1
|
Kiemes A, Serrano Navacerrada ME, Kim E, Randall K, Simmons C, Rojo Gonzalez L, Petrinovic MM, Lythgoe DJ, Rotaru D, Di Censo D, Hirschler L, Barbier EL, Vernon AC, Stone JM, Davies C, Cash D, Modinos G. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes. Schizophr Bull 2023; 49:569-580. [PMID: 36573631 PMCID: PMC10154722 DOI: 10.1093/schbul/sbac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Maria Elisa Serrano Navacerrada
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Eugene Kim
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Marija-Magdalena Petrinovic
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Rotaru
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Davide Di Censo
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
2
|
Khan AQ, Thielen L, Le Pen G, Krebs MO, Kebir O, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Methylation pattern and mRNA expression of synapse-relevant genes in the MAM model of schizophrenia in the time-course of adolescence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:110. [PMID: 36481661 PMCID: PMC9732294 DOI: 10.1038/s41537-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Schizophrenia is highly heritable and aggregating in families, but genetics alone does not exclusively explain the pathogenesis. Many risk factors, including childhood trauma, viral infections, migration, and the use of cannabis, are associated with schizophrenia. Adolescence seems to be the critical period where symptoms of the disease manifest. This work focuses on studying an epigenetic regulatory mechanism (the role of DNA methylation) and its interaction with mRNA expression during development, with a particular emphasis on adolescence. The presumptions regarding the role of aberrant neurodevelopment in schizophrenia were tested in the Methyl-Azoxy-Methanol (MAM) animal model. MAM treatment induces neurodevelopmental disruptions and behavioral deficits in off-springs of the treated animals reminiscent of those observed in schizophrenia and is thus considered a promising model for studying this pathology. On a gestational day-17, adult pregnant rats were treated with the antimitotic agent MAM. Experimental animals were divided into groups and subgroups according to substance treatment (MAM and vehicle agent [Sham]) and age of analysis (pre-adolescent and post-adolescent). Methylation and mRNA expression analysis of four candidate genes, which are often implicated in schizophrenia, with special emphasis on the Dopamine hypothesis i.e., Dopamine receptor D2 (Drd2), and the "co-factors" Disrupted in schizophrenia 1 (DISC1), Synaptophysin (Syp), and Dystrobrevin-binding protein 1 (Dtnbp1), was performed in the Gyrus cingulum (CING) and prefrontal cortex (PFC). Data were analyzed to observe the effect of substance treatment between groups and the impact of adolescence within-group. We found reduced pre-adolescent expression levels of Drd2 in both brain areas under the application of MAM. The "co-factor genes" did not show high deviations in mRNA expression levels but high alterations of methylation rates under the application of MAM (up to ~20%), which diminished in the further time course, reaching a comparable level like in Sham control animals after adolescence. The pre-adolescent reduction in DRD2 expression might be interpreted as downregulation of the receptor due to hyperdopaminergic signaling from the ventral tegmental area (VTA), eventually even to both investigated brain regions. The notable alterations of methylation rates in the three analyzed co-factor genes might be interpreted as attempt to compensate for the altered dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Abdul Qayyum Khan
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.444940.9University of Management and Technology—School of Pharmacy, 72-A Raiwind Rd, Dubai Town, Lahore Pakistan
| | - Lukas Thielen
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gwenaëlle Le Pen
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Marie-Odile Krebs
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Oussama Kebir
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Adrian Groh
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Deest
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
4
|
Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, Creeney H, Bonsall D, Rogdaki M, Shatalina E, Reis Marques T, Rabiner EA, Gunn RN, Natesan S, Vernon AC, Howes OD. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun 2020; 11:246. [PMID: 31937764 PMCID: PMC6959348 DOI: 10.1038/s41467-019-14122-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Synaptic dysfunction is hypothesised to play a key role in schizophrenia pathogenesis, but this has not been tested directly in vivo. Here, we investigated synaptic vesicle glycoprotein 2A (SV2A) levels and their relationship to symptoms and structural brain measures using [11C]UCB-J positron emission tomography in 18 patients with schizophrenia and 18 controls. We found significant group and group-by-region interaction effects on volume of distribution (VT). [11C]UCB-J VT was significantly lower in the frontal and anterior cingulate cortices in schizophrenia with large effect sizes (Cohen's d = 0.8-0.9), but there was no significant difference in the hippocampus. We also investigated the effects of antipsychotic drug administration on SV2A levels in Sprague-Dawley rats using western blotting, [3H]UCB-J autoradiography and immunostaining with confocal microscopy, finding no significant effects on any measure. These findings indicate that there are lower synaptic terminal protein levels in schizophrenia in vivo and that antipsychotic drug exposure is unlikely to account for them.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Els F Halff
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Thomas Whitehurst
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Ayla Mansur
- Division of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Lisa Wells
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Hannah Creeney
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - David Bonsall
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Maria Rogdaki
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Eugenii A Rabiner
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Roger N Gunn
- Division of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| |
Collapse
|
5
|
Femi-Akinlosotu OM, Shokunbi MT, Naicker T. Dendritic and Synaptic Degeneration in Pyramidal Neurons of the Sensorimotor Cortex in Neonatal Mice With Kaolin-Induced Hydrocephalus. Front Neuroanat 2019; 13:38. [PMID: 31110476 PMCID: PMC6501759 DOI: 10.3389/fnana.2019.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Obstructive hydrocephalus is a brain disorder in which the circulation of cerebrospinal fluid (CSF) is altered in a manner that causes expansion of fluid-filled intracranial compartments particularly the ventricles. The pyramidal neurons of the sensorimotor cortex are excitatory in nature and their dendritic spines are targets of excitatory synapses. This study evaluated the effect of hydrocephalus on dendritic arborization and synaptic structure of the pyramidal neurons of the sensorimotor cortex of neonatal hydrocephalic mice. Sterile kaolin suspension (0.01 ml of 250 mg/mL) was injected intracisternally into day old mice. Control animals mice received sham injections. Pups were weighed and sacrificed on postnatal days (PND) 7, 14 and 21. Fixed brain tissue blocks were silver impregnated using a modified Golgi staining technique and immunolabeled with synaptophysin to determine dendritic morphology and synaptic integrity respectively. Data were analyzed using ANOVA at α 0.05. Golgi staining revealed diminished arborization of the basal dendrites and loss of dendritic spines in the pyramidal neurons of hydrocephalic mice. Compared to age-matched controls, there was a significant reduction in the percentage immunoreactivity of anti-synaptophysin in hydrocephalic mice on PND 7 (14.26 ± 1.91% vs. 62.57 ± 9.40%), PND 14 (4.19 ± 1.57% vs. 93.01 ± 1.66%) and PND 21 (17.55 ± 2.76% vs. 99.11 ± 0.63%) respectively. These alterations suggest impaired neuronal connections that are essential for the development of cortical circuits and may be the structural basis of the neurobehavioral deficits observed in neonatal hydrocephalus.
Collapse
Affiliation(s)
| | - Matthew T. Shokunbi
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Thajasvarie Naicker
- Optics & Imaging Centre, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
7
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
8
|
Mahabir S, Chatterjee D, Misquitta K, Chatterjee D, Gerlai R. Lasting changes induced by mild alcohol exposure during embryonic development in BDNF, NCAM and synaptophysin-positive neurons quantified in adult zebrafish. Eur J Neurosci 2018; 47:1457-1473. [PMID: 29846983 DOI: 10.1111/ejn.13975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Fetal alcohol spectrum disorder is one of the leading causes of mental health issues worldwide. Analysis of zebrafish exposed to alcohol during embryonic development confirmed that even low concentrations of alcohol for a short period of time may have lasting behavioral consequences at the adult or old age. The mechanism of this alteration has not been studied. Here, we immersed zebrafish embryos into 1% alcohol solution (vol/vol%) at 24 hr post-fertilization (hpf) for 2 hr and analyzed potential changes using immunohistochemistry. We measured the number of BDNF (brain-derived neurotrophic factor) and NCAM (neuronal cell adhesion molecule)-positive neurons and the intensity of synaptophysin staining in eight brain regions: lateral zone of the dorsal telencephalic area, medial zone of the dorsal telencephalic area, dorsal nucleus of the ventral telencephalic area, ventral nucleus of the ventral telencephalic area, parvocellular preoptic nucleus, ventral habenular nucleus, corpus cerebella and inferior reticular formation. We found embryonic alcohol exposure to significantly reduce the number of BDNF- and NCAM-positive cells in all brain areas studied as compared to control. We also found alcohol to significantly reduce the intensity of synaptophysin staining in all brain areas except the cerebellum and preoptic area. These neuroanatomical changes correlated with previously demonstrated reduction of social behavior in embryonic alcohol-exposed zebrafish, raising the possibility of a causal link. Given the evolutionary conservation across fish and mammals, we emphasize the implication of our current study for human health: even small amount of alcohol consumption may be unsafe during pregnancy.
Collapse
Affiliation(s)
- Samantha Mahabir
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dipashree Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Keith Misquitta
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia. Biol Psychiatry 2016; 80:293-301. [PMID: 26632269 DOI: 10.1016/j.biopsych.2015.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Schizophrenia is often described as a disorder of dysconnectivity, with disruptions in neural connectivity reported on the cellular microscale as well as the global macroscale level of brain organization. How these effects on these two scales are related is poorly understood. METHODS First (part I of this study), we collated data on layer 3 pyramidal spine density of the healthy brain from the literature and cross-analyzed these data with new data on macroscale connectivity as derived from diffusion imaging. Second (part II of this study), we examined how alterations in regional spine density in schizophrenia are related to changes in white matter connectivity. Data on group differences in spine density were collated from histology reports in the literature and examined in a meta-regression analysis in context of alterations in macroscale white matter connectivity as derived from diffusion imaging data of a (separately acquired) group of 61 patients and 55 matched control subjects. RESULTS Densely connected areas of the healthy human cortex were shown to overlap with areas that display high pyramidal complexity, with pyramidal neurons that are more spinous (p = .0027) compared with pyramidal neurons in areas of low macroscale connectivity. Cross-scale meta-regression analysis showed a significant association between regional variation in level of disease-related spine density reduction in schizophrenia and regional level of decrease in macroscale connectivity (two data sets examined, p = .0028 and p = .0011). CONCLUSIONS Our study presents evidence that regional disruptions in microscale neuronal connectivity in schizophrenia go hand in hand with changes in macroscale brain connectivity.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lianne H Scholtens
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A de Reus
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. MOLECULAR NEUROPSYCHIATRY 2015; 1:220-34. [PMID: 27606314 DOI: 10.1159/000441224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.
Collapse
Affiliation(s)
| | - Dianne A Cruz
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Elizabeth A Fucich
- Departments of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Dianna Y Olukotun
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Egbujo C, Sinclair D, Borgmann-Winter K, Arnold SE, Turetsky B, Hahn CG. Molecular evidence for decreased synaptic efficacy in the postmortem olfactory bulb of individuals with schizophrenia. Schizophr Res 2015; 168:554-62. [PMID: 26260078 PMCID: PMC5119750 DOI: 10.1016/j.schres.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Multiple lines of evidence suggest altered synaptic plasticity/connectivity as a pathophysiologic mechanism for various symptom domains of schizophrenia. Olfactory dysfunction, an endophenotype of schizophrenia, reflects altered activity of the olfactory circuitry, which conveys signals from olfactory receptor neurons to the olfactory cortex via synaptic connections in the glomeruli of the olfactory bulb. The olfactory system begins with intranasal olfactory receptor neuron axons synapsing with mitral and tufted cells in the glomeruli of the olfactory bulb, which then convey signals directly to the olfactory cortex. We hypothesized that olfactory dysfunction in schizophrenia is associated with dysregulation of synaptic efficacy in the glomeruli of the olfactory bulb. To test this, we employed semi-quantitative immunohistochemistry to examine the olfactory bulbs of 13 postmortem samples from schizophrenia and their matched control pairs for glomerular expression of 5 pre- and postsynaptic proteins that are involved in the integrity and function of synapses. In the glomeruli of schizophrenia cases compared to their matched controls, we found significant decreases in three presynaptic proteins which play crucial roles in vesicular glutamate transport - synapsin IIa (-18.05%, p=0.019), synaptophysin (-24.08% p=0.0016) and SNAP-25 (-23.9%, p=0.046). Two postsynaptic proteins important for spine formation and glutamatergic signaling were also decreased-spinophilin (-17.40%, p=0.042) and PSD-95 (-34.06%, p=0.015). These findings provide molecular evidence for decreased efficacy of synapses within the olfactory bulb, which may represent a synaptic mechanism underlying olfactory dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Chijioke Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Duncan Sinclair
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Karin Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA,Children's Hospital of Philadelphia, Philadelphia, PA
| | - Steven E Arnold
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Bruce Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Bakhshi K, Chance S. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015; 303:82-102. [DOI: 10.1016/j.neuroscience.2015.06.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
|
14
|
Ago Y, Condro MC, Tan YV, Ghiani CA, Colwell CS, Cushman JD, Fanselow MS, Hashimoto H, Waschek JA. Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology (Berl) 2015; 232:2181-9. [PMID: 25575489 PMCID: PMC4433594 DOI: 10.1007/s00213-014-3848-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE An abundance of genetic and epidemiologic evidence as well as longitudinal neuroimaging data point to developmental origins for schizophrenia and other mental health disorders. Recent clinical studies indicate that microduplications of VIPR2, encoding the vasoactive intestinal peptide (VIP) receptor VPAC2, confer significant risk for schizophrenia and autism spectrum disorder. Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP responsiveness (cAMP induction), but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. OBJECTIVES We subcutaneously administered the highly selective VPAC2 receptor agonist Ro 25-1553 to C57BL/6 mice from postnatal day 1 (P1) to P14 to determine if overactivation of VPAC2 receptor signaling during postnatal brain maturation affects synaptogenesis and selected behaviors. RESULTS Western blot analyses on P21 revealed significant reductions of synaptophysin and postsynaptic density protein 95 (PSD-95) in the prefrontal cortex, but not in the hippocampus in Ro 25-1553-treated mice. The same postnatally restricted treatment resulted in a disruption in prepulse inhibition of the acoustic startle measured in adult mice. No effects were observed in open-field locomotor activity, sociability in the three-chamber social interaction test, or fear conditioning or extinction. CONCLUSION Overactivation of the VPAC2 receptor in the postnatal mouse results in a reduction in synaptic proteins in the prefrontal cortex and selective alterations in prepulse inhibition. These findings suggest that the VIPR2-linkage to mental health disorders may be due in part to overactive VPAC2 receptor signaling during a critical time of synaptic maturation.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Michael C. Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yossan-Var Tan
- INSERM - Unité Mixte de Recherche U905 - IRIB, Université de Rouen, 76183 Rouen Cedex, France
| | - Cristina A. Ghiani
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse D. Cushman
- Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Correspondence should be addressed to: Dr. James A. Waschek; Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA. Tel.: +1-310-825-0179; Fax: +1-310-206-5061.
| |
Collapse
|
15
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
16
|
Zhang H, Han M, Zhang X, Sun X, Ling F. The effect and mechanism of growth hormone replacement on cognitive function in rats with traumatic brain injury. PLoS One 2014; 9:e108518. [PMID: 25268832 PMCID: PMC4182486 DOI: 10.1371/journal.pone.0108518] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The effects of growth hormone on cognitive dysfunction were observed in a controlled cortical impact (CCI) rat model and the underlying mechanism was explored. METHOD Three-month-old male SD rats were randomly divided into sham (n = 10), control (n = 10), and CCI groups (n = 40) The parameters were set as follows: striking speed, 3.5 m/s; impact depth, 1.5 mm; and dwell time, 400 msec. Eight and ten weeks post-injury, the GH levels were measured the water maze test and novel object recognition test were performed. CCI rats were divided into normal and decreased GH groups, and further randomly divided into two sub-groups (rhGH treatment and saline vehicle groups). All rats were tested for SYN, BDNF, and TrkB mRNA in the prefrontal cortex and hippocampus by RT-PCR. RESULTS CCI rats 8 weeks post-injury had cognitive dysfunction regardless of the GH level (P<0.05). rhGH treatment improved cognitive function in CCI rats. There was a positive correlation between the expression of prefrontal BDNF and SYN mRNA in CCI rats after rhGH therapy and the water maze test score (r = 0.773 and 0.534, respectively; P<0.05). Furthermore, the expression of BDNF, TrkB, and SYN mRNA in the hippocampus was negatively correlated with the water maze test score (r = 0.602, 0.773, 0.672, and 0.783, respectively; P<0.05). There was a difference in the expression of hippocampal and prefrontal BDNF, TrkB, and SYN mRNA (P<0.05). CONCLUSION rhGH treatment had a positive effect on cognitive function, which was more evident in GH-deficient rats. The increased expression of hippocampal and prefrontal BDNF and TrkB mRNA is implicated in rhGH therapy to improve cognitive function. Changes in the expression of hippocampal SYN mRNA following rhGH therapy may also play a role in improving cognitive function.
Collapse
Affiliation(s)
- Hao Zhang
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Mengqi Han
- Beijing Jishuitan Hospital, Beijing, China
| | - Xiaonian Zhang
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Xinting Sun
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Feng Ling
- Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Changes in brain functional connectivity after chronic haloperidol in rats: a network analysis. Int J Neuropsychopharmacol 2014; 17:1129-38. [PMID: 24524273 DOI: 10.1017/s1461145714000042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the effects of haloperidol (HAL) have been extensively examined in experimental animals at the cellular and brain regional levels, the effects of prolonged HAL treatment on functional connectivity in the brain have not yet been addressed. Here we used expression of the immediate early gene zif268 as a marker of neural activity to examine changes in brain regional interactivity after 12 wk of HAL treatment in rats. zif268 expression was measured by in situ hybridization in 83 brain regions of HAL- and vehicle (VEH)-treated controls and correlations among all brain regions were computed separately for the two treatment groups. The strongest correlations in each group were used for network construction. It was found that VEH and HAL networks were equally segregated and integrated, and that both networks display small world organization. Compared to the VEH network, the HAL network showed enhanced interactivity between the dorsolateral striatum and thalamus, and between different subdivisions of the thalamus. It will be of interest to determine the extent to which the observed changes in functional connectivity may be related to dyskinesias, to changes in motivated behaviours and/or to the therapeutic effects of chronic HAL. By identifying the connectivity features of a chronic HAL network in the absence of other manipulations, the current findings may provide a reference signature pattern to be targeted in future efforts to discriminate between the neural bases of different behavioural outcomes arising from chronic HAL treatment.
Collapse
|
18
|
Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:62-8. [PMID: 22640753 DOI: 10.1016/j.pnpbp.2012.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 12/31/2022]
Abstract
We compared the effects of subchronic clozapine and haloperidol administration on the expression of SNAP-25 and synaptophysin in an animal model of schizophrenia based on the glutamatergic hypothesis. Mice were first treated with a non-competitive NMDA antagonist MK-801 (0.3 mg/kg/day) or saline for 5 days, and then clozapine (5 mg/kg/day), haloperidol (1 mg/kg/day) or saline was administered for two weeks. The locomotion test, as a behavioral model of the positive symptoms of schizophrenia, was applied after MK-801/saline administration on day 6 for acute effects and after antipsychotic/saline administration on day 19 for enduring effects on mice activity. Memory function was assessed by the Novel Object Recognition (NOR) test, one day after the last day of antipsychotic/saline administration (day 20). Western Blotting technique was used to determine SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Both antipsychotics reversed the enhanced locomotion effects of MK-801. MK-801 and haloperidol decreased recognition memory performance. On the other hand, clozapine did not compromise memory. It also did not reverse the negative effects of MK-801 on memory performance. MK-801 did not change SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Clozapine increased hippocampal SNAP-25, decreased hippocampal synaptophysin expression, whereas frontal SNAP-25 and synaptophysin expressions remained unchanged. Haloperidol had no effects on levels of SNAP-25 and synaptophysin in the frontal cortex and hippocampus. These findings support the idea that the differential effects of clozapine might be related to its plastic effects and synaptic reorganization of the hippocampus.
Collapse
|
19
|
Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S. Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr Bull 2012; 38:927-35. [PMID: 22532703 PMCID: PMC3446225 DOI: 10.1093/schbul/sbs062] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/02/2023]
Abstract
Synaptic glutamate signaling in brain is highly complex and includes multiple interacting receptors, modulating cotransmitters and distinct regional dynamics. Medial temporal lobe (MTL) memory structures receive excitatory inputs from neocortical sensory and associational projections: afferents from neocortex pass to parahippocampal cortex, then to layers II/III of entorhinal cortex, and then onto hippocampal subfields. Principles of Hebbian plasticity govern synaptic encoding of memory signals, and homeostatic plasticity processes influence the activity of the memory system as a whole. Hippocampal imaging studies in schizophrenia have identified 2 alterations in MTL--increases in baseline blood perfusion and decreases in task-related activation. These observations along with converging postsynaptic hippocampal protein changes suggest that homeostatic plasticity mechanisms might be altered in schizophrenia hippocampus. If hippocampal pattern separation is diminished due to partial dentate gyrus failure (resulting in 'spurious associations') and also if pattern completion is accelerated and increasingly inaccurate due to increased CA3 associational activity, then it is conceivable that associations could be false and, especially if driven by anxiety or stress, could generate psychotic content, with the mistaken associations being laid down in memory, despite their psychotic content, especially delusions and thought disorder.
Collapse
Affiliation(s)
- Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
20
|
Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia. PLoS One 2012; 7:e38211. [PMID: 22675524 PMCID: PMC3365879 DOI: 10.1371/journal.pone.0038211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
Collapse
|
21
|
Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol 2012; 15:573-88. [PMID: 21669024 DOI: 10.1017/s1461145711000861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Munc18-1 and syntaxin-1 are crucial interacting molecules for synaptic membrane fusion and neurotransmitter release. Contrasting abnormalities of several proteins of the exocytotic machinery, including the formation of SNARE (synaptobrevin, SNAP-25 and syntaxin-1) complexes, have been reported in schizophrenia. This study quantified in the dorsolateral prefrontal cortex (PFC, Brodmann area 9) the immunocontent of munc18-1a/b isoforms, syntaxin-1A, other presynaptic proteins (synaptotagmin, synaptophysin), and SNARE complexes, as well as the effects of psychoactive drug exposure, in schizophrenia (SZ, n=24), non-schizophrenia suicide (SD, n=13) and major depression (MD, n=15) subjects compared to matched controls (n=39). SZ was associated with normal expression of munc18-1a/b and increased syntaxin-1A (+44%). The presence of antipsychotic drugs reduced the basal content of munc18-1a isoform (-23%) and synaptobrevin (-32%), and modestly reduced that of up-regulated syntaxin-1A (-16%). Munc18-1a and syntaxin-1A protein expression correlated positively in controls but showed a markedly opposite pattern in SZ, regardless of antipsychotic treatment. Thus, the ratio of syntaxin-1A to munc18-1a showed a net increase in SZ (+53/114%). The SNARE complex (75 kDa) was found unaltered in antipsychotic-free and reduced (-28%) in antipsychotic-treated SZ subjects. None of these abnormalities were observed in SD and MD subjects, unexposed or exposed to psychoactive drugs. The results reveal some exocytotic dysfunctions in SZ that are probably related to an imbalance of the interaction between munc18-1a and SNARE (mainly syntaxin-1A) complex. Moreover, antipsychotic drug treatment is associated with lower content of key proteins of the exocytotic machinery, which could result in a destabilization/impairment of neurosecretion.
Collapse
|
22
|
Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 2011; 95:686-702. [DOI: 10.1016/j.pneurobio.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
|
23
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
24
|
Willis M, Leitner I, Jellinger KA, Marksteiner J. Chromogranin peptides in brain diseases. J Neural Transm (Vienna) 2011; 118:727-35. [PMID: 21533607 DOI: 10.1007/s00702-011-0648-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 12/14/2022]
Abstract
Synaptic disturbances may play a key role in the pathophysiology of neuropsychiatric diseases. In this article, we review immunohistological findings of chromogranin peptides in neurodegenerative and neurodevelopmental disorders, with particular emphasis on Alzheimer's disease, the disorder chromogranins have been studied most extensively. Data was collected from existing and new experimental data and medline research. This review focuses on synaptic changes elicited by chromogranin peptides immunoreactivity in Alzheimer's disease, as well in schizophrenia and amyotrophic lateral sclerosis (ALS). An imbalanced availability of chromogranin peptides may be responsible for impaired neurotransmission and a reduced functioning of dense core vesicles. Since chromogranin A was postulated as a potent proinflammatory agent, we focused on chromogranin A in neuroinflammation in Alzheimer's disease and ALS. Further understanding of role and function of chromogranin peptides in neuropathological conditions is still required.
Collapse
Affiliation(s)
- Michael Willis
- Department of General Psychiatry, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
25
|
Fung SJ, Sivagnanasundaram S, Shannon Weickert C. Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 2011; 69:71-9. [PMID: 21145444 PMCID: PMC3001685 DOI: 10.1016/j.biopsych.2010.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered messenger RNA (mRNA) and protein expression of various synaptic genes have been found, discrepancies between studies mean a generalizable synaptic pathology has not been identified. METHODS We determined if mRNAs encoding presynaptic proteins enriched in inhibitory (vesicular gamma-aminobutyric acid transporter [VGAT] and complexin 1) and/or excitatory (vesicular glutamate transporter 1 [VGluT1] and complexin 2) terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n = 37 patients, n = 37 control subjects). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth (growth associated protein 43 [GAP43] and neuronal navigators [NAVs] 1 and 2) and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein 1 (VAMP1) mRNAs using quantitative polymerase chain reaction. RESULTS No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found; however, expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) was reduced in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared with control subjects, dysbindin mRNA positively correlated with GAP43 and NAV1 in schizophrenia but not in control subjects, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. CONCLUSIONS A reduction in the plasticity of synaptic terminals supports the hypothesis that their reduced modifiability may contribute to neuropathology and working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Samantha J. Fung
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Psychiatry, University of New South Wales, Australia
| |
Collapse
|
26
|
Webster MJ, Elashoff M, Weickert CS. Molecular evidence that cortical synaptic growth predominates during the first decade of life in humans. Int J Dev Neurosci 2010; 29:225-36. [PMID: 20888897 DOI: 10.1016/j.ijdevneu.2010.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/02/2023] Open
Abstract
Theories concerning the pathology of human neurodevelopmental disorders that emerge in adolescence, such as schizophrenia, often hypothesize that there may be a failure of normal cortical synaptic loss or pruning. However, direct evidence that synaptic regression is a major developmental event in the adolescent human cortex is limited. Furthermore, developmental work in rodents suggested that synaptic regression in adolescence is not a major feature of cortical development. Thus, we set out to determine when and to what extent molecular markers of synaptic terminals [synaptophysin (SYP), SNAP-25, syntaxin1A (STX1A), and vesicle-associated membrane protein 1 (VAMP1)] are reduced during postnatal human life spanning from 1 month to 45 years (n = 69) using several different quantitative methods, microarray, qPCR and immunoblotting. We found little evidence for a consistent decrease in synaptic-related molecular markers at any time point, but instead found clear patterns of gradual increases in expression of some presynaptic markers with postnatal age (including SNAP-25, VAMP1 and complexin 1 (CPLX1) mRNAs and 6/6 presynaptic proteins evaluated). A measure of synaptic plasticity [growth-associated protein of 43 kDa (GAP-43)] was elevated in neonates, and continued robust expression throughout life. Since CPLX1 protein is enriched in inhibitory terminals we also tested if the protein product of complexin 2 (CPLX2), which is enriched in excitatory neurons, is more specifically reduced in development. In contrast to CPLX1, which showed a steady increase in both mRNA and protein levels during postnatal development (both r > 0.58, p < 0.001), CPLX2 mRNA decreased from infants to toddlers (r = -0.56, p < 0.001), while CPLX2 protein showed a steady increase until young adulthood (r = 0.55, p < 0.001). Furthermore, we found that indices of the dendrites [microtubule associated protein 2 (MAP2)] and spines (spinophilin and postsynaptic density protein of 95 kDa (PSD95)] showed some evidence of reduction over time at the mRNA level but the opposite pattern, of a developmental increase, was found for PSD95 and spinophilin protein levels. Taken together, the postnatal changes in molecular components of synapses supports the notion that growth and strengthening of synaptic elements is a major developmental event occurring in the frontal cortex throughout childhood and that maintenance of steady state levels of synapse-associated molecules may predominate during human adolescence.
Collapse
Affiliation(s)
- Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
27
|
Gray LJ, Dean B, Kronsbein HC, Robinson PJ, Scarr E. Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 2010; 178:374-80. [PMID: 20488553 DOI: 10.1016/j.psychres.2008.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/27/2008] [Accepted: 07/23/2008] [Indexed: 12/01/2022]
Abstract
Aberrant regulation of synaptic function is thought to play a role in the aetiology of psychiatric disorders, including schizophrenia and bipolar disorder. Normal neurotransmitter release is dependent on a complex group of presynaptic proteins that regulate synaptic vesicle docking, membrane fusion and fission, including synaptophysin, syntaxin, synaptosomal-associated protein-25 (SNAP-25), vesicle-associated membrane protein (VAMP), alpha-synuclein and dynamin I. In addition, structural and signalling proteins such as neural cell adhesion molecule (NCAM) maintain the integrity of the synapse. We have assessed the levels of these important synaptic proteins using Western blots, in three cortical regions (BA10, 40 and 46) obtained post-mortem from subjects with bipolar 1 disorder, schizophrenia or no history of a psychiatric disorder. In bipolar 1 disorder cortex (parietal; BA40), we found a significant increase in the expression of SNAP-25, and a significant reduction in alpha-synuclein compared with controls. These changes in presynaptic protein expression are proposed to inhibit synaptic function in bipolar 1 disorder. In schizophrenia, a significant reduction in the ratio of the two major membrane-bound forms of NCAM (180 and 140) was observed in BA10. The distinct functions of these two NCAM forms suggest that changes in the comparative levels of these proteins could lead to a destabilisation of synaptic signalling. Our data support the notion that there are complex and region-specific alterations in presynaptic proteins that may lead to alterations in synaptic activity in both schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Laura J Gray
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
28
|
Elizalde N, Pastor PM, Garcia-García AL, Serres F, Venzala E, Huarte J, Ramírez MJ, Del Rio J, Sharp T, Tordera RM. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 2010; 114:1302-14. [PMID: 20550627 DOI: 10.1111/j.1471-4159.2010.06854.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that chronic mild stress induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein - Arc) but a long-lasting decrease of the brain derived neurotrophic factor as well as depressive-like behaviour. The immediate early gene Arc was also down-regulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients.
Collapse
Affiliation(s)
- Natalia Elizalde
- Department of Pharmacology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eastwood SL, Harrison PJ. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry 2010; 67:1010-6. [PMID: 20079890 PMCID: PMC2868790 DOI: 10.1016/j.biopsych.2009.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/27/2009] [Accepted: 12/02/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cortical glutamate levels are elevated in bipolar disorder, but the interpretation of this increase is unclear because glutamate has metabolic as well as neurotransmitter roles. We investigated this by measuring vesicular glutamate transporter 1 (VGluT1) expression, which reflects activity at glutamate synapses. We also measured netrin-G1 and netrin-G2 messenger RNAs because these genes are involved in the formation and plasticity of glutamatergic connections. METHODS Using quantitative polymerase chain reaction, we quantified transcripts for VGluT1, netrin-G1 (isoforms G1c, G1d, and G1f), and netrin-G2 in the anterior cingulate cortex from subjects with bipolar disorder (n = 34), schizophrenia (n = 35), and healthy control subjects (n = 35). RESULTS Vesicular glutamate transporter 1, netrin-G2, and netrin-G1d and G1f were increased in bipolar disorder but not in schizophrenia. Netrin-G1c did not differ between groups. Netrin-G1c and netrin-G1f expression showed left-right asymmetries. Vesicular glutamate transporter 1 messenger RNA correlated with brain weight. CONCLUSIONS Increased VGluT1 expression is supportive of elevated glutamate neurotransmission in the anterior cingulate cortex in bipolar disorder. The netrin-G1 and netrin-G2 findings suggest there may be an underlying difference in the plasticity of the affected circuitry.
Collapse
Affiliation(s)
- Sharon L Eastwood
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
30
|
Woo TUW, Spencer K, McCarley RM. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry 2010; 18:173-89. [PMID: 20415633 PMCID: PMC2860612 DOI: 10.3109/10673221003747609] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fascinating convergence of evidence in recent years has implicated the disturbances of neural synchrony in the gamma frequency band (30-100 Hz) as a major pathophysiologic feature of schizophrenia. Evidence suggests that reduced glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors that are localized to inhibitory interneurons, perhaps especially the fast-spiking cells that contain the calcium-binding protein parvalbumin (PV), may contribute to gamma band synchrony deficits. These deficits may underlie the brain's failure to integrate information and hence the manifestations of many symptoms and deficits of schizophrenia. Furthermore, because gamma oscillations are thought to provide the temporal structure that is necessary for synaptic plasticity, gamma oscillation deficits may disturb the developmental synaptic reorganization process that is occurring during the period of late adolescence and early adulthood. This disturbance may contribute to the onset of schizophrenia and the functional deterioration that is characteristic of the early stage of the illness. Finally, reduced NMDA neurotransmission on inhibitory interneurons, including the PV-containing cells, may inflict excitotoxic or oxidative injury to downstream pyramidal neurons, leading to further loss of synapses and dendritic branchings. Hence, a key element in the conceptualization of rational early-intervention and prevention strategies for schizophrenia may involve correcting the abnormal NMDA neurotransmission on inhibitory interneurons-possibly that on the PV-containing neurons, in particular-thereby normalizing gamma oscillation deficits and attenuating downstream neuronal pathology.
Collapse
Affiliation(s)
- Tsung-Ung W. Woo
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Kevin Spencer
- Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Robert M. McCarley
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Romero E, Guaza C, Castellano B, Borrell J. Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 2010; 15:372-83. [PMID: 18414405 DOI: 10.1038/mp.2008.44] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been hypothesized that the maternal immune response to infection may influence fetal brain development and lead to schizophrenia. Animal experimentation has supported this notion by demonstrating altered sensorimotor gating (prepulse inhibition, PPI) in adult rats prenatally exposed to an immune challenge. In the present study, pregnant rats were exposed to the bacterial endotoxin lipopolysaccharide (LPS) throughout gestation and the offspring were examined by evaluating the PPI, dopaminergic function, brain protein expression and cytokine serum levels from weaning to late adulthood. Prenatal LPS exposure induced a deficit in PPI that emerged at 'puberty' and that persisted throughout adult life. This prenatal insult caused age-specific changes in accumbal dopamine levels and in synaptophysin expression in the frontal cortex. Moreover, serum cytokine levels were altered in an age- and cytokine-dependent manner. Here we show that prenatal LPS administration throughout pregnancy causes maturation-dependent PPI deficits and age-dependent alterations in dopamine activity, as well as in synaptophysin expression and cytokine levels.
Collapse
Affiliation(s)
- E Romero
- Group of Neuroimmunology, Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | | | | | | |
Collapse
|
32
|
van der Hel WS, Verlinde SA, Meijer DH, de Wit M, Rensen MG, van Gassen KL, van Rijen PC, van Veelen CW, de Graan PN. Hippocampal distribution of vesicular glutamate transporter 1 in patients with temporal lobe epilepsy. Epilepsia 2009; 50:1717-28. [DOI: 10.1111/j.1528-1167.2009.02054.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Perinatal Oxygen Restriction Does Not Result in Reduced Rat Frontal Cortex Synaptophysin Protein Levels at Adulthood as Opposed to Postmortem Findings in Schizophrenia. J Mol Neurosci 2008; 37:60-6. [DOI: 10.1007/s12031-008-9120-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/04/2008] [Indexed: 11/25/2022]
|
34
|
Verrall L, Walker M, Rawlings N, Benzel I, Kew JNC, Harrison PJ, Burnet PWJ. d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 2007; 26:1657-69. [PMID: 17880399 PMCID: PMC2121142 DOI: 10.1111/j.1460-9568.2007.05769.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The N-methyl-D-aspartate receptor co-agonist d-serine is synthesized by serine racemase and degraded by D-amino acid oxidase. Both D-serine and its metabolizing enzymes are implicated in N-methyl-D-aspartate receptor hypofunction thought to occur in schizophrenia. We studied D-amino acid oxidase and serine racemase immunohistochemically in several brain regions and compared their immunoreactivity and their mRNA levels in the cerebellum and dorsolateral prefrontal cortex in schizophrenia. D-Amino acid oxidase immunoreactivity was abundant in glia, especially Bergmann glia, of the cerebellum, whereas in prefrontal cortex, hippocampus and substantia nigra, it was predominantly neuronal. Serine racemase was principally glial in all regions examined and demonstrated prominent white matter staining. In schizophrenia, D-amino acid oxidase mRNA was increased in the cerebellum, and as a trend for protein. Serine racemase was increased in schizophrenia in the dorsolateral prefrontal cortex but not in cerebellum, while serine racemase mRNA was unchanged in both regions. Administration of haloperidol to rats did not significantly affect serine racemase or D-amino acid oxidase levels. These findings establish the major cell types wherein serine racemase and D-amino acid oxidase are expressed in human brain and provide some support for aberrant D-serine metabolism in schizophrenia. However, they raise further questions as to the roles of D-amino acid oxidase and serine racemase in both physiological and pathophysiological processes in the brain.
Collapse
Affiliation(s)
- Louise Verrall
- Department of Psychiatry, Warneford Hospital, Warneford Lane, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ. Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J Psychopharmacol 2007; 21:635-44. [PMID: 17050659 DOI: 10.1177/0269881106068825] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stable tubule-only polypeptide (STOP) proteins are a family of microtubule associated proteins (MAPs) important in microtubule stabilization. Data indicating a role for microtubules in synaptic function has come from studies of the STOP null mouse, which exhibits synaptic deficits, in association with behavioural changes that are alleviated by antipsychotic treatment. These findings suggested that STOP mutant mice may be useful in studies of synaptic function, and could be especially relevant to schizophrenia, postulated to be a disorder of the synapse. Moreover, a genetic association between STOP and schizophrenia has been reported. This study aimed to further characterize synaptic alterations in STOP null and heterozygous mice. Using in situ hybridization histochemistry, the mRNA expression of three pre-synaptic (synaptophysin; growth associated protein-43 (GAP-43); vesicular glutamate transporter-1 (VGlut1)) and two post-synaptic (spinophilin; MAP2) proteins, was quantified in female STOP null (n = 7), heterozygous (n = 5) and wild type (n = 6) mice. For STOP null and heterozygous mice, synaptophysin, VGlut1, GAP-43 and spinophilin mRNAs were decreased in the hippocampus, whilst in addition in the null mice, synaptophysin, VGlut1 and spinophilin mRNAs were decreased in the cerebellum. Alterations in synaptic protein mRNA expression were also detected in the frontal and occipital cortex. MAP2 mRNA expression was unchanged in all brain regions. The profile of mRNA changes is broadly similar to that observed in schizophrenia. Together the data provide supporting evidence for a role for microtubules in synaptic function, and suggest that STOP, or other microtubule proteins, may contribute to the synaptic pathology of schizophrenia.
Collapse
Affiliation(s)
- Sharon L Eastwood
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Selemon LD, Begovic A. Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007; 151:1-10. [PMID: 17383740 PMCID: PMC2048985 DOI: 10.1016/j.psychres.2006.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 10/29/2006] [Accepted: 11/02/2006] [Indexed: 11/27/2022]
Abstract
Reduction of volume and neuronal number has been found in several association nuclei of the thalamus in schizophrenic subjects. Recent evidence suggests that schizophrenic patients exhibit abnormalities in early visual processing and that many of the observed perceptual deficits are consistent with dysfunction of the magnocellular pathway, i.e. the visual relay from peripheral retinal cells to the two ventrally located magnocellular layers of the lateral geniculate nucleus (LGN). The present study was undertaken to determine whether abnormalities in cell number and volume of the LGN are associated with schizophrenia and whether the structural alterations are restricted to either the magnocellular or parvocellular subdivisions of the LGN. Series of Nissl-stained sections spanning the LGN were obtained from 15 schizophrenic and 15 normal control subjects. The optical disector/fractionator sampling method was used to estimate total neuronal number, total glial number and volume of the magnocellular and parvocellular subdivisions of the LGN. Cell number and volume of the LGN in schizophrenic subjects were not abnormal. Volume of both parvocellular and magnocellular layers of the LGN decreased with age. These findings do not support the hypothesis that early visual processing deficits in schizophrenic subjects are due to reduction of neuronal number in the LGN.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neurobiology, Yale University School of Medicine, PO Box 208001, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
37
|
Eastwood SL, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ. Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age. Hippocampus 2007; 16:645-54. [PMID: 16807900 DOI: 10.1002/hipo.20194] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the human neocortex, progressive synaptogenesis in early postnatal life is followed by a decline in synaptic density, then stability from adolescence until middle age. No comparable data are available in the hippocampus. In this study, the integral synaptic vesicle protein synaptophysin, measured immunoautoradiographically, was used as an index of synaptic terminal abundance in the hippocampal formation of 37 subjects from 5 weeks to 86 yr old, divided into 4 age groups (10 infants, 15 adolescents/young adults, 6 adults, and 6 elderly). In all hippocampal subfields, synaptophysin was lowest in infancy, but did not differ significantly between the older age groups, except in dentate gyrus (DG) where the rise was delayed until adulthood. A similar developmental profile was found in the rat hippocampus. We also measured synaptophysin mRNA in the human subjects and found no age-related changes, except in parahippocampal gyrus wherein the mRNA declined from infancy to adolescence, and again in old age. The synaptophysin protein data demonstrate a significant presynaptic component to human postnatal hippocampal development. In so far as synaptophysin abundance reflects synaptic density, the findings support an increase in hippocampal and parahippocampal synapse formation during early childhood, but provide no evidence for adolescent synaptic pruning. The mRNA data indicate that the maturational increases in synaptophysin protein are either translational rather than transcriptional in origin, or else are secondary to mRNA increases in neurons, the cell bodies of which lie outside the hippocampal formation.
Collapse
Affiliation(s)
- Sharon L Eastwood
- Department of Psychiatry of the University of Oxford, Neurosciences Building, Warneford Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Ortuño F, Moreno-Iñiguez M, Millán M, Soutullo CA, Bonelli RM. Cortical blood flow during rest and Wisconsin Card Sorting Test performance in schizophrenia. Wien Med Wochenschr 2006; 156:179-84. [PMID: 16823534 DOI: 10.1007/s10354-005-0248-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 12/02/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND The aim of this study is to examine if patients with schizophrenia differ in prefrontal, orbitofrontal, temporal, parietal and occipital blood flow from healthy controls during performance of the Wisconsin Card Sorting Test (WCST). METHODS We conducted a 99mTc-hexamethylpropylene amine oxime-SPECT study in patients with schizophrenia (n = 21) and in healthy controls (n = 18). The assessment of relative regional cerebral blood flow (relCBF) was achieved by comparing blood flow of well-defined cortical regions to whole brain blood flow. relCBF at rest and during WCST was compared between the groups and in the groups. RESULTS Significant bilateral prefrontal and right-sided parietal increases of relCBF were found in patients (p < 0.05) during resting conditions, while prefrontal and parietal interhemispheric asymetry were higher in patients (p < 0.005). However, patients failed to increase right prefrontal and frontobasal relCBF as well as orbitofrontal interhemispheric asymetry during WCST performance in contrast to the control group (p < 0.05). The right occipital relCBF increased significantly in patients only (p < 0.05). CONCLUSIONS In our study we could confirm the common hypothesis of schizophrenic hypofrontality at rest and during WCST performance. Moreover, due to our method, we identified significant frontal and parietal interhemispheric asymmetries in schizophrenia at rest as well as right occipital hyperperfusion during WCST.
Collapse
Affiliation(s)
- Felipe Ortuño
- University Clinic of Psychiatry, University of Navarra College of Medicine, Pamplona, Spain
| | | | | | | | | |
Collapse
|
39
|
Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B. Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8:133-43. [PMID: 16542183 DOI: 10.1111/j.1399-5618.2006.00300.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In order to identify whether the mechanisms associated with neurotransmitter release are involved in the pathologies of bipolar disorder and schizophrenia, levels of presynaptic [synaptosomal-associated protein-25 (SNAP-25), syntaxin, synaptophysin, vesicle-associated membrane protein, dynamin I] and structural (neuronal cell adhesion molecule and alpha-synuclein) neuronal markers were measured in Brodmann's area 9 obtained postmortem from eight subjects with bipolar I disorder (BPDI), 20 with schizophrenia and 20 controls. METHODS Determinations of protein levels were carried out using Western blot techniques with specific antibodies. Levels of mRNA were measured using real-time polymerase chain reaction. RESULTS In BPDI, levels of SNAP-25 (p < 0.01) and synaptophysin (p < 0.05) increased. There were no changes in schizophrenia or any other changes in BPDI. Levels of mRNA for SNAP-25 were decreased in BPDI (p < 0.05). CONCLUSION Changes in SNAP-25 and synaptophysin in BPDI suggest that changes in specific neuronal functions could be linked to the pathology of the disorder.
Collapse
Affiliation(s)
- E Scarr
- Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
40
|
Abstract
1. An optimal intra-uterine environment is critical for normal development of the brain. It is now thought that abnormal development in a compromised prenatal and/or early postnatal environment may be a risk factor for several neurological disorders that manifest postnatally, such as cerebral palsy, schizophrenia and epilepsy. 2. The present review examines some of the effects of abnormal prenatal brain development and focuses on one disorder that has been hypothesized to have, at least in part, an early neurodevelopmental aetiology: schizophrenia. 3. The key neuropathological alterations and changes in some of the neurotransmitter systems observed in patients with schizophrenia are reviewed. Evidence in support of a neurodevelopmental hypothesis for schizophrenia is examined. 4. A summary of the animal models that have been used by researchers in an attempt to elucidate the origins of this disorder is presented. Although no animal model of a complex human disorder is ever likely to emulate deficits in all aspects of structure and function observed in patients with a neuropsychiatric illness, our findings and those of others give support to the early neurodevelopmental hypothesis. 5. Thus, it is possible that an adverse event in utero disrupts normal brain development and creates a vulnerability of the brain that predisposes an already at-risk individual (e.g. genetic inheritance) to develop the disorder later in life.
Collapse
Affiliation(s)
- Alexandra E Rehn
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
41
|
Beasley CL, Honer WG, Bergmann K, Falkai P, Lütjohann D, Bayer TA. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord 2005; 7:449-55. [PMID: 16176438 DOI: 10.1111/j.1399-5618.2005.00239.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Cholesterol forms an integral part of cell membranes and is a major component of myelin. Furthermore, cholesterol also plays a vital role in the development, function and stability of synapses. While low serum cholesterol has previously been associated with mood disorders, cholesterol levels have yet to be quantified within the brain in these disorders. The aim of this study was to quantify sterol levels in the brains of patients with major psychiatric disorders and further to relate these levels to markers of myelin and synapses. METHODS Samples of visual association cortex were obtained postmortem from subjects with bipolar disorder (BPD), major depressive disorder (MDD) and schizophrenia (SCZ) and from controls (all n = 15). Concentrations of brain cholesterol, its precursors lathosterol, desmosterol and lanosterol and its metabolite 24S-hydroxycholesterol were determined by gas-liquid chromatography. Immunoreactivity for myelin basic protein (MBP), synaptophysin and VAMP was quantified by enzyme-linked immunosorbent assay. RESULTS Cholesterol levels were 13% lower in MDD (p = 0.018) and 10% lower in BPD (p = 0.052) compared with controls. Cholesterol precursor or metabolite concentrations did not differ between groups. Synaptophysin immunoreactivity was 20% lower in BPD (p = 0.025) and VAMP immunoreactivity 37% lower in MDD (p = 0.032) and 45% lower in BPD (p = 0.009). MBP immunoreactivity was not altered in any disorder. CONCLUSIONS Our data suggest that lower brain cholesterol levels and a reduction in synapses may be features of mood disorders.
Collapse
Affiliation(s)
- Clare L Beasley
- Center for Complex Disorders, Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Mitelman SA, Brickman AM, Shihabuddin L, Newmark R, Chu KW, Buchsbaum MS. Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann's areas in schizophrenia. Schizophr Res 2005; 75:265-81. [PMID: 15885518 DOI: 10.1016/j.schres.2004.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 11/22/2022]
Abstract
BACKGROUND We compared the thalamic-cortical volumetric correlational patterns in patients with schizophrenia and normal comparison subjects, and evaluated their relations to outcome. METHODS High-resolution MR images were acquired in patients with schizophrenia (n=106) and normal comparison subjects (n=42). Patients were divided into good-outcome (n=52) and poor-outcome (Kraepelinian, n=54) subtypes based on their ability for self-care. Correlations between the relative gray and white matter volumes of the individual cortical Brodmann's areas and five dorsoventral levels of the thalamus were assessed. RESULTS Compared to normal subjects, schizophrenia patients lacked significant thalamic gray matter volume correlations with the prefrontal and medial temporal cortical regions in the right hemisphere, and with frontal, cingulate, posterior parietal and occipital regions in the left hemisphere, while normal white matter volume cortical-thalamic correlations along the cingulate gyrus and in the temporal lobe were not found in schizophrenia patients in both hemispheres. In contrast to both normal comparison subjects and good-outcome group, schizophrenia patients with poor outcomes showed significant bilateral gray matter volume correlations between the dorsal thalamus and ventral prefrontal cortex, while the group differences in the white matter volume correlations were mostly restricted to the cingulate arch. CONCLUSIONS Whereas patients with schizophrenia exhibit deficiencies in cortical-thalamic correlational patterns, poor outcome is associated with abnormal interregional correlations not observed in either normal subjects or patients with good outcomes. This latter finding may be explained by a core neurodevelopmental disturbance that results in aberrant cortical-thalamic connectivity in poor-outcome schizophrenia.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Neuroscience PET Laboratory, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Eastwood SL, Harrison PJ. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 2005; 73:159-72. [PMID: 15653259 DOI: 10.1016/j.schres.2004.05.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 01/11/2023]
Abstract
Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.
Collapse
Affiliation(s)
- S L Eastwood
- Department of Psychiatry, University of Oxford, Warneford Hospital, Neurosciences Building, Oxford OX3 7JX, UK.
| | | |
Collapse
|
44
|
Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57:252-60. [PMID: 15691526 DOI: 10.1016/j.biopsych.2004.10.019] [Citation(s) in RCA: 347] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/29/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies of postmortem neurochemical markers in severe psychiatric disorders have been carried out on different brain collections, making it difficult to compare results. METHODS One hundred RNA, protein, and other neurochemical markers were assessed in a single set of 60 postmortem brains (15 each with schizophrenia, bipolar disorder, major depression without psychosis, and unaffected control subjects) in relation to seven neurochemical systems. Quantitative measures of continuous variables for prefrontal, hippocampus, anterior cingulate, superior temporal cortex, or a combination of these were analyzed from published and unpublished studies by 56 research groups. RESULTS Before correcting for multiple comparisons, 23% of markers (23/100) were abnormal in one or more regions, with most indicating decreased expression. The largest percentage were associated with the developmental/synaptic (10/22) and gamma-aminobutyric acid (GABA; 3/7) systems. Bipolar disorder (20) and schizophrenia (19) had the most abnormalities, with a 65% overlap. When all brain areas were considered together and corrected for multiple comparisons, reelin, parvalbumin, and GAD67 were the most abnormal. CONCLUSIONS Confirming other studies, the GABA and developmental/synaptic neurochemical systems are promising areas for research on schizophrenia and bipolar disorder. Research should include tissue from both diseases, and additional brain areas should be assessed.
Collapse
Affiliation(s)
- E Fuller Torrey
- Stanley Medical Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174:151-62. [PMID: 15205886 DOI: 10.1007/s00213-003-1761-y] [Citation(s) in RCA: 506] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 11/25/2003] [Indexed: 01/17/2023]
Abstract
This paper puts the case for the hippocampus as being central to the neuropathology and pathophysiology of schizophrenia. The evidence comes from a range of approaches, both in vivo (neuropsychology, structural and functional imaging) and post mortem (histology, morphometry, gene expression, and neurochemistry). Neuropathologically, the main positive findings concern neuronal morphology, organisation, and presynaptic and dendritic parameters. The results are together suggestive of an altered synaptic circuitry or "wiring" within the hippocampus and its extrinsic connections, especially with the prefrontal cortex. These changes plausibly represent the anatomical component of the aberrant functional connectivity that underlies schizophrenia. Glutamatergic pathways are prominently but not exclusively affected. Changes appear somewhat greater in the left hippocampus than the right, and CA1 is relatively uninvolved compared to other subfields. Hippocampal pathology in schizophrenia may be due to genetic factors, aberrant neurodevelopment, and/or abnormal neural plasticity; it is not due to any recognised neurodegenerative process. Hippocampal involvement is likely to be associated with the neuropsychological impairments of schizophrenia rather than with its psychotic symptoms.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, Neurosciences Building, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| |
Collapse
|
46
|
Gittins R, Harrison PJ. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining. Brain Res Bull 2004; 63:155-60. [PMID: 15130705 DOI: 10.1016/j.brainresbull.2004.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Revised: 02/03/2004] [Accepted: 02/05/2004] [Indexed: 11/28/2022]
Abstract
There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca Gittins
- Department of Psychiatry, University of Oxford, Warneford Hospital, Neurosciences Building, Oxford OX3 7JX, UK
| | | |
Collapse
|
47
|
Abstract
The present paper demonstrates a remarkable pervasiveness of underlying Ca(2+) signaling motifs among the available biochemical findings in schizophrenic patients and among the major molecular hypotheses of this disease. In addition, the paper reviews the findings suggesting that Ca(2+) is capable of inducing structural and cognitive deficits seen in schizophrenia. The evidence of the ability of antipsychotic drugs to affect Ca(2+) signaling is also presented. Based on these data, it is proposed that altered Ca(2+) signaling may constitute the central unifying molecular pathology in schizophrenia. According to this hypothesis schizophrenia can result from alterations in multiple proteins and other molecules as long as these alterations lead to abnormalities in certain key aspects of intracellular Ca(2+) signaling cascades.
Collapse
Affiliation(s)
- Michael S Lidow
- Department of Biomedical Sciences and Program of Neuroscience, University of Maryland, Room 5-A-12, HHH, 666 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
48
|
Rahmy T, Hassouna I. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats. J Venom Anim Toxins Incl Trop Dis 2004. [DOI: 10.1590/s1678-91992004000100005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR, Kleinman JE, Lipska BK. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol Psychiatry 2003; 8:797-810. [PMID: 12931207 DOI: 10.1038/sj.mp.4001319] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dysfunction of the prefrontal cortex in schizophrenia may be associated with abnormalities in synaptic structure and/or function and reflected in altered concentrations of proteins in presynaptic terminals and involved in synaptic plasticity (synaptobrevin/ vesicle-associated membrane protein (VAMP), synaptosomal-associated protein-25 (SNAP-25), syntaxin, synaptophysin and growth-associated protein-43 (GAP-43)). We examined the immunoreactivity of these synapse-associated proteins via quantitative immunoblotting in the prefrontal cortex of patients with schizophrenia (n=18) and in normal controls (n=23). We also tested the stability of these proteins across successive post-mortem intervals in rat brains (at 0, 3, 12, 24, 48, and 70 h). To investigate whether experimental manipulation of prefrontal cortical development in the rat alters prefrontal synaptic protein levels, we lesioned the ventral hippocampus of rats on postnatal day 7 and measured immunoreactivity of presynaptic proteins in the prefrontal cortex on postnatal day 70. VAMP immunoreactivity was lower in the schizophrenic patients by 22% (P<0.03). There were no differences in the immunoreactivity of any other proteins measured in schizophrenic patients as compared to the matched controls. Proteins were fairly stable up to 24 h and thereafter the abundance of most proteins examined was significantly reduced (falling to as low as 20% of baseline levels at 48-70 h). VAMP immunoreactivity was higher in the lesioned rats as compared to sham controls by 22% (P&<0.03). There were no significant differences between the lesioned rats and sham animals in any other presynaptic protein. These data suggest that apparently profound prefrontal cortical dysfunction in schizophrenia, as well as in an animal model of schizophrenia, may exist without gross changes in the abundance of many synaptic proteins but discrete changes in selected presynaptic molecules may be present.
Collapse
Affiliation(s)
- N D Halim
- Clinical Brain Disorders Branch, Intramural Research Program, National Institutes of Mental Health, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Research suggests an association between abnormal exocytosis and schizophrenia. We previously demonstrated increased synaptosomal associated protein, 25 kDa (SNAP-25), a member of the exocytotic mechanism, in the cerebrospinal fluid (CSF) of schizophrenia subjects. In this study, we explored SNAP-25 level and clinical variables in a new group of subjects. METHODS Twenty-five haloperidol-treated subjects with chronic schizophrenia and twenty-five healthy control subjects participated in the study. Subjects received haloperidol treatment for at least 3 months and then had a lumbar puncture (n = 19). Medication was replaced by placebo, and the lumbar puncture was repeated (n = 25) after 6 weeks or sooner if limited psychotic symptoms occurred. We measured the level of SNAP-25 in the CSF and symptoms with the Brief Psychiatric Rating Scale (BPRS). RESULTS In both haloperidol (p =.001) and placebo (p =.001) treatment conditions, SNAP-25 was elevated. There was no significant difference in SNAP-25 level between conditions. We identified significant positive correlations among SNAP-25 and the BPRS total score and psychosis and thinking disturbance subscales in subjects on haloperidol. CONCLUSIONS These observations confirm our previous report of elevated CSF SNAP-25 and suggest that synaptic pathology may be linked with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Peter M Thompson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|