1
|
Liang YF, Chen XQ, Zhang MT, Tang HY, Shen GM. Research Progress of Central and Peripheral Corticotropin-Releasing Hormone in Irritable Bowel Syndrome with Comorbid Dysthymic Disorders. Gut Liver 2024; 18:391-403. [PMID: 37551453 PMCID: PMC11096901 DOI: 10.5009/gnl220346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 08/09/2023] Open
Abstract
Irritable bowel syndrome (IBS) is considered a stress disorder characterized by psychological and gastrointestinal dysfunction. IBS patients not only suffer from intestinal symptoms such as abdominal pain, diarrhea, or constipation but also, experience dysthymic disorders such as anxiety and depression. Studies have found that corticotropin-releasing hormone plays a key role in IBS with comorbid dysthymic disorders. Next, we will summarize the effects of corticotropin-releasing hormone from the central nervous system and periphery on IBS with comorbid dysthymic disorders and relevant treatments based on published literatures in recent years.
Collapse
Affiliation(s)
- Yi Feng Liang
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Qi Chen
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Meng Ting Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - He Yong Tang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guo Ming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Duque-Wilckens N, Maradiaga N, Szu-Ying Y, Joseph D, Srinavasan V, Thelen K, Sotomayor F, Durga K, Nestler E, Moeser AJ, Robison AJ. Activity-dependent FosB gene expression negatively regulates mast cell functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies. We found that the two proteins encoded by the transcription factor FosB, FOSB and the highly stable variant ΔFOSB, are robustly expressed upon stimulation in both murine and human mast cell progenitors. Motivated by these findings, we generated a novel mouse model with targeted ablation of FosB gene expression specifically in mast cells (MC FosB- ) by crossing a mast cell-specific Cre reporter line (Mcpt5-Cre) with a Cre-dependent floxed FosB mouse lines. We found that mast cell progenitors derived from MC FosB- mice, compared to wild types (WT), exhibit baseline increased histamine content and vesicle numbers. Additionally, they show enhanced calcium mobilization, degranulation, and histamine release following allergy-related IgE-mediated stimulation, along with heightened IL-6 release in response to infection-like LPS stimulation. In vivo experiments with IgE- mediated and LPS challenges revealed that MC FosB- mice experience greater drops in body temperature, heightened activation of tissue-resident mast cells, and increased release of pro-inflammatory mediators compared to their WT counterparts. These findings suggest that FosB products play a crucial regulatory role in moderating stimulus-induced mast cell activation in response to both IgE and LPS stimuli. Lastly, by integrating CUT&RUN and RNAseq data, we identified several genes targeted by ΔFOSB that could mediate these observed effects, including Mir155hg, CLCF1, DUSP4, and Trib1. Together, this study provides the first evidence that FOSB/ΔFOSB modulate mast cell functions and provides a new possible target for therapeutic interventions aimed at ameliorating mast cell-related diseases.
Collapse
|
3
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Guo X, Li Y, Chen X, Sun B, Guo X. Urocortin-1 promotes colorectal cancer cell migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway. J Cancer Res Clin Oncol 2024; 150:163. [PMID: 38546882 PMCID: PMC10978644 DOI: 10.1007/s00432-024-05693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE To investigate the effect of urocortin-1 (UCN-1) on growth, migration, and apoptosis in colorectal cancer (CRC) in vivo and vitro and the mechanism by which UCN-1 modulates CRC cells in vitro. METHODS The correlation between UCN-1 and CRC was evaluated using The Cancer Genome Atlas (TCGA) database and a tissue microarray. The expression of UCN-1 in CRC cells was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. In vitro, the influence of UCN-1 on the proliferation, apoptosis, and migration of HT-29, HCT-116, and RKO cells was explored using the celigo cell counting assay or cell counting kit-8 (CCK8), flow cytometry, and wound healing or Transwell assays, respectively. In vivo, the effect of UCN-1 on CRC growth and progression was evaluated in nude mice. The downstream pathway underlying UCN-1-mediated regulation of CRC was determined using the phospho-kinase profiler array in RKO cells. Lentiviruses were used to knockdown or upregulate UCN-1 expression in cells. RESULTS Both the TCGA and tissue microarray results showed that UCN-1 was strongly expressed in the tissues of patients with CRC. Furthermore, the tissue microarray results showed that the expression of UCN-1 was higher in male than in female patients, and high expression of UCN-1 was associated with higher risk of lymphatic metastasis and later pathological stage. UCN-1 knockdown caused a reduction in CRC cell proliferation, migration, and colony formation, as well as an increase in apoptosis. In xenograft experiments, tumors generated from RKO cells with UCN-1 knockdown exhibited reduced volumes and weights. A reduction in the expression of Ki-67 in xenograft tumors indicated that UCN-1 knockdown curbed tumor growth. The human phospho-kinase array showed that the p53 signaling pathway participated in UCN-1-mediated CRC development. The suppression in migration and proliferation caused by UCN-1 knockdown was reversed by inhibitors of p53 signal pathway, while the increase in cell apoptosis was suppressed. On the other hand, overexpression of UCN-1 promoted proliferation and migration and inhibited apoptosis in CRC cells. Overexpression of p53 reversed the effect of UCN-1 overexpression on CRC development. CONCLUSION UCN-1 promotes migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Zhu C, Li S. The peripheral corticotropin releasing factor family's role in vasculitis. Vascul Pharmacol 2024; 154:107275. [PMID: 38184094 DOI: 10.1016/j.vph.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Corticotropin releasing factor family peptides (CRF peptides) include 4 members, corticotropin releasing hormone (CRH), Urocortin (UCN1), UCN2 and UCN3. CRF peptides function via the two distinct receptors, CRF1 and CRF2. Among them, CRH/CRF1 has been recognized to influence immunity/inflammation peripherally. Both pro- and anti-inflammatory effects of CRH are reported. Likewise, UCNs, peripherally in cardiovascular system have been documented to have both potent protective and harmful effects, with UCN1 acting on both CRF1 & CRF2 and UCN2 & UCN3 on CRF2. We and others also observe protective and detrimental effects of CRF peptides/receptors on vasculature, with the latter of predominantly higher incidence, i.e., they play an important role in the development of vasculitis while in some cases they are found to counteract vascular inflammation. The pro-vasculitis effects of CRH & UCNs include increasing vascular endothelial permeability, interrupting endothelial adherens & tight junctions leading to hyperpermeability, stimulating immune/inflammatory cells to release inflammatory factors, and promoting angiogenesis by VEGF release while the anti-vasculitis effects may be just the opposite, depending on many factors such as different CRF receptor types, species and systemic conditions. Furthermore, CRF peptides' pro-vasculitis effects are found to be likely related to cPLA2 and S1P receptor signal pathway. This minireview will focus on summarizing the peripheral effects of CRF peptides on vasculature participating in the processes of vasculitis.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China.
| |
Collapse
|
6
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Mayorga EJ, Rodriguez-Jimenez S, Abeyta MA, Goetz BM, Opgenorth J, Moeser AJ, Baumgard LH. Investigating intestinal mast cell dynamics during acute heat stress in growing pigs. J Anim Sci 2024; 102:skae030. [PMID: 38290531 PMCID: PMC10889722 DOI: 10.1093/jas/skae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
Objectives were to examine the temporal pattern of intestinal mast cell dynamics and the effects of a mast cell stabilizer (ketotifen [Ket]) during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 42; 32.3 ± 1.9 kg body weight [BW]) were randomly assigned to 1 of 7 environmental-therapeutic treatments: (1) thermoneutral (TN) control (TNCon; n = 6), (2) 2 h HS control (2 h HSCon; n = 6), (3) 2 h HS + Ket (2 h HSKet; n = 6); (4) 6 h HSCon (n = 6), (5) 6 h HSKet (n = 6), (6) 12 h HSCon (n = 6), or (7) 12 h HSKet (n = 6). Following 5 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (3 d), pigs were housed in TN conditions (21.5 ± 0.8 °C) for the collection of baseline measurements. During P2, TNCon pigs remained in TN conditions for 12 h, while HS pigs were exposed to constant HS (38.1 ± 0.2 °C) for either 2, 6, or 12 h. Pigs were euthanized at the end of P2, and blood and tissue samples were collected. Regardless of time or therapeutic treatment, pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate compared to their TNCon counterparts (1.9 °C, 6.9° C, and 119 breaths/min; P < 0.01). As expected, feed intake and BW gain markedly decreased in HS pigs relative to their TNCon counterparts (P < 0.01). Irrespective of therapeutic treatment, circulating corticotropin-releasing factor decreased from 2 to 12 h of HS relative to TNCon pigs (P < 0.01). Blood cortisol increased at 2 h of HS (2-fold; P = 0.04) and returned to baseline by 6 h. Plasma histamine (a proxy of mast cell activation) remained similar across thermal treatments and was not affected by Ket administration (P > 0.54). Independent of Ket or time, HS increased mast cell numbers in the jejunum (94%; P < 0.01); however, no effects of HS on mast cell numbers were detected in the ileum or colon. Jejunum and ileum myeloperoxidase area remained similar among treatments (P > 0.58) but it tended to increase (12%; P = 0.08) in the colon in HSCon relative to TNCon pigs. Circulating lymphocytes and basophils decreased in HSKet relative to TN and HSCon pigs (P ≤ 0.06). Blood monocytes and eosinophils were reduced in HS pigs relative to their TNCon counterparts (P < 0.01). In summary, HS increased jejunum mast cell numbers and altered leukocyte dynamics and proinflammatory biomarkers. However, Ket administration had no effects on mast cell dynamics measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Julie Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. GASTROENTEROLOGY INSIGHTS 2023; 14:637-652. [DOI: 10.3390/gastroent14040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Mast cells have vital functions in allergic responses and parasite ejection, while the underlying mechanisms remain unclear. Meanwhile, MCs are essential for the maintenance of GI barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various gastrointestinal (GI) disorders. An increasing number of investigations are being disclosed, with a lack of inner connections among them. This review aims to highlight their properties and categorization and further delve into their participation in GI diseases via interplay with neurons and immune cells. We also discuss their roles in diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Based on the evidence, we advocated for their potential application in clinical practices and advocated future research prospects.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing 100049, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sitian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Fujikawa Y, Tominaga K. Enhanced neuron-glia network in the submucosa and increased neuron outgrowth into the mucosa are associated with distinctive expressions of neuronal factors in the colon of rat IBS model. Neurogastroenterol Motil 2023; 35:e14595. [PMID: 37170695 DOI: 10.1111/nmo.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Neuronal attraction and repulsion factors regulate neuron network formation. In the colon of irritable bowel syndrome (IBS), neuron network and enteric glial cells (EGCs) in the submucosa, neuronal outgrowth in the mucosa, and expressions of neuronal factors remain unknown. METHODS IBS models were prepared by intracolonic injections of acetic acid to Wistar Kyoto (WKY) rats. Using whole-mount submucosal plexus tissue stripped from the distal colon, we examined neuron network, EGC morphology, and localization of both attraction factor (nerve growth factor: NGF) and repulsion factor (semaphorin3A: Sema3A). We evaluated mRNA expressions of NGF and Sema3A in the mucosa and submucosa and neuron outgrowth into the mucosa. KEY RESULTS In IBS models, nerve fibers were thickened and densely increased in the submucosa remarkably from the outer toward the inner plexus. Submucosal EGCs exhibited process hyperplasia and bulbous swelling of terminals. NGF was predominantly expressed in EGCs than neurons in the submucosa. NGF mRNA expressions were increased in the submucosa in WKY, and their expressions were increased in the mucosa after the injection. Sema3A mRNA expressions were increased in both layers of WKY but tended to be decreased in the mucosa alone after the injection. Neuron outgrowth was increased into the mucosa. NGF was localized at EGCs in the lamina propria mucosae but not mucosal mast cells. CONCLUSIONS & INFERENCES Neuron network enhancement in the submucosa and neuron outgrowth into the mucosa may be associated with axon guidance factors expressed in hyperplastic EGCs in the colonic submucosa of IBS models.
Collapse
|
11
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
12
|
Tryptase activates enteric glial cells followed by affecting neuronal properties possibly via the stimuli-associated mediators. J Pharmacol Sci 2023; 151:163-170. [PMID: 36925214 DOI: 10.1016/j.jphs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES Mast cell-derived tryptase causes neuronal elongation/sensitization leading to visceral hypersensitivity. However, effects of tryptase on enteric glial cells (EGCs) and subsequent interaction between EGCs and neurons remain unknown. METHODS We evaluated proteins and mRNA expressions in EGC (CRL-2690, ATCC) after tryptase stimulation: nerve growth factor (NGF), netrin-1, and glial cell-derived neurotrophic factor (GDNF). We examined morphological changes in neurons (PC12 cells, CRL-1721.1) by co-incubation with the conditioned medium of EGCs after tryptase stimulation. RESULTS EGC was activated by tryptase, and proliferated (by 1.8-fold) with cytoplasmic expansion and process elongation. Intercellular connections of EGC were more complexed. Tryptase induced mRNA expression (2.5-fold) and protein expression of NGF. Netrin-1 (3-fold) and GDNF (3-fold) mRNA expressions were increased at 30 min. Increase in netrin-1 continued until 6 h, whereas the latter decreased by 3 h. The conditioned medium of EGC after tryptase stimulation expanded neuronal cytoplasm (round or ramified shapes) and neurite outgrowth with elongation of cytoskeletal filaments in time-dependent and dose-dependent manners. These changes were similar to those after NGF stimulation. Growth cone proteins of neurons were also increased by the conditioned medium. CONCLUSION EGC activated by tryptase changes neuronal morphology (process elongation and cytoplasm expansion) possibly via the stimuli-associated mediators.
Collapse
|
13
|
Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain Behav Immun 2022; 103:73-84. [PMID: 35339629 PMCID: PMC9149134 DOI: 10.1016/j.bbi.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Collapse
|
14
|
Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides 2022; 147:170705. [PMID: 34822913 DOI: 10.1016/j.peptides.2021.170705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that coordinates the endocrine system, autonomic nervous system, immune system, and physiological behavior. CRF is a signaling regulator in the neuro-endocrine-immune (NEI) network that mediates visceral hypersensitivity. Rodent models to simulate changes in intestinal motility similar to those reported in the irritable bowel syndrome (IBS), demonstrate that the CRF receptor 1 (CRF-R1) mediates intestinal hypersensitivity under many conditions. However, the translation of preclinical studies into clinical trials has not been successful possibly due to the lack of sufficient understanding of the multiple variants of CRF-R1 and CRF-R1 antagonists. Investigating the sites of action of central and peripheral CRF is critical for accelerating the translation from preclinical to clinical studies.
Collapse
Affiliation(s)
- Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Jing Wen
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Yingying Fang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Haoyuan Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, China.
| | - Jianwu Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| |
Collapse
|
15
|
Gold PW. The PPARg System in Major Depression: Pathophysiologic and Therapeutic Implications. Int J Mol Sci 2021; 22:9248. [PMID: 34502154 PMCID: PMC8430913 DOI: 10.3390/ijms22179248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
To an exceptional degree, and through multiple mechanisms, the PPARg system rapidly senses cellular stress, and functions in the CNS in glial cells, neurons, and cerebrovascular endothelial cell in multiple anti-inflammatory and neuroprotective ways. We now know that depression is associated with neurodegeneration in the subgenual prefrontal cortex and hippocampus, decreased neuroplasticity, and defective neurogenesis. Brain-derived neurotrophic factor (BDNF) is markedly depleted in these areas, and is thought to contribute to the neurodegeneration of the subgenual prefrontal cortex and the hippocampus. The PPARg system strongly increases BDNF levels and activity in these brain areas. The PPARg system promotes both neuroplasticity and neurogenesis, both via effects on BDNF, and through other mechanisms. Ample evidence exists that these brain areas transduce many of the cardinal features of depression, directly or through their projections to sites such as the amygdala and nucleus accumbens. Behaviorally, these include feelings of worthlessness, anxiety, dread of the future, and significant reductions in the capacity to anticipate and experience pleasure. Physiologically, these include activation of the CRH and noradrenergic system in brain and the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in the periphery. Patients with depression are also insulin-resistant. The PPARg system influences each of these behavioral and physiological in ways that would ameliorate the manifestations of depressive illness. In addition to the cognitive and behavioral manifestations of depression, depressive illness is associated with the premature onsets of coronary artery disease, stroke, diabetes, and osteoporosis. As a consequence, patients with depressive illness lose approximately seven years of life. Inflammation and insulin resistance are two of the predominant processes that set into motion these somatic manifestations. PPARg agonists significantly ameliorate both pathological processes. In summary, PPARg augmentation can impact positively on multiple significant pathological processes in depression. These include loss of brain tissue, defective neuroplasticity and neurogenesis, widespread inflammation in the central nervous system and periphery, and insulin resistance. Thus, PPARg agonists could potentially have significant antidepressant effects.
Collapse
Affiliation(s)
- Philip W Gold
- National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
17
|
Yi W, Cheng J, Wei Q, Pan R, Song S, He Y, Tang C, Liu X, Zhou Y, Su H. Effect of temperature stress on gut-brain axis in mice: Regulation of intestinal microbiome and central NLRP3 inflammasomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144568. [PMID: 33770895 DOI: 10.1016/j.scitotenv.2020.144568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Temperature stress was reported to impact the gut-brain axis including intestinal microbiome and neuroinflammation, but the molecular markers involved remain unclear. We aimed to examine the effects of different temperature stress on the intestinal microbiome and central nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes. MATERIALS AND METHODS Mice models were established under low temperature (LT), room temperature (RT), high temperature (HT), and temperature variation (TV) respectively for seven days. We examined temperature-induced changes of intestinal microbiome composition and the levels of its metabolites short-chain fatty acids (SCFAs), as well as the expressions of central NLRP3 inflammasomes and inflammatory cytokines. Redundancy analysis and Spearman correlation analysis were performed to explore the relationships between microbiome and NLRP3 inflammasomes and other indicators. RESULTS HT and LT significantly increased the Alpha diversity of intestinal microbiome. Compared with RT group, Bacteroidetes were most abundant in LT group while Actinobacteria were most abundant in HT and TV groups. Nineteen discriminative bacteria were identified among four groups. LT increased the expressions of acetate and propionate while decreased that of NLRP3 inflammasomes; HT decreased the expression of butyrate while increased that of NLRP3 inflammasomes, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α; TV decreased the expression of propionate while increased that of NLRP3 inflammasomes and TNF-α. Microbiome distribution could significantly explain the differences in NLRP3 between comparison groups (LT&RT: R2 = 0.82, HT&RT: R2 = 0.86, TV&RT: R2 = 0.94; P < 0.05). The discriminative bacteria were significantly correlated with SCFAs but were correlated with NLRP3 inflammasomes and cytokines in the opposite direction. CONCLUSIONS LT inhibits while HT and TV promote the activation of NLRP3 inflammasomes in brain, and intestinal microbiome and its metabolites may be the potential mediators. Findings may shed some light on the impact of temperature stress on gut-brain axis.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
18
|
Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa. Int J Mol Sci 2021; 22:ijms22052773. [PMID: 33803422 PMCID: PMC7967145 DOI: 10.3390/ijms22052773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal allergy. In the current study, we probed this hypothesis in human nasal mucosa MCs (hM-MCs) in situ using nasal polyp organ culture and tested whether CRH is required for murine M-MC activation by perceived stress in vivo. CRH stimulation significantly increased the number of hM-MCs, stimulated both their degranulation and proliferation ex vivo, and increased stem cell factor (SCF) expression in human nasal mucosa epithelium. CRH also sensitized hM-MCs to further CRH stimulation and promoted a pro-inflammatory hM-MC phenotype. The CRH-induced increase in hM-MCs was mitigated by co-administration of CRH receptor type 1 (CRH-R1)-specific antagonist antalarmin, CRH-R1 small interfering RNA (siRNA), or SCF-neutralizing antibody. In vivo, restraint stress significantly increased the number and degranulation of murine M-MCs compared with sham-stressed mice. This effect was mitigated by intranasal antalarmin. Our data suggest that CRH is a major activator of hM-MC in nasal mucosa, in part via promoting SCF production, and that CRH-R1 antagonists such as antalarmin are promising candidate therapeutics for nasal mucosa neuroinflammation induced by perceived stress.
Collapse
|
19
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
刘 明, 谢 雪, 李 强, 许 川. [A Review of Chronic Stress and the Initiation and Evolution of Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:39-44. [PMID: 33474887 PMCID: PMC10408954 DOI: 10.12182/20210160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 11/23/2022]
Abstract
Chronic stress activates the typical neuroendocrine system, hypothalamus pituitary adrenal axis and sympathetic nervous system, and leads to a sustained non-specific adaptive response. It has been proved that chronic stress can promote tumor initiation and induce tumor evolution, especially in immune function and remodeling of tumor microenvironment. However, due to the complex mechanism of chronic stress and the great difference in individual tolerance, the research evidence of chronic stress in tumor genesis and progression is still unclear. Therefore, in this paper, we review the research on the relationship between chronic stress and tumor initiation and evolution, focusing on the molecular mechanism of chronic stress promoting tumor occurrence and development, inhibiting immune response and remodeling tumor immune microenvironment, and exploring the stress management program of healthy people and cancer patients, so as to provide clues for exploring new strategies of cancer prevention and treatment. In our opinion, targeting the cAMP/PKA/CREB signaling pathway to reverse tumor treatment strategy, the relationship between the tumor and stress, inflammation, immunity, the suppressor activity of β receptor antagonist and its mechanism as well as associated with different treatment options, still need to be further explored. A healthy lifestyle, positive life attitudes and professional stress management guidance are essential for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- 明心 刘
- 电子科技大学医学院 (成都 610054)Medical School of the University of Electronic Science and Technology of China, Chengdu 610054, China
- 电子科技大学医学院附属肿瘤医院/四川省肿瘤医院 胸外科中心 (成都 610041)Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 雪梅 谢
- 电子科技大学医学院 (成都 610054)Medical School of the University of Electronic Science and Technology of China, Chengdu 610054, China
- 电子科技大学医学院附属肿瘤医院/四川省肿瘤医院 胸外科中心 (成都 610041)Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 强 李
- 电子科技大学医学院 (成都 610054)Medical School of the University of Electronic Science and Technology of China, Chengdu 610054, China
- 电子科技大学医学院附属肿瘤医院/四川省肿瘤医院 胸外科中心 (成都 610041)Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - 川 许
- 电子科技大学医学院 (成都 610054)Medical School of the University of Electronic Science and Technology of China, Chengdu 610054, China
- 电子科技大学医学院附属肿瘤医院/四川省肿瘤医院 胸外科中心 (成都 610041)Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
22
|
Peripheral Corticotropin-Releasing Factor Triggers Jejunal Mast Cell Activation and Abdominal Pain in Patients With Diarrhea-Predominant Irritable Bowel Syndrome. Am J Gastroenterol 2020; 115:2047-2059. [PMID: 32740086 DOI: 10.14309/ajg.0000000000000789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To determine the effect of peripheral CRF on intestinal barrier function in diarrhea-predominant IBS (IBS-D). Irritable bowel syndrome (IBS) pathophysiology has been linked to life stress, epithelial barrier dysfunction, and mast cell activation. Corticotropin-releasing factor (CRF) is a major mediator of stress responses in the gastrointestinal tract, yet its role on IBS mucosal function remains largely unknown. METHODS Intestinal response to sequential i.v. 5-mL saline solution (placebo) and CRF (100 μg) was evaluated in 21 IBS-D and 17 healthy subjects (HSs). A 20-cm jejunal segment was perfused with an isosmotic solution and effluents collected at baseline, 30 minutes after placebo, and 60 minutes after CRF. We measured water flux, albumin output, tryptase release, stress hormones, cardiovascular and psychological responses, and abdominal pain. A jejunal biopsy was obtained for CRF receptor expression assessment. RESULTS Water flux did not change after placebo in IBS-D and HS but significantly increased after CRF in IBS-D (P = 0.007). Basal luminal output of albumin was higher in IBS-D and increased further after CRF in IBS-D (P = 0.042). Basal jejunal tryptase release was higher in IBS-D, and CRF significantly increased it in both groups (P = 0.004), the response being higher in IBS-D than in HS (P = 0.0023). Abdominal pain worsened only in IBS-D after CRF and correlated with jejunal tryptase release, water flux, and albumin output. IBS-D displayed jejunal up-regulation of CRF2 and down-regulation of CRF1 compared with HS. DISCUSSION Stress via CRF-driven mast cell activation seems to be relevant in the pathophysiology of IBS-D.
Collapse
|
23
|
Salvo-Romero E, Martínez C, Lobo B, Rodiño-Janeiro BK, Pigrau M, Sánchez-Chardi AD, González-Castro AM, Fortea M, Pardo-Camacho C, Nieto A, Expósito E, Guagnozzi D, Rodríguez-Urrutia A, de Torres I, Farré R, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M. Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in Diarrhea-Predominant Irritable Bowel Syndrome. Sci Rep 2020; 10:20706. [PMID: 33244004 PMCID: PMC7692489 DOI: 10.1038/s41598-020-77176-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Corticotropin-releasing factor (CRF) has been identified in intestinal mucosal eosinophils and associated with psychological stress and gut dysfunction. Irritable bowel syndrome (IBS) is commonly characterized by altered intestinal motility, immune activation, and increased gut barrier permeability along with heightened susceptibility to psychosocial stress. Despite intensive research, the role of mucosal eosinophils in stress-associated gut dysfunction remains uncertain. In this study, we evaluated eosinophil activation profile and CRF content in the jejunal mucosa of diarrhea-predominant IBS (IBS-D) and healthy controls (HC) by gene/protein expression and transmission electron microscopy. We also explored the association between intestinal eosinophil CRF and chronic stress, and the potential mechanisms underlying the stress response by assessing eosinophil response to neuropeptides. We found that mucosal eosinophils displayed higher degranulation profile in IBS-D as compared to HC, with increased content of CRF in the cytoplasmic granules, which significantly correlated with IBS clinical severity, life stress background and depression. Eosinophils responded to substance P and carbachol by increasing secretory activity and CRF synthesis and release, without promoting pro-inflammatory activity, a profile similar to that found in mucosal eosinophils from IBS-D. Collectively, our results suggest that intestinal mucosal eosinophils are potential contributors to stress-mediated gut dysfunction through CRF production and release.
Collapse
Affiliation(s)
- Eloísa Salvo-Romero
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain.
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Lleida Institute for Biomedical Research, Lleida, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ana M González-Castro
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Marina Fortea
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Cristina Pardo-Camacho
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain
| | - Amanda Rodríguez-Urrutia
- Department of Psychiatry, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Inés de Torres
- Department of Pathology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID) KU, Leuven, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fernando Azpiroz
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Vicario
- Laboratory of Translational Mucosal Immunology, Digestive System Research Unit, Vall D'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron, 119-129, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
- Department of Gastrointestinal Health, Société Des Produits Nestlé S.A, Nestlé Research, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland.
| |
Collapse
|
24
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
25
|
Mast Cell Mediators as Pain Triggers in Migraine: Comparison of Histamine and Serotonin in the Activation of Primary Afferents in the Meninges in Rats. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11055-020-00983-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Abstract
The pandemic viral illness COVID-19 is especially life-threatening in the elderly and in those with any of a variety of chronic medical conditions. This essay explores the possibility that the heightened risk may involve activation of the "extended autonomic system" (EAS). Traditionally, the autonomic nervous system has been viewed as consisting of the sympathetic nervous system, the parasympathetic nervous system, and the enteric nervous system. Over the past century, however, neuroendocrine and neuroimmune systems have come to the fore, justifying expansion of the meaning of "autonomic." Additional facets include the sympathetic adrenergic system, for which adrenaline is the key effector; the hypothalamic-pituitary-adrenocortical axis; arginine vasopressin (synonymous with anti-diuretic hormone); the renin-angiotensin-aldosterone system, with angiotensin II and aldosterone the main effectors; and cholinergic anti-inflammatory and sympathetic inflammasomal pathways. A hierarchical brain network-the "central autonomic network"-regulates these systems; embedded within it are components of the Chrousos/Gold "stress system." Acute, coordinated alterations in homeostatic settings (allostasis) can be crucial for surviving stressors such as traumatic hemorrhage, asphyxiation, and sepsis, which throughout human evolution have threatened homeostasis; however, intense or long-term EAS activation may cause harm. While required for appropriate responses in emergencies, EAS activation in the setting of chronically decreased homeostatic efficiencies (dyshomeostasis) may reduce thresholds for induction of destabilizing, lethal vicious cycles. Testable hypotheses derived from these concepts are that biomarkers of EAS activation correlate with clinical and pathophysiologic data and predict outcome in COVID-19 and that treatments targeting specific abnormalities identified in individual patients may be beneficial.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
27
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|
28
|
Komi DEA, Mortaz E, Amani S, Tiotiu A, Folkerts G, Adcock IM. The Role of Mast Cells in IgE-Independent Lung Diseases. Clin Rev Allergy Immunol 2020; 58:377-387. [PMID: 32086776 PMCID: PMC7244458 DOI: 10.1007/s12016-020-08779-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are granular cells of the innate immune system which develop from CD34+/CD117+ progenitors and play a role in orchestrating adaptive immune responses. They have a well-known role in allergic reactions following immunoglobulin (Ig)E-mediated activation of the cell-surface expressed IgE high-affinity receptor (FcεRI). MCs can also respond to various other stimuli due to the expression of a variety of receptors including toll-like receptors (TLRs), immunoglobulin (IgG) receptors (FcγR), complement receptors such as C5a (CD88) expressed by skin MCs, neuropeptides receptors including nerve growth factor receptor, (NGFR), cytokines receptors such as (IL)-1R and IL-3R, and chemokines receptors including CCR-1 and CCR-3. MCs release three groups of mediators upon degranulation differentiated according to their chemical composition, storage, and time to release. These include preformed mediators (mainly histamine, tryptase, and chymase), de novo synthesized mediators such as prostaglandin (PG)D2, leukotriene (LT)B4 and LTD4, and cytokines including IL-1β, IL-3, tumor necrosis factor (TNF)α, and transforming growth factor(TGF)-β. Emerging evidence indicates a role for IgE-independent MC activation in the late-stage asthmatic response as well as in non-allergic airway diseases including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. MC infiltration/activation has been reported in some, but not all, studies of lung cancer. MC-derived TNF-α possesses tumor-suppressive activity while IL-1β supports tumor progression and metastasis. In IPF lungs, an increase in density of tryptase- and chymase-positive MCs (MCTC) and overexpression of TGF-β support the fibrosis progression. MC-derived chymase activates latent TGF-β that induces the differentiation of fibroblasts to matrix-producing myofibroblasts. In summary, increasing evidence highlights a critical role of MCs in non-allergic diseases that may indicate new approaches for therapy.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saeede Amani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelica Tiotiu
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
29
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
31
|
Zhang L, Pan J, Chen W, Jiang J, Huang J. Chronic stress-induced immune dysregulation in cancer: implications for initiation, progression, metastasis, and treatment. Am J Cancer Res 2020; 10:1294-1307. [PMID: 32509380 PMCID: PMC7269780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023] Open
Abstract
Psychological stress is a well-accepted risk factor in cancer initiation and progression. The explosive growth of psychoneuroimmunology research in the past decade has yielded an unprecedented wealth of information about the critical role of chronic stress in the immune dysfunction that influences tumor behaviors, which presents insights to mitigate distress and improve prognosis in cancer patients. Chronic stress exacerbates inflammation and causes a metabolism disorder, making it difficult for the organisms to maintain homeostasis and increasing its susceptibility to cancer. The shifted differentiation and redistribution of the immune system induced by chronic stress fail to combat cancer efficiently. Chronic stress increases the tumor-educated immune suppressive cells and impairs the cytotoxicity of cellular immunity, thereby promoting lymphatic metastasis and hematogenous metastasis. In addition, the efficacy of existing cancer therapies is undermined because chronic stress prevents the immune system from responding properly. Emerging stress-reduction measures have been administered to assist cancer patients to cope with the adverse effects of chronic stress. Here we systematically review the current molecular, cellular, physiological mechanisms about stress-mediated immune responses in the enhancement of tumor initiation and progression, remodeling of tumor microenvironment and impairment of anti-tumor treatment. We also summarize the potential clinically applicable stress-oriented strategies towards cancer and discuss briefly where important knowledge gaps remain.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jun Pan
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jinxin Jiang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| |
Collapse
|
32
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
33
|
Zhu C, Zhao L, Zhao J, Zhang S. Sini San ameliorates duodenal mucosal barrier injury and low‑grade inflammation via the CRF pathway in a rat model of functional dyspepsia. Int J Mol Med 2019; 45:53-60. [PMID: 31746413 PMCID: PMC6889936 DOI: 10.3892/ijmm.2019.4394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The gut-brain interaction is associated with impaired duodenal mucosal integrity and low-grade inflammation, which have been proven to be important pathological mechanisms of functional dyspepsia (FD). Sini San (SNS) is a classical Chinese medicine used to treat FD, but its underlying mechanisms are poorly understood. The aim of the present study was to evaluate the effects of SNS on duodenal mucosal barrier injury and low-grade inflammation with FD, and to assess its potential molecular mechanisms on the brain-gut axis. FD rats were established using the iodoacetamide and tail-squeezed methods. The expression of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF-R1) and CRF-R2, were determined by western blot analysis and/or immunohistochemistry (IHC). In addition, mast cell (MC) migration was assessed by IHC with an anti-tryptase antibody, and histamine concentration was quantified using ELISA. The mRNA expression levels of tryptase and protease-activated receptor 2 (PAR-2) were quantified using reverse transcription-quantitative PCR, and the protein expression levels of zona occludens protein 1 (ZO-1), junctional adhesion molecule 1 (JAM-1), β-catenin and E-cadherin were determined via western blot analysis. It was demonstrated that the expression level of CRF was downregulated in the central nervous system and duodenum following SNS treatment, and that SNS modulated the expression of both CRF-R1 and CRF-R2. In addition, SNS suppressed MC infiltration and the activity of the tryptase/PAR-2 pathway in the duodenum. Furthermore, treatment with SNS restored the normal expression levels of ZO-1, JAM-1 and β-catenin in FD rats. These findings suggested that the therapeutic effects of SNS on FD were achieved by restoring mucosal barrier integrity and suppressing low-grade inflammation in the duodenum, which was at least partially mediated via the CRF signaling pathway.
Collapse
Affiliation(s)
- Chunyang Zhu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jingyi Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
34
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
D'Costa S, Ayyadurai S, Gibson AJ, Mackey E, Rajput M, Sommerville LJ, Wilson N, Li Y, Kubat E, Kumar A, Subramanian H, Bhargava A, Moeser AJ. Mast cell corticotropin-releasing factor subtype 2 suppresses mast cell degranulation and limits the severity of anaphylaxis and stress-induced intestinal permeability. J Allergy Clin Immunol 2018; 143:1865-1877.e4. [PMID: 30439403 DOI: 10.1016/j.jaci.2018.08.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Psychological stress and heightened mast cell (MC) activation are linked with important immunologic disorders, including allergy, anaphylaxis, asthma, and functional bowel diseases, but the mechanisms remain poorly defined. We have previously demonstrated that activation of the corticotropin-releasing factor (CRF) system potentiates MC degranulation responses during IgE-mediated anaphylaxis and psychological stress through corticotropin-releasing factor receptor subtype 1 (CRF1) expressed on MCs. OBJECTIVE In this study we investigated the role of corticotropin-releasing factor receptor subtype 2 (CRF2) as a modulator of stress-induced MC degranulation and associated disease pathophysiology. METHODS In vitro MC degranulation assays were performed with bone marrow-derived mast cells (BMMCs) derived from wild-type (WT) and CRF2-deficient (CRF2-/-) mice and RBL-2H3 MCs transfected with CRF2-overexpressing plasmid or CRF2 small interfering RNA. In vivo MC responses and associated pathophysiology in IgE-mediated passive systemic anaphylaxis and acute psychological restraint stress were measured in WT, CRF2-/-, and MC-deficient KitW-sh/W-sh knock-in mice. RESULTS Compared with WT mice, CRF2-/- mice exhibited greater serum histamine levels and exacerbated IgE-mediated anaphylaxis and colonic permeability. In addition, CRF2-/- mice exhibited increased serum histamine levels and colonic permeability after acute restraint stress. Experiments with BMMCs and RBL-2H3 MCs demonstrated that CRF2 expressed on MCs suppresses store-operated Ca2+ entry signaling and MC degranulation induced by diverse MC stimuli. Experiments with MC-deficient KitW-sh/W-sh mice systemically engrafted with WT and CRF2-/- BMMCs demonstrated the functional importance of MC CRF2 in modulating stress-induced pathophysiology. CONCLUSIONS MC CRF2 is a negative global modulator of stimuli-induced MC degranulation and limits the severity of IgE-mediated anaphylaxis and stress-related disease pathogenesis.
Collapse
Affiliation(s)
- Susan D'Costa
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC
| | - Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | | | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich; Comparative Biomedical Sciences Program, North Carolina State University, Raleigh, NC
| | - Mrigendra Rajput
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | | | - Neco Wilson
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | - Eric Kubat
- Department of Surgery, East Bay, University of California, San Francisco, Calif
| | - Ananth Kumar
- Department of Physiology, Michigan State University, East Lansing, Mich
| | | | - Aditi Bhargava
- Department of Surgery and Osher Center for Integrative Medicine, University of California, San Francisco, Calif
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich; Department of Physiology, Michigan State University, East Lansing, Mich.
| |
Collapse
|
36
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Altered colonic sensory and barrier functions by CRF: roles of TLR4 and IL-1. J Endocrinol 2018; 239:241-252. [PMID: 30139928 DOI: 10.1530/joe-18-0441] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Visceral allodynia and increased colonic permeability are considered to be crucial pathophysiology of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and immune-mediated mechanisms have been proposed to contribute to these changes in IBS, but the precise roles have not been determined. We explored these issues in rats in vivo. The threshold of visceromotor response, i.e., abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal injection of CRF increased the permeability, which was blocked by astressin, a non-selective CRF receptor antagonist, but astressin2-B, a selective CRF receptor subtype 2 (CRF2) antagonist did not modify it. Urocortin 2, a selective CRF2 agonist inhibited the increased permeability by CRF. Eritoran, a toll-like receptor 4 (TLR4) antagonist or anakinra, an interleukin-1 receptor antagonist blocked the visceral allodynia and the increased gut permeability induced by CRF. Subcutaneous injection of lipopolysaccharide (immune stress) or repeated water avoidance stress (WAS, psychological stress), 1 h daily for 3 days induced visceral allodynia and increased gut permeability (animal IBS models), which were also blocked by astressin, eritoran or anakinra. In conclusion, stress-induced visceral allodynia and increased colonic permeability were mediated via peripheral CRF receptors. CRF induced these visceral changes via TLR4 and cytokine system, which were CRF1 dependent, and activation of CRF2 inhibited these CRF1-triggered responses. CRF may modulate immune system to alter visceral changes, which are considered to be pivotal pathophysiology of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
37
|
Electroacupuncture Relieves Visceral Hypersensitivity by Inactivating Protease-Activated Receptor 2 in a Rat Model of Postinfectious Irritable Bowel Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7048584. [PMID: 30420896 PMCID: PMC6211213 DOI: 10.1155/2018/7048584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Background The role of protease-activated receptor 2 (PAR2) in the analgesic effect of electroacupuncture (EA) on visceral hypersensitivity (VH) in postinfectious irritable bowel syndrome (PI-IBS) has yet to be elucidated. Aim In this study, we investigated the molecular mechanisms underlying the analgesic effect of EA in a rat model of PI-IBS. Methods Visceral hypersensitivity was evaluated by the abdominal withdrawal reflex test before and after administration of the PAR2 agonist, PAR2-AP, and/or EA. The protein expression and mRNA levels of PAR2, CGRP, SP, and TPSP in colon tissues were measured by immunofluorescence, western blot, and RT-PCR. Results We found that EA could alleviate VH and significantly decrease protein and mRNA levels of PAR2, TPSP, CGRP, and SP in PI-IBS rats. The analgesic effect of EA on VH was slightly reduced in the presence of PAR2-AP. Conclusions These results suggest that EA alleviates VH symptoms through downregulation of the levels of the TPSP/PAR2/SP/CGRP signaling axis in colon tissues in PI-IBS rats. Together, our data suggests that PAR2 plays a critical role in the analgesic effect of EA on VH in PI-IBS.
Collapse
|
38
|
Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr Opin Pharmacol 2018; 43:66-71. [PMID: 30216901 DOI: 10.1016/j.coph.2018.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
The intestinal mucosa is constantly exposed to harmful luminal content, and uptake is closely controlled and regulated by neuro-immune factors. If control is broken, it might lead to ongoing enhanced mucosal permeability, potentially resulting in functional gastrointestinal disorders. The importance of mast cells in the regulation of the mucosal barrier has become obvious, and increased numbers and more activated mast cells have been observed in irritable bowel syndrome, functional dyspepsia and gastroesophageal reflux disease. To target the disturbed mucosal permeability, directly or via mast cells, is therefore currently of major interest. For example, administration of mast cell stabilizers and probiotics have shown promising effects in patients with functional gastrointestinal disorders.
Collapse
|
39
|
Santoro T, Azevedo CT, E Silva PMR, Martins MA, Carvalho VF. Glucocorticoids decrease the numbers and activation of mast cells by inducing the transactivation receptors of AGEs. J Leukoc Biol 2018; 105:131-142. [PMID: 30199117 DOI: 10.1002/jlb.3a0917-364rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-allergic compounds that function, at least in part, by inhibiting signaling pathways in mast cells. We hypothesized that the GC-induced mastocytopenia and suppression of mast cell activation are mediated by the advanced glycation end products (AGEs)/receptors of AGEs (RAGEs) signaling axis. We evaluated the role of AGEs in GC-mediated mastocytopenia and impaired mast cell degranulation in male Wistar rats and Swiss-Webster mice subcutaneously injected with dexamethasone or prednisolone (0.1 mg/kg) once a day for 21 consecutive days. The animals were treated with either the AGE inhibitor aminoguanidine (250 mg/kg), the RAGE antagonist FPS-ZM1 (1 mg/kg) or the galectin-3 antagonist GSC-100 (1 mg/kg) daily for 18 days, starting 3 days following GC treatment. Aminoguanidine inhibited GC-induced mast cell apoptosis and restored mast cell numbers in the pleural cavity of GC-treated rats. Aminoguanidine also reversed the GC-induced reduction in histamine release triggered by allergens or compound 48/80 in vitro. GC treatment induced RAGE and galectin expression in mast cells, and blocking these agents by FPS-ZM1 or GSC-100 significantly reversed mast cell numbers in the peritoneal cavity and mesenteric tissue of GC-treated mice. In addition, the combination of GC and AGE-induced mast cell apoptosis in vitro was inhibited by both FPS-ZM1 and GSC-100. We concluded that the GC-induced mastocytopenia and suppression of mast cell stimulation are associated with the gene transactivation of RAGE and galectin-3.
Collapse
Affiliation(s)
- Tassia Santoro
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina T Azevedo
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius F Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Mast Cells Exert Anti-Inflammatory Effects in an IL10 -/- Model of Spontaneous Colitis. Mediators Inflamm 2018; 2018:7817360. [PMID: 29849494 PMCID: PMC5932457 DOI: 10.1155/2018/7817360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mast cells are well established as divergent modulators of inflammation and immunosuppression, but their role in inflammatory bowel disease (IBD) remains to be fully defined. While previous studies have demonstrated a proinflammatory role for mast cells in acute models of chemical colitis, more recent investigations have shown that mast cell deficiency can exacerbate inflammation in spontaneous colitis models, thus suggesting a potential anti-inflammatory role of mast cells in IBD. Here, we tested the hypothesis that in chronic, spontaneous colitis, mast cells are protective. We compared colitis and intestinal barrier function in IL10−/− mice to mast cell deficient/IL10−/− (double knockout (DKO): KitWsh/Wsh × IL10−/−) mice. Compared with IL10−/− mice, DKO mice exhibited more severe colitis as assessed by increased colitis scores, mucosal hypertrophy, intestinal permeability, and colonic cytokine production. PCR array analyses demonstrated enhanced expression of numerous cytokine and chemokine genes and downregulation of anti-inflammatory genes (e.g., Tgfb2, Bmp2, Bmp4, Bmp6, and Bmp7) in the colonic mucosa of DKO mice. Systemic reconstitution of DKO mice with bone marrow-derived mast cells resulted in significant amelioration of IL10−/−-mediated colitis and intestinal barrier injury. Together, the results presented here demonstrate that mast cells exert anti-inflammatory properties in an established model of chronic, spontaneous IBD. Given the previously established proinflammatory role of mast cells in acute chemical colitis models, the present findings provide new insight into the divergent roles of mast cells in modulating inflammation during different stages of colitis. Further investigation of the mechanism of the anti-inflammatory role of the mast cells may elucidate novel therapies.
Collapse
|
41
|
Church MK, Kolkhir P, Metz M, Maurer M. The role and relevance of mast cells in urticaria. Immunol Rev 2018; 282:232-247. [DOI: 10.1111/imr.12632] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Martin K. Church
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Pavel Kolkhir
- Department of Dermatology and Venereology; Sechenov First Moscow State Medical University; Moscow Russian Federation
| | - Martin Metz
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
42
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Neurosci 2017; 11:703. [PMID: 29302258 PMCID: PMC5733004 DOI: 10.3389/fnins.2017.00703] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Govindhasamy P. Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Shankar S. Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Sachin M. Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Swathi Beladakere-Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| |
Collapse
|