1
|
Wen Y, Zhang X, Liu H, Ye H, Wang R, Ma C, Duo T, Wang J, Yang X, Yu M, Wang Y, Wu L, Zhao Y, Wang L. SGLT2 inhibitor downregulates ANGPTL4 to mitigate pathological aging of cardiomyocytes induced by type 2 diabetes. Cardiovasc Diabetol 2024; 23:430. [PMID: 39633372 PMCID: PMC11619200 DOI: 10.1186/s12933-024-02520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Senescence is recognized as a principal risk factor for cardiovascular diseases, with a significant association between the senescence of cardiomyocytes and inferior cardiac function. Furthermore, type 2 diabetes exacerbates this aging process. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) has well-established cardiovascular benefits and, in recent years, has been posited to possess anti-aging properties. However, there are no reported data on their improvement of cardiomyocytes function through the alleviation of aging. Consequently, our study aims to investigate the mechanism by which SGLT2i exerts anti-aging and protective effects at the cardiac level through its action on the FOXO1-ANGPTL4 pathway. METHODS To elucidate the underlying functions and mechanisms, we established both in vivo and in vitro disease models, utilizing mice with diabetic cardiomyopathy (DCM) induced by type 2 diabetes mellitus (T2DM) through high-fat diet combined with streptozotocin (STZ) administration, and AC16 human cardiomyocyte cell subjected to stimulation with high glucose (HG) and palmitic acid (PA). These models were employed to assess the changes in the senescence phenotype of cardiomyocytes and cardiac function following treatment with SGLT2i. Concurrently, we identified ANGPTL4, a key factor contributing to senescence in DCM, using RNA sequencing (RNA-seq) technology and bioinformatics methods. We further clarified ANGPTL4 role in promoting pathological aging of cardiomyocytes induced by hyperglycemia and hyperlipidemia through knockdown and overexpression of the factor, as well as analyzed the impact of SGLT2i intervention on ANGPTL4 expression. Additionally, we utilized chromatin immunoprecipitation followed by quantitative real-time PCR (ChIP-qPCR) to confirm that FOXO1 is essential for the transcriptional activation of ANGPTL4. RESULTS The therapeutic intervention with SGLT2i alleviated the senescence phenotype in cardiomyocytes of the DCM mouse model constructed by high-fat feeding combined with STZ, as well as in the AC16 model stimulated by HG and PA, while also improving cardiac function in DCM mice. We observed that the knockdown of ANGPTL4, a key senescence-promoting factor in DCM identified through RNA-seq technology and bioinformatics, mitigated the senescence of cardiomyocytes, whereas overexpression of ANGPTL4 exacerbated it. Moreover, SGLT2i improved the senescence phenotype by suppressing the overexpression of ANGPTL4. In fact, we discovered that SGLT2i exert their effects by regulating the upstream transcription factor FOXO1 of ANGPTL4. Under conditions of hyperglycemia and hyperlipidemia, compared to the control group without FOXO1, the overexpression of FOXO1 in conjunction with SGLT2i intervention significantly reduced both ANGPTL4 mRNA and protein levels. This suggests that the FOXO1-ANGPTL4 axis may be a potential target for the cardioprotective effects of SGLT2i. CONCLUSIONS Collectively, our study demonstrates that SGLT2i ameliorate the pathological aging of cardiomyocytes induced by a high glucose and high fat metabolic milieu by regulating the interaction between FOXO1 and ANGPTL4, thereby suppressing the transcriptional synthesis of the latter, and consequently restoring cardiac function.
Collapse
Affiliation(s)
- Yun Wen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, China
| | - Han Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Caixia Ma
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianqi Duo
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xian Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meixin Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongting Zhao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Lee RA, Chang M, Yiv N, Tsay A, Tian S, Li D, Poulard C, Stallcup MR, Pufall MA, Wang JC. Transcriptional coactivation by EHMT2 restricts glucocorticoid-induced insulin resistance in a study with male mice. Nat Commun 2023; 14:3143. [PMID: 37253782 PMCID: PMC10229547 DOI: 10.1038/s41467-023-38584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
The classical dogma of glucocorticoid-induced insulin resistance is that it is caused by the transcriptional activation of hepatic gluconeogenic and insulin resistance genes by the glucocorticoid receptor (GR). Here, we find that glucocorticoids also stimulate the expression of insulin-sensitizing genes, such as Irs2. The transcriptional coregulator EHMT2 can serve as a transcriptional coactivator or a corepressor. Using male mice that have a defective EHMT2 coactivation function specifically, we show that glucocorticoid-induced Irs2 transcription is dependent on liver EHMT2's coactivation function and that IRS2 play a key role in mediating the limitation of glucocorticoid-induced insulin resistance by EHMT2's coactivation. Overall, we propose a model in which glucocorticoid-regulated insulin sensitivity is determined by the balance between glucocorticoid-modulated insulin resistance and insulin sensitizing genes, in which EHMT2 coactivation is specifically involved in the latter process.
Collapse
Affiliation(s)
- Rebecca A Lee
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Maggie Chang
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicholas Yiv
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ariel Tsay
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sharon Tian
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Danielle Li
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69000, Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jen-Chywan Wang
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA.
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159262. [PMID: 36521736 DOI: 10.1016/j.bbalip.2022.159262] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver. In this paper, an overview is presented of our current understanding of the effects of fasting on adipose tissue metabolism. Fasting leads to reduced uptake of circulating triacylglycerols by adipocytes through inhibition of the activity of the rate-limiting enzyme lipoprotein lipase. In addition, fasting stimulates the degradation of stored triacylglycerols by activating the key enzyme adipose triglyceride lipase. The mechanisms underlying these events are discussed, with a special interest in insights gained from studies on humans. Furthermore, an overview is presented of the effects of fasting on other metabolic pathways in the adipose tissue, including fatty acid synthesis, glucose uptake, glyceroneogenesis, autophagy, and the endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
4
|
Kuo T, Du W, Miyachi Y, Dadi PK, Jacobson DA, Segrè D, Accili D. Antagonistic epistasis of Hnf4α and FoxO1 metabolic networks through enhancer interactions in β-cell function. Mol Metab 2021; 53:101256. [PMID: 34048961 PMCID: PMC8225970 DOI: 10.1016/j.molmet.2021.101256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Genetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components and act through β-cell-specific enhancers. However, their relationship is unclear. METHODS In this report, we show by genome-wide interrogation of chromatin modifications that ablation of FoxO1 in mature β-cells enriches active Hnf4α enhancers according to a HOMER analysis. RESULTS To model the functional significance of this predicted unusual enhancer utilization, we generated single and compound knockouts of FoxO1 and Hnf4α in β-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions as indicated by their responses to sulfonylurea and calcium fluxes. Surprisingly, the defective β-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues was completely reversed in double mutants lacking FoxO1 and Hnf4α. Gene expression analyses revealed distinct epistatic modalities by which the two transcription factors regulate networks associated with reversal of β-cell dysfunction. An antagonistic network regulating glycolysis, including β-cell "disallowed" genes, and a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion. CONCLUSIONS The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of β-cell dysfunction.
Collapse
Affiliation(s)
- Taiyi Kuo
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Wen Du
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yasutaka Miyachi
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel Segrè
- Department of Biology, Department of Biomedical Engineering, Department of Physics, Boston University, Boston, MA, USA
| | - Domenico Accili
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Oleic and palmitic acids induce hepatic angiopoietin-like 4 expression predominantly via PPAR- γ in Larimichthys crocea. Br J Nutr 2021; 129:1657-1666. [PMID: 34556193 DOI: 10.1017/s000711452100386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, β and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.
Collapse
|
6
|
Zhou Z, Ni H, Li Y, Jiang B. LncRNA XIST promotes inflammation by downregulating GRα expression in the adenoids of children with OSAHS. Exp Ther Med 2021; 21:500. [PMID: 33791009 PMCID: PMC8005745 DOI: 10.3892/etm.2021.9931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Whether glucocorticoid receptor α (GRα) serves a role in obstructive sleep apnea/hypopnea syndrome (OSAHS) remains unclear. However, it has been reported that GRα expression is decreased in the adenoids of patients with OSAHS. The present study aimed to evaluate the role of GRα in OSAHS and the underlying mechanism. Bioinformatics assays revealed that long noncoding RNA (lncRNA) X inactivate-specific transcript (XIST) was closely associated with GRα. Furthermore, reverse transcription-quantitative PCR showed that the expression of lncRNA XIST was significantly increased in the adenoids of patients with OSAHS compared with healthy controls. Further in vitro studies by Pearson correlation analysis, RNA pull-down assay, western blot analysis and ELISA demonstrated that XIST significantly decreased the expression of GRα and that significantly increased the production of inflammatory cytokines, including interleukin (IL)-8, tumor necrosis factor α, IL-6 and IL-1β, while the overexpression of GRα significantly decreased the production of these inflammatory cytokines in NP69 cells, a human nasopharyngeal epithelial cell line. Furthermore, XIST significantly increased the protein levels of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunits, including Rel-B, c-Rel, P52, P50 and P65, which are associated with the transcription of cytokines. The stimulatory effect of XIST was significantly inhibited by the NF-κB inhibitor EVP4593. These results indicated that the stimulatory effect of XIST was dependent on NF-κB. In summary, the present study demonstrated that the XIST-GRα-NF-κB signaling pathway contributed to inflammation in the adenoids of patients with OSAHS.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Department of Otolaryngology, Head and Neck Surgery, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Haifeng Ni
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bo Jiang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Præstholm SM, Correia CM, Grøntved L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front Endocrinol (Lausanne) 2020; 11:572981. [PMID: 33133019 PMCID: PMC7578419 DOI: 10.3389/fendo.2020.572981] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Kroon J, Pereira AM, Meijer OC. Glucocorticoid Sexual Dimorphism in Metabolism: Dissecting the Role of Sex Hormones. Trends Endocrinol Metab 2020; 31:357-367. [PMID: 32037025 DOI: 10.1016/j.tem.2020.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Glucocorticoids are steroid hormones that are of pivotal importance in human physiology. Glucocorticoid signaling is complex in nature and dependent on many interacting factors. As glucocorticoids exhibit sexually dimorphic effects on several key processes including in metabolism, crosstalk with the sex steroid hormones (androgens and estrogens) is relevant. In this review, we highlight the state-of-the-art knowledge on glucocorticoid sexual dimorphism and sex hormone crosstalk. We include current insight in the molecular mechanisms that underlie nuclear steroid receptor crosstalk, and sex hormone effects on glucocorticoid metabolism. Finally, we show how these findings translate to humans exposed to excess glucocorticoid signaling, and we propose future avenues in the emerging field of steroid hormone crosstalk.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Identification of C2CD4A as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proc Natl Acad Sci U S A 2019; 116:20033-20042. [PMID: 31527256 DOI: 10.1073/pnas.1904311116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fine mapping and validation of genes causing β cell failure from susceptibility loci identified in type 2 diabetes genome-wide association studies (GWAS) poses a significant challenge. The VPS13C-C2CD4A-C2CD4B locus on chromosome 15 confers diabetes susceptibility in every ethnic group studied to date. However, the causative gene is unknown. FoxO1 is involved in the pathogenesis of β cell dysfunction, but its link to human diabetes GWAS has not been explored. Here we generated a genome-wide map of FoxO1 superenhancers in chemically identified β cells using 2-photon live-cell imaging to monitor FoxO1 localization. When parsed against human superenhancers and GWAS-derived diabetes susceptibility alleles, this map revealed a conserved superenhancer in C2CD4A, a gene encoding a β cell/stomach-enriched nuclear protein of unknown function. Genetic ablation of C2cd4a in β cells of mice phenocopied the metabolic abnormalities of human carriers of C2CD4A-linked polymorphisms, resulting in impaired insulin secretion during glucose tolerance tests as well as hyperglycemic clamps. C2CD4A regulates glycolytic genes, and notably represses key β cell "disallowed" genes, such as lactate dehydrogenase A We propose that C2CD4A is a transcriptional coregulator of the glycolytic pathway whose dysfunction accounts for the diabetes susceptibility associated with the chromosome 15 GWAS locus.
Collapse
|
10
|
Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, Di Prospero NA, Eckel RH, Goldberg IJ. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arterioscler Thromb Vasc Biol 2019; 38:2207-2216. [PMID: 30354257 DOI: 10.1161/atvbaha.118.311339] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective- SGLT2 (sodium-glucose cotransporter 2) inhibition in humans leads to increased levels of LDL (low-density lipoprotein) cholesterol and decreased levels of plasma triglyceride. Recent studies, however, have shown this therapy to lower cardiovascular mortality. In this study, we aimed to determine how SGLT2 inhibition alters circulating lipoproteins. Approach and Results- We used a mouse model expressing human CETP (cholesteryl ester transfer protein) and human ApoB100 (apolipoprotein B100) to determine how SGLT2 inhibition alters plasma lipoprotein metabolism. The mice were fed a high-fat diet and then were made partially insulin deficient using streptozotocin. SGLT2 was inhibited using a specific antisense oligonucleotide or canagliflozin, a clinically available oral SGLT2 inhibitor. Inhibition of SGLT2 increased circulating levels of LDL cholesterol and reduced plasma triglyceride levels. SGLT2 inhibition was associated with increased LpL (lipoprotein lipase) activity in the postheparin plasma, decreased postprandial lipemia, and faster clearance of radiolabeled VLDL (very-LDL) from circulation. Additionally, SGLT2 inhibition delayed turnover of labeled LDL from circulation. Conclusions- Our studies in diabetic CETP-ApoB100 transgenic mice recapitulate many of the changes in circulating lipids found with SGLT2 inhibition therapy in humans and suggest that the increased LDL cholesterol found with this therapy is because of reduced clearance of LDL from the circulation and greater lipolysis of triglyceride-rich lipoproteins. Most prominent effects of SGLT2 inhibition in the current mouse model were seen with antisense oligonucleotides-mediated knockdown of SGLT2.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Lesley-Ann Huggins
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Diego Scerbo
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Joseph Obunike
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA (A.E.M.)
| | - Paul L Rothenberg
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Nicholas A Di Prospero
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Robert H Eckel
- Division of Endocrinology, University of Colorado, Anschutz Campus, Denver (R.H.E.)
| | - Ira J Goldberg
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| |
Collapse
|
11
|
Kuo T, Damle M, González BJ, Egli D, Lazar MA, Accili D. Induction of α cell-restricted Gc in dedifferentiating β cells contributes to stress-induced β-cell dysfunction. JCI Insight 2019; 5:128351. [PMID: 31120862 DOI: 10.1172/jci.insight.128351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetic β cell failure is associated with β cell dedifferentiation. To identify effector genes of dedifferentiation, we integrated analyses of histone methylation as a surrogate of gene activation status and RNA expression in β cells sorted from mice with multiparity-induced diabetes. Interestingly, only a narrow subset of genes demonstrated concordant changes to histone methylation and RNA levels in dedifferentiating β cells. Notable among them was the α cell signature gene Gc, encoding a vitamin D-binding protein. While diabetes was associated with Gc induction, Gc-deficient islets did not induce β cell dedifferentiation markers and maintained normal ex vivo insulin secretion in the face of metabolic challenge. Moreover, Gc-deficient mice exhibited a more robust insulin secretory response than normal controls during hyperglycemic clamps. The data are consistent with a functional role of Gc activation in β cell dysfunction, and indicate that multiparity-induced diabetes is associated with altered β cell fate.
Collapse
Affiliation(s)
- Taiyi Kuo
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Manashree Damle
- The Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan J González
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dieter Egli
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mitchell A Lazar
- The Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Domenico Accili
- Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
12
|
Chen TC, Lee RA, Tsai SL, Kanamaluru D, Gray NE, Yiv N, Cheang RT, Tan JH, Lee JY, Fitch MD, Hellerstein MK, Wang JC. An ANGPTL4-ceramide-protein kinase Cζ axis mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia in mice. J Biol Chem 2019; 294:9213-9224. [PMID: 31053639 DOI: 10.1074/jbc.ra118.006259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/01/2019] [Indexed: 01/01/2023] Open
Abstract
Chronic or excess glucocorticoid exposure causes lipid disorders such as hypertriglyceridemia and hepatic steatosis. Angptl4 (angiopoietin-like 4), a primary target gene of the glucocorticoid receptor in hepatocytes and adipocytes, is required for hypertriglyceridemia and hepatic steatosis induced by the synthetic glucocorticoid dexamethasone. Angptl4 has also been shown to be required for dexamethasone-induced hepatic ceramide production. Here, we further examined the role of ceramide-mediated signaling in hepatic dyslipidemia caused by chronic glucocorticoid exposure. Using a stable isotope-labeling technique, we found that dexamethasone treatment induced the rate of hepatic de novo lipogenesis and triglyceride synthesis. These dexamethasone responses were compromised in Angptl4-null mice (Angptl4-/-). Treating mice with myriocin, an inhibitor of the rate-controlling enzyme of de novo ceramide synthesis, serine palmitoyltransferase long-chain base subunit 1 (SPTLC1)/SPTLC2, decreased dexamethasone-induced plasma and liver triglyceride levels in WT but not Angptl4-/- mice. We noted similar results in mice infected with adeno-associated virus-expressing small hairpin RNAs targeting Sptlc2. Protein phosphatase 2 phosphatase activator (PP2A) and protein kinase Cζ (PKCζ) are two known downstream effectors of ceramides. We found here that mice treated with an inhibitor of PKCζ, 2-acetyl-1,3-cyclopentanedione (ACPD), had lower levels of dexamethasone-induced triglyceride accumulation in plasma and liver. However, small hairpin RNA-mediated targeting of the catalytic PP2A subunit (Ppp2ca) had no effect on dexamethasone responses on plasma and liver triglyceride levels. Overall, our results indicate that chronic dexamethasone treatment induces an ANGPTL4-ceramide-PKCζ axis that activates hepatic de novo lipogenesis and triglyceride synthesis, resulting in lipid disorders.
Collapse
Affiliation(s)
- Tzu-Chieh Chen
- From the Department of Nutritional Sciences & Toxicology.,the Metabolic Biology Graduate Program, and
| | - Rebecca A Lee
- From the Department of Nutritional Sciences & Toxicology.,the Endocrinology Graduate Program, University of California-Berkeley, Berkeley, California 94720-3104
| | - Sam L Tsai
- From the Department of Nutritional Sciences & Toxicology
| | | | - Nora E Gray
- From the Department of Nutritional Sciences & Toxicology.,the Metabolic Biology Graduate Program, and
| | - Nicholas Yiv
- From the Department of Nutritional Sciences & Toxicology
| | | | - Jenna H Tan
- From the Department of Nutritional Sciences & Toxicology
| | - Justin Y Lee
- From the Department of Nutritional Sciences & Toxicology
| | - Mark D Fitch
- From the Department of Nutritional Sciences & Toxicology
| | | | - Jen-Chywan Wang
- From the Department of Nutritional Sciences & Toxicology, .,the Metabolic Biology Graduate Program, and.,the Endocrinology Graduate Program, University of California-Berkeley, Berkeley, California 94720-3104
| |
Collapse
|
13
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
14
|
Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism 2018; 87:36-47. [PMID: 29928895 DOI: 10.1016/j.metabol.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection. OBJECTIVE The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection. METHODS Human aortic endothelial cells (HAECs) were treated with rHDL-apoA-I and their total RNA was analyzed with whole genome microarrays. Validation of microarray data was performed using multiplex RT-qPCR. The expression of ANGPTL4 in EA.hy926 endothelial cells was determined by RT-qPCR and Western blotting. The contribution of signaling kinases and transcription factors in ANGPTL4 gene regulation by HDL-apoA-I was assessed by RT-qPCR, Western blotting and immunofluorescence using chemical inhibitors or siRNA-mediated gene silencing. RESULTS It was found that 410 transcripts were significantly changed in the presence of rHDL-apoA-I and that angiopoietin like 4 (ANGPTL4) was one of the most upregulated and biologically relevant molecules. In validation experiments rHDL-apoA-I, as well as natural HDL from human healthy donors or from transgenic mice overexpressing human apoA-I (TgHDL-apoA-I), increased ANGPTL4 mRNA and protein levels. ANGPTL4 gene induction by HDL was direct and was blocked in the presence of inhibitors for the AKT or the p38 MAP kinases. TgHDL-apoA-I caused phosphorylation of the transcription factor forkhead box O1 (FOXO1) and its translocation from the nucleus to the cytoplasm. Importantly, a FOXO1 inhibitor or a FOXO1-specific siRNA enhanced ANGPTL4 expression, whereas administration of TgHDL-apoA-I in the presence of the FOXO1 inhibitor or the FOXO1-specific siRNA did not induce further ANGPTL4 expression. These data suggest that FOXO1 functions as an inhibitor of ANGPTL4, while HDL-apoA-I blocks FOXO1 activity and induces ANGPTL4 through the activation of AKT. CONCLUSION Our data provide novel insights into the global molecular effects of HDL-apoA-I on endothelial cells and identify ANGPTL4 as a putative mediator of the atheroprotective functions of HDL-apoA-I on the artery wall, with notable therapeutic potential.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Laboratory of Biochemistry, University of Crete School of Medicine, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Panagiotis Fotakis
- Section of Molecular Genetics, Boston University Medical School, Boston, USA
| | - Efi Valanti
- 4th Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis Zannis
- Section of Molecular Genetics, Boston University Medical School, Boston, USA
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete School of Medicine, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| |
Collapse
|
15
|
Plaza A, Merino B, Cano V, Domínguez G, Pérez-Castells J, Fernández-Alfonso MS, Sengenès C, Chowen JA, Ruiz-Gayo M. Cholecystokinin is involved in triglyceride fatty acid uptake by rat adipose tissue. J Endocrinol 2018; 236:137-150. [PMID: 29339381 DOI: 10.1530/joe-17-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022]
Abstract
The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes. We report that administration of CCK-8 (a bioactive fragment of CCK) to rats: (i) reduces plasma ANGTPL-4 levels; (ii) represses Angptl-4 expression in WAT and (iii) simultaneously enhances LPL activity in this tissue without inducing Lpl expression. In vivo CCK-8 effects are specifically antagonized by the CCK-2 receptor (CCK-2R) antagonist, L-365,260. Moreover, CCK-8 downregulates Angptl-4 expression in wild-type pre-adipocytes, an effect that is not observed in engineered pre-adipocytes lacking CCK-2R. These effects have functional consequences as CCK-8 was found to promote the uptake of dietary fatty acids by WAT, as demonstrated by means of proton nuclear magnetic resonance (1H-NMR). The efficacy of acute CCK-8 administration was not reduced after chronic CCK-8 treatment. Moreover, the effects of CCK-8 on WAT were not associated to the increase of circulating insulin. Our results show that cholecystokinin promotes lipid storage in WAT by acting on adipocyte CCK-2R, suggesting a pivotal role for CCK in TG homeostasis.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Gema Domínguez
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Pérez-Castells
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coralie Sengenès
- STROMALabUniversité de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Julie A Chowen
- Departamento de EndocrinologíaHospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa, CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
16
|
McQueen AE, Kanamaluru D, Yan K, Gray NE, Wu L, Li ML, Chang A, Hasan A, Stifler D, Koliwad SK, Wang JC. The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. J Biol Chem 2017; 292:16122-16134. [PMID: 28842503 DOI: 10.1074/jbc.m117.803973] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Angptl4 (Angiopoietin-like 4) is a circulating protein secreted by white and brown adipose tissues and the liver. Structurally, Angptl4 contains an N-terminal coiled-coil domain (CCD) connected to a C-terminal fibrinogen-like domain (FLD) via a cleavable linker, and both full-length Angptl4 and its individual domains circulate in the bloodstream. Angptl4 inhibits extracellular lipoprotein lipase (LPL) activity and stimulates the lipolysis of triacylglycerol stored by adipocytes in the white adipose tissue (WAT). The former activity is furnished by the CCD, but the Angptl4 domain responsible for stimulating adipocyte lipolysis is unknown. We show here that the purified FLD of Angptl4 is sufficient to stimulate lipolysis in mouse primary adipocytes and that increasing circulating FLD levels in mice through adenovirus-mediated overexpression (Ad-FLD) not only induces WAT lipolysis in vivo but also reduces diet-induced obesity without affecting LPL activity. Intriguingly, reduced adiposity in Ad-FLD mice was associated with increased oxygen consumption, fat utilization, and the expression of thermogenic genes (Ucp1 and Ppargc1a) in subcutaneous WAT. Moreover, Ad-FLD mice exhibited increased glucose tolerance. Chronically enhancing WAT lipolysis could produce ectopic steatosis because of an overflow of lipids from the WAT to peripheral tissues; however, this did not occur when Ad-FLD mice were fed a high-fat diet. Rather, these mice had reductions in both circulating triacylglycerol levels and the mRNA levels of lipogenic genes in the liver and skeletal muscle. We conclude that separating the FLD from the CCD-mediated LPL-inhibitory activity of full-length Angptl4 reveals lipolytic and thermogenic properties with therapeutic relevance to obesity and diabetes.
Collapse
Affiliation(s)
- Allison E McQueen
- From the Metabolic Biology Graduate Program and.,the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Deepthi Kanamaluru
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Kimberly Yan
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Nora E Gray
- From the Metabolic Biology Graduate Program and.,the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Leslie Wu
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Mei-Lan Li
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Anthony Chang
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | - Adeeba Hasan
- the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| | | | - Suneil K Koliwad
- the Diabetes Center and .,the Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Jen-Chywan Wang
- From the Metabolic Biology Graduate Program and .,the Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California 94720 and
| |
Collapse
|
17
|
Hosseini A, Salman M, Zhou Z, Drackley JK, Trevisi E, Loor JJ. Level of dietary energy and 2,4-thiazolidinedione alter molecular and systemic biomarkers of inflammation and liver function in Holstein cows. J Anim Sci Biotechnol 2017; 8:64. [PMID: 28781774 PMCID: PMC5537929 DOI: 10.1186/s40104-017-0196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/04/2017] [Indexed: 02/24/2023] Open
Abstract
Background The objective of the study was to evaluate the effect of overfeeding a moderate energy diet and a 2,4-thiazolidinedione (TZD) injection on blood and hepatic tissue biomarkers of lipid metabolism, oxidative stress, and inflammation as it relates to insulin sensitivity. Results Fourteen dry non-pregnant cows were fed a control (CON) diet to meet 100% of NRC requirements for 3 wk, after which half of the cows were assigned to a moderate-energy diet (OVE) and half of the cows continued on CON for 6 wk. All cows received an intravenous injection of 4 mg TZD/kg of body weight (BW) daily from 2 wk after initiation of dietary treatments and for 2 additional week. Compared with CON cows and before TZD treatment, the OVE cows had lower concentration of total protein, urea and albumin over time. The concentration of cholesterol and tocopherol was greater after 2 wk of TZD regardless of diet. Before and after TZD, the OVE cows had greater concentrations of AST/GOT, while concentrations of paraoxonase, total protein, globulin, myeloperoxidase, and haptoglobin were lower compared with CON cows. Regardless of diet, TZD administration increased the concentration of ceruloplasmin, ROMt, cholesterol, tocopherol, total protein, globulin, myeloperoxidase and beta-carotene. In contrast, the concentration of haptoglobin decreased at the end of TZD injection regardless of diet. Prior to TZD injection, the mRNA expression of PC, ANGPTL4, FGF21, INSR, ACOX1, and PPARD in liver of OVE cows was lower compared with CON cows. In contrast, the expression of HMGCS2 was greater in OVE compared with CON cows. After 1 wk of TZD administration the expression of IRS1 decreased regardless of diet; whereas, expression of INSR increased after 2 wk of TZD injection. Cows fed OVE had lower overall expression of TNF, INSR, PC, ACOX1, FGF21, and PPARD but greater HMGCS2 expression. These differences were most evident before and after 1 wk of TZD injection, and by 2 wk of TZD differences in expression for most genes disappeared. Conclusions Based on molecular and blood data, administration of TZD enhanced some aspects of insulin sensitivity while causing contradictory results in terms of inflammation and oxidative stress. The bovine liver is TZD-responsive and level of dietary energy can modify the effects of TZD. Because insulin sensitizers have been proposed as useful tools to manage dairy cows during the transition period, further studies are required to investigate the potential hepatotoxicity effect of TZD (or similar compounds) in dairy cattle. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Afshin Hosseini
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Mustafa Salman
- Department of Animal Nutrition and Nutritional Diseases, University of Ondokuz Mayıs, 55139 Samsun, Turkey
| | - Zheng Zhou
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - James K Drackley
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Erminio Trevisi
- Istituto di Zootecnica, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| |
Collapse
|
18
|
Li B, Qian M, Cao H, Jia Q, Wu Z, Yang X, Ma T, Wei H, Chen T, Xiao J. TGF-β2-induced ANGPTL4 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone. Oncotarget 2017; 8:54966-54977. [PMID: 28903395 PMCID: PMC5589634 DOI: 10.18632/oncotarget.18629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Although emerging studies have implicated that Aiopoietin-like 4 Protein (ANGPTL4) is related to the aggressiveness and metastasis of many tumors, the role of ANGPLT4 in giant cell tumor (GCT) of bone was rarely investigated. The mechanism of ANGPLT4 in tumor-induced osteoclastogenesis still remains unclear. In this study, we first demonstrated that ANGPTL4 was highly expressed in GCT compared to normal tissues, while we showed that TGF-β2 released by osteoclasts induced bone resorption could increase the expression of ANGPTL4 in GCTSCs. By using the luciferase reporter assay, we found that two downstreams of TGF-β2, Smad3 and Smad4, could directly activate the promoter of ANGPTL4, which might explain the mechanism of TGF-β2-induced ANGPLT4 expression. Moreover, knockout of ANGPTL4 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. By using the chick chorio-allantoic membrane (CAM) models, we further showed that inhibition of ANGPTL4 suppressed tumor growth and giant cell formation in vivo. In addition, some new pathways involved in ANGPTL4 application were identified through microarray assay, which may partly explain the mechanism of ANGPTL4 in GCT. Taken together, our study for the first time identified the role of ANGPLT4 in GCT of bone, which may provide a new target for the diagnosis and treatment of GCT.
Collapse
Affiliation(s)
- Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Qian
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Jia
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianyi Ma
- Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
TNF-α decreases lipoprotein lipase activity in 3T3-L1 adipocytes by up-regulation of angiopoietin-like protein 4. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:533-540. [DOI: 10.1016/j.bbalip.2017.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
|
20
|
Phua T, Sng MK, Tan EHP, Chee DSL, Li Y, Wee JWK, Teo Z, Chan JSK, Lim MMK, Tan CK, Zhu P, Arulampalam V, Tan NS. Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin. Sci Rep 2017; 7:44351. [PMID: 28287161 PMCID: PMC5347094 DOI: 10.1038/srep44351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022] Open
Abstract
Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.
Collapse
Affiliation(s)
- Terri Phua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Eddie Han Pin Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Dickson Shao Liang Chee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinliang Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ziqiang Teo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maegan Miang Kee Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Velmurugesan Arulampalam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, Stockholm 17177, Sweden
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore.,Institute of Molecular Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology &Research, Singapore 138673, Singapore.,KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| |
Collapse
|
21
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
22
|
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154:94-103. [PMID: 26241028 DOI: 10.1016/j.jsbmb.2015.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the global obesity and metabolic disease epidemic and is rapidly becoming the leading cause of liver cirrhosis and indication for liver transplantation worldwide. The hallmark pathological finding in NAFLD is excess lipid accumulation within hepatocytes, but it is a spectrum of disease ranging from benign hepatic steatosis to steatohepatitis through to fibrosis, cirrhosis and risk of hepatocellular carcinoma. The exact pathophysiology remains unclear with a multi-hit hypothesis generally accepted as being required for inflammation and fibrosis to develop after initial steatosis. Glucocorticoids have been implicated in the pathogenesis of NAFLD across all stages. They have a diverse array of metabolic functions that have the potential to drive NAFLD acting on both liver and adipose tissue. In the fasting state, they are able to mobilize lipid, increasing fatty acid delivery and in the fed state can promote lipid accumulation. Their action is controlled at multiple levels and in this review will outline the evidence base for the role of GCs in the pathogenesis of NAFLD from cell systems, rodent models and clinical studies and describe interventional strategies that have been employed to modulate glucocorticoid action as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Conor P Woods
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jonathon M Hazlehurst
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| |
Collapse
|
23
|
Sahini N, Selvaraj S, Borlak J. Whole genome transcript profiling of drug induced steatosis in rats reveals a gene signature predictive of outcome. PLoS One 2014; 9:e114085. [PMID: 25470483 PMCID: PMC4254931 DOI: 10.1371/journal.pone.0114085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
Drug induced steatosis (DIS) is characterised by excess triglyceride accumulation in the form of lipid droplets (LD) in liver cells. To explore mechanisms underlying DIS we interrogated the publically available microarray data from the Japanese Toxicogenomics Project (TGP) to study comprehensively whole genome gene expression changes in the liver of treated rats. For this purpose a total of 17 and 12 drugs which are diverse in molecular structure and mode of action were considered based on their ability to cause either steatosis or phospholipidosis, respectively, while 7 drugs served as negative controls. In our efforts we focused on 200 genes which are considered to be mechanistically relevant in the process of lipid droplet biogenesis in hepatocytes as recently published (Sahini and Borlak, 2014). Based on mechanistic considerations we identified 19 genes which displayed dose dependent responses while 10 genes showed time dependency. Importantly, the present study defined 9 genes (ANGPTL4, FABP7, FADS1, FGF21, GOT1, LDLR, GK, STAT3, and PKLR) as signature genes to predict DIS. Moreover, cross tabulation revealed 9 genes to be regulated ≥10 times amongst the various conditions and included genes linked to glucose metabolism, lipid transport and lipogenesis as well as signalling events. Additionally, a comparison between drugs causing phospholipidosis and/or steatosis revealed 26 genes to be regulated in common including 4 signature genes to predict DIS (PKLR, GK, FABP7 and FADS1). Furthermore, a comparison between in vivo single dose (3, 6, 9 and 24 h) and findings from rat hepatocyte studies (2 h, 8 h, 24 h) identified 10 genes which are regulated in common and contained 2 DIS signature genes (FABP7, FGF21). Altogether, our studies provide comprehensive information on mechanistically linked gene expression changes of a range of drugs causing steatosis and phospholipidosis and encourage the screening of DIS signature genes at the preclinical stage.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | | | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
24
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|