1
|
Kyei-Baafour E, Kusi KA, Owusu-Yeboa E, Issahaque QA, Kumordjie S, Authur FKN, Dwomoh D, Singh SK, Dodoo D, Theisen M, Adu B. Wider antibody breadth against multiple Plasmodium falciparum antigens is associated with reduced risk of malaria in a transmission hotspot in southern Ghana. Int J Infect Dis 2025; 153:107804. [PMID: 39889952 DOI: 10.1016/j.ijid.2025.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/23/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVES Naturally acquired immunity to malaria results from repeated infection with Plasmodium parasites. However, identifying immune correlates of immunity against febrile malaria is quite challenging. Here we investigated antigenic targets of malaria protective antibodies in populations residing a malaria transmission hotspot in southern Ghana. METHOD We enrolled 973 children, aged 6 months to 12 years, in southern Ghana out of which 211 were infected at least once with Plasmodium falciparum in a 50-week longitudinal cohort study. Total IgG levels in baseline plasma samples were determined using indirect ELISA. RESULTS We found a significant association between higher IgG levels to MSP3 (adjusted P-value [aP] = 0.0002), GLURP-R2 (aP = 0.0026), MSP DBL2 (aP = 0.004) and N-MSP3 (aP = 0.002), and protection from febrile malaria. A negative association between higher antibody levels to MSP3, GMZ2, GLURP-R2 and MSPDBL2 and parasite density was also observed. Wider antibody breadth was associated with protection against febrile malaria and single, compared to multiple malaria episodes. CONCLUSIONS Specific antibody levels and breadth of responses against multiple P. falciparum surface antigens protect against febrile malaria, parasitaemia and multiple malaria episodes. This data supports the development of multivalent vaccines targeting P. falciparum surface antigens in high malaria endemic settings.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eunice Owusu-Yeboa
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Quratul-Ain Issahaque
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Selassie Kumordjie
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Fareed K N Authur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Susheel Kumar Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India; Centre for Medical Parasitology at Department of Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Michael Theisen
- Centre for Medical Parasitology at Department of Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| |
Collapse
|
2
|
Yuguchi T, Dankyi BO, Rojrung R, Nagaoka H, Kanoi BN, Tiono AB, Nebie I, Ouedraogo A, Miura K, Sattabongkot J, Sirima SB, Tsuboi T, Takashima E. Antibody responses in Burkinabe children against P. falciparum proteins associated with reduced risk of clinical malaria. Front Immunol 2025; 16:1521082. [PMID: 40079008 PMCID: PMC11896993 DOI: 10.3389/fimmu.2025.1521082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Individuals residing in malaria-endemic regions with high disease transmission can develop semi-immunity within five years of age. Although understanding the target of the IgGs in this age group helps discover novel blood-stage vaccine candidates and serological markers, it has not been well elucidated due to limited accessibility to plasmodial antigens and samples. This study presents the first comprehensive analysis of antibody levels in plasma obtained from Burkinabe children (n=80, aged 0 to 5 years) to 1307 Plasmodium falciparum proteins expressed by the eukaryotic wheat germ cell-free system. Antibody levels were measured by AlphaScreen. We found that 98% of antigens were immunoreactive. The number of reactive antigens by the individual was correlated with increasing age. The most significant increases in seroprevalence occur during the first 2 years of life. By correlating antibody levels and the number of clinical malaria during a 1-year follow-up period, we identified 173 potential protein targets which might be associated with clinical immunity. These results provide valuable insights into how children acquired semi-immunity to malaria in their early lives.
Collapse
Affiliation(s)
- Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Benedicta O. Dankyi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Rattanaporn Rojrung
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
3
|
Ronald M, Humphrey W, Adoke Y, Jean-Pierre VG. Impact of population based indoor residual spraying in combination with mass drug administration on malaria incidence and test positivity in a high transmission setting in north eastern Uganda. Malar J 2023; 22:378. [PMID: 38093286 PMCID: PMC10717204 DOI: 10.1186/s12936-023-04799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) and indoor residual spraying (IRS) are potent malaria burden reduction tools. The impact of combining MDA and IRS is not well documented. We evaluated the impact of MDA + IRS compared to IRS alone at a high transmission site in Eastern Uganda. METHODS A quasi-experimental study was implemented in Toroma and Kapujan subcounties in north eastern Uganda. Both subcounties received four rounds of IRS using primiphos-methyl (Acttellic SC300) 6-8 months apart from December 2016 to December 2018. Eligible residents of Kapujan simultaneously received MDA using dihydroartemesinin-piperaquine (DHA-PQ). Health facility data was used to monitor malaria case incidence rate and test positivity rates. RESULTS In the MDA + IRS arm, malaria incidence dropped by 83% (IRR: 0·17 (0.16-0.18); p < 0.001) in children under 5 year and by 78% (IRR: 0·22 (0.22-0.23); p < 0.001) in persons aged ≥ 5 years from the pre-intervention to the intervention period. In the IRS arm malaria incidence dropped by 47% (IRR: 0.53 (0.51, 0.56); p < 0.001) in children under 5 years and by 71% 0.29 (0.28, 0.30); p < 0.001) in persons aged ≥ 5 years. A drastic drop occurred immediately after the intervention after which cases slowly increased in both arms. Malaria test positivity rate (TPR) dropped at a rate of 21 (p = 0.003) percentage points per 1000 persons in the MDA + IRS arm compared to the IRS arm. There was a mean decrease of 60 (p-value, 0.040) malaria cases among children under five years and a mean decrease in TPR of 16·16 (p-value, 0.001) in the MDA + IRS arm compared to IRS arm. INTERPRETATION MDA significantly reduced malaria burden among children < 5 years however the duration of this impact needs to be further investigated.
Collapse
Affiliation(s)
- Mulebeke Ronald
- Makerere University School of Public Health, Kampala, Uganda.
- Global Health Institute, University of Antwerp, Antwerpen, Belgium.
| | | | - Yeka Adoke
- Makerere University School of Public Health, Kampala, Uganda
| | | |
Collapse
|
4
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
5
|
Duffy FJ, Hertoghs N, Du Y, Neal ML, Oyong D, McDermott S, Minkah N, Carnes J, Schwedhelm KV, McElrath MJ, De Rosa SC, Newell E, Aitchison JD, Stuart K. Longitudinal immune profiling after radiation-attenuated sporozoite vaccination reveals coordinated immune processes correlated with malaria protection. Front Immunol 2022; 13:1042741. [PMID: 36591224 PMCID: PMC9798120 DOI: 10.3389/fimmu.2022.1042741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Damian Oyong
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Suzanne McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Evan Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| |
Collapse
|
6
|
Abad P, Marín-García P, Heras M, Fobil JN, Hutchful AG, Diez A, Puyet A, Reyes-Palomares A, Azcárate IG, Bautista JM. Microscopic and submicroscopic infection by Plasmodium falciparum: Immunoglobulin M and A profiles as markers of intensity and exposure. Front Cell Infect Microbiol 2022; 12:934321. [PMID: 36118030 PMCID: PMC9478039 DOI: 10.3389/fcimb.2022.934321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Assessment of serological Plasmodium falciparum–specific antibodies in highly endemic areas provides valuable information about malaria status and parasite exposure in the population. Although serological evidence of Plasmodium exposure is commonly determined by Plasmodium-specific immunoglobulin G (IgG) levels; IgM and IgA are likely markers of malaria status that remain relatively unexplored. Previous studies on IgM and IgA responses have been based on their affinity for single antigens with shortage of immune responses analysis against the whole Plasmodium proteome. Here, we provide evidence of how P. falciparum infection triggers the production of specific IgM and IgA in plasma and its relationship with parasite density and changes in hematological parameters. A total of 201 individuals attending a hospital in Breman Asikuma, Ghana, were recruited into this study. Total and P. falciparum–specific IgM, IgA, and IgG were assessed by ELISA and examined in relation to age (0–5, 14–49, and ≥50 age ranges); infection (submicroscopic vs. microscopic malaria); pregnancy and hematological parameters. Well-known IgG response was used as baseline control. P. falciparum–specific IgM and IgA levels increased in the population with the age, similarly to IgG. These data confirm that acquired humoral immunity develops by repeated infections through the years endorsing IgM and IgA as exposure markers in endemic malaria regions. High levels of specific IgA and IgM in children were associated with microscopic malaria and worse prognosis, because most of them showed severe anemia. This new finding shows that IgM and IgA may be used as diagnostic markers in this age group. We also found an extremely high prevalence of submicroscopic malaria (46.27% on average) accompanied by IgM and IgA levels indistinguishable from those of uninfected individuals. These data, together with the observed lack of sensitivity of rapid diagnostic tests (RDTs) compared to PCR, invoke the urgent need to implement diagnostic markers for submicroscopic malaria. Overall, this study opens the potential use of P. falciparum–specific IgM and IgA as new serological markers to predict malaria status in children and parasite exposure in endemic populations. The difficulties in finding markers of submicroscopic malaria are highlighted, emphasizing the need to explore this field in depth.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marcos Heras
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Julius N. Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alfred G. Hutchful
- Laboratory of Hematology and Infectious Diseases, Our Lady of Grace Hospital, Breman-Asikuma, Ghana
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel G. Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel G. Azcárate, ; José M. Bautista,
| |
Collapse
|
7
|
Druetz T, van den Hoogen L, Stresman G, Joseph V, Hamre KES, Fayette C, Monestime F, Presume J, Romilus I, Mondélus G, Elismé T, Cooper S, Impoinvil D, Ashton RA, Rogier E, Existe A, Boncy J, Chang MA, Lemoine JF, Drakeley C, Eisele TP. Etramp5 as a useful serological marker in children to assess the immediate effects of mass drug campaigns for malaria. BMC Infect Dis 2022; 22:643. [PMID: 35883064 PMCID: PMC9321307 DOI: 10.1186/s12879-022-07616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Serological methods provide useful metrics to estimate age-specific period prevalence in settings of low malaria transmission; however, evidence on the use of seropositivity as an endpoint remains scarce in studies to evaluate combinations of malaria control measures, especially in children. This study aims to evaluate the immediate effects of a targeted mass drug administration campaign (tMDA) in Haiti by using serological markers. METHODS The tMDA was implemented in September-October 2018 using sulfadoxine-pyrimethamine and single low-dose primaquine. A natural quasi-experimental study was designed, using a pretest and posttest in a cohort of 754 randomly selected school children, among which 23% reported having received tMDA. Five antigens were selected as outcomes (MSP1-19, AMA-1, Etramp5 antigen 1, HSP40, and GLURP-R0). Posttest was conducted 2-6 weeks after the intervention. RESULTS At baseline, there was no statistical difference in seroprevalence between the groups of children that were or were not exposed during the posttest. A lower seroprevalence was observed for markers informative of recent exposure (Etramp5 antigen 1, HSP40, and GLURP-R0). Exposure to tMDA was significantly associated with a 50% reduction in the odds of seropositivity for Etramp5 antigen 1 and a 21% reduction in the odds of seropositivity for MSP119. CONCLUSION Serological markers can be used to evaluate the effects of interventions against malaria on the risk of infection in settings of low transmission. Antibody responses against Etramp5 antigen 1 in Haitian children were reduced in the 2-6 weeks following a tMDA campaign, confirming its usefulness as a short-term marker in child populations.
Collapse
Affiliation(s)
- T Druetz
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA. .,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada. .,Centre de Recherche en Santé Publique, Montreal, Canada.
| | - L van den Hoogen
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - G Stresman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - V Joseph
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA.,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - K E S Hamre
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA.,CDC Foundation, Atlanta, USA
| | - C Fayette
- IMA World Health, Port-au-Prince, Haiti
| | | | - J Presume
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - I Romilus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - G Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - T Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - S Cooper
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - D Impoinvil
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - R A Ashton
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - E Rogier
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - A Existe
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - J Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - M A Chang
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - J F Lemoine
- Programme National de Contrôle du Paludisme, Port-au-Prince, Haiti
| | - C Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - T P Eisele
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| |
Collapse
|
8
|
Chaudhury S, Bolton JS, Eller LA, Robb M, Ake J, Ngauy V, Regules JA, Kamau E, Bergmann-Leitner ES. Assessing Prevalence and Transmission Rates of Malaria through Simultaneous Profiling of Antibody Responses against Plasmodium and Anopheles Antigens. J Clin Med 2022; 11:jcm11071839. [PMID: 35407447 PMCID: PMC9000160 DOI: 10.3390/jcm11071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Reliably assessing exposure to mosquitoes carrying malaria parasites continues to be a challenge due to the lack of reliable, highly sensitive diagnostics with high-throughput potential. Here, we describe an approach that meets these requirements by simultaneously measuring immune responses to both disease vector and pathogen, using an electro-chemiluminescence-based multiplex assay platform. While using the same logistical steps as a classic ELISA, this platform allows for the multiplexing of up to ten antigens in a single well. This simple, reproducible, quantitative readout reports the magnitude, incidence, and prevalence of malaria infections in residents of malaria-endemic areas. By reporting exposure to both insect vectors and pathogen, the approach also provides insights into the efficacy of drugs and/or other countermeasures deployed against insect vectors aimed at reducing or eliminating arthropod-borne diseases. The high throughput of the assay enables the quick and efficient screening of sera from individuals for exposure to Plasmodium even if they are taking drug prophylaxis. We applied this assay to samples collected from controlled malaria infection studies, as well as those collected in field studies in malaria-endemic regions in Uganda and Kenya. The assay was sensitive to vector exposure, malaria infection, and endemicity, demonstrating its potential for use in malaria serosurveillance.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Center Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Leigh Anne Eller
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Merlin Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
| | - Viseth Ngauy
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Edwin Kamau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
- Laboratory Medicine, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
- Correspondence:
| |
Collapse
|
9
|
Dharmaratne ADVTT, Dini S, O’Flaherty K, Price DJ, Beeson J, McGready R, Nosten F, Fowkes FJI, Simpson JA, Zaloumis SG. Quantification of the dynamics of antibody response to malaria to inform sero-surveillance in pregnant women. Malar J 2022; 21:75. [PMID: 35248084 PMCID: PMC8897879 DOI: 10.1186/s12936-022-04111-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Malaria remains a major public health threat and tools sensitive to detect infections in low malaria transmission areas are needed to progress elimination efforts. Pregnant women are particularly vulnerable to malaria infections. Throughout pregnancy they access routine antenatal care, presenting a unique sentinel population to apply novel sero-surveillance tools to measure malaria transmission. The aim of this study was to quantify the dynamic antibody responses to multiple antigens during pregnancy so as to identify a single or multiple antibody response of exposure to malaria in pregnancy. Methods This study involved a secondary analysis of antibody responses to six parasite antigens [five commonly studied merozoite antigens and the variant surface antigen 2-chondroitin sulphate A (VAR2CSA), a pregnancy-specific erythrocytic antigen] measured by enzyme-linked immunosorbent assay (ELISA) over the gestation period until delivery (median of 7 measurements/woman) in 250 pregnant women who attended antenatal clinics located at the Thai-Myanmar border. A multivariate mixture linear mixed model was used to cluster the pregnant women into groups that have similar longitudinal antibody responses to all six antigens over the gestational period using a Bayesian approach. The variable-specific entropy was calculated to identify the antibody responses that have the highest influence on the classification of the women into clusters, and subsequent agreement with grouping of women based on exposure to malaria during pregnancy. Results Of the 250 pregnant women, 135 had a Plasmodium infection detected by light microscopy during pregnancy (39% Plasmodium falciparum only, 33% Plasmodium vivax only and 28% mixed/other species), defined as cases. The antibody responses to all six antigens accurately identified the women who did not have a malaria infection detected during pregnancy (93%, 107/115 controls). Antibody responses to P. falciparum merozoite surface protein 3 (PfMSP3) and P. vivax apical membrane antigen 1 (PvAMA1) were the least dynamic. Antibody responses to the antigens P. falciparum apical membrane antigen 1 (PfAMA1) and PfVAR2CSA were able to identify the majority of the cases more accurately (63%, 85/135). Conclusion These findings suggest that the combination of antibodies, PfAMA1 and PfVAR2CSA, may be useful for sero-surveillance of malaria infections in pregnant women, particularly in low malaria transmission settings. Further investigation of other antibody markers is warranted considering these antibodies combined only detected 63% of the malaria infections during pregnancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04111-y.
Collapse
|
10
|
Distinct kinetics of antibodies to 111 Plasmodium falciparum proteins identifies markers of recent malaria exposure. Nat Commun 2022; 13:331. [PMID: 35039519 PMCID: PMC8764098 DOI: 10.1038/s41467-021-27863-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Strengthening malaria surveillance is a key intervention needed to reduce the global disease burden. Reliable serological markers of recent malaria exposure could improve current surveillance methods by allowing for accurate estimates of infection incidence from limited data. We studied the IgG antibody response to 111 Plasmodium falciparum proteins in 65 adult travellers followed longitudinally after a natural malaria infection in complete absence of re-exposure. We identified a combination of five serological markers that detect exposure within the previous three months with >80% sensitivity and specificity. Using mathematical modelling, we examined the antibody kinetics and determined that responses informative of recent exposure display several distinct characteristics: rapid initial boosting and decay, less inter-individual variation in response kinetics, and minimal persistence over time. Such serological exposure markers could be incorporated into routine malaria surveillance to guide efforts for malaria control and elimination. Serological markers of recent Plasmodium falciparum infection could be useful to estimate incidence. Here, the authors identify a combination of five serological markers to detect exposure to infection within the previous three months with >80% sensitivity and specificity.
Collapse
|
11
|
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) Elicits Detectable Levels of Invasion-Inhibitory Antibodies during Natural Infection in Humans. Infect Immun 2021; 90:e0037721. [PMID: 34694918 DOI: 10.1128/iai.00377-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is a conserved component of an essential erythrocyte invasion complex (RH5/Ripr/CyRPA) and a target of potent cross-strain parasite-neutralizing antibodies. While, naturally acquired human RH5 antibodies have been functionally characterized, there are no similar reports on CyRPA. Thus, we analyzed the parasite neutralizing activity of naturally acquired human CyRPA antibodies. In this regard, CyRPA human antibodies were measured and purified from malaria infected sera obtained from central India and analyzed for their parasite neutralizing activity in in vitro growth inhibition assays (GIA). We report that despite being susceptible to antibody, CyRPA being a highly conserved antigen does not appear to be under substantial immune selection pressure as a very low acquisition of anti-CyRPA antibodies was reported in malaria-exposed Indians. We demonstrate for the first time that the low amounts of natural CyRPA antibodies exhibited functional parasite-neutralizing activity and that a CyRPA based vaccine formulation induces highly potent antibodies in rabbits. Importantly, the vaccine induced CyRPA antibodies exhibited a robust IC50 of 21.96 μg/ml that is comparable to IC50 of antibodies against the leading blood stage vaccine candidate, RH5. Our data support CyRPA as a unique vaccine target that is highly susceptible to immune attack but highly conserved compared to other leading candidates such as MSP-1, AMA-1, further substantiating its promise as a leading blood-stage vaccine candidate.
Collapse
|
12
|
Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Trop Med Infect Dis 2021; 6:tropicalmed6040185. [PMID: 34698307 PMCID: PMC8544703 DOI: 10.3390/tropicalmed6040185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (PfMSP1, PfMSP3, PfAMA1, PfGLURP-R0), to whole schizont extract (PfSchz), and to Anopheles gSG6-P1 and Aedes Nterm–34 kDa salivary peptides were measured. Regression analyses were used to identify factors that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG responses to PfSchz and to PfGLURP-R0 appear to be affected by exposure to Aedes saliva and are associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.
Collapse
|
13
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
14
|
Bundi CK, Nalwoga A, Lubyayi L, Muriuki JM, Mogire RM, Opi H, Mentzer AJ, Mugyenyi CK, Mwacharo J, Webb EL, Bejon P, Williams TN, Gikunju JK, Beeson JG, Elliott AM, Ndungu FM, Atkinson SH. Iron Deficiency Is Associated With Reduced Levels of Plasmodium falciparum-specific Antibodies in African Children. Clin Infect Dis 2021; 73:43-49. [PMID: 32507899 PMCID: PMC8246895 DOI: 10.1093/cid/ciaa728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Iron deficiency (ID) and malaria are common causes of ill-health and disability among children living in sub-Saharan Africa. Although iron is critical for the acquisition of humoral immunity, little is known about the effects of ID on antibody responses to Plasmodium falciparum malaria. METHODS The study included 1794 Kenyan and Ugandan children aged 0-7 years. We measured biomarkers of iron and inflammation, and antibodies to P. falciparum antigens including apical merozoite antigen 1 (anti-AMA-1) and merozoite surface antigen 1 (anti-MSP-1) in cross-sectional and longitudinal studies. RESULTS The overall prevalence of ID was 31%. ID was associated with lower anti-AMA-1 and anti-MSP-1 antibody levels in pooled analyses adjusted for age, sex, study site, inflammation, and P. falciparum parasitemia (adjusted mean difference on a log-transformed scale (β) -0.46; 95 confidence interval [CI], -.66, -.25 P < .0001; β -0.33; 95 CI, -.50, -.16 P < .0001, respectively). Additional covariates for malaria exposure index, previous malaria episodes, and time since last malaria episode were available for individual cohorts. Meta-analysis was used to allow for these adjustments giving β -0.34; -0.52, -0.16 for anti-AMA-1 antibodies and β -0.26; -0.41, -0.11 for anti-MSP-1 antibodies. Low transferrin saturation was similarly associated with reduced anti-AMA-1 antibody levels. Lower AMA-1 and MSP-1-specific antibody levels persisted over time in iron-deficient children. CONCLUSIONS Reduced levels of P. falciparum-specific antibodies in iron-deficient children might reflect impaired acquisition of immunity to malaria and/or reduced malaria exposure. Strategies to prevent and treat ID may influence antibody responses to malaria for children living in sub-Saharan Africa.
Collapse
Affiliation(s)
- Caroline K Bundi
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Angela Nalwoga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Lawrence Lubyayi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Reagan M Mogire
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Cleopatra K Mugyenyi
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Burnet Institute, Melbourne, Australia
| | - Jedida Mwacharo
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Imperial College, London, United Kingdom
| | - Joseph K Gikunju
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - James G Beeson
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, and Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francis M Ndungu
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sarah H Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Rogier E, Nace D, Dimbu PR, Wakeman B, Pohl J, Beeson JG, Drakeley C, Tetteh K, Plucinski M. Framework for Characterizing Longitudinal Antibody Response in Children After Plasmodium falciparum Infection. Front Immunol 2021; 12:617951. [PMID: 33737926 PMCID: PMC7960919 DOI: 10.3389/fimmu.2021.617951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Human Plasmodium infection produces a robust adaptive immune response. Time courses for 104 children followed for 42 days after initiation of Plasmodium falciparum chemotherapy were assayed for antibody levels to the five isotypes of human immunoglobulins (Ig) and 4 subclasses of IgG for 32 P. falciparum antigens encompassing all 4 parasite stages of human infection. IgD and IgE against these antigens were undetectable at 1:100 serum concentration, but other Ig isotypes and IgG subclasses were consistently observed against all antigens. Five quantitative parameters were developed to directly compare Ig response among isotypes and antigens: Cmax, maximum antibody level; ΔC, difference between Cmax and the antibody level at Day 0; tmax, time in days to reach Cmax; t1/2, Ig signal half-life in days; tneg, estimated number of days until complete loss of Ig signal. Classical Ig patterns for a bloodborne pathogen were seen with IgM showing early tmax and IgG production highest among Ig isotypes. However, some unexpected trends were observed such as IgA showing a biphasic pattern for many antigens. Variability among these dynamics of Ig acquisition and loss was noted for different P. falciparum antigens and able to be compared both quantitatively and statistically. This parametrization methodology allows direct comparison of Ig isotypes produced against various Plasmodium antigens following malaria infection, and the same methodology could be applied to other longitudinal serologic studies from P. falciparum or different pathogens. Specifically for P. falciparum seroepidemiological studies, reliable and quantitative estimates regarding the IgG dynamics in human populations can better optimize modeling efforts for serological outputs.
Collapse
Affiliation(s)
- Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Doug Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Brian Wakeman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Pohl
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Tetteh
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mateusz Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States.,U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
16
|
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11:594653. [PMID: 33193447 PMCID: PMC7658415 DOI: 10.3389/fimmu.2020.594653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Stresman G, Sepúlveda N, Fornace K, Grignard L, Mwesigwa J, Achan J, Miller J, Bridges DJ, Eisele TP, Mosha J, Lorenzo PJ, Macalinao ML, Espino FE, Tadesse F, Stevenson JC, Quispe AM, Siqueira A, Lacerda M, Yeung S, Sovannaroth S, Pothin E, Gallay J, Hamre KE, Young A, Lemoine JF, Chang MA, Phommasone K, Mayxay M, Landier J, Parker DM, Von Seidlein L, Nosten F, Delmas G, Dondorp A, Cameron E, Battle K, Bousema T, Gething P, D'Alessandro U, Drakeley C. Association between the proportion of Plasmodium falciparum and Plasmodium vivax infections detected by passive surveillance and the magnitude of the asymptomatic reservoir in the community: a pooled analysis of paired health facility and community data. THE LANCET. INFECTIOUS DISEASES 2020; 20:953-963. [PMID: 32277908 PMCID: PMC7391005 DOI: 10.1016/s1473-3099(20)30059-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Passively collected malaria case data are the foundation for public health decision making. However, because of population-level immunity, infections might not always be sufficiently symptomatic to prompt individuals to seek care. Understanding the proportion of all Plasmodium spp infections expected to be detected by the health system becomes particularly paramount in elimination settings. The aim of this study was to determine the association between the proportion of infections detected and transmission intensity for Plasmodium falciparum and Plasmodium vivax in several global endemic settings. METHODS The proportion of infections detected in routine malaria data, P(Detect), was derived from paired household cross-sectional survey and routinely collected malaria data within health facilities. P(Detect) was estimated using a Bayesian model in 431 clusters spanning the Americas, Africa, and Asia. The association between P(Detect) and malaria prevalence was assessed using log-linear regression models. Changes in P(Detect) over time were evaluated using data from 13 timepoints over 2 years from The Gambia. FINDINGS The median estimated P(Detect) across all clusters was 12·5% (IQR 5·3-25·0) for P falciparum and 10·1% (5·0-18·3) for P vivax and decreased as the estimated log-PCR community prevalence increased (adjusted odds ratio [OR] for P falciparum 0·63, 95% CI 0·57-0·69; adjusted OR for P vivax 0·52, 0·47-0·57). Factors associated with increasing P(Detect) included smaller catchment population size, high transmission season, improved care-seeking behaviour by infected individuals, and recent increases (within the previous year) in transmission intensity. INTERPRETATION The proportion of all infections detected within health systems increases once transmission intensity is sufficiently low. The likely explanation for P falciparum is that reduced exposure to infection leads to lower levels of protective immunity in the population, increasing the likelihood that infected individuals will become symptomatic and seek care. These factors might also be true for P vivax but a better understanding of the transmission biology is needed to attribute likely reasons for the observed trend. In low transmission and pre-elimination settings, enhancing access to care and improvements in care-seeking behaviour of infected individuals will lead to an increased proportion of infections detected in the community and might contribute to accelerating the interruption of transmission. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK; Centre of Statistics and Its Applications, University of Lisbon, Lisbon, Portugal
| | - Kimberly Fornace
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Lynn Grignard
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Julia Mwesigwa
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia; Department of Global Health, University of Antwerp, Antwerp, Belgium
| | - Jane Achan
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - John Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds Lusaka, Zambia
| | - Daniel J Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds Lusaka, Zambia
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jacklin Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Pauline Joy Lorenzo
- Department of Parasitology, Research Institute for Tropical Medicine, Research Drive, Alabang, Muntinlupa, Metro Manila, Philippines
| | - Maria Lourdes Macalinao
- Department of Parasitology, Research Institute for Tropical Medicine, Research Drive, Alabang, Muntinlupa, Metro Manila, Philippines
| | - Fe Esperanza Espino
- Department of Parasitology, Research Institute for Tropical Medicine, Research Drive, Alabang, Muntinlupa, Metro Manila, Philippines
| | - Fitsum Tadesse
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jennifer C Stevenson
- Macha Research Trust, Choma District, Zambia; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - André Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil; Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcus Lacerda
- Fundacao de Medicine Tropical Dr. Heitor Viera Dourado, Manaus, Brazil; Institutos Nacionais de Ciencia e Technologia (INCT), Instituto Elimina, Manaus, Brazil
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Emilie Pothin
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland; Clinton Health Access Initiative, Boston, MA, USA
| | - Joanna Gallay
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Karen E Hamre
- Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, USA; CDC Foundation, Atlanta, GA, USA
| | - Alyssa Young
- Clinton Health Access Initiative, Port-au-Prince, Haiti
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Michelle A Chang
- Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, USA
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Institute of Research and Education Development, University of Health Sciences, Vientiane, Laos
| | - Jordi Landier
- Aix Marseille Univ, IRD, INSERM, SESSTIM, Marseille, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention and Department of Epidemiology, University of California, Irvine, CA, USA
| | - Lorenz Von Seidlein
- Oxford Tropical Medicine Research Unit, Mahidol University Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Gilles Delmas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Arjen Dondorp
- Oxford Tropical Medicine Research Unit, Mahidol University Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ewan Cameron
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia; Curtin University, Bentley, WA, Australia
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Gething
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia; Curtin University, Bentley, WA, Australia
| | - Umberto D'Alessandro
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
18
|
van den Hoogen LL, Stresman G, Présumé J, Romilus I, Mondélus G, Elismé T, Existe A, Hamre KES, Ashton RA, Druetz T, Joseph V, Beeson JG, Singh SK, Boncy J, Eisele TP, Chang MA, Lemoine JF, Tetteh KKA, Rogier E, Drakeley C. Selection of Antibody Responses Associated With Plasmodium falciparum Infections in the Context of Malaria Elimination. Front Immunol 2020; 11:928. [PMID: 32499783 PMCID: PMC7243477 DOI: 10.3389/fimmu.2020.00928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
In our aim to eliminate malaria, more sensitive tools to detect residual transmission are quickly becoming essential. Antimalarial antibody responses persist in the blood after a malaria infection and provide a wider window to detect exposure to infection compared to parasite detection metrics. Here, we aimed to select antibody responses associated with recent and cumulative exposure to malaria using cross-sectional survey data from Haiti, an elimination setting. Using a multiplex bead assay, we generated data for antibody responses (immunoglobulin G) to 23 Plasmodium falciparum targets in 29,481 participants across three surveys. This included one community-based survey in which participants were enrolled during household visits and two sentinel group surveys in which participants were enrolled at schools and health facilities. First, we correlated continuous antibody responses with age (Spearman) to determine which showed strong age-related associations indicating accumulation over time with limited loss. AMA-1 and MSP-119 antibody levels showed the strongest correlation with age (0.47 and 0.43, p < 0.001) in the community-based survey, which was most representative of the underlying age structure of the population, thus seropositivity to either of these antibodies was considered representative of cumulative exposure to malaria. Next, in the absence of a gold standard for recent exposure, we included antibody responses to the remaining targets to predict highly sensitive rapid diagnostic test (hsRDT) status using receiver operating characteristic curves. For this, only data from the survey with the highest hsRDT prevalence was used (7.2%; 348/4,849). The performance of the top two antigens in the training dataset (two-thirds of the dataset; n = 3,204)-Etramp 5 ag 1 and GLURP-R0 (area-under-the-curve, AUC, 0.892 and 0.825, respectively)-was confirmed in the test dataset (remaining one-third of the dataset; n = 1,652, AUC 0.903 and 0.848, respectively). As no further improvement was seen by combining seropositivity to GLURP-R0 and Etramp 5 ag 1 (p = 0.266), seropositivity to Etramp 5 ag 1 alone was selected as representative of current or recent exposure to malaria. The validation of antibody responses associated with these exposure histories simplifies analyses and interpretation of antibody data and facilitates the application of results to evaluate programs.
Collapse
Affiliation(s)
- Lotus L. van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Gina Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Tamara Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Karen E. S. Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- CDC Foundation, Atlanta, GA, United States
| | - Ruth A. Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, QC, Canada
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - James G. Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K. Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Michelle A. Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jean F. Lemoine
- Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
19
|
Peripheral Merozoite Surface Proteins Are Targets of Naturally Acquired Immunity against Malaria in both India and Ghana. Infect Immun 2020; 88:IAI.00778-19. [PMID: 31964745 DOI: 10.1128/iai.00778-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023] Open
Abstract
Development of a successful blood-stage vaccine against Plasmodium falciparum malaria remains a high priority. Immune-epidemiological studies are effective tools for the identification of antigenic targets of naturally acquired immunity (NAI) against malaria. However, differences in study design and methodology may compromise interstudy comparisons. Here, we assessed antibody responses against intact merozoites and a panel of 24 recombinant merozoite antigens in longitudinal cohort studies of Ghanaian (n = 115) and Indian (n = 121) populations using the same reagents and statistical methods. Anti-merozoite antibodies were associated with NAI in both the Indian (hazard ratio [HR] = 0.41, P = 0.020) and the Ghanaian (HR = 0.17, P < 0.001) participants. Of the 24 antigen-specific antibodies quantified, 12 and 8 were found to be protective in India and Ghana, respectively. Using least absolute shrinkage and selection operator (LASSO) regression, a powerful variable subselection technique, we identified subsets of four (MSP6, MSP3.7, MSPDBL2, and Pf12) and five (cMSP33D7, MSP3.3, MSPDBL1, GLURP-R2, and RALP-1) antigens that explained NAI better than the individual antibodies in India (HR = 0.18, P < 0.001) and Ghana (HR = 0.31, P < 0.001), respectively. IgG1 and/or IgG3 subclasses against five antigens from these subsets were associated with protection. Through this comparative study, maintaining uniformity of reagents and methodology, we demonstrate that NAI across diverse geographic regions may result from antibodies to multiple antigenic targets that constitute the peripheral merozoite surface protein complexes.
Collapse
|
20
|
Amlabu E, Ilani P, Opoku G, Nyarko PB, Quansah E, Thiam LG, Anim M, Ayivor-Djanie R, Akuh OA, Mensah-Brown H, Rayner JC, Awandare GA. Molecular Characterization and Immuno-Reactivity Patterns of a Novel Plasmodium falciparum Armadillo-Type Repeat Protein, PfATRP. Front Cell Infect Microbiol 2020; 10:114. [PMID: 32266165 PMCID: PMC7100384 DOI: 10.3389/fcimb.2020.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.
Collapse
Affiliation(s)
- Emmanuel Amlabu
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Philip Ilani
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Grace Opoku
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Evelyn Quansah
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Laty G. Thiam
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Manfred Anim
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biomedical Sciences, SBBS, University of Health and Allied Sciences, Ho, Ghana
| | - Ojo-ajogu Akuh
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Henrietta Mensah-Brown
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon A. Awandare
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
21
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
22
|
Mensah-Brown HE, Aspeling-Jones H, Delimini RK, Asante KP, Amlabu E, Bah SY, Beeson JG, Wright GJ, Conway DJ, Awandare GA. Antibody Reactivity to Merozoite Antigens in Ghanaian Adults Correlates With Growth Inhibitory Activity Against Plasmodium falciparum in Culture. Open Forum Infect Dis 2019; 6:ofz254. [PMID: 31294045 PMCID: PMC6611546 DOI: 10.1093/ofid/ofz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Background Plasmodium falciparum uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria. Methods We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay. Purified immunoglobulin (Ig)G from adult plasma samples was also tested for invasion inhibition against 7 different P falciparum culture lines, including clinical isolates. Results Antibodies against the antigens increased in an age-dependent manner in children. Breadth of reactivity to the different antigens was strongly associated with in vitro parasite growth inhibitory activity of IgG purified from the adults. The strongest predictors of breadth of antibody reactivity were age and transmission intensity, and a combination of reactivities to Rh2, Rh4, and Rh5 correlated strongly with invasion inhibition. Conclusions Growth inhibitory activity was significantly associated with breadth of antibody reactivity to merozoite antigens, encouraging the prospect of a multicomponent blood-stage vaccine.
Collapse
Affiliation(s)
- Henrietta E Mensah-Brown
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | | | - Rupert K Delimini
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - Emmanuel Amlabu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - James G Beeson
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| | - Gavin J Wright
- Pathogens and Microbes Programme, Wellcome Trust Sanger Institute, United Kingdom
| | - David J Conway
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
23
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|
24
|
Moderately Neutralizing Epitopes in Nonfunctional Regions Dominate the Antibody Response to Plasmodium falciparum EBA-140. Infect Immun 2019; 87:IAI.00716-18. [PMID: 30642904 DOI: 10.1128/iai.00716-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium falciparum erythrocyte-binding antigen 140 (EBA-140) plays a role in tight junction formation during parasite invasion of red blood cells and is a potential vaccine candidate for malaria. Individuals in areas where malaria is endemic possess EBA-140-specific antibodies, and individuals with high antibody titers to this protein have a lower rate of reinfection by parasites. The red blood cell binding segment of EBA-140 is comprised of two Duffy-binding-like domains, called F1 and F2, that together create region II. The sialic acid-binding pocket of F1 is essential for binding, whereas the sialic acid-binding pocket in F2 appears dispensable. Here, we show that immunization of mice with the complete region II results in poorly neutralizing antibodies. In contrast, immunization of mice with the functionally relevant F1 domain of region II results in antibodies that confer a 2-fold increase in parasite neutralization compared to that of the F2 domain. Epitope mapping of diverse F1 and F2 monoclonal antibodies revealed that the functionally relevant F1 sialic acid-binding pocket is a privileged site inaccessible to antibodies, that the F2 sialic acid-binding pocket contains a nonneutralizing epitope, and that two additional epitopes reside in F1 on the opposite face from the sialic acid-binding pocket. These studies indicate that focusing the immune response to the functionally important F1 sialic acid binding pocket improves the protective immune response of EBA-140. These results have implications for improving future vaccine designs and emphasize the importance of structural vaccinology for malaria.
Collapse
|
25
|
Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, Osier FHA, Färnert A. Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med 2019; 17:22. [PMID: 30696449 PMCID: PMC6352425 DOI: 10.1186/s12916-019-1255-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibodies against merozoite antigens are key components of malaria immunity. The naturally acquired antibody response to these antigens is generally considered short-lived; however, the underlying mechanisms remain unclear. Prospective studies of travellers with different levels of prior exposure, returning to malaria-free countries with Plasmodium infection, offer a unique opportunity to investigate the kinetics and composition of the antibody response after natural infection. METHODS Adults diagnosed with P. falciparum malaria in Stockholm, Sweden (20 likely malaria naïve and 41 with repeated previous exposure during residency in sub-Saharan Africa) were sampled at diagnosis and 10 days and 1, 3, 6, and 12 months after treatment. Total and subclass-specific IgG responses to P. falciparum merozoite antigens (AMA-1, MSP-119, MSP-2, MSP-3, and RH5) and tetanus toxoid were measured by multiplex bead-based immunoassays and ELISA. Mathematical modelling was used to estimate the exposure-dependent longevity of antibodies and antibody-secreting cells (ASCs). RESULTS A majority of individuals mounted detectable antibody responses towards P. falciparum merozoite antigens at diagnosis; however, the magnitude and breadth were greater in individuals with prior exposure. In both exposure groups, antibody levels increased rapidly for 2 weeks and decayed thereafter. Previously exposed individuals maintained two- to ninefold greater antibody levels throughout the 1-year follow-up. The half-lives of malaria-specific long-lived ASCs, responsible for maintaining circulating antibodies, ranged from 1.8 to 3.7 years for merozoite antigens and were considerably short compared to tetanus-specific ASCs. Primary infected individuals did acquire a long-lived component of the antibody response; however, the total proportion of long-lived ASCs generated in response to infection was estimated not to exceed 10%. In contrast, previously exposed individuals maintained substantially larger numbers of long-lived ASCs (10-56% of total ASCs). CONCLUSION The short-lived nature of the naturally acquired antibody response, to all tested merozoite antigens, following primary malaria infection can be attributed to a combination of a poor acquisition and short half-life of long-lived ASCs. Greater longevity is acquired with repeated infections and can be explained by the maintenance of larger numbers of long-lived ASCs. These insights advance our understanding of naturally acquired malaria immunity and will guide strategies for further development of both vaccines and serological tools to monitor exposure.
Collapse
Affiliation(s)
- Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Faith H A Osier
- Kenya Medical Research Institute - Wellcome Trust Research Program, Centre for Geographic Medicine Research-Coast, PO Box 230-80108, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
26
|
Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J 2019; 18:11. [PMID: 30658632 PMCID: PMC6339377 DOI: 10.1186/s12936-019-2647-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Antibodies targeting malaria blood-stage antigens are important targets of naturally acquired immunity, and may act as valuable biomarkers of malaria exposure. Methods Six-hundred and one young Malawian children from a randomized trial of prenatal nutrient supplementation with iron and folic acid or pre- and postnatal multiple micronutrients or lipid-based nutrient supplements were followed up weekly at home and febrile episodes were investigated for malaria from birth to 18 months of age. Antibodies were measured for 601 children against merozoite surface proteins (MSP1 19kD, MSP2), erythrocyte binding antigen 175 (EBA175), reticulocyte binding protein homologue 2 (Rh2A9), schizont extract and variant surface antigens expressed by Plasmodium falciparum-infected erythrocytes (IE) at 18 months of age. The antibody measurement data was related to concurrent malaria infection and to documented episodes of clinical malaria. Results At 18 months of age, antibodies were significantly higher among parasitaemic than aparasitaemic children. Antibody levels against MSP1 19kD, MSP2, schizont extract, and IE variant surface antigens were significantly higher in children who had documented episodes of malaria than in children who did not. Antibody levels did not differ between children with single or multiple malaria episodes before 18 months, nor between children who had malaria before 6 months of age or between 6 and 18 months. Conclusions Antibodies to merozoite and IE surface antigens increased following infection in early childhood, but neither age at first infection nor number of malaria episodes substantially affected antibody acquisition. These findings have implications for malaria surveillance during early childhood in the context of elimination. Trials registration Clinical Trials Registration: NCT01239693 (Date of registration: 11-10-2010). URL: http://www.ilins.org
Collapse
Affiliation(s)
- Priyanka Barua
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - James G Beeson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Burnet Institute, Melbourne, VIC, 3004, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | - Kenneth Maleta
- School of Public Health and Family Medicine, University of Malawi, Blantyre 3, Malawi
| | - Per Ashorn
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, 33100, Tampere, Finland.,Research and Development, Maternal, Newborn and Adolescent Health, World Health Organization, Geneva 27, 1211, Switzerland
| | - Stephen J Rogerson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
27
|
van den Hoogen LL, Walk J, Oulton T, Reuling IJ, Reiling L, Beeson JG, Coppel RL, Singh SK, Draper SJ, Bousema T, Drakeley C, Sauerwein R, Tetteh KKA. Antibody Responses to Antigenic Targets of Recent Exposure Are Associated With Low-Density Parasitemia in Controlled Human Plasmodium falciparum Infections. Front Microbiol 2019; 9:3300. [PMID: 30700984 PMCID: PMC6343524 DOI: 10.3389/fmicb.2018.03300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
The majority of malaria infections in low transmission settings remain undetectable by conventional diagnostics. A powerful model to identify antibody responses that allow accurate detection of recent exposure to low-density infections is controlled human malaria infection (CHMI) studies in which healthy volunteers are infected with the Plasmodium parasite. We aimed to evaluate antibody responses in malaria-naïve volunteers exposed to a single CHMI using a custom-made protein microarray. All participants developed a blood-stage infection with peak parasite densities up to 100 parasites/μl in the majority of participants (50/54), while the remaining four participants had peak densities between 100 and 200 parasites/μl. There was a strong correlation between parasite density and antibody responses associated with the most reactive blood-stage targets 1 month after CHMI (Etramp 5, GLURP-R2, MSP4 and MSP1-19; Spearman’s ρ = 0.82, p < 0.001). Most volunteers developed antibodies against a potential marker of recent exposure: Etramp 5 (37/45, 82%). Our findings justify validation in endemic populations to define a minimum set of antigens needed to detect exposure to natural low-density infections.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kevin K A Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
28
|
Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 2019; 11:11/474/eaau1458. [DOI: 10.1126/scitranslmed.aau1458] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.
Collapse
|
29
|
Feng G, Boyle MJ, Cross N, Chan JA, Reiling L, Osier F, Stanisic DI, Mueller I, Anders RF, McCarthy JS, Richards JS, Beeson JG. Human Immunization With a Polymorphic Malaria Vaccine Candidate Induced Antibodies to Conserved Epitopes That Promote Functional Antibodies to Multiple Parasite Strains. J Infect Dis 2018; 218:35-43. [PMID: 29584918 PMCID: PMC6904323 DOI: 10.1093/infdis/jiy170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
Background Overcoming antigenic diversity is a key challenge in the development of effective Plasmodium falciparum malaria vaccines. Strategies that promote the generation of antibodies targeting conserved epitopes of vaccine antigens may provide protection against diverse parasites strains. Understanding differences between vaccine-induced and naturally acquired immunity is important to achieving this goal. Methods We analyzed antibodies generated in a phase 1 human vaccine trial, MSP2-C1, which included 2 allelic forms of MSP2, an abundant vaccine antigen on the merozoite surface. Vaccine-induced responses were assessed for functional activity against multiple parasite strains, and cross-reactivity of antibodies was determined using competition ELISA and epitope mapping approaches. Results Vaccination induced cytophilic antibody responses with strain-transcending opsonic phagocytosis and complement-fixing function. In contrast to antibodies acquired via natural infection, vaccine-induced antibodies were directed towards conserved epitopes at the C-terminus of MSP2, whereas naturally acquired antibodies mainly targeted polymorphic epitopes. Functional activity of C-terminal-targeted antibodies was confirmed using monoclonal antibodies that promoted opsonic phagocytosis against multiple parasite strains. Conclusion Vaccination generated markedly different responses to polymorphic antigens than naturally acquired immunity and targeted conserved functional epitopes. Induction of antibodies targeting conserved regions of malaria antigens provides a promising vaccine strategy to overcome antigenic diversity for developing effective malaria vaccines.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
| | | | | | | | | | - Faith Osier
- Burnet Institute, Melbourne
- Centre for Geographic Medicine - Coast, Kenya Medical Research Institute, Kilifi, Kenya
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Germany
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe University, Melbourne
| | - James S McCarthy
- Clinical Tropical Medicine Laboratory, Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston
| | - Jack S Richards
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, Melbourne
- Department of Medicine, University of Melbourne, Parkville, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Ademolue TW, Awandare GA. Evaluating antidisease immunity to malaria and implications for vaccine design. Immunology 2017; 153:423-434. [PMID: 29211303 PMCID: PMC5838420 DOI: 10.1111/imm.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Immunity to malaria could be categorized broadly as antiparasite or antidisease immunity. While most vaccine research efforts have focused on antiparasite immunity, the evidence from endemic populations suggest that antidisease immunity is an important component of natural immunity to malaria. The processes that mediate antidisease immunity have, however, attracted little to no attention, and most interests have been directed towards the antibody responses. This review evaluates the evidence for antidisease immunity in endemic areas and discusses the possible mechanisms responsible for it. Given the key role that inflammation plays in the pathogenesis of malaria, regulation of the inflammatory response appears to be a major mechanism for antidisease immunity in naturally exposed individuals.
Collapse
Affiliation(s)
- Temitope W Ademolue
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
31
|
Mugyenyi CK, Elliott SR, Yap XZ, Feng G, Boeuf P, Fegan G, Osier FFH, Fowkes FJI, Avril M, Williams TN, Marsh K, Beeson JG. Declining Malaria Transmission Differentially Impacts the Maintenance of Humoral Immunity to Plasmodium falciparum in Children. J Infect Dis 2017; 216:887-898. [PMID: 28973483 DOI: 10.1093/infdis/jix370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
Background We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. Methods In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified. Results Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 year and 1-3 years, respectively. However, 69%-74% of children maintained their seropositivity to AMA1 alleles and 42%-52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life, 4-10 years). Conclusions A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development.
Collapse
Affiliation(s)
- Cleopatra K Mugyenyi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne
| | | | - Xi Zen Yap
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | | | - Philippe Boeuf
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Gregory Fegan
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - Faith F H Osier
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne.,Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Germany
| | - Freya J I Fowkes
- Burnet Institute, Melbourne.,Department of Epidemiology and Preventive Medicine, Monash University.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Marion Avril
- Centre for Infectious Disease Research, Seattle, Washington
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Imperial College, London, United Kingdom
| | - Kevin Marsh
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - James G Beeson
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Niass O, Saint-Pierre P, Niang M, Diop F, Diouf B, Faye MM, Sarr FD, Faye J, Diagne N, Sokhna C, Trape JF, Perraut R, Tall A, Diongue AK, Toure Balde A. Modelling dynamic change of malaria transmission in holoendemic setting (Dielmo, Senegal) using longitudinal measures of antibody prevalence to Plasmodium falciparum crude schizonts extract. Malar J 2017; 16:409. [PMID: 29020949 PMCID: PMC5637097 DOI: 10.1186/s12936-017-2052-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Background Evaluation of local Plasmodium falciparum malaria transmission has been investigated previously using the reversible catalytic model based on prevalence of antibody responses to single antigen to estimate seroconversion rates. High correlations were observed between seroconversion rates and entomological inoculation rates (EIR). However, in this model, the effects of malaria control interventions and clinical episodes on serological measurements were not assessed. This study monitors the use of antibody responses to P. falciparum crude extracts for assessing malaria transmission, compares seroconversion rates estimated from longitudinal data to those derived from cross-sectional surveys and investigates the effects of malaria control interventions on these measures in an area of declining malaria transmission. In addition, the validity of this model was evaluated by comparison with the alternative model. Methods Five cross-sectional surveys were carried out at the end of the wet season in Dielmo, a malaria-endemic Senegalese rural area in 2000, 2002, 2008, 2010 and 2012. Antibodies against schizonts crude extract of a local P. falciparum strain adapted to culture (Pf 07/03) were measured by ELISA. Age-specific seroprevalence model was used both for cross-sectional surveys and longitudinal data (combined data of all surveys). Results A total of 1504 plasma samples obtained through several years follow-up of 350 subjects was used in this study. Seroconversion rates based on P. falciparum schizonts crude extract were estimated for each cross-sectional survey and were found strongly correlated with EIR. High variability between SCRs from cross-sectional and longitudinal surveys was observed. In longitudinal studies, the alternative catalytic reversible model adjusted better with serological data than the catalytic model. Clinical malaria attacks and malaria control interventions were found to have significant effect on seroconversion. Discussion The results of the study suggested that crude extract was a good serological tool that could be used to assess the level of malaria exposure in areas where malaria transmission is declining. However, additional parameters such as clinical malaria and malaria control interventions must be taken into account for determining serological measurements for more accuracy in transmission assessment. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2052-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oumy Niass
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.,Laboratoire d'étude et de Recherche en Statistique et Développement, Université Gaston Berger, BP 237, Saint-Louis, Senegal
| | | | - Makhtar Niang
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Fode Diop
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Diouf
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Michel Matar Faye
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Fatoumata Diène Sarr
- Epidemiology of Infectious Diseases Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Joseph Faye
- Epidemiology of Infectious Diseases Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Nafissatou Diagne
- Institut de Recherche pour le Développement, BP 1386, Dakar, Senegal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement, BP 1386, Dakar, Senegal
| | | | - Ronald Perraut
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Adama Tall
- Epidemiology of Infectious Diseases Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Abdou Kâ Diongue
- Laboratoire d'étude et de Recherche en Statistique et Développement, Université Gaston Berger, BP 237, Saint-Louis, Senegal
| | - Aïssatou Toure Balde
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
33
|
Burel JG, Apte SH, Groves PL, Boyle MJ, Langer C, Beeson JG, McCarthy JS, Doolan DL. Dichotomous miR expression and immune responses following primary blood-stage malaria. JCI Insight 2017; 2:93434. [PMID: 28768914 DOI: 10.1172/jci.insight.93434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/29/2017] [Indexed: 01/12/2023] Open
Abstract
Clinical responses to infection or vaccination and the development of effective immunity are characterized in humans by a marked interindividual variability. To gain an insight into the factors affecting this variability, we used a controlled human infection system to study early immune events following primary infection of healthy human volunteers with blood-stage Plasmodium falciparum malaria. By day 4 of infection, a dichotomous pattern of high or low expression of a defined set of microRNAs (miRs) emerged in volunteers that correlated with variation in parasite growth rate. Moreover, high-miR responders had higher numbers of activated CD4+ T cells, and developed significantly enhanced antimalarial antibody responses. Notably, a set of 17 miRs was identified in the whole blood of low-miR responders prior to infection that differentiated them from high-miR responders. These data implicate preexisting host factors as major determinants in the ability to effectively respond to primary malaria infection.
Collapse
Affiliation(s)
- Julie G Burel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia
| | - Simon H Apte
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Penny L Groves
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle J Boyle
- Menzies School of Health Research, Darwin, Northern Territory, Australia.,Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Christine Langer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Victoria, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|