1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Dixon ED, Claudel T, Nardo AD, Riva A, Fuchs C, Mlitz V, Busslinger G, Schnarnagl H, Stojakovic T, Senéca J, Hinteregger H, Grabner GF, Kratky D, Verkade H, Zimmermann R, Haemmerle G, Trauner M. Inhibition of ATGL alleviates MASH via impaired PPARα signalling that favours hydrophilic bile acid composition in mice. J Hepatol 2024:S0168-8278(24)02577-7. [PMID: 39357546 DOI: 10.1016/j.jhep.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIMS Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice. METHODS Streptozotocin-injected male mice were fed an HFD to induce MASH. Mice receiving the ATGL inhibitor, Atglistatin (ATGLi), were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated its benefits on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model. RESULTS ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic TAG-species containing PUFAs like linoleic acids as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signaling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors. CONCLUSIONS Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BAs, interfering with dietary lipid absorption, and improving metabolic disturbances. The validation with NG-497 opens a new therapeutic perspective for MASLD. IMPACT AND IMPLICATIONS The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a crucial public health concern. Since adherence to behavioural interventions is limited, pharmacological strategies are necessary, as highlighted by the recent FDA approval of resmetirom. However, since our current mechanistic understanding and pathophysiology-oriented therapeutic options for MASLD are still limited, novel mechanistic insights are urgently needed. Our present work uncovers that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis using Atglistatin (ATGLi), improves metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and associated key features of metabolic dysfunction in a mouse model of MASH and MCD-induced liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings open a new avenue for MASLD treatment development by inhibiting human ATGL activity.
Collapse
Affiliation(s)
- Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna
| | - Alexander Daniel Nardo
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna
| | - Alessandra Riva
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Claudia Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna
| | - Georg Busslinger
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna; Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hubert Schnarnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Tatjana Stojakovic
- Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Austria
| | - Joana Senéca
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Helga Hinteregger
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Gernot F Grabner
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Henkjan Verkade
- Department of Paediatrics, University Medical Centre Groningen, Groningen, Netherlands
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna.
| |
Collapse
|
3
|
Hou H, Ji Y, Pan Y, Wang L, Liang Y. Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124980. [PMID: 39293651 DOI: 10.1016/j.envpol.2024.124980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The characteristic of semi-volatility enables persistent organic pollutants (POPs) almost ubiquitous in the environment. There is increasing concern about the potential risks of exposure to POPs due to their lipophilicity and readily bioaccumulation. Lipid droplets (LDs) are highly dynamic lipid storage organelles, alterations of intracellular LDs play a vital role in the progression of many prevalent metabolic diseases, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). This article systematically reviewed the biological processes involved in LDs metabolism, the role of LDs proteins and LDs in metabolic diseases, and summarized updating researches on involvement of POPs in the progression of LDs-related metabolic diseases and potential mechanisms. POPs might change the physiological functions of LDs, also interfere the processes of adipogenesis and lipolysis by altering LDs synthesis, decomposition and function. However, further studies are still needed to explore the underlying mechanism of POPs-induced metabolic diseases, which can offer scientific evidences for metabolic disease prevention.
Collapse
Affiliation(s)
- Huixin Hou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yaoting Ji
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
4
|
Gao J, Wang Y, Meng X, Wang X, Han F, Xing H, Lv G, Zhang L, Wu S, Jiang X, Yao Z, Fang X, Zhang J, Bu W. A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat Commun 2024; 15:8036. [PMID: 39271701 PMCID: PMC11399433 DOI: 10.1038/s41467-024-52308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xianfu Meng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, P. R. China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hao Xing
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Li Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 2214023, P. R. China.
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
5
|
Xing Z, Zhang Y, Kang H, Dong H, Zhu D, Liu Y, Sun C, Guo P, Hu B, Tan A. ABHD5 regulates midgut-specific lipid homeostasis in Bombyx mori. INSECT SCIENCE 2024. [PMID: 38841829 DOI: 10.1111/1744-7917.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.
Collapse
Affiliation(s)
- Zhiping Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yuting Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hongxia Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Dalin Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yutong Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Chenxin Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Peilin Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
6
|
Varadharajan V, Ramachandiran I, Massey WJ, Jain R, Banerjee R, Horak AJ, McMullen MR, Huang E, Bellar A, Lorkowski SW, Gulshan K, Helsley RN, James I, Pathak V, Dasarathy J, Welch N, Dasarathy S, Streem D, Reizes O, Allende DS, Smith JD, Simcox J, Nagy LE, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7) shapes lysosomal lipid homeostasis and function to control alcohol-associated liver injury. eLife 2024; 12:RP92243. [PMID: 38648183 PMCID: PMC11034944 DOI: 10.7554/elife.92243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iyappan Ramachandiran
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony J Horak
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily Huang
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Shuhui W Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Kailash Gulshan
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State UniversityClevelandUnited States
| | - Robert N Helsley
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Department of Pharmacology & Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky College of MedicineLexingtonUnited States
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Vai Pathak
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jaividhya Dasarathy
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve UniversityClevelandUnited States
| | - Nicole Welch
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - David Streem
- Lutheran Hospital, Cleveland ClinicClevelandUnited States
| | - Ofer Reizes
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
7
|
Fang Z, Shen G, Wang Y, Hong F, Tang X, Zeng Y, Zhang T, Liu H, Li Y, Wang J, Zhang J, Gao A, Qi W, Yang X, Zhou T, Gao G. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct Target Ther 2024; 9:66. [PMID: 38472195 PMCID: PMC10933339 DOI: 10.1038/s41392-024-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3β pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.
Collapse
Affiliation(s)
- Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Shen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yina Wang
- Department of VIP Medical Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuyan Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiumei Tang
- Physical Examination Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, 510080, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanmei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinhong Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anton Gao
- Department of Health Sciences, College of Health Solutions, Arizona State University, Tempe, USA
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Diabetology, Guangzhou, 510080, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Li P, Mei C, Raza SHA, Cheng G, Ning Y, Zhang L, Zan L. Arginine (315) is required for the PLIN2-CGI-58 interface and plays a functional role in regulating nascent LDs formation in bovine adipocytes. Genomics 2024; 116:110817. [PMID: 38431031 DOI: 10.1016/j.ygeno.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, Xi'an, Shaanxi, 710032, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Cheng
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Yen IW, Lin SY, Lin MW, Lee CN, Kuo CH, Chen SC, Tai YY, Kuo CH, Kuo HC, Lin HH, Juan HC, Lin CH, Fan KC, Wang CY, Li HY. The association between plasma angiopoietin-like protein 4, glucose and lipid metabolism during pregnancy, placental function, and risk of delivering large-for-gestational-age neonates. Clin Chim Acta 2024; 554:117775. [PMID: 38220135 DOI: 10.1016/j.cca.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Large-for-gestational-age (LGA) neonates have increased risk of adverse pregnancy outcomes and adult metabolic diseases. We aimed to investigate the relationship between plasma angiopoietin-like protein 4 (ANGPTL4), a protein involved in lipid and glucose metabolism during pregnancy, placental function, growth factors, and the risk of LGA. METHODS We conducted a prospective cohort study and recruited women with singleton pregnancies at the National Taiwan University Hospital between 2013 and 2018. First trimester maternal plasma ANGPTL4 concentrations were measured. RESULTS Among 353 pregnant women recruited, the LGA group had higher first trimester plasma ANGPTL4 concentrations than the appropriate-for-gestational-age group. Plasma ANGPTL4 was associated with hemoglobin A1c, post-load plasma glucose, plasma triglyceride, plasma free fatty acid concentrations, plasma growth hormone variant (GH-V), and birth weight, but was not associated with cord blood growth factors. After adjusting for age, body mass index, hemoglobin A1c, and plasma triglyceride concentrations, plasma ANGPTL4 concentrations were significantly associated with LGA risk, and its predictive performance, as measured by the area under the receiver operating characteristic curve, outperformed traditional risk factors for LGA. CONCLUSIONS Plasma ANGPTL4 is associated with glucose and lipid metabolism during pregnancy, plasma GH-V, and birth weight, and is an early biomarker for predicting the risk of LGA.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
10
|
Ferdaoussi M. Metabolic and Molecular Amplification of Insulin Secretion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:117-139. [PMID: 39283484 DOI: 10.1007/978-3-031-62232-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Faculty Saint-Jean and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Chen M, Lin Y, Dang Y, Xiao Y, Zhang F, Sun G, Jiang X, Zhang L, Du J, Duan S, Zhang X, Qin Z, Yang J, Liu K, Wu B. Reprogramming of rhythmic liver metabolism by intestinal clock. J Hepatol 2023; 79:741-757. [PMID: 37230230 DOI: 10.1016/j.jhep.2023.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Temporal oscillations in intestinal nutrient processing and absorption are coordinated by the local clock, which leads to the hypothesis that the intestinal clock has major impacts on shaping peripheral rhythms via diurnal nutritional signals. Here, we investigate the role of the intestinal clock in controlling liver rhythmicity and metabolism. METHODS Transcriptomic analysis, metabolomics, metabolic assays, histology, quantitative (q)PCR, and immunoblotting were performed with Bmal1-intestine-specific knockout (iKO), Rev-erba-iKO, and control mice. RESULTS Bmal1 iKO caused large-scale reprogramming of the rhythmic transcriptome of mouse liver with a limited effect on its clock. In the absence of intestinal Bmal1, the liver clock was resistant to entrainment by inverted feeding and a high-fat diet. Importantly, Bmal1 iKO remodelled diurnal hepatic metabolism by shifting to gluconeogenesis from lipogenesis during the dark phase, leading to elevated glucose production (hyperglycaemia) and insulin insensitivity. Conversely, Rev-erba iKO caused a diversion to lipogenesis from gluconeogenesis during the light phase, resulting in enhanced lipogenesis and an increased susceptibility to alcohol-related liver injury. These temporal diversions were attributed to disruption of hepatic SREBP-1c rhythmicity, which was maintained via gut-derived polyunsaturated fatty acids produced by intestinal FADS1/2 under the control of a local clock. CONCLUSIONS Our findings establish a pivotal role for the intestinal clock in dictating liver rhythmicity and diurnal metabolism, and suggest targeting intestinal rhythms as a new avenue for improving metabolic health. IMPACT AND IMPLICATIONS Our findings establish the centrality of the intestinal clock among peripheral tissue clocks, and associate liver-related pathologies with its malfunction. Clock modifiers in the intestine are shown to modulate liver metabolism with improved metabolic parameters. Such knowledge will help clinicians improve the diagnosis and treatment of metabolic diseases by incorporating intestinal circadian factors.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongkang Dang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Jiang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Du
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuyi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Massey WJ, Varadharajan V, Banerjee R, Brown AL, Horak AJ, Hohe RC, Jung BM, Qiu Y, Chan ER, Pan C, Zhang R, Allende DS, Willard B, Cheng F, Lusis AJ, Brown JM. MBOAT7-driven lysophosphatidylinositol acylation in adipocytes contributes to systemic glucose homeostasis. J Lipid Res 2023; 64:100349. [PMID: 36806709 PMCID: PMC10041558 DOI: 10.1016/j.jlr.2023.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023] Open
Abstract
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.
Collapse
Affiliation(s)
- William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony J Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel C Hohe
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bryan M Jung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
13
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
14
|
Bao X, Ma X, Huang R, Chen J, Xin H, Zhou M, Li L, Tong S, Zhang Q, Shui G, Deng F, Yu L, Li MD, Zhang Z. Knockdown of hepatocyte Perilipin-3 mitigates hepatic steatosis and steatohepatitis caused by hepatocyte CGI-58 deletion in mice. J Mol Cell Biol 2022; 14:6701373. [PMID: 36107452 PMCID: PMC9929509 DOI: 10.1093/jmcb/mjac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β hydrolase domain containing 5, is the co-activator of adipose triglyceride lipase that hydrolyzes triglycerides stored in the cytosolic lipid droplets. Mutations in CGI-58 gene cause Chanarin-Dorfman syndrome (CDS), an autosomal recessive neutral lipid storage disease with ichthyosis. The liver pathology of CDS manifests as steatosis and steatohepatitis, which currently has no effective treatments. Perilipin-3 (Plin3) is a member of the Perilipin-ADRP-TIP47 protein family that is essential for lipid droplet biogenesis. The objective of this study was to test a hypothesis that deletion of a major lipid droplet protein alleviates fatty liver pathogenesis caused by CGI-58 deficiency in hepatocytes. Adult CGI-58-floxed mice were injected with adeno-associated vectors simultaneously expressing the Cre recombinase and microRNA against Plin3 under the control of a hepatocyte-specific promoter, followed by high-fat diet feeding for 6 weeks. Liver and blood samples were then collected from these animals for histological and biochemical analysis. Plin3 knockdown in hepatocytes prevented steatosis, steatohepatitis, and necroptosis caused by hepatocyte CGI-58 deficiency. Our work is the first to show that inhibiting Plin3 in hepatocytes is sufficient to mitigate hepatocyte CGI-58 deficiency-induced hepatic steatosis and steatohepatitis in mice.
Collapse
Affiliation(s)
- Xinyu Bao
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiaogen Ma
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China,Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shifei Tong
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qian Zhang
- Department of General Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China,Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | | |
Collapse
|
15
|
Zhang H, Gao X, Chen P, Wang H. Protective Effects of Tiaoganquzhi Decoction in Treating inflammatory Injury of Nonalcoholic Fatty liver Disease by Promoting CGI-58 and Inhibiting Expression of NLRP3 Inflammasome. Front Pharmacol 2022; 13:851267. [PMID: 35586044 PMCID: PMC9108379 DOI: 10.3389/fphar.2022.851267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Tiaoganquzhi Decoction (TGQZD) is a traditional Chinese herbal formulation demonstrated to be a clinically effective treatment for nonalcoholic fatty liver disease (NAFLD), although details concerning its clinical mechanism are poor. This study aimed to explore the mechanism of TGQZD on improvement of inflammatory damage and dyslipidemia caused by NAFLD through the CGI-58/ROS/NLRP3 inflammasome pathway. In our research, the in vivo protective effects of TGQZD on HFD-induced liver injury in rats and in vitro using lipopolysaccharide (LPS)+palmitate (PA)-stimulated HepG-2 cells model. Histological changes were evaluated by hematoxylin-eosin and Oil Red O staining. Inflammatory cytokines and protein expression were analyzed by ELISA, Real time PCR and western blotting. Liver function, blood lipids, free fatty acids (FFA), and reactive oxygen species (ROS) were determined by biochemical detection. Our results indicated that TGQZD exhibited anti-inflammatory activity, reduced the severity of NAFLD and ameliorated the pathological changes. Further, TGQZD improved liver function and lipid metabolism in NAFLD rats. TGQZD lowered serum aspartate aminotransferase, alanine aminotransferase, triglyceride, and total cholesterol levels. TGQZD suppressed the formulation of FFA and ROS. It also reduced the expression and release of the inflammatory cytokine interleukin-1β by promoting CGI-58 expression and inhibiting the expression of FFA, TNF-α, and the NLRP3 inflammasome induced by ROS. TGQZD exhibited anti-inflammatory effects via the CGI-58, ROS and NLRP3 inflammasome pathway in vivo and in vitro, respectively. Our findings demonstrated that TGQZD is a useful and effective therapeutic agent for treating NAFLD via promotion of CGI-58 to inhibit the expression of ROS-induced NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- *Correspondence: Huicun Zhang,
| | - Xiang Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | | | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
16
|
Schugar RC, Gliniak CM, Osborn LJ, Massey W, Sangwan N, Horak A, Banerjee R, Orabi D, Helsley RN, Brown AL, Burrows A, Finney C, Fung KK, Allen FM, Ferguson D, Gromovsky AD, Neumann C, Cook K, McMillan A, Buffa JA, Anderson JT, Mehrabian M, Goudarzi M, Willard B, Mak TD, Armstrong AR, Swanson G, Keshavarzian A, Garcia-Garcia JC, Wang Z, Lusis AJ, Hazen SL, Brown JM. Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. eLife 2022; 11:e63998. [PMID: 35072627 PMCID: PMC8813054 DOI: 10.7554/elife.63998] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Christy M Gliniak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amy Burrows
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chelsea Finney
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kevin K Fung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Frederick M Allen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniel Ferguson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony D Gromovsky
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chase Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kendall Cook
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amy McMillan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - James T Anderson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Margarete Mehrabian
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Maryam Goudarzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Tytus D Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology (NIST)GaithersburgUnited States
| | - Andrew R Armstrong
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical CenterChicagoUnited States
| | - Garth Swanson
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical CenterChicagoUnited States
| | | | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
17
|
Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J 2022; 46:15-37. [PMID: 34965646 PMCID: PMC8831809 DOI: 10.4093/dmj.2021.0280] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Insulin resistance is the pivotal pathogenic component of many metabolic diseases, including type 2 diabetes mellitus, and is defined as a state of reduced responsiveness of insulin-targeting tissues to physiological levels of insulin. Although the underlying mechanism of insulin resistance is not fully understood, several credible theories have been proposed. In this review, we summarize the functions of insulin in glucose metabolism in typical metabolic tissues and describe the mechanisms proposed to underlie insulin resistance, that is, ectopic lipid accumulation in liver and skeletal muscle, endoplasmic reticulum stress, and inflammation. In addition, we suggest potential therapeutic strategies for addressing insulin resistance.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Division of Molecular Medicine, Gachon University College of Medicine, Incheon, Korea
- Corresponding author: Cheol Soo Choi https://orcid.org/0000-0001-9627-058X Division of Molecular Medicine, Gachon University College of Medicine, 21 Namdongdaero 774beon-gil, Namdong-gu, Incheon 21565, Korea E-mail:
| |
Collapse
|
18
|
Osborn LJ, Orabi D, Goudzari M, Sangwan N, Banerjee R, Brown AL, Kadam A, Gromovsky AD, Linga P, Cresci GAM, Mak TD, Willard BB, Claesen J, Brown JM. A Single Human-Relevant Fast Food Meal Rapidly Reorganizes Metabolomic and Transcriptomic Signatures in a Gut Microbiota-Dependent Manner. IMMUNOMETABOLISM 2021; 3:e210029. [PMID: 34804604 PMCID: PMC8601658 DOI: 10.20900/immunometab20210029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A major contributor to cardiometabolic disease is caloric excess, often a result of consuming low cost, high calorie fast food. Studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that microbial metabolites originating after fast food consumption can elicit acute metabolic responses in the liver. METHODS We gave conventionally raised mice or mice that had their microbiomes depleted with antibiotics a single oral gavage of a liquified fast food meal or liquified control rodent chow meal. After four hours, mice were sacrificed and we used untargeted metabolomics of portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites and their acute effects on liver function. RESULTS Several candidate microbial metabolites were enriched in portal blood upon fast food feeding, and were essentially absent in antibiotic-treated mice. Strikingly, at four hours post-gavage, fast food consumption resulted in rapid reorganization of the gut microbial community and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on an intact microbial community and not observed in antibiotic ablated animals. CONCLUSIONS Collectively, these data suggest a single fast food meal is sufficient to reshape the gut microbial community in mice, yielding a unique signature of food-derived microbial metabolites. Future studies are in progress to determine the contribution of select metabolites to cardiometabolic disease progression and the translational relevance of these animal studies.
Collapse
Affiliation(s)
- Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maryam Goudzari
- Mass Spectrometry Core, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L. Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Anagha Kadam
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D. Gromovsky
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Pranavi Linga
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gail A. M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Belinda B. Willard
- Mass Spectrometry Core, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
20
|
Role of Insulin Resistance in MAFLD. Int J Mol Sci 2021; 22:ijms22084156. [PMID: 33923817 PMCID: PMC8072900 DOI: 10.3390/ijms22084156] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies have reported that metabolic dysfunction is closely involved in the complex mechanism underlying the development of non-alcoholic fatty liver disease (NAFLD), which has prompted a movement to consider renaming NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). Metabolic dysfunction in this context encompasses obesity, type 2 diabetes mellitus, hypertension, dyslipidemia, and metabolic syndrome, with insulin resistance as the common underlying pathophysiology. Imbalance between energy intake and expenditure results in insulin resistance in various tissues and alteration of the gut microbiota, resulting in fat accumulation in the liver. The role of genetics has also been revealed in hepatic fat accumulation and fibrosis. In the process of fat accumulation in the liver, intracellular damage as well as hepatic insulin resistance further potentiates inflammation, fibrosis, and carcinogenesis. Increased lipogenic substrate supply from other tissues, hepatic zonation of Irs1, and other factors, including ER stress, play crucial roles in increased hepatic de novo lipogenesis in MAFLD with hepatic insulin resistance. Herein, we provide an overview of the factors contributing to and the role of systemic and local insulin resistance in the development and progression of MAFLD.
Collapse
|
21
|
Abulizi A, Vatner DF, Ye Z, Wang Y, Camporez JP, Zhang D, Kahn M, Lyu K, Sirwi A, Cline GW, Hussain MM, Aspichueta P, Samuel VT, Shulman GI. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice. J Lipid Res 2020; 61:1565-1576. [PMID: 32907986 PMCID: PMC7707176 DOI: 10.1194/jlr.ra119000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.
Collapse
Affiliation(s)
- Abudukadier Abulizi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhang Ye
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yongliang Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joao-Paulo Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alaa Sirwi
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Mineola, NY, USA; Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Research Institute, Barakaldo, Spain
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Lyu K, Zhang Y, Zhang D, Kahn M, Ter Horst KW, Rodrigues MRS, Gaspar RC, Hirabara SM, Luukkonen PK, Lee S, Bhanot S, Rinehart J, Blume N, Rasch MG, Serlie MJ, Bogan JS, Cline GW, Samuel VT, Shulman GI. A Membrane-Bound Diacylglycerol Species Induces PKCϵ-Mediated Hepatic Insulin Resistance. Cell Metab 2020; 32:654-664.e5. [PMID: 32882164 PMCID: PMC7544641 DOI: 10.1016/j.cmet.2020.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance (HIR); however, the key lipid species and molecular mechanisms linking these conditions are widely debated. We developed a subcellular fractionation method to quantify diacylglycerol (DAG) stereoisomers and ceramides in the endoplasmic reticulum (ER), mitochondria, plasma membrane (PM), lipid droplets, and cytosol. Acute knockdown (KD) of diacylglycerol acyltransferase-2 in liver induced HIR in rats. This was due to PM sn-1,2-DAG accumulation, which promoted PKCϵ activation and insulin receptor kinase (IRK)-T1160 phosphorylation, resulting in decreased IRK-Y1162 phosphorylation. Liver PM sn-1,2-DAG content and IRK-T1160 phosphorylation were also higher in humans with HIR. In rats, liver-specific PKCϵ KD ameliorated high-fat diet-induced HIR by lowering IRK-T1160 phosphorylation, while liver-specific overexpression of constitutively active PKCϵ-induced HIR by promoting IRK-T1160 phosphorylation. These data identify PM sn-1,2-DAGs as the key pool of lipids that activate PKCϵ and that hepatic PKCϵ is both necessary and sufficient in mediating HIR.
Collapse
Affiliation(s)
- Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ye Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology & Metabolism, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism Amsterdam University Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Marcos R S Rodrigues
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; School of Medicine, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, Ponta Grossa, PR 84030-900, Brazil
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratory of Molecular Biology of Exercise, School of Applied Science, University of Campinas, Limeira, SP 13484-350, Brazil
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Postgraduate Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, Sao Paulo, SP 01506-000, Brazil
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seohyuk Lee
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Niels Blume
- CV Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark
| | | | - Mireille J Serlie
- Department of Endocrinology and Metabolism Amsterdam University Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Jonathan S Bogan
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Acierno C, Caturano A, Pafundi PC, Nevola R, Adinolfi LE, Sasso FC. Nonalcoholic fatty liver disease and type 2 diabetes: pathophysiological mechanisms shared between the two faces of the same coin. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiological mechanisms underlying the close relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are multiple, complex and only partially known. The purpose of this paper was to review the current knowledge of these mechanisms in a unified manner. Subjects with NAFLD and T2DM have established insulin resistance (IR), which exacerbates the two comorbidities. IR worsens NAFLD by increasing the accumulation of free fatty acids (FFAs) in the liver. This occurs due to an increase in the influx of FFAs from peripheral adipose tissue by the activation of hormone-sensitive lipase. In addition, there is de novo increased lipogenesis, a transcription factor, the sterols regulatory element-binding transcription factor 1c (SREBP-1c), which activates the expression of several genes strongly promotes lipogenesis by the liver and facilitate storage of triglycerides. Lipids accumulation in the liver induces a chronic stress in the endoplasmic reticulum of the hepatocytes. Genome-wide association studies have identified genetic variants associated with NAFLD severity, but unrelated to IR. In particular, the alteration of patatin-like phospholipase domain-containing protein 3 contributes to the susceptibility to NAFLD. Furthermore, the lipotoxicity of ceramides and diacylglycerol, well known in T2DM, triggers a chronic inflammatory process favoring the progression from hepatic steatosis to steatohepatitis. Reactive oxygen species produced by mitochondrial dysfunction trigger both liver inflammation and beta-cells damage, promoting the progression of both NAFLD and T2DM. The close association between NAFLD and T2DM is bidirectional, as T2DM may trigger both NAFLD onset and its progression, but NAFLD itself may contribute to the development of IR and T2DM. Future studies on the mechanisms will have to deepen the knowledge of the interaction between the two pathologies and should allow the identification of new therapeutic targets for the treatment of NAFLD, currently substantially absent.
Collapse
Affiliation(s)
- Carlo Acierno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Ital
| |
Collapse
|
24
|
Korbelius M, Vujic N, Sachdev V, Obrowsky S, Rainer S, Gottschalk B, Graier WF, Kratky D. ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes. Cell Rep 2020; 28:1923-1934.e4. [PMID: 31412256 PMCID: PMC6713565 DOI: 10.1016/j.celrep.2019.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
As circulating lipid levels are balanced by the rate of lipoprotein release and clearance from the plasma, lipid absorption in the small intestine critically contributes to the maintenance of whole-body lipid homeostasis. Within enterocytes, excessive triglycerides are transiently stored as cytosolic lipid droplets (cLDs), and their mobilization sustains lipid supply during interprandial periods. Using mice lacking adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) exclusively in the intestine (intestine-specific double KO [iDKO]), we show that ATGL/CGI-58 are not involved in providing substrates for chylomicron synthesis. Massive intestinal cLD accumulation in iDKO mice independent of dietary lipids together with inefficient lipid incorporation into cLDs in the early absorption phase demonstrate the existence of a secretion/re-uptake cycle, corroborating the availability of two diverse cLD pools. This study identified ATGL/CGI-58 as critical players in the catabolism of basolaterally (blood) derived lipids and highlights the necessity to modify the current model of intestinal lipid metabolism.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Sascha Obrowsky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Styria, Austria; BioTechMed-Graz, 8010 Graz, Styria, Austria.
| |
Collapse
|
25
|
Tardelli M, Bruschi FV, Trauner M. The Role of Metabolic Lipases in the Pathogenesis and Management of Liver Disease. Hepatology 2020; 72:1117-1126. [PMID: 32236963 PMCID: PMC7590081 DOI: 10.1002/hep.31250] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Intracellular lipolysis is an enzymatic pathway responsible for the catabolism of triglycerides (TGs) that is complemented by lipophagy as the autophagic breakdown of lipid droplets. The hydrolytic cleavage of TGs generates free fatty acids (FFAs), which can serve as energy substrates, precursors for lipid synthesis, and mediators in cell signaling. Despite the fundamental and physiological importance of FFAs, an oversupply can trigger lipotoxicity with impaired membrane function, endoplasmic reticulum stress, mitochondrial dysfunction, cell death, and inflammation. Conversely, impaired release of FFAs and other lipid mediators can also disrupt key cellular signaling functions that regulate metabolism and inflammatory processes. This review will focus on specific functions of intracellular lipases in lipid partitioning, covering basic and translational findings in the context of liver disease. In addition, the clinical relevance of genetic mutations in human disease and potential therapeutic opportunities will be discussed.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria,Division of Gastroenterology and HepatologyJoan and Sanford I. Weill Cornell Department of MedicineWeill Cornell Medical CollegeNew YorkNY
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Edmunds LR, Huckestein BR, Kahn M, Zhang D, Chu Y, Zhang Y, Wendell SG, Shulman GI, Jurczak MJ. Hepatic insulin sensitivity is improved in high-fat diet-fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiol Rep 2020; 7:e14281. [PMID: 31724300 PMCID: PMC6854109 DOI: 10.14814/phy2.14281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Park2 is an E3 ubiquitin ligase known for its role in mitochondrial quality control via the mitophagy pathway. Park2 KO mice are protected from diet‐induced obesity and hepatic insulin sensitivity is improved in high‐fat diet (HFD)‐fed Park2 KO mice even under body weight‐matched conditions. In order to better understand the cellular mechanism by which Park2 KO mice are protected from diet‐induced hepatic insulin resistance, we determined changes in multiple pathways commonly associated with the pathogenesis of insulin resistance, namely levels of bioactive lipid species, activation of the endoplasmic reticulum (ER) stress response and changes in cytokine levels and signaling. We report for the first time that whole‐body insulin sensitivity is unchanged in regular chow (RC)‐fed Park2 KO mice, and that liver diacylglycerol levels are reduced and very‐long‐chain ceramides are increased in Park2 KO mice fed HFD for 1 week. Hepatic transcriptional markers of the ER stress response were reduced and plasma tumor necrosis factor‐α (TNFα), interleukin‐6 and −10 (IL6, IL10) were significantly increased in HFD‐fed Park2 KO mice; however, there were no detectable differences in hepatic inflammatory signaling pathways between groups. Interestingly, hepatic adenylate charge was reduced in HFD‐fed Park2 KO liver and was associated increased activation of AMPK. These data suggest that negative energy balance that contributed to protection from obesity during chronic HFD manifested at the level of the hepatocyte during short‐term HFD feeding and contributed to the improved hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Lia R Edmunds
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brydie R Huckestein
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yanxia Chu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Kintscher U, Foryst-Ludwig A, Haemmerle G, Zechner R. The Role of Adipose Triglyceride Lipase and Cytosolic Lipolysis in Cardiac Function and Heart Failure. CELL REPORTS MEDICINE 2020; 1:100001. [PMID: 33205054 PMCID: PMC7659492 DOI: 10.1016/j.xcrm.2020.100001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart failure is one of the leading causes of death worldwide. New therapeutic concepts are urgently required to lower the burden of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), the two major forms of heart failure. Lipolytic processes are induced during the development of heart failure and occur in adipose tissue and multiple organs, including the heart. Increasing evidence suggests that cellular lipolysis, in particular, adipose triglyceride lipase (ATGL) activity, has an important function in cardiac (patho)physiology. This review summarizes the crucial role of cellular lipolysis for normal cardiac function and for the development of HFrEF and HFpEF. We discuss the most relevant pre-clinical studies and elaborate on the cardiac consequences of non-myocardial and myocardial lipolysis modulation. Finally, we critically analyze the therapeutic importance of pharmacological ATGL inhibition as a potential treatment option for HFrEF and/or HFpEF in the future.
Collapse
Affiliation(s)
- Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Corresponding author
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Einstein BIH Visiting Fellow, Berlin Institute of Health, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Karczewska-Kupczewska M, Nikołajuk A, Majewski R, Filarski R, Stefanowicz M, Matulewicz N, Strączkowski M. Changes in adipose tissue lipolysis gene expression and insulin sensitivity after weight loss. Endocr Connect 2020; 9:90-100. [PMID: 31905163 PMCID: PMC6993275 DOI: 10.1530/ec-19-0507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Insulin resistance is a major pathophysiological link between obesity and its metabolic complications. Weight loss (WL) is an effective tool to prevent obesity-related diseases; however, the mechanisms of an improvement in insulin sensitivity (IS) after weight-reducing interventions are not completely understood. The aim of the present study was to analyze the relationships between IS and adipose tissue (AT) expression of the genes involved in the regulation of lipolysis in obese subjects after WL. METHODS Fifty-two obese subjects underwent weight-reducing dietary intervention program. The control group comprised 20 normal-weight subjects, examined at baseline only. Hyperinsulinemic-euglycemic clamp and s.c. AT biopsy with subsequent gene expression analysis were performed before and after the program. RESULTS AT expression of genes encoding lipases (PNPLA2, LIPE and MGLL) and lipid-droplet proteins enhancing (ABHD5) and inhibiting lipolysis (PLIN1 and CIDEA) were decreased in obese individuals in comparison with normal-weight individuals. The group of 38 obese participants completed dietary intervention program and clamp studies, which resulted in a significant WL and an improvement in mean IS. However, in nine subjects from this group IS did not improve in response to WL. AT expression of PNPLA2, LIPE and PLIN1 increased only in the group without IS improvement. CONCLUSIONS Excessive lipolysis may prevent an improvement in IS during WL. The change in AT PNPLA2 and LIPE expression was a negative predictor of the change in IS after WL.
Collapse
Affiliation(s)
- Monika Karczewska-Kupczewska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Białystok, Poland
- Correspondence should be addressed to M Karczewska-Kupczewska:
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Radosław Majewski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Remigiusz Filarski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
29
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
31
|
Salarian M, Turaga RC, Xue S, Nezafati M, Hekmatyar K, Qiao J, Zhang Y, Tan S, Ibhagui OY, Hai Y, Li J, Mukkavilli R, Sharma M, Mittal P, Min X, Keilholz S, Yu L, Qin G, Farris AB, Liu ZR, Yang JJ. Early detection and staging of chronic liver diseases with a protein MRI contrast agent. Nat Commun 2019; 10:4777. [PMID: 31664017 PMCID: PMC6820552 DOI: 10.1038/s41467-019-11984-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Early diagnosis and noninvasive detection of liver fibrosis and its heterogeneity remain as major unmet medical needs for stopping further disease progression toward severe clinical consequences. Here we report a collagen type I targeting protein-based contrast agent (ProCA32.collagen1) with strong collagen I affinity. ProCA32.collagen1 possesses high relaxivities per particle (r1 and r2) at both 1.4 and 7.0 T, which enables the robust detection of early-stage (Ishak stage 3 of 6) liver fibrosis and nonalcoholic steatohepatitis (Ishak stage 1 of 6 or 1 A Mild) in animal models via dual contrast modes. ProCA32.collagen1 also demonstrates vasculature changes associated with intrahepatic angiogenesis and portal hypertension during late-stage fibrosis, and heterogeneity via serial molecular imaging. ProCA32.collagen1 mitigates metal toxicity due to lower dosage and strong resistance to transmetallation and unprecedented metal selectivity for Gd3+ over physiological metal ions with strong translational potential in facilitating effective treatment to halt further chronic liver disease progression. Non-invasive early diagnosis of liver fibrosis is important to prevent disease progression and direct treatment strategies. Here the authors developed a collagen-targeting contrast agent for the detection of early stage fibrosis and non-alcoholic steatohepatitis by magnetic resonance and tested it in animal models.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ravi Chakra Turaga
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Shenghui Xue
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Maysam Nezafati
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Khan Hekmatyar
- Bioimaging Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Shanshan Tan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Yan Hai
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jibiao Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Rao Mukkavilli
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Pardeep Mittal
- Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Xiaoyi Min
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Shella Keilholz
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Liqing Yu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Gengshen Qin
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Alton Brad Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
32
|
Helsley RN, Varadharajan V, Brown AL, Gromovsky AD, Schugar RC, Ramachandiran I, Fung K, Kabbany MN, Banerjee R, Neumann CK, Finney C, Pathak P, Orabi D, Osborn LJ, Massey W, Zhang R, Kadam A, Sansbury BE, Pan C, Sacks J, Lee RG, Crooke RM, Graham MJ, Lemieux ME, Gogonea V, Kirwan JP, Allende DS, Civelek M, Fox PL, Rudel LL, Lusis AJ, Spite M, Brown JM. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. eLife 2019; 8:e49882. [PMID: 31621579 PMCID: PMC6850774 DOI: 10.7554/elife.49882] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies have identified a genetic variant rs641738 near two genes encoding membrane bound O-acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4) that associate with increased risk of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcohol-related cirrhosis, and liver fibrosis in those infected with viral hepatitis (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017). Based on hepatic expression quantitative trait loci analysis, it has been suggested that MBOAT7 loss of function promotes liver disease progression (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017), but this has never been formally tested. Here we show that Mboat7 loss, but not Tmc4, in mice is sufficient to promote the progression of NAFLD in the setting of high fat diet. Mboat7 loss of function is associated with accumulation of its substrate lysophosphatidylinositol (LPI) lipids, and direct administration of LPI promotes hepatic inflammatory and fibrotic transcriptional changes in an Mboat7-dependent manner. These studies reveal a novel role for MBOAT7-driven acylation of LPI lipids in suppressing the progression of NAFLD.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiUnited States
| | | | - Amanda L Brown
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Anthony D Gromovsky
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Rebecca C Schugar
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Kevin Fung
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | | | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Chase K Neumann
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Chelsea Finney
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Preeti Pathak
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Danny Orabi
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - William Massey
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Renliang Zhang
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Anagha Kadam
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Brian E Sansbury
- Center for Experimental Therapeutics & Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Calvin Pan
- Department of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of MicrobiologyUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jessica Sacks
- Department of PathobiologyCleveland ClinicClevelandUnited States
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug DiscoveryIonis Pharmaceuticals, IncCarlsbadUnited States
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug DiscoveryIonis Pharmaceuticals, IncCarlsbadUnited States
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug DiscoveryIonis Pharmaceuticals, IncCarlsbadUnited States
| | | | - Valentin Gogonea
- Department of ChemistryCleveland State UniversityClevelandUnited States
| | - John P Kirwan
- Department of PathobiologyCleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Department of Anatomical PathologyCleveland ClinicClevelandUnited States
| | - Mete Civelek
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUnited States
| | - Paul L Fox
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| | - Lawrence L Rudel
- Department of Pathology, Section on Lipid SciencesWake Forest University School of MedicineWinston-SalemUnited States
| | - Aldons J Lusis
- Department of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of MicrobiologyUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Matthew Spite
- Center for Experimental Therapeutics & Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - J Mark Brown
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandUnited States
| |
Collapse
|
33
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
34
|
Hehlert P, Hofferek V, Heier C, Eichmann TO, Riedel D, Rosenberg J, Takaćs A, Nagy HM, Oberer M, Zimmermann R, Kühnlein RP. The α/β-hydrolase domain-containing 4- and 5-related phospholipase Pummelig controls energy storage in Drosophila. J Lipid Res 2019; 60:1365-1378. [PMID: 31164391 DOI: 10.1194/jlr.m092817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Triglycerides (TGs) are the main energy storage form that accommodates changing organismal energy demands. In Drosophila melanogaster, the TG lipase Brummer is centrally important for body fat mobilization. Its gene brummer (bmm) encodes the ortholog of mammalian adipose TG lipase, which becomes activated by α/β-hydrolase domain-containing 5 (ABHD5/CGI-58), one member of the paralogous gene pair, α/β-hydrolase domain-containing 4 (ABHD4) and ABHD5 In Drosophila, the pummelig (puml) gene encodes the single sequence-related protein to mammalian ABHD4/ABHD5 with unknown function. We generated puml deletion mutant flies, that were short-lived as a result of lipid metabolism changes, stored excess body fat at the expense of glycogen, and exhibited ectopic fat storage with altered TG FA profile in the fly kidneys, called Malpighian tubules. TG accumulation in puml mutants was not associated with increased food intake but with elevated lipogenesis; starvation-induced lipid mobilization remained functional. Despite its structural similarity to mammalian ABHD5, Puml did not stimulate TG lipase activity of Bmm in vitro. Rather, Puml acted as a phospholipase that localized on lipid droplets, mitochondria, and peroxisomes. Together, these results show that the ABHD4/5 family member Puml is a versatile phospholipase that regulates Drosophila body fat storage and energy metabolism.
Collapse
Affiliation(s)
- Philip Hehlert
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Vinzenz Hofferek
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Potsdam, Germany
| | - Christoph Heier
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Dietmar Riedel
- Department of Structural Dynamics, Electron Microscopy, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Jonathan Rosenberg
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Anna Takaćs
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Harald M Nagy
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| | - Ronald P Kühnlein
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany .,Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| |
Collapse
|
35
|
Haemmerle G, Lass A. Genetically modified mouse models to study hepatic neutral lipid mobilization. Biochim Biophys Acta Mol Basis Dis 2019; 1865:879-894. [PMID: 29883718 PMCID: PMC6887554 DOI: 10.1016/j.bbadis.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Excessive accumulation of triacylglycerol is the common denominator of a wide range of clinical pathologies of liver diseases, termed non-alcoholic fatty liver disease. Such excessive triacylglycerol deposition in the liver is also referred to as hepatic steatosis. Although liver steatosis often resolves over time, it eventually progresses to steatohepatitis, liver fibrosis and cirrhosis, with associated complications, including liver failure, hepatocellular carcinoma and ultimately death of affected individuals. From the disease etiology it is obvious that a tight regulation between lipid uptake, triacylglycerol synthesis, hydrolysis, secretion and fatty acid oxidation is required to prevent triacylglycerol deposition in the liver. In addition to triacylglycerol, also a tight control of other neutral lipid ester classes, i.e. cholesteryl esters and retinyl esters, is crucial for the maintenance of a healthy liver. Excessive cholesteryl ester accumulation is a hallmark of cholesteryl ester storage disease or Wolman disease, which is associated with premature death. The loss of hepatic vitamin A stores (retinyl ester stores of hepatic stellate cells) is incidental to the onset of liver fibrosis. Importantly, this more advanced stage of liver disease usually does not resolve but progresses to life threatening stages, i.e. liver cirrhosis and cancer. Therefore, understanding the enzymes and pathways that mobilize hepatic neutral lipid esters is crucial for the development of strategies and therapies to ameliorate pathophysiological conditions associated with derangements of hepatic neutral lipid ester stores, including liver steatosis, steatohepatitis, and fibrosis. This review highlights the physiological roles of enzymes governing the mobilization of neutral lipid esters at different sites in liver cells, including cytosolic lipid droplets, endoplasmic reticulum, and lysosomes. This article is part of a Special Issue entitled Molecular Basis of Disease: Animal models in liver disease.
Collapse
Affiliation(s)
- Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
36
|
Li WD, Xia JR, Lian YS. Hepatic miR‑215 target Rictor and modulation of hepatic insulin signalling in rats. Mol Med Rep 2019; 19:3723-3731. [PMID: 30896868 PMCID: PMC6471735 DOI: 10.3892/mmr.2019.10031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has suggested that hepatic lipid accumulation is associated with hepatic insulin resistance; however, the underlying mechanism is yet to be determined. It was demonstrated that the levels of microRNA-215 (miR-215) expression in the liver of rats fed a high-fat diet were significantly increased compared with rats on a control diet. Additionally, it was revealed via luciferase assays and western blotting that miR-215 targets rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), an important protein in the hepatic insulin signalling pathway. Following overexpression of miR-215 in the H4IIE rat hepatocarcinoma cell line, it was reported that the intracellular insulin signalling pathway was inhibited; conversely, inhibition of miR-215 expression induced this pathway. Furthermore, it was demonstrated via reverse transcription-quantitative polymerase chain reaction analysis that free fatty acids promoted the expression of miR-215. The present study provided a novel mechanistic insight into the association between nonalcoholic fatty liver and hepatic insulin resistance.
Collapse
Affiliation(s)
- Wei-Dong Li
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-Rong Xia
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan-Shu Lian
- Department of Preventive Medicine, Jiangsu Health Vacation College, Nanjing, Jiangsu 210036, P.R. China
| |
Collapse
|
37
|
Mu W, Cheng XF, Liu Y, Lv QZ, Liu GL, Zhang JG, Li XY. Potential Nexus of Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Insulin Resistance Between Hepatic and Peripheral Tissues. Front Pharmacol 2019; 9:1566. [PMID: 30692925 PMCID: PMC6339917 DOI: 10.3389/fphar.2018.01566] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
The liver is the central metabolic organ and plays a pivotal role in regulating homeostasis of glucose and lipid metabolism. Aberrant liver metabolism promotes insulin resistance, which is reported to be a common characteristic of metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). There is a complex and bidirectional relationship between NAFLD and T2DM. NAFLD patients with hepatic insulin resistance generally share a high risk of impaired fasting glucose associated with early diabetes; most patients with T2DM experience non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and other more severe liver complications such as cirrhosis and hepatocellular carcinoma (HCC). Additionally, hepatic insulin resistance, which is caused by diacylglycerol-mediated activation of protein kinase C epsilon (PKC𝜀), may be the critical pathological link between NAFLD and T2DM. Therefore, this review aims to illuminate current insights regarding the complex and strong association between NAFLD and T2DM and summarize novel and emerging targets for the treatment of hepatic insulin resistance based on established mechanistic knowledge.
Collapse
Affiliation(s)
- Wan Mu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Fang Cheng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Zhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
van der Veen JN, Lingrell S, McCloskey N, LeBlond ND, Galleguillos D, Zhao YY, Curtis JM, Sipione S, Fullerton MD, Vance DE, Jacobs RL. A role for phosphatidylcholine and phosphatidylethanolamine in hepatic insulin signaling. FASEB J 2019; 33:5045-5057. [PMID: 30615497 DOI: 10.1096/fj.201802117r] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt-/- mice fed a high-fat diet are protected from obesity and whole-body insulin resistance. However, Pemt-/- mice develop severe nonalcoholic steatohepatitis (NASH). Because NASH is often associated with hepatic insulin resistance, we investigated whether the increased insulin sensitivity in Pemt-/- mice was restricted to nonhepatic tissues or whether the liver was also insulin sensitive. Strikingly, the livers of Pemt-/- mice compared with those of Pemt+/+ mice were not insulin resistant, despite elevated levels of hepatic triacylglycerols and diacylglycerols, as well as increased hepatic inflammation and fibrosis. Endogenous glucose production was lower in Pemt-/- mice under both basal and hyperinsulinemic conditions. Experiments in primary hepatocytes and hepatoma cells revealed improved insulin signaling in the absence of PEMT, which was not due to changes in diacylglycerols, ceramides, or gangliosides. On the other hand, the phospholipid composition in hepatocytes seems critically important for insulin signaling such that lowering the PC:phosphatidylethanolamine (PE) ratio improves insulin signaling. Thus, treatments to reduce the PC:PE ratio in liver may protect against the development of hepatic insulin resistance.-Van der Veen, J. N., Lingrell, S., McCloskey, N., LeBlond, N. D., Galleguillos, D., Zhao, Y. Y., Curtis, J. M., Sipione, S., Fullerton, M. D., Vance, D. E., Jacobs, R. L. A role for phosphatidylcholine and phosphatidylethanolamine in hepatic insulin signaling.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Lingrell
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas McCloskey
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Danny Galleguillos
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Yuan Y Zhao
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Simonetta Sipione
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
40
|
Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018; 23:molecules23081941. [PMID: 30081476 PMCID: PMC6222695 DOI: 10.3390/molecules23081941] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| | - Maida Jusović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
41
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Li P, Wang Y, Zhang L, Ning Y, Zan L. The Expression Pattern of PLIN2 in Differentiated Adipocytes from Qinchuan Cattle Analysis of Its Protein Structure and Interaction with CGI-58. Int J Mol Sci 2018; 19:ijms19051336. [PMID: 29723991 PMCID: PMC5983586 DOI: 10.3390/ijms19051336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
PLIN2 (Perilipin-2) is a protein that can anchor on the membrane of lipid droplets (LDs), playing a vital role in the early formation of LDs and in the regulation of LD metabolism in many types of cells. However, little research has been conducted in cattle adipocytes. In the present study, we found that the expression of PLIN2 mRNA peaks at Day 2 during cattle adipocyte differentiation (p < 0.01), but PLIN2 protein levels maintain high abundance until Day 4 and then decrease sharply. We first built an interaction model using PyMOL. The results of a pull-down assay indicated that bovine PLIN2 and CGI-58 (ABHD5, α/β hydrolase domain-containing protein 5) had an interaction relationship. Furthermore, Bimolecular Fluorescence Complementation-Flow Cytometry (BiFC-FC) was used to explore the function of the PLIN2-CGI-58 interaction. Interestingly, we found that different combined models had different levels of fluorescence intensity; specifically, PLIN2-VN173+CGI-58-VC155 expressed in bovine adipocytes exhibited the highest level of fluorescence intensity. Our findings elucidate the PLIN2 expression pattern in cattle adipocytes, the protein structure and the function of protein–protein interactions (PPI) as well as highlight the characteristics of bovine PLIN2 during the early formation and accumulation of lipid droplets.
Collapse
Affiliation(s)
- Peiwei Li
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yaning Wang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Le Zhang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Yangling 712100, Shaanxi, China.
| |
Collapse
|
43
|
Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, Brown AL, Gromovsky AD, Heine M, Chatterjee A, Li L, Li XS, Wang Z, Willard B, Meng Y, Kim H, Che N, Pan C, Lee RG, Crooke RM, Graham MJ, Morton RE, Langefeld CD, Das SK, Rudel LL, Zein N, McCullough AJ, Dasarathy S, Tang WHW, Erokwu BO, Flask CA, Laakso M, Civelek M, Naga Prasad SV, Heeren J, Lusis AJ, Hazen SL, Brown JM. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Rep 2018. [PMID: 28636934 DOI: 10.1016/j.celrep.2017.05.077] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diana M Shih
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manya Warrier
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert N Helsley
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Ferguson
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Lin Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Belinda Willard
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - YongHong Meng
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hanjun Kim
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nam Che
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Richard E Morton
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Swapan K Das
- Department of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Lawrence L Rudel
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Nizar Zein
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Arthur J McCullough
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bernadette O Erokwu
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
44
|
Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Zhang D, Samuel VT, Vatner DF, Petersen KF, Shulman GI, Serlie MJ. Hepatic Diacylglycerol-Associated Protein Kinase Cε Translocation Links Hepatic Steatosis to Hepatic Insulin Resistance in Humans. Cell Rep 2018; 19:1997-2004. [PMID: 28591572 PMCID: PMC5469939 DOI: 10.1016/j.celrep.2017.05.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatic lipid accumulation has been implicated in the development of insulin resistance, but translational evidence in humans is limited. We investigated the relationship between liver fat and tissue-specific insulin sensitivity in 133 obese subjects. Although the presence of hepatic steatosis in obese subjects was associated with hepatic, adipose tissue, and peripheral insulin resistance, we found that intrahepatic triglycerides were not strictly sufficient or essential for hepatic insulin resistance. Thus, to examine the molecular mechanisms that link hepatic steatosis to hepatic insulin resistance, we comprehensively analyzed liver biopsies from a subset of 29 subjects. Here, hepatic cytosolic diacylglycerol content, but not hepatic ceramide content, was increased in subjects with hepatic insulin resistance. Moreover, cytosolic diacylglycerols were strongly associated with hepatic PKCε activation, as reflected by PKCε translocation to the plasma membrane. These results demonstrate the relevance of hepatic diacylglycerol-induced PKCε activation in the pathogenesis of NAFLD-associated hepatic insulin resistance in humans. The presence of hepatic steatosis is associated with insulin resistance Intrahepatic triglycerides are not sufficient for hepatic insulin resistance Diacylglycerol in hepatic cytosol predicts insulin inhibition of glucose production Diacylglycerol-associated insulin resistance is characterized by PKCε translocation
Collapse
Affiliation(s)
- Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Pim W Gilijamse
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Ruth I Versteeg
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Mariette T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105AZ Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, 1105AZ Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, 1105BA Amsterdam, the Netherlands
| | - Johannes A Romijn
- Department of Medicine, Academic Medical Center, 1105AZ Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, 1105AZ Amsterdam, the Netherlands; Department of Internal Medicine, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Institute for Cardiovascular Research, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Dongyan Zhang
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06519, USA
| | - Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel F Vatner
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kitt F Petersen
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald I Shulman
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06519, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Li Z, Lai ZW, Christiano R, Gazos-Lopes F, Walther TC, Farese RV. Global Analyses of Selective Insulin Resistance in Hepatocytes Caused by Palmitate Lipotoxicity. Mol Cell Proteomics 2018; 17:836-849. [PMID: 29414761 DOI: 10.1074/mcp.ra117.000560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is tightly linked to hepatic steatosis and insulin resistance. One feature of this association is the paradox of selective insulin resistance: insulin fails to suppress hepatic gluconeogenesis but activates lipid synthesis in the liver. How lipid accumulation interferes selectively with some branches of hepatic insulin signaling is not well understood. Here we provide a resource, based on unbiased approaches and established in a simple cell culture system, to enable investigations of the phenomenon of selective insulin resistance. We analyzed the phosphoproteome of insulin-treated human hepatoma cells and identified sites in which palmitate selectively impairs insulin signaling. As an example, we show that palmitate interferes with insulin signaling to FoxO1, a key transcription factor regulating gluconeogenesis, and identify altered FoxO1 cellular compartmentalization as a contributing mechanism for selective insulin resistance. This model system, together with our comprehensive characterization of the proteome, phosphoproteome, and lipidome changes in response to palmitate treatment, provides a novel and useful resource for unraveling the mechanisms underlying selective insulin resistance.
Collapse
Affiliation(s)
- Zhihuan Li
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Zon Weng Lai
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Romain Christiano
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Felipe Gazos-Lopes
- ‖Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115
| | - Tobias C Walther
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115; .,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124.,**Howard Hughes Medical Institute, Boston, Massachusetts, 02115
| | - Robert V Farese
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| |
Collapse
|
46
|
Ruby MA, Massart J, Hunerdosse DM, Schönke M, Correia JC, Louie SM, Ruas JL, Näslund E, Nomura DK, Zierath JR. Human Carboxylesterase 2 Reverses Obesity-Induced Diacylglycerol Accumulation and Glucose Intolerance. Cell Rep 2017; 18:636-646. [PMID: 28099843 PMCID: PMC5276805 DOI: 10.1016/j.celrep.2016.12.070] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 02/01/2023] Open
Abstract
Serine hydrolases are a large family of multifunctional enzymes known to influence obesity. Here, we performed activity-based protein profiling to assess the functional level of serine hydrolases in liver biopsies from lean and obese humans in order to gain mechanistic insight into the pathophysiology of metabolic disease. We identified reduced hepatic activity of carboxylesterase 2 (CES2) and arylacetamide deacetylase (AADAC) in human obesity. In primary human hepatocytes, CES2 knockdown impaired glucose storage and lipid oxidation. In mice, obesity reduced CES2, whereas adenoviral delivery of human CES2 reversed hepatic steatosis, improved glucose tolerance, and decreased inflammation. Lipidomic analysis identified a network of CES2-regulated lipids altered in human and mouse obesity. CES2 possesses triglyceride and diacylglycerol lipase activities and displayed an inverse correlation with HOMA-IR and hepatic diacylglycerol concentrations in humans. Thus, decreased CES2 is a conserved feature of obesity and plays a causative role in the pathogenesis of obesity-related metabolic disturbances. Obesity decreases hepatic activity of AADAC and CES2 in humans CES2 depletion impairs lipid and glucose metabolism in primary human hepatocytes Human CES2 expression reverses hepatic steatosis and glucose intolerance in mice CES2 controls a hepatic lipid network dysregulated in human and mouse obesity
Collapse
Affiliation(s)
- Maxwell A Ruby
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julie Massart
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Devon M Hunerdosse
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Milena Schönke
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jorge C Correia
- Molecular and Cellular Exercise Physiology Unit, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sharon M Louie
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology Unit, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juleen R Zierath
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
|
48
|
Rondini EA, Mladenovic-Lucas L, Roush WR, Halvorsen GT, Green AE, Granneman JG. Novel Pharmacological Probes Reveal ABHD5 as a Locus of Lipolysis Control in White and Brown Adipocytes. J Pharmacol Exp Ther 2017; 363:367-376. [PMID: 28928121 PMCID: PMC5698943 DOI: 10.1124/jpet.117.243253] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Current knowledge regarding acute regulation of adipocyte lipolysis is largely based on receptor-mediated activation or inhibition of pathways that influence intracellular levels of cAMP, thereby affecting protein kinase A (PKA) activity. We recently identified synthetic ligands of α-β-hydrolase domain containing 5 (ABHD5) that directly activate adipose triglyceride lipase (ATGL) by dissociating ABHD5 from its inhibitory regulator, perilipin-1 (PLIN1). In the current study, we used these novel ligands to determine the direct contribution of ABHD5 to various aspects of lipolysis control in white (3T3-L1) and brown adipocytes. ABHD5 ligands stimulated adipocyte lipolysis without affecting PKA-dependent phosphorylation on consensus sites of PLIN1 or hormone-sensitive lipase (HSL). Cotreatment of adipocytes with synthetic ABHD5 ligands did not alter the potency or maximal lipolysis efficacy of the β-adrenergic receptor (ADRB) agonist isoproterenol (ISO), indicating that both target a common pool of ABHD5. Reducing ADRB/PKA signaling with insulin or desensitizing ADRB suppressed lipolysis responses to a subsequent challenge with ISO, but not to ABHD5 ligands. Lastly, despite strong treatment differences in PKA-dependent phosphorylation of HSL, we found that ligand-mediated activation of ABHD5 led to complete triglyceride hydrolysis, which predominantly involved ATGL, but also HSL. These results indicate that the overall pattern of lipolysis controlled by ABHD5 ligands is similar to that of isoproterenol, and that ABHD5 plays a central role in the regulation of adipocyte lipolysis. As lipolysis is critical for adaptive thermogenesis and in catabolic tissue remodeling, ABHD5 ligands may provide a means of activating these processes under conditions where receptor signaling is compromised.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - William R Roush
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Geoff T Halvorsen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Alex E Green
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| |
Collapse
|
49
|
Jefferson GE, Schnell DM, Thomas DT, Bollinger LM. Calcitriol concomitantly enhances insulin sensitivity and alters myocellular lipid partitioning in high fat-treated skeletal muscle cells. J Physiol Biochem 2017; 73:613-621. [PMID: 28980208 DOI: 10.1007/s13105-017-0595-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023]
Abstract
Vitamin D reduces myocellular insulin resistance, but the effects of vitamin D on intramyocellular lipid (IMCL) partitioning are unknown. The purpose of this study was to understand how calcitriol, the active vitamin D metabolite, affects insulin sensitivity and lipid partitioning in skeletal muscle cells. C2C12 myotubes were treated with calcitriol (100 nM) or vehicle control for 96 h. Insulin-stimulated Akt phosphorylation (Thr 308) was determined by western blot. Intramyocellular triacylglycerol (IMTG), diacylglycerol (DAG), and ceramide content were measured by LC/MS. IMTG partitioning and lipid droplet accumulation were assessed by oil red O. Expression of genes involved in lipid droplet packaging and lipolysis were measured by RT-PCR. Compared to vehicle-treated myotubes, calcitriol augmented insulin-stimulated pAkt. Calcitriol increased total ceramides and DAG in a subspecies-specific manner. Specifically, calcitriol preferentially increased ceramide 24:1 (1.78 fold) and di-18:0 DAG (46.89 fold). Calcitriol increased total IMTG area as assessed by oil red O, but decreased the proportion of lipid within myotubes. Calcitriol increased mRNA content of genes involved in lipid droplet packaging (perilipin 2; PLIN 2, 2.07 fold) and lipolysis (comparative gene identification-58; CGI-58 and adipose triglyceride lipase; ATGL, ~ 1.80 fold). Calcitriol alters myocellular lipid partitioning and lipid droplet packaging which may favor lipid turnover and partially explain improvements in insulin sensitivity.
Collapse
Affiliation(s)
- Grace E Jefferson
- Department of Kinesiology and Health Promotion, University of Kentucky, 201 Seaton Bldg, Lexington, KY, 40506, USA
| | - David M Schnell
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - D Travis Thomas
- College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Lance M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, 201 Seaton Bldg, Lexington, KY, 40506, USA. .,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
50
|
Kruse V, Neess D, Færgeman NJ. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends Endocrinol Metab 2017; 28:669-683. [PMID: 28668301 DOI: 10.1016/j.tem.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.
Collapse
Affiliation(s)
- Vibeke Kruse
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|