1
|
Kruschel RD, Malone K, Walsh AN, Waeber C, McCarthy FO. Discovery of Sphingosine Kinase Inhibition by Modified Quinoline-5,8-Diones. Pharmaceuticals (Basel) 2025; 18:268. [PMID: 40006080 DOI: 10.3390/ph18020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Sphingosine kinase (SphK) overexpression is observed in many cancers, including breast, renal and leukaemia, which leads to increased cellular proliferation, survival and growth. SphK inhibition has been an attractive target for anticancer drug development for the past decade, with SphK inhibitors such as PF-543 and opaganib exhibiting clinical antitumour effects. By exploiting both CB5468139 and PF-543 as structural leads, we hereby report on the first quinoline-5,8-dione-based SphK inhibitor using a fragment-based approach. Methods: The quinoline-5,8-dione framework was developed to incorporate two defined regions, namely a polar quinoline core, which links to an aryl lipophilic chain. All synthetic molecules were characterized by NMR and HRMS and assayed against SphK 1 and 2, and molecular docking studies were performed. A subset of compounds was screened for anticancer activity. Results: As the binding site of SphK accommodates the lipophilic tail of sphingosine, we initially set out to explore the substitution of the C(7) aryl moiety to attain eight novel C(7) ether-linked quinoline-5,8-diones, which were screened for SphK1 and SphK2 activity with good potency identified. To improve SphK binding, structural fragments were adapted from PF-543 to participate in hydrogen bonding within the binding site of SphK1. A model study was performed to yield novel compounds through activated C(2) formyl intermediates. Two pyrrolidine-based quinoline-5,8-diones were assayed for SphK activity, with 21 revealing an improvement of SphK1 binding efficacy relative to the parent compound and 20 (and its precursor 4). Molecular modelling on the pyrrolidine quinoline-5,8-dione construct revealed favourable docking, low binding energies and opportunities for further improvement. Conclusions: Although the screening of anticancer activity was inconclusive, low micromolar dual SphK1/2 inhibition with the quinoline-5,8-dione framework has been identified for the first time, and a plausible new binding mode has been identified.
Collapse
Affiliation(s)
- Ryan D Kruschel
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| | - Kyle Malone
- School of Pharmacy, University College Cork, Pharmacy Building, College Road, T12K8AF Cork, Ireland
| | - Alison N Walsh
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| | - Christian Waeber
- School of Pharmacy, University College Cork, Pharmacy Building, College Road, T12K8AF Cork, Ireland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, T12XF62 Cork, Ireland
| | - Florence O McCarthy
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland
| |
Collapse
|
2
|
Barbernitz MX, Raben DM. A new method for quantifying the enzyme activity of DGKs. Adv Biol Regul 2024; 91:100998. [PMID: 38030419 DOI: 10.1016/j.jbior.2023.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH). A common approach to examine the activity of these enzymes relys on a radiometric assay (Epand and Topham, 2007; Tu-Sekine and Raben, 2017). This assay quantifies the DGK-catalyzed incorporation of 32P into DAG from AT32P to generate 32PtdOH and is perhaps been the most widely used assay. While sensitive, its drawbacks are the expense and the potential negative impacts on health and the environment. In this report, we describe a new assay which utilizes fluorescent labeled NBD-DAG (1-Oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-Glycero-3-diacylglycerol) to quantify the DGK-θ-catalyzed conversion of NBD-DAG to NBD-PtdOH. Furthermore, we show the assay is sufficiently sensitive as the measured specific activity was similar to that previously determined with AT32P (Tu-Sekine and Raben, 2012) and was able to detect the activation of DGK-θ by synaptotagmin-1 (Barber et al., 2022). Overall, this assay is inexpensive, sensitive, and reproducible making it an attractive alternative to currently established assays.
Collapse
Affiliation(s)
- Millie Xin Barbernitz
- Departments of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Departments of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Xu M, Xia S, Wang M, Liu X, Li X, Chen W, Wang Y, Li H, Xia C, Chen J, Wu J. Enzymatic independent role of sphingosine kinase 2 in regulating the expression of type I interferon during influenza A virus infection. PLoS Pathog 2022; 18:e1010794. [PMID: 36070294 PMCID: PMC9451060 DOI: 10.1371/journal.ppat.1010794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-β promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-β promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-β1 and IL6 promoters. The specific regulation of SPHK2 on IFN-β promoter through TET3 can in turn recruit HDAC1 to the IFN-β promoter, enhancing the deacetylation of IFN-β promoter, therefore leading to the inhibition of IFN-β transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.
Collapse
Affiliation(s)
- Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sisi Xia
- Department of Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mei Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaolian Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Hongjian Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| |
Collapse
|
4
|
Ranjit DK, Moye ZD, Rocha FG, Ottenberg G, Nichols FC, Kim HM, Walker AR, Gibson FC, Davey ME. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P. Microbiol Spectr 2022; 10:e0000222. [PMID: 35286133 PMCID: PMC9045371 DOI: 10.1128/spectrum.00002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis synthesizes a variety of sphingolipids, similar to its human host. Studies have shown that synthesis of these lipids (dihydroceramides [DHCs]) is involved in oxidative stress resistance, the survival of P. gingivalis during stationary phase, and immune modulation. Here, we constructed a deletion mutant of P. gingivalis strain W83 with a deletion of the gene encoding DhSphK1, a protein that shows high similarity to a eukaryotic sphingosine kinase, an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. Our data show that deletion of the dhSphK1 gene results in a shift in the sphingolipid composition of P. gingivalis cells; specifically, the mutant synthesizes higher levels of phosphoglycerol DHCs (PG-DHCs) than the parent strain W83. Although PG1348 shows high similarity to the eukaryotic sphingosine kinase, we discovered that the PG1348 enzyme is unique, since it preferentially phosphorylates dihydrosphingosine, not sphingosine. Besides changes in lipid composition, the W83 ΔPG1348 mutant displayed a defect in cell division, the biogenesis of outer membrane vesicles (OMVs), and the amount of K antigen capsule. Taken together, we have identified the first bacterial dihydrosphingosine kinase whose activity regulates the lipid profile of P. gingivalis and underlies a regulatory mechanism of immune modulation. IMPORTANCE Sphingoid base phosphates, such as sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), act as ligands for S1P receptors, and this interaction is known to play a central role in mediating angiogenesis, vascular stability and permeability, and immune cell migration to sites of inflammation. Studies suggest that a shift in ratio to higher levels of dhS1P in relation to S1P alters downstream signaling cascades due to differential binding and activation of the various S1P receptor isoforms. Specifically, higher levels of dhS1P are thought to be anti-inflammatory. Here, we report on the characterization of a novel kinase in Porphyromonas gingivalis that phosphorylates dihydrosphingosine to form dhS1P.
Collapse
Affiliation(s)
- Dev K. Ranjit
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Zachary D. Moye
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda G. Rocha
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Gregory Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Sci Rep 2022; 12:955. [PMID: 35046440 PMCID: PMC8770663 DOI: 10.1038/s41598-021-04648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Suppression of a specific gene effect can be achieved by genetic as well as chemical methods. Each approach may hide unexpected drawbacks, usually in the form of side effects. In the present study, the specific inhibitor myriocin was used to block serine palmitoyltransferase (SPT), the first enzyme in the sphingolipid synthetic pathway, in CHO cells. The subsequent biophysical changes in plasma membranes were measured and compared with results obtained with a genetically modified CHO cell line containing a defective SPT (the LY-B cell line). Similar effects were observed with both approaches: sphingomyelin values were markedly decreased in myriocin-treated CHO cells and, in consequence, their membrane molecular order (measured as laurdan general polarization) and mechanical resistance (AFM-measured breakthrough force values) became lower than in the native, non-treated cells. Cells treated with myriocin reacted homeostatically to maintain membrane order, synthesizing more fully saturated and less polyunsaturated GPL than the non-treated ones, although they achieved it only partially, their plasma membranes remaining slightly more fluid and more penetrable than those from the control cells. The good agreement between results obtained with very different tools, such as genetically modified and chemically treated cells, reinforces the use of both methods and demonstrates that both are adequate for their intended use, i.e. the complete and specific inhibition of sphingolipid synthesis in CHO cells, without apparent unexpected effects.
Collapse
|
6
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Santacreu BJ, Romero DJ, Pescio LG, Tarallo E, Sterin-Speziale NB, Favale NO. Apoptotic cell extrusion depends on single-cell synthesis of sphingosine-1-phosphate by sphingosine kinase 2. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158888. [PMID: 33454434 DOI: 10.1016/j.bbalip.2021.158888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2020] [Revised: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Collecting duct cells are physiologically subject to the hypertonic environment of the kidney. This condition is necessary for kidney maturation and function but represents a stress condition that requires active strategies to ensure epithelial integrity. Madin-Darby Canine Kidney (MDCK) cells develop the differentiated phenotype of collecting duct cells when subject to hypertonicity, serving as a model to study epithelial preservation and homeostasis in this particular environment. The integrity of epithelia is essential to achieve the required functional barrier. One of the mechanisms that ensure integrity is cell extrusion, a process initiated by sphingosine-1-phosphate (S1P) to remove dying or surplus cells while maintaining the epithelium barrier. Both types start with the activation of S1P receptor type 2, located in neighboring cells. In this work, we studied the effect of cell differentiation induced by hypertonicity on cell extrusion in MDCK cells, and we provide new insights into the associated molecular mechanism. We found that the different stages of differentiation influence the rate of apoptotic cell extrusion. Besides, we used a novel methodology to demonstrate that S1P increase in extruding cells of differentiated monolayers. These results show for first time that cell extrusion is triggered by the single-cell synthesis of S1P by sphingosine kinase 2 (SphK2), but not SphK1, of the extruding cell itself. Moreover, the inhibition or knockdown of SphK2 prevents cell extrusion and cell-cell junction protein degradation, but not apoptotic nuclear fragmentation. Thus, we propose SphK2 as the biochemical key to ensure the preservation of the epithelial barrier under hypertonic stress.
Collapse
Affiliation(s)
- Bruno Jaime Santacreu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Daniela Judith Romero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Estefanía Tarallo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Norma Beatriz Sterin-Speziale
- CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas - Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
| | - Nicolás Octavio Favale
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Newton J, Palladino END, Weigel C, Maceyka M, Gräler MH, Senkal CE, Enriz RD, Marvanova P, Jampilek J, Lima S, Milstien S, Spiegel S. Targeting defective sphingosine kinase 1 in Niemann-Pick type C disease with an activator mitigates cholesterol accumulation. J Biol Chem 2020; 295:9121-9133. [PMID: 32385114 PMCID: PMC7335787 DOI: 10.1074/jbc.ra120.012659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.
Collapse
Affiliation(s)
- Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ricardo D Enriz
- Facultad de Quimica, Bioquimica, y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-CONICET), San Luis, Argentina
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
9
|
Naser E, Kadow S, Schumacher F, Mohamed ZH, Kappe C, Hessler G, Pollmeier B, Kleuser B, Arenz C, Becker KA, Gulbins E, Carpinteiro A. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J Lipid Res 2020; 61:896-910. [PMID: 32156719 PMCID: PMC7269768 DOI: 10.1194/jlr.ra120000682] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Indexed: 01/03/2023] Open
Abstract
Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.
Collapse
Affiliation(s)
- Eyad Naser
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Zainelabdeen H Mohamed
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany; Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christian Kappe
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Barbara Pollmeier
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Surgery, University of Cincinnati, Cincinnati, OH 45229
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Hematology, University Hospital Essen, 45147 Essen, Germany. mailto:
| |
Collapse
|
10
|
Vettorazzi M, Insuasty D, Lima S, Gutiérrez L, Nogueras M, Marchal A, Abonia R, Andújar S, Spiegel S, Cobo J, Enriz RD. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg Chem 2019; 94:103414. [PMID: 31757412 DOI: 10.1016/j.bioorg.2019.103414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Daniel Insuasty
- Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia; Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Lucas Gutiérrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Manuel Nogueras
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Marchal
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sebastián Andújar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
11
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
12
|
Vettorazzi M, Vila L, Lima S, Acosta L, Yépes F, Palma A, Cobo J, Tengler J, Malik I, Alvarez S, Marqués P, Cabedo N, Sanz MJ, Jampilek J, Spiegel S, Enriz RD. Synthesis and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity. Arch Pharm (Weinheim) 2019; 352:e1800298. [DOI: 10.1002/ardp.201800298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Laura Vila
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Santiago Lima
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Lina Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Felipe Yépes
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Justo Cobo
- Inorganic and Organic Department; University of Jaén; Jaén Spain
| | - Jan Tengler
- Medis International a.s.; Bolatice Czech Republic
| | - Ivan Malik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Patrice Marqués
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Nuria Cabedo
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - María J. Sanz
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Josef Jampilek
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sarah Spiegel
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| |
Collapse
|
13
|
Bellini L, Campana M, Rouch C, Chacinska M, Bugliani M, Meneyrol K, Hainault I, Lenoir V, Denom J, Véret J, Kassis N, Thorens B, Ibberson M, Marchetti P, Blachnio-Zabielska A, Cruciani-Guglielmacci C, Prip-Buus C, Magnan C, Le Stunff H. Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets. Diabetologia 2018; 61:1780-1793. [PMID: 29754287 DOI: 10.1007/s00125-018-4629-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells. METHODS We detected ELOVL2 in INS-1 beta cells and mouse and human islets using quantitative PCR and western blotting. Downregulation and adenoviral overexpression of Elovl2 was carried out in beta cells. Ceramide and diacylglycerol levels were determined by radio-enzymatic assay and lipidomics. Apoptosis was quantified using caspase-3 assays and poly (ADP-ribose) polymerase cleavage. Palmitate oxidation and esterification were determined by [U-14C]palmitate labelling. RESULTS We found that glucolipotoxicity decreased ELOVL2 content in rodent and human beta cells. Downregulation of ELOVL2 drastically potentiated beta cell apoptosis induced by glucolipotoxicity, whereas adenoviral Elovl2 overexpression and supplementation with DHA partially inhibited glucolipotoxicity-induced cell death in rodent and human beta cells. Inhibition of beta cell apoptosis by the ELOVL2/DHA axis was associated with a decrease in ceramide accumulation. However, the ELOVL2/DHA axis was unable to directly alter ceramide synthesis or metabolism. By contrast, DHA increased palmitate oxidation but did not affect its esterification. Pharmacological inhibition of AMP-activated protein kinase and etomoxir, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in fatty acid β-oxidation, attenuated the protective effect of the ELOVL2/DHA axis during glucolipotoxicity. Downregulation of CPT1 also counteracted the anti-apoptotic action of the ELOVL2/DHA axis. By contrast, a mutated active form of Cpt1 inhibited glucolipotoxicity-induced beta cell apoptosis when ELOVL2 was downregulated. CONCLUSIONS/INTERPRETATION Our results identify ELOVL2 as a critical pro-survival enzyme for preventing beta cell death and dysfunction induced by glucolipotoxicity, notably by favouring palmitate oxidation in mitochondria through a CPT1-dependent mechanism.
Collapse
Affiliation(s)
- Lara Bellini
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Mélanie Campana
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Claude Rouch
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Marta Chacinska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Kelly Meneyrol
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | | | - Véronique Lenoir
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jessica Denom
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Julien Véret
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Nadim Kassis
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Bernard Thorens
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Agnieszka Blachnio-Zabielska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Céline Cruciani-Guglielmacci
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Carina Prip-Buus
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Magnan
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France
| | - Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Équipe Régulation de la glycémie par le système nerveux central, Université Paris Diderot, 4 rue Marie-Andrée-Lagroua-Weill-Hallé, 75205, Paris CEDEX 13, France.
- Université Paris-Sud, Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Orsay, France.
| |
Collapse
|
14
|
Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 2017; 139:461-481. [PMID: 28822281 DOI: 10.1016/j.ejmech.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Lina M Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Janette Bobalova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Jozef Csollei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
15
|
Lima S, Milstien S, Spiegel S. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. J Biol Chem 2017; 292:3074-3088. [PMID: 28049734 DOI: 10.1074/jbc.m116.762377] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking.
Collapse
Affiliation(s)
- Santiago Lima
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
16
|
Kobayashi N, Otsuka M, Yamaguchi A, Nishi T. Fluorescence-based rapid measurement of sphingosine-1-phosphate transport activity in erythrocytes. J Lipid Res 2016; 57:2088-2094. [PMID: 27655910 DOI: 10.1194/jlr.d071068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is present in the blood plasma and acts as a pivotal intercellular signal transmitter in the immune system by recruiting lymphocytes from the thymus and secondary lymphoid tissues. The plasma S1P concentration is maintained by the supply of S1P from erythrocytes. Previously, we showed that S1P release from erythrocytes is mediated by an ATP-dependent transporter. In this study, we attempted to establish a rapid and reliable method for measuring the S1P transport activity in erythrocytes by using a fluorescent S1P analog, 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled S1P. NBD-S1P was released from erythrocytes in a time-dependent manner. The NBD-S1P release was reduced after exposure to glyburide, which is an inhibitor of the S1P transporter in erythrocytes. Moreover, the release of NBD-S1P and S1P from erythrocytes was competitively inhibited by intracellular S1P and NBD-S1P, respectively. These results showed that the erythrocyte S1P transporter exports NBD-S1P. We optimized the sample-preparation conditions and lipid extraction to increase the sensitivity of the assay. Furthermore, we successfully measured NBD-S1P release without lipid extraction by decreasing the concentration of BSA in the assay buffer to 0.1%. This method will be useful for the high-throughput screening of S1P transporter inhibitors using conventional fluorometers.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan.,Faculty of Pharmaceutical Science, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Masato Otsuka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Akihito Yamaguchi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Nishi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan .,Faculty of Pharmaceutical Science, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Kashem MA, Kennedy CA, Fogarty KE, Dimock JR, Zhang Y, Sanville-Ross ML, Skow DJ, Brunette SR, Swantek JL, Hummel HS, Swindle J, Nelson RM. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay. Assay Drug Dev Technol 2016; 14:39-49. [DOI: 10.1089/adt.2015.671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mohammed A. Kashem
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Charles A. Kennedy
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kylie E. Fogarty
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Janice R. Dimock
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Yunlong Zhang
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Mary L. Sanville-Ross
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Donna J. Skow
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Steven R. Brunette
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jennifer L. Swantek
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | - Richard M. Nelson
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
18
|
Martynov VI, Pakhomov AA, Popova NV, Deyev IE, Petrenko AG. Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae 2016; 8:33-46. [PMID: 28050265 PMCID: PMC5199205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022] Open
Abstract
The last decade has witnessed significant advance in the imaging of living systems using fluorescent markers. This progress has been primarily associated with the discovery of different spectral variants of fluorescent proteins. However, the fluorescent protein technology has its own limitations and, in some cases, the use of low-molecular-weight fluorophores is preferable. In this review, we describe the arsenal of synthetic fluorescent tools that are currently in researchers' hands and span virtually the entire spectrum, from the UV to visible and, further, to the near-infrared region. An overview of recent advances in site-directed introduction of synthetic fluorophores into target cellular objects is provided. Application of these fluorescent probes to the solution of a wide range of biological problems, in particular, to the determination of local ion concentrations and pH in living systems, is discussed.
Collapse
Affiliation(s)
- V. I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - A. A. Pakhomov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - N. V. Popova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - I. E. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| | - A. G. Petrenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, 117997, Russia
| |
Collapse
|
19
|
Dickinson AJ, Meyer M, Pawlak EA, Gomez S, Jaspers I, Allbritton NL. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood. Integr Biol (Camb) 2015; 7:392-401. [PMID: 25786072 PMCID: PMC4566154 DOI: 10.1039/c5ib00007f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Sphingosine-1-phosphate (S1P), a lipid second messenger formed upon phosphorylation of sphingosine by sphingosine kinase (SK), plays a crucial role in natural killer (NK) cell proliferation, migration, and cytotoxicity. Dysregulation of the S1P pathway has been linked to a number of immune system disorders and therapeutic manipulation of the pathway has been proposed as a method of disease intervention. However, peripheral blood NK cells, as identified by surface markers (CD56(+)CD45(+)CD3(-)CD16) consist of a highly diverse population with distinct phenotypes and functions and it is unknown whether the S1P pathway is similarly diverse across peripheral blood NK cells. In this work, we measured the phosphorylation of sphingosine-fluorescein (SF) and subsequent metabolism of S1P fluorescein (S1PF) to form hexadecanoic acid fluorescein (HAF) in 111 single NK cells obtained from the peripheral blood of four healthy human subjects. The percentage of SF converted to S1PF or HAF was highly variable amongst the cells ranging from 0% to 100% (S1PF) and 0% to 97% (HAF). Subpopulations of cells with varying levels of S1PF formation and metabolism were readily identified. Across all subjects, the average percentage of SF converted to S1PF or HAF was 37 ± 36% and 12 ± 19%, respectively. NK cell metabolism of SF by the different subjects was also distinct with hierarchical clustering suggesting two possible phenotypes: low (<20%) or high (>50%) producers of S1PF. The heterogeneity of SK and downstream enzyme activity in NK cells may enable NK cells to respond effectively to a diverse array of pathogens as well as incipient tumor cells. NK cells from two subjects were also loaded with S1PF to assess the activity of S1P phosphatase (S1PP), which converts S1P to sphingosine. No NK cells (n = 41) formed sphingosine, suggesting that S1PP was minimally active in peripheral blood NK cells. In contrast to the SK activity, S1PP activity was homogeneous across the peripheral blood NK cells, suggesting a bias in the SK pathway towards proliferation and migration, activities supported by S1P.
Collapse
Affiliation(s)
| | - Megan Meyer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erica A. Pawlak
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shawn Gomez
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| | - Ilona Jaspers
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
20
|
Newton J, Lima S, Maceyka M, Spiegel S. Revisiting the sphingolipid rheostat: Evolving concepts in cancer therapy. Exp Cell Res 2015; 333:195-200. [PMID: 25770011 DOI: 10.1016/j.yexcr.2015.02.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia 23298, USA
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia 23298, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
21
|
Wright BD, Simpson C, Stashko M, Kireev D, Hull-Ryde EA, Zylka MJ, Janzen WP. Development of a High-Throughput Screening Assay to Identify Inhibitors of the Lipid Kinase PIP5K1C. ACTA ACUST UNITED AC 2014; 20:655-62. [PMID: 25534829 DOI: 10.1177/1087057114564057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2014] [Accepted: 11/23/2014] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) regulate a variety of cellular processes, including signaling through G protein-coupled receptors (GPCRs), endocytosis, exocytosis, and cell migration. These lipid kinases synthesize phosphatidylinositol 4,5-bisphosphate (PIP2) from phosphatidylinositol 4-phosphate [PI(4)P]. Because small-molecule inhibitors of these lipid kinases did not exist, molecular and genetic approaches were predominantly used to study PIP5K1 regulation of these cellular processes. Moreover, standard radioisotope-based lipid kinase assays cannot be easily adapted for high-throughput screening. Here, we report a novel, high-throughput, microfluidic mobility shift assay to identify inhibitors of PIP5K1C. This assay uses fluorescently labeled phosphatidylinositol 4-phosphate as the substrate and recombinant human PIP5K1C. Our assay exhibited high reproducibility, had a calculated adenosine triphosphate Michaelis constant (Km) of 15 µM, performed with z' values >0.7, and was used to screen a kinase-focused library of ~4700 compounds. From this screen, we identified several potent inhibitors of PIP5K1C, including UNC3230, a compound that we recently found can reduce nociceptive sensitization in animal models of chronic pain. This novel assay will allow continued drug discovery efforts for PIP5K1C and can be adapted easily to screen additional lipid kinases.
Collapse
Affiliation(s)
- Brittany D Wright
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA National Center for Advancing Translational Science, Rockville, MD 20850
| | - Catherine Simpson
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Stashko
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Hull-Ryde
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Zylka
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William P Janzen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|