:1575-85. [PMID: 19863250 DOI: 10.1586/erv.09.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Francisella tularensis, the causative agent of tularemia, is an organism of concern as a potential biowarfare agent. Progress towards understanding the molecular basis of pathogenicity has been hampered by a lack of tools with which to manipulate the pathogen. However, the availability of genome sequence data for a range of strains and the development of a range of plasmids and mutagenesis protocols for use in Francisella has resulted in a huge advance in understanding. No licensed vaccine is yet available. Various approaches towards a new vaccine are being evaluated, but novel adjuvants and delivery systems are needed to induce the complex response required for immunity. Better animal models to more accurately represent human responses to infection are also required.
Collapse
|
38
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
39
|
Cowley SC. Editorial: Proinflammatory cytokines in pneumonic tularemia: too much too late? J Leukoc Biol 2009; 86:469-70. [PMID: 19720615 DOI: 10.1189/jlb.0309119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Aged mice display an altered pulmonary host response to Francisella tularensis live vaccine strain (LVS) infections. Exp Gerontol 2009; 45:91-6. [PMID: 19825409 DOI: 10.1016/j.exger.2009.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 08/27/2009] [Accepted: 10/06/2009] [Indexed: 11/19/2022]
Abstract
Aging is a complex phenomenon that has been shown to affect many organ systems including the innate and adaptive immune systems. The current study was designed to examine the potential effect of immunosenescence on the pulmonary immune response using a Francisella tularensis live vaccine strain (LVS) inhalation infection model. F. tularensis is a Gram-negative intracellular pathogen that can cause a severe pneumonia. In this study both young (8-12 week old) and aged (20-24 month old) mice were infected intranasally with LVS. Lung tissues from young and aged mice were used to assess pathology, recruitment of immune cell types and cytokine expression levels at various times post infection. Bacterial burdens were also assessed. Interestingly, the lungs of aged animals harbored fewer organisms at early time points of infection (day 1, day 3) compared with their younger counterparts. In addition, only aged animals displayed small perivascular aggregates at these early time points that appeared mostly mononuclear in nature. However, the kinetics of infiltrating polymorphonuclear neutrophils (PMNs) and increased cytokine levels measured in the bronchial alveolar lavage fluid (BALF) were delayed in infected aged animals relative to young infected animals with neutrophils appearing at day 5 post infection (PI) in the aged animals as opposed to day 3 PI in the young infected animals. Also evident were alterations in the ratios of mononuclear to PMNs at distinct post infection times. The above evidence indicates that aged mice elicit an altered immune response in the lung to respiratory F. tularensis LVS infections compared to their younger counterparts.
Collapse
|
41
|
Vaccination with an attenuated strain of Francisella novicida prevents T-cell depletion and protects mice infected with the wild-type strain from severe sepsis. Infect Immun 2009; 77:4314-26. [PMID: 19635830 DOI: 10.1128/iai.00654-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the causative agent of zoonotic tularemia, a severe pneumonia in humans, and Francisella novicida causes a similarly severe tularemia in mice upon inhalation. The correlates of protective immunity, as well as the virulence mechanisms of this deadly pathogen, are not well understood. In the present study, we compared the host immune responses of lethally infected and vaccinated mice to highlight the host determinants of protection from this disease. Intranasal infection with an attenuated mutant (Mut) of F. novicida lacking a 58-kDa hypothetical protein protected C57BL/6 mice from a subsequent challenge with the fully virulent wild-type strain U112 via the same route. The protection conferred by Mut vaccination was associated with reduced bacterial burdens in systemic organs, as well as the absence of bacteremia. Also, there was reduced lung pathology and associated cell death in the lungs of vaccinated mice. Both vaccinated and nonvaccinated mice displayed an initial 2-day delay in upregulation of signature inflammatory mediators after challenge. Whereas the nonvaccinated mice developed severe sepsis characterized by hypercytokinemia and T-cell depletion, the vaccinated mice displayed moderated cytokine induction and contained increased numbers of alphabeta T cells. The recall response in vaccinated mice consisted of a characteristic Th1-type response in terms of cytokines, as well as antibody isotypes. Our results show that a regulated Th1 type of cell-mediated and humoral immunity in the absence of severe sepsis is associated with protection from respiratory tularemia, whereas a deregulated host response leading to severe sepsis contributes to mortality.
Collapse
|