1
|
Reis A, H K Dias I. Oxysterol sulfates in fluids, cells and tissues: how much do we know about their clinical significance, biological relevance and biophysical implications? Essays Biochem 2024; 68:401-410. [PMID: 38546257 PMCID: PMC11625865 DOI: 10.1042/ebc20230090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 12/05/2024]
Abstract
Oxysterol sulfates are emerging as key players in lipid homeostasis, inflammation and immunity. Despite this, knowledge on their basal levels in fluids, cells and tissues and any changes associated with age, gender and diet in health and disease; as well as their spatio-temporal distribution in cell membranes and organelles have been greatly hampered by the lack of commercially available pure synthetic standards. Expansion of the panel of pure oxysterol sulfates standards is pivotal to improve our understanding on the impact of oxysterol sulfates at the membrane level and their role in cellular events. While the clinical significance, biophysical implications and biological relevance of oxysterol sulfates in fluids, cells and tissues remains largely unknown, knowledge already gathered on the precursors of oxysterol sulfates (e.g. oxysterols and cholesterol sulfate) can be used to guide researchers on the most relevant aspects to search for when screening for oxysterol sulfates bioavailability in (patho)physiological conditions which are crucial in the design of biophysical and of cell-based assays. Herein, we provide a review on the brief knowledge involving oxysterol sulfate and an overview on the biophysical implications and biological relevance of oxysterols and cholesterol sulfate useful to redirect further investigations on the role of oxysterol sulfates in health and disease.
Collapse
Affiliation(s)
- Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | |
Collapse
|
2
|
Romero-Córdoba S, Chirinos M, Noyola-Martínez N, Torres-Ramírez N, García-Olivares M, Aragón-Hernández JP, Ramírez-Camacho I, Zúñiga R, Larrea F, Halhali A, Barrera D. Transcriptional landscape of human trophoblast cells treated with calcitriol and TGF-β1. Mol Cell Endocrinol 2024; 579:112088. [PMID: 37832930 DOI: 10.1016/j.mce.2023.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Calcitriol and transforming growth factor beta 1 (TGF-β1) are unrelated molecules that regulate biological processes according to the genetic target, cell type, and context. Several studies have shown independent effects of calcitriol and TGF-βs on the placenta, but there is no information regarding the impact of their combination on these cells. Therefore, this study analyzed the effects of calcitriol, TGF-β1, and their combination in primary cultures of human trophoblast cells using a whole genome expression microarray. Data analysis revealed a set of differentially expressed genes induced by each treatment. Enrichment pathway analysis identified modulatory effects of calcitriol on genes related to metabolic processes such as vitamin D, steroid, and fat-soluble vitamins as well as antimicrobial and immune responses. In relation to TGF-β1, the analysis showed a few differentially expressed genes that were mainly associated with the neutrophil immune response. Lastly, the analysis revealed that the combination of calcitriol and TGF-β1 up-regulated genes involving both immunologic processes and the biosynthesis of unsaturated fatty acids, eicosanoids, and lipoxins, among others. In contrast, pathways down-regulated by the combination were mostly associated with the catabolic process of acylglycerols and peptides, PPAR signaling pathway, cellular response to low-density lipoprotein stimulus, renin angiotensin system and digestion, mobilization and transport of lipids. Consistent with these results, the combined treatment on human trophoblast cells induced the accumulation of intracellular neutral lipid droplets and stimulated both gene and protein expression of 15-hydroxyprostaglandin dehydrogenase. In conclusion, the results revealed that differentially expressed genes induced by the combination modified the transcriptional landscape compared to each treatment alone, mainly altering the storage, activity and metabolism of lipids, which might have an impact on placental development.
Collapse
Affiliation(s)
- Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Nancy Noyola-Martínez
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México, 04510, Mexico
| | - Mitzi García-Olivares
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Juan Pablo Aragón-Hernández
- Departamento de la Unidad Tocoquirúrgica, Hospital General "Dr. Manuel Gea González", Ciudad de México, 14080, Mexico
| | - Ixchel Ramírez-Camacho
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Rosa Zúñiga
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - Ali Halhali
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico.
| |
Collapse
|
3
|
Lin YC, Cheung G, Zhang Z, Papadopoulos V. Mitochondrial cytochrome P450 1B1 is involved in pregnenolone synthesis in human brain cells. J Biol Chem 2023; 299:105035. [PMID: 37442234 PMCID: PMC10413356 DOI: 10.1016/j.jbc.2023.105035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Zeyu Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Yu L, Xu L, Chu H, Peng J, Sacharidou A, Hsieh HH, Weinstock A, Khan S, Ma L, Durán JGB, McDonald J, Nelson ER, Park S, McDonnell DP, Moore KJ, Huang LJS, Fisher EA, Mineo C, Huang L, Shaul PW. Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice. Nat Commun 2023; 14:4101. [PMID: 37491347 PMCID: PMC10368733 DOI: 10.1038/s41467-023-39586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center and Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hsi-Hsien Hsieh
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL, 60637, USA
| | - Sohaib Khan
- University of Cincinnati Cancer Center, Cincinnati, OH, 45267, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Jeffrey McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn J Moore
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edward A Fisher
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Linzhang Huang
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Fudan University, Shanghai, 200433, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200433, China.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Chandra P, Coullon H, Agarwal M, Goss CW, Philips JA. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection. J Clin Invest 2022; 132:152509. [PMID: 35104812 PMCID: PMC8803325 DOI: 10.1172/jci152509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3β-hydroxysteroid dehydrogenase (3β-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Héloise Coullon
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| | - Mansi Agarwal
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine.,Department of Molecular Microbiology, and
| |
Collapse
|
6
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Unlocking the Mechanisms of Cutaneous Adverse Drug Reactions: Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway by EGFR Inhibitors Triggers Keratinocyte Differentiation and Polarization of Epidermal Immune Responses. JID INNOVATIONS 2021; 1:100009. [PMID: 34909713 PMCID: PMC8659385 DOI: 10.1016/j.xjidi.2021.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
EGFR inhibitors used in oncology therapy modify the keratinocyte differentiation processes, impairing proper skin barrier formation and leading to cutaneous adverse drug reactions. To uncover the molecular signatures associated with cutaneous adverse drug reactions, we applied phosphoproteomic and transcriptomic assays on reconstructed human epidermis tissues exposed to a therapeutically relevant concentration of afatinib, a second-generation EGFR inhibitor. After drug exposure, we observed activation of the phosphatidylinositol 3-kinase/protein kinase B pathway associated with an increased expression of gene families involved in keratinocyte differentiation, senescence, oxidative stress, and alterations in the epidermal immune-related markers. Furthermore, our results show that afatinib may interfere with vitamin D3 metabolism, acting via CYP27A1 and CYP24A1 to regulate calcium concentration through the phosphatidylinositol 3-kinase/protein kinase B pathway. Consequently, basal layer keratinocytes switch from a pro-proliferating to a prodifferentiative program, characterized by upregulation of biomarkers associated with increased keratinization, cornification, T helper type 2 response, and decreased innate immunity. Such effects may increase skin susceptibility to cutaneous penetration of irritants and pathogens. Taken together, these findings demonstrate a molecular mechanism of EGFR inhibitor–induced cutaneous adverse drug reactions.
Collapse
Key Words
- 1,25(OH)2VD3, 1,25-dihydroxyvitamine D3
- AFA, afatinib
- Akt, protein kinase B
- C, cluster
- CADR, cutaneous adverse drug reaction
- CYP, cytochrome P450
- EGFRi, EGFR inhibitor
- K, keratin
- KC, keratinocyte
- LCE, late cornified envelope
- PI3K, phosphatidylinositol 3-kinase
- RHE, reconstructed human epidermis
- TKI, tyrosine kinase inhibitor
- Th, T helper type
- VD3, vitamin D3
Collapse
|
8
|
Zurkinden L, Sviridov D, Vogt B, Escher G. Downregulation of Cyp7a1 by Cholic Acid and Chenodeoxycholic Acid in Cyp27a1/ApoE Double Knockout Mice: Differential Cardiovascular Outcome. Front Endocrinol (Lausanne) 2020; 11:586980. [PMID: 33193099 PMCID: PMC7656987 DOI: 10.3389/fendo.2020.586980] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
Sterol 27-hydroxylase (CYP27A1) is a key enzyme in bile acids (BAs) biosynthesis and a regulator of cholesterol metabolism. Cyp27a1/Apolipoprotein E double knockout (DKO) mice fed with western diet (WD) are protected from atherosclerosis via up-regulation of hepatic Cyp7a1 and Cyp3a11. Since feeding BAs ameliorates metabolic changes in Cyp27a1 KO mice, we tested BAs feeding on the development of atherosclerosis in DKO mice. DKO mice were fed for 8 weeks with WD containing 0.1% cholic acid (CA) (WD-CA) or chenodeoxycholic acid (CDCA) (WD-CDCA). Atherosclerotic lesions, plasma lipoprotein composition and functionality, hepatic lipid content, BAs amount and composition, expression of genes involved in lipid metabolism and BA signaling in liver and intestine as well as intestinal cholesterol absorption were assessed. Hepatic Cyp7a1 and Cyp3a11 expression were reduced by 60% after feeding with both WD-CA and WD-CDCA. After feeding with WD-CA we observed a 40-fold increase in the abundance of atherosclerotic lesions in the aortic valve, doubling of the levels of plasma total and low density lipoprotein cholesterol and halving of the level of high density lipoprotein cholesterol. Furthermore, in these mice plasma cholesterol efflux capacity decreased by 30%, hepatic BA content increased 10-fold, intestinal cholesterol absorption increased 6-fold. No such changes were observed in mice fed with WD-CDCA. Despite similar reduction on Cyp7a1 and Cyp3a11 hepatic expression, CA and CDCA have a drastically different impact on development of atherosclerosis, plasma and hepatic lipids, BAs composition and intestinal absorption. Reduced cholesterol absorption contributes largely to athero-protection in DKO mice.
Collapse
Affiliation(s)
- Line Zurkinden
- Department of Nephrology and Hypertension, Insel Gruppe, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Insel Gruppe, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Genevieve Escher
- Department of Nephrology and Hypertension, Insel Gruppe, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Geneviève Escher,
| |
Collapse
|
9
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
10
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
11
|
Abdel-Khalik J, Crick PJ, Yutuc E, DeBarber AE, Duell PB, Steiner RD, Laina I, Wang Y, Griffiths WJ. Identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma. Biochimie 2018; 153:86-98. [PMID: 29960034 PMCID: PMC6171785 DOI: 10.1016/j.biochi.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
Dihydroxyoxocholestenoic acids are intermediates in bile acid biosynthesis. Here, using liquid chromatography – mass spectrometry, we confirm the identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in cerebrospinal fluid (CSF) based on comparisons to authentic standards and of 7α,12α-dihydroxy-3-oxocholest-4-en-26-oic and 7α,x-dihydroxy-3-oxocholest-4-en-26-oic (where hydroxylation is likely on C-22 or C-23) based on exact mass measurement and multistage fragmentation. Surprisingly, patients suffering from the inborn error of metabolism cerebrotendinous xanthomatosis, where the enzyme CYP27A1, which normally introduces the (25 R)26-carboxylic acid group to the sterol side-chain, is defective still synthesise 7α,24-dihydroxy-3-oxocholest-4-en-26-oic acid and also both 25 R- and 25 S-epimers of 7α,12α-dihydroxy-3-oxocholest-4-en-26-oic acid. We speculate that the enzymes CYP46A1 and CYP3A4 may have C-26 carboxylase activity to generate these acids. In patients suffering from hereditary spastic paraplegia type 5 the CSF concentrations of the 7α,24- and 7α,25-dihydroxy acids are reduced, suggesting an involvement of CYP7B1 in their biosynthesis in brain. Dihydroxy-3-oxocholest-5-en-26-oic are found in human CSF and plasma. Hydroxy groups may be at 7α,24, 7α,25, or 7α,12α. Another acid is hydroxylated at 7α and in the side-chain probably at C-22 or C-23. In patients with CTX acids with 25 R or 25 S stereochemistry are found. In patients with SPG5 the concentrations of acids in CSF are reduced.
Collapse
Affiliation(s)
- Jonas Abdel-Khalik
- Institute of Life Science, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, UK
| | - Peter J Crick
- Institute of Life Science, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, UK
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrea E DeBarber
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Robert D Steiner
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ioanna Laina
- Athens Medical Group, Athens Medical Center, Marousi Athens, Greece
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, UK.
| | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
12
|
Xin J, Zheng LM, Sun DK, Li XF, Xu P, Tian LQ. miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma. Oncol Lett 2018; 16:1439-1448. [PMID: 30008822 PMCID: PMC6036494 DOI: 10.3892/ol.2018.8846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common type of malignant primary brain tumors in adults and exhibit a spectrum of aberrantly aggressive phenotypes. Despite advances in treatments during past decades, prognosis of the disease remains poor, with a median survival time of 12-14 months. Future studies on the molecular mechanism of the disease may provide the theoretical basis to identify new targets for effective therapies. The present study revealed that in glioblastoma cells, the overexpression of cytochrome P450, family 27, subfamily A, polypeptide 1 (CYP27A1) promoted proliferation, while silencing of CYP27A1 inhibited proliferation, without affecting migration and invasion. CYP27A1 protein was upregulated in glioblastoma tissues, indicating that CYP27A1 is an oncogene. The downregulation of specific microRNAs (miRNA) may contribute to the upregulation of oncogenes in glioblastoma. A common strategy was used to predict target miRNAs of CPY27A1 using the miRanda algorithm. miR-211 and miR-204 could target the 3'untranslated region of CPY27A1 mRNA. Additional studies confirmed that the overexpression of miR-204 inhibited CPY27A1 expression in glioblastoma cells. Finally, it was identified that miR-204 was downregulated in glioblastoma and that its overexpression inhibited proliferation, migration and invasion in glioblastoma cells. Thus, it was concluded that miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma.
Collapse
Affiliation(s)
- Jun Xin
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Li-Min Zheng
- Department of Neurosurgery, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - De-Ke Sun
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Xian-Feng Li
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Peng Xu
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Li-Qiang Tian
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
13
|
Sterol 27-hydroxylase gene dosage and the antiatherosclerotic effect of Rifampicin in mice. Biosci Rep 2018; 38:BSR20171162. [PMID: 29191818 PMCID: PMC5784176 DOI: 10.1042/bsr20171162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/03/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Sterol 27-hydroxylase (CYP27A1) catalyzes the hydroxylation of cholesterol to 27-hydroxycholesterol (27-OHC) and regulates cholesterol homeostasis. In Cyp27a1/ Apolipoprotein E (ApoE) double knockout (KO) mice fed with Western diet (WD), the atherosclerotic phenotype found in ApoE KO mice was reversed. As protective mechanism, up-regulation of Cyp3a11 and Cyp7a1 was proposed. Cyp27a1 heterozygote/ApoE KO (het) mice, with reduced Cyp27a1 expression and normal levels of Cyp7a1 and Cyp3a11, developed more severe lesions than ApoE KO mice. To analyze the contribution of Cyp3a11 to the protection of atherosclerosis development, Cyp3a11 was induced by Rifampicin (RIF) in ApoE KO and het mice. Males were fed with WD and treated daily with RIF (10 mg/kg ip) or vehicle for 4 weeks. Atherosclerosis was quantified in the aortic valve. Plasma lipids and 27-hydroxycholesterol (27-OHC), expression of cytochromes P450 and genes involved in cholesterol transport and bile acids (BAs) signaling in liver and intestine, and intestinal cholesterol absorption were analyzed. RIF increased expression of hepatic but not intestinal Cyp3a11 4-fold in both genotypes. In ApoE KO mice treated with RIF, we found a 2-fold decrease in plasma cholesterol, and a 2-fold increase in high-density lipoprotein/low-density lipoprotein ratio and CY27A1 activity. Intestinal cholesterol absorption remained unchanged and atherosclerotic lesions decreased approximately 3-fold. In het mice, RIF had no effect on plasma lipids composition, CYP27A1 activity, and atherosclerotic plaque development, despite a reduction in cholesterol absorption. In conclusion, the antiatherogenic effect of Cyp3a11 induction by RIF was also dependent on Cyp27a1 expression.
Collapse
|
14
|
Mistry HD, Kurlak LO, Mansour YT, Zurkinden L, Mohaupt MG, Escher G. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia. J Lipid Res 2017; 58:1186-1195. [PMID: 28396342 DOI: 10.1194/jlr.m071985] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/07/2017] [Indexed: 01/17/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples (P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia (P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia (P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis.
Collapse
Affiliation(s)
- Hiten D Mistry
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland .,Division of Child Health, Obstetrics, and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Lesia O Kurlak
- Division of Child Health, Obstetrics, and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Yosef T Mansour
- Division of Women's Health, Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Line Zurkinden
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| | - Markus G Mohaupt
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| | - Geneviève Escher
- Department of Nephrology, Hypertension, Clinical Pharmacology, and Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Sánchez-Guijo A, Neunzig J, Gerber A, Oji V, Hartmann MF, Schuppe HC, Traupe H, Bernhardt R, Wudy SA. Role of steroid sulfatase in steroid homeostasis and characterization of the sulfated steroid pathway: Evidence from steroid sulfatase deficiency. Mol Cell Endocrinol 2016; 437:142-153. [PMID: 27531568 DOI: 10.1016/j.mce.2016.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/23/2022]
Abstract
The impact of steroid sulfatase (STS) activity in the circulating levels of both sulfated and unconjugated steroids is only partially known. In addition, the sulfated steroid pathway, a parallel pathway to the one for unconjugated steroids, which uses the same enzymes, has never been characterized in detail before. Patients with steroid sulfatase deficiency (STSD) are unable to enzymatically convert sulfated steroids into their unconjugated forms, and are a good model to elucidate how STS affects steroid biosynthesis and to study the metabolism of sulfated steroids. We quantified unconjugated and sulfated steroids in STSD serum, and compared these results with data obtained from serum of healthy controls. Most sulfated steroids were increased in STSD. However, androstenediol-3-sulfate and epiandrosterone sulfate showed similar levels in both groups, and the concentrations of androsterone sulfate were notably lower. Hydroxylated forms of DHEAS and of pregnenolone sulfate were found to be increased in STSD, suggesting a mechanism to improve the excretion of sulfated steroids. STSD testosterone concentrations were normal, but cholesterol and DHEA were significantly decreased. Additionally, serum bile acids were three-fold higher in STSD. Correlations between concentrations of steroids in each group indicate that 17α-hydroxy-pregnenolone-3-sulfate in men is mainly biosynthesized from the precursor pregnenolone sulfate and androstenediol-3-sulfate from DHEAS. These findings confirm the coexistence of two steroidogenic pathways: one for unconjugated steroids and another one for sulfated steroids. Each pathway is responsible for the synthesis of specific steroids. The equal levels of testosterone, and the reduced level of unconjugated precursors in STSD, support that testosterone is primarily synthesized from sulfated steroids. In consequence, testosterone synthesis in STSD relies on an enzyme with sulfatase activity other than STS. This study reveals that STS is a key player of steroid biosynthesis regulating the availability of circulating cholesterol.
Collapse
Affiliation(s)
- Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392, Giessen, Germany.
| | - Jens Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123, Saarbrücken, Germany
| | - Adrian Gerber
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123, Saarbrücken, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, 48149, Münster, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University, 35385, Giessen, Germany
| | - Heiko Traupe
- Department of Dermatology, University of Münster, 48149, Münster, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123, Saarbrücken, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392, Giessen, Germany
| |
Collapse
|
16
|
The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production. J Bacteriol 2015; 197:3698-707. [PMID: 26391209 PMCID: PMC4626898 DOI: 10.1128/jb.00625-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/05/2015] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.
Collapse
|
17
|
Steroid hydroxylation by basidiomycete peroxygenases: a combined experimental and computational study. Appl Environ Microbiol 2015; 81:4130-42. [PMID: 25862224 DOI: 10.1128/aem.00660-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022] Open
Abstract
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106-118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed.
Collapse
|
18
|
Sánchez-Guijo A, Oji V, Hartmann MF, Schuppe HC, Traupe H, Wudy SA. High levels of oxysterol sulfates in serum of patients with steroid sulfatase deficiency. J Lipid Res 2014; 56:403-12. [PMID: 25502769 DOI: 10.1194/jlr.m055608] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Steroid sulfatase (STS) deficiency is the underlying cause of the skin condition known as recessive X-linked ichthyosis (RXLI). RXLI patients show scales on their skin caused by high concentrations of cholesterol sulfate (CS), as they are not capable of releasing the sulfate group from its structure to obtain free cholesterol. CS has been reported, so far, as the sole sulfated steroid with increased concentrations in the blood of RXLI patients. A non-targeted LC-MS approach in negative mode detection (LC-MS precursor ion scan mode) was applied to serum samples of 12 RXLI patients and 19 healthy males. We found that CS was not the only sulfated compound consistently elevated in RXLI patients, because a group of compounds with a m/z of 481 was found in high concentrations too. Further LC-MS/MS demonstrated that the main contributor to the m/z 481 signal in RXLI serum is 27-hydroxycholesterol-3-sulfate (27OHC3S). Accordingly, a new method for 27OHC3S quantification in the context of RXLI has been developed and validated. Other hydroxycholesterol sulfate compounds were elevated as well in RXLI patients.
Collapse
Affiliation(s)
- Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Vinzenz Oji
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University, 35385 Giessen, Germany
| | - Heiko Traupe
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| |
Collapse
|
19
|
Zurkinden L, Solcà C, Vögeli IA, Vogt B, Ackermann D, Erickson SK, Frey FJ, Sviridov D, Escher G. Effect of Cyp27A1 gene dosage on atherosclerosis development in ApoE-knockout mice. FASEB J 2013; 28:1198-209. [PMID: 24327605 DOI: 10.1096/fj.13-233791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans, sterol 27-hydroxylase (CYP27A1) deficiency leads to cholesterol deposition in tendons and vasculature. Thus, in addition to its role in bile acid synthesis, where it converts cholesterol to 27-hydroxycholesterol (27-OHC), CYP27A1 may also be atheroprotective. Cyp27A1-deficient (Cyp27A1(-/-)) mice were crossed with apolipoprotein E (apoE)-deficient mice. Cyp27A1(+/+)/apoE(-/-) [ApoE-knockout (KO)], Cyp27A1(+/-)/apoE(-/-) heterozygous (het), and Cyp27A1(-/-)/apoE(-/-) [double-knockout (DKO)] mice were challenged with a Western diet (WD) for 3 and 6 mo. ApoE-KO mice fed a chow diet or a WD were used as the control. The severity of atherosclerosis in DKO mice was reduced 10-fold. Compared with the control, the DKO mice had no 27-OHC, total plasma cholesterol and low-density lipoprotein and very low density lipoprotein (LDL/VLDL) concentrations were reduced 2-fold, and HDL was elevated 2-fold. Expression of hepatic CYP7A1, CYP3A, and CYP8B1 were 5- to 10-fold higher. 3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) activity increased 4-fold. Fecal cholesterol was increased. In contrast, het mice fed a WD developed accelerated atherosclerosis and severe skin lesions, possibly because of reduced reverse cholesterol transport due to diminished 27-OHC production. CYP27A1 activity is involved in the control of cholesterol homeostasis and development of atherosclerosis with a distinct gene dose-dependent effect.
Collapse
Affiliation(s)
- Line Zurkinden
- 2Department of Nephrology, Hypertension, and Clinical Pharmacology, University Hospital Berne, CH-3010 Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Charvet CD, Laird J, Xu Y, Salomon RG, Pikuleva IA. Posttranslational modification by an isolevuglandin diminishes activity of the mitochondrial cytochrome P450 27A1. J Lipid Res 2013; 54:1421-9. [PMID: 23479405 DOI: 10.1194/jlr.m035790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification by isolevuglandins (isoLGs), arachidonate oxidation products, is an important yet understudied process associated with altered protein properties. This type of modification is detected in cytochrome P450 27A1 (CYP27A1), a multifunction enzyme expressed in almost every cell and involved in the metabolism of cholesterol and other sterols. Previously, the CYP27A1 Lys(358)-isoLG adduct was found in human retina afflicted with age-related macular degeneration. Yet, the effect of Lys(358) modification on enzyme activity was not investigated. Herein, we characterized catalytic properties of Lys(358) as well as Lys(476) CYP27A1 mutants before and after isoLG treatment and quantified the extent of modification by multiple reaction monitoring. The K358R mutant was less susceptible to isoLG-induced loss of catalytic activity than the wild type (WT), whereas the K476R mutant was nearly as vulnerable as the WT. Both mutants showed less isoLG modification than WT. Thus, modification of Lys(358), a residue involved in redox partner interactions, is the major contributor to isoLG-associated loss of CYP27A1 activity. Our data show the specificity of isoLG modification, provide direct evidence that isoLG adduction impairs enzyme activity, and support our hypothesis that isoLG modification in the retina is detrimental to CYP27A1 enzyme activity, potentially disrupting cholesterol homeostasis.
Collapse
Affiliation(s)
- Casey D Charvet
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
21
|
Emanuelsson I, Norlin M. Protective effects of 27- and 24-hydroxycholesterol against staurosporine-induced cell death in undifferentiated neuroblastoma SH-SY5Y cells. Neurosci Lett 2012; 525:44-8. [DOI: 10.1016/j.neulet.2012.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
22
|
Pilo de la Fuente B, Sobrido M, Girós M, Pozo L, Lustres M, Barrero F, Macarrón J, Díaz M, Jiménez-Escrig A. Usefulness of cholestanol levels in the diagnosis and follow-up of patients with cerebrotendinous xanthomatosis. NEUROLOGÍA (ENGLISH EDITION) 2011. [DOI: 10.1016/j.nrleng.2010.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Pilo de la Fuente B, Sobrido MJ, Girós M, Pozo L, Lustres M, Barrero F, Macarrón J, Díaz M, Jiménez-Escrig A. [Usefulness of cholestanol levels in the diagnosis and follow-up of patients with cerebrotendinous xanthomatosis]. Neurologia 2011; 26:397-404. [PMID: 21345536 DOI: 10.1016/j.nrl.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/02/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disease caused by a deficiency of mitochondrial enzyme sterol 27-hydrolylase. Such a deficiency results in a reduced production of chenodeoxycholic acid and in an increased formation of cholestanol. It is clinically characterized by cataracts, diarrhoea, xanthomas, premature arteriosclerosis and a number of progressive neurological symptoms. Although cholestanol levels are used for the diagnosis of CTX, their correlation with the clinical symptoms and their prognostic usefulness have not been assessed so far. METHODS we reviewed 14 CTX patients diagnosed between 1995 and 2008 in two reference centres for the genetic diagnosis of this disorder, whose cholestanol levels had been recorded. We studied the main demographic, clinical and therapeutical data and their correlation with plasma cholestanol levels. RESULTS the average cholestanol level at diagnosis was 105.8 μmol/l. These levels did not correlate with any neurological symptoms or with disability at diagnosis scored by the EDSS. After treatment, all patients achieved a significant reduction in plasma cholestanol levels (average reduction of 91 μmol/l in an average follow-up of 34 months), although only one patient remained clinically stable. CONCLUSIONS high cholestanol levels are very useful for diagnosis of CTX but they do not have a prognostic value (they do not correlate with severity). Normalisation of cholestanol levels is not always associated with clinical stabilisation. However, follow-up of cholestanol levels can be useful for the dose adjustment.
Collapse
Affiliation(s)
- B Pilo de la Fuente
- Sección de Neurología, Hospital del Sureste, Arganda del Rey, Madrid, España.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnston JB, Ouellet H, Ortiz de Montellano PR. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 2010; 285:36352-60. [PMID: 20843794 DOI: 10.1074/jbc.m110.161117] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One challenge to the development of new antitubercular drugs is the existence of multiple virulent strains that differ genetically. We and others have recently demonstrated that CYP125A1 is a steroid C(26)-monooxygenase that plays a key role in cholesterol catabolism in Mycobacterium tuberculosis CDC1551 but, unexpectedly, not in the M. tuberculosis H37Rv strain. This discrepancy suggests that the H37Rv strain possesses compensatory activities. Here, we examined the roles in cholesterol metabolism of two other cytochrome P450 enzymes, CYP124A1 and CYP142A1. In vitro analysis, including comparisons of the binding affinities and catalytic efficiencies, demonstrated that CYP142A1, but not CYP124A1, can support the growth of H37Rv cells on cholesterol in the absence of cyp125A1. All three enzymes can oxidize the sterol side chain to the carboxylic acid state by sequential oxidation to the alcohol, aldehyde, and acid. Interestingly, CYP125A1 generates oxidized sterols of the (25S)-26-hydroxy configuration, whereas the opposite 25R stereochemistry is obtained with CYP124A1 and CYP142A1. Western blot analysis indicated that CYP124A1 was not detectably expressed in either the H37Rv or CDC1551 strains, whereas CYP142A1 was found in H37Rv but not CDC1551. Genetic complementation of CDC1551 Δcyp125A1 cells with the cyp124A1 or cyp142A1 genes revealed that the latter can fully rescue the growth defect on cholesterol, whereas cells overexpressing CYP124A1 grow poorly and accumulate cholest-4-en-3-one. Our data clearly establish a functional redundancy in the essential C(26)-monooxygenase activity of M. tuberculosis and validate CYP125A1 and CYP142A1 as possible drug targets.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
25
|
Johnston JB, Ouellet H, Podust LM, Ortiz de Montellano PR. Structural control of cytochrome P450-catalyzed ω-hydroxylation. Arch Biochem Biophys 2010; 507:86-94. [PMID: 20727847 DOI: 10.1016/j.abb.2010.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/25/2022]
Abstract
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C-H bond hydroxylation depends on the bond strength, and the primary C-H bond of a terminal methyl group is stronger than the secondary or tertiary C-H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C-H bond unless the protein structure specifically enforces primary C-H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω-1)-site.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California-San Francisco, CA 94158-2517, United States
| | | | | | | |
Collapse
|
26
|
Hojo K, Hakamata H, Takahashi A, Hosokawa YY, Kusu F. Determination of serum cholestanol by semi-micro high-performance liquid chromatography with electrochemical detection. Biomed Chromatogr 2009; 24:600-5. [DOI: 10.1002/bmc.1332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009; 50:1509-20. [PMID: 19346331 PMCID: PMC2724047 DOI: 10.1194/jlr.r900007-jlr200] [Citation(s) in RCA: 512] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/03/2009] [Indexed: 02/06/2023] Open
Abstract
In the past, bile acids were considered to be just detergent molecules derived from cholesterol in the liver. They were known to be important for the solubilization of cholesterol in the gallbladder and for stimulating the absorption of cholesterol, fat-soluble vitamins, and lipids from the intestines. However, during the last two decades, it has been discovered that bile acids are regulatory molecules. Bile acids have been discovered to activate specific nuclear receptors (farnesoid X receptor, preganane X receptor, and vitamin D receptor), G protein coupled receptor TGR5 (TGR5), and cell signaling pathways (c-jun N-terminal kinase 1/2, AKT, and ERK 1/2) in cells in the liver and gastrointestinal tract. Activation of nuclear receptors and cell signaling pathways alter the expression of numerous genes encoding enzyme/proteins involved in the regulation of bile acid, glucose, fatty acid, lipoprotein synthesis, metabolism, transport, and energy metabolism. They also play a role in the regulation of serum triglyceride levels in humans and rodents. Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of these molecules returning from the intestines to the liver following a meal. In this review, we will summarize the current knowledge of how bile acids regulate hepatic lipid and glucose metabolism through the activation of specific nuclear receptors and cell signaling pathways.
Collapse
Affiliation(s)
- Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0678, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Counterpoint: Sorting wheat from chaff. J Clin Lipidol 2008; 2:306-7. [DOI: 10.1016/j.jacl.2008.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/08/2008] [Indexed: 11/24/2022]
|
29
|
Pettersson H, Norlin M, Andersson U, Pikuleva I, Björkhem I, Misharin AY, Wikvall K. Metabolism of a novel side chain modified Delta8(14)-15-ketosterol, a potential cholesterol lowering drug: 28-hydroxylation by CYP27A1. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:383-90. [PMID: 18603016 DOI: 10.1016/j.bbalip.2008.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/06/2008] [Accepted: 05/28/2008] [Indexed: 11/25/2022]
Abstract
The synthetic inhibitors of sterol biosynthesis, 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one and 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one, are of interest as potential cholesterol lowering drugs. Rapid metabolism of synthetic 15-ketosterols may lead to a decrease, or loss, of their potency to affect lipid metabolism. 3beta-Hydroxy-5alpha-cholest-8(14)-en-15-one is reported to be rapidly side chain oxygenated by rat liver mitochondria. In an attempt to reduce this metabolism, the novel side chain modified 15-ketosterol 3beta-Hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one was synthesized. We have examined the metabolism by recombinant human CYP27A1 of this novel side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one and compared the rate of metabolism with that of the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. Both sterols were found to be efficiently metabolized by recombinant human CYP27A1. None of the two 15-ketosterols was significantly metabolized by microsomal 7alpha-hydroxylation. Interestingly, CYP27A1-mediated product formation was much lower with the side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one than with the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. A surprising finding was that this novel side chain modified sterol was metabolized mainly in the C-28 position by CYP27A1. The data on 28-hydroxylation by human CYP27A1 provide new insights on the catalytic properties and substrate specificity of this enzyme. The finding that 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one with a modified side chain is metabolized at a dramatically slower rate than the previously described 15-ketosterol with unmodified side chain may be important for future development of synthetic cholesterol lowering sterols.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Lövgren-Sandblom A, Heverin M, Larsson H, Lundström E, Wahren J, Diczfalusy U, Björkhem I. Novel LC–MS/MS method for assay of 7α-hydroxy-4-cholesten-3-one in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 856:15-9. [PMID: 17561450 DOI: 10.1016/j.jchromb.2007.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
A new isotope dilution LC-MS/MS method for assay of 7alpha-hydroxy-4-cholesten-3-one without need for derivatization is described. This method was used in catheterization experiments on healthy fasting volunteers. The levels of this generally used marker for bile acid synthesis were slightly but significantly higher in the hepatic vein than in the brachial artery. In contrast, the levels of the precursor to 7alpha-hydroxy-4 cholesten-3-one, 7alpha-hydroxycholesterol, were the same in the two vessels. It is concluded that there is a net extrahepatic metabolism of 7alpha-hydroxy-4-cholesten-3-one. The similarity and very high correlation between the levels in the two vessels (r=0.97) are consistent with the contention that 7alpha-hydroxy-4-cholesten-3-one is a suitable marker for the activity of the hepatic cholesterol 7alpha-hydroxylase and thus bile acid synthesis.
Collapse
Affiliation(s)
- Anita Lövgren-Sandblom
- Division of Clinical Chemistry, Karolinska University Hospital, Huddinge and Solna, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Fuda H, Javitt NB, Mitamura K, Ikegawa S, Strott CA. Oxysterols are substrates for cholesterol sulfotransferase. J Lipid Res 2007; 48:1343-52. [PMID: 17347498 DOI: 10.1194/jlr.m700018-jlr200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxysterols constitute a class of cholesterol derivatives that exhibit broad biological effects ranging from cytotoxicity to regulation of nuclear receptors. The role of oxysterols such as 7-ketocholesterol (7-KC) in the development of retinal macular degeneration and atheromatous lesions is of particular interest, but little is known of their metabolic fate. We establish that the steroid/sterol sulfotransferase SULT2B1b, known to efficiently sulfonate cholesterol, also effectively sulfonates a variety of oxysterols, including 7-KC. The cytotoxic effect of 7-KC on 293T cells was attenuated when these cells, which do not express SULT2B1b, were transfected with SULT2B1b cDNA. Importantly, protection from 7-KC-induced loss of cell viability with transfection correlated with the synthesis of SULT2B1b protein and the production of the 7-KC sulfoconjugate (7-KCS). Moreover, when 7-KCS was added to the culture medium of 293T cells in amounts equimolar to 7-KC, no loss of cell viability occurred. Additionally, MCF-7 cells, which highly express SULT2B1b, were significantly more resistant to the cytotoxic effect of 7-KC. We extended the range of oxysterol substrates for SULT2B1b to include 7alpha/7beta-hydroxycholesterol and 5alpha,6alpha/5beta,6beta-epoxycholesterol as well as the 7alpha-hydroperoxide derivative of cholesterol. Thus, SULT2B1b, by acting on a variety of oxysterols, offers a potential pathway for modulating in vivo the injurious effects of these compounds.
Collapse
Affiliation(s)
- Hirotoshi Fuda
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
32
|
Tang W, Norlin M, Wikvall K. Regulation of human CYP27A1 by estrogens and androgens in HepG2 and prostate cells. Arch Biochem Biophys 2007; 462:13-20. [PMID: 17482558 DOI: 10.1016/j.abb.2007.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/16/2007] [Accepted: 04/02/2007] [Indexed: 11/21/2022]
Abstract
The regulation of the human CYP27A1 gene by estrogens and androgens was studied in human liver-derived HepG2 and prostate cells. Our results show that the promoter activity, enzymatic activity and mRNA levels of CYP27A1 in HepG2 cells are downregulated by estrogen in presence of ERalpha or ERbeta. Similar effects by estrogen were found in RWPE-1 prostate cells. In contrast, estrogen markedly upregulated the transcriptional activity of CYP27A1 in LNCaP prostate cancer cells. 5alpha-Dihydrotestosterone and androgen receptor upregulated the transcriptional activity of CYP27A1 in HepG2 cells. Progressive deletion experiments indicate that the ERbeta-mediated effects in HepG2 and LNCaP cells are conferred to the same region (-451/+42) whereas ERalpha-mediated effects on this promoter are more complex. The results indicate that the stimulating effect of androgen in HepG2 cells is conferred to a region upstream from -792 in the CYP27A1 promoter. In summary, we have identified the human CYP27A1 gene as a target for estrogens and androgens. The results imply that expression of CYP27A1 may be affected by endogenous sex hormones and pharmacological compounds with estrogenic or androgenic effects.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
33
|
Bhattacharyya AK, Lin DS, Connor WE. Cholestanol metabolism in patients with cerebrotendinous xanthomatosis: absorption, turnover, and tissue deposition. J Lipid Res 2006; 48:185-92. [PMID: 17012751 DOI: 10.1194/jlr.m600113-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To study the metabolism of cholestanol in patients with cerebrotendinous xanthomatosis (CTX), we measured the cholestanol absorption, the cholesterol and cholestanol turnover, and the tissue content of sterols in two patients. Cholestanol absorption was approximately 5.0%. The rapid exchangeable pool of cholestanol was 233 mg, and the total exchangeable pool was 752 mg. The production rate of cholestanol in pool A was 39 mg/day. [4-14C]cholestanol was detected in the xanthomas, but neither [4-14C]cholestanol nor [4-14C]cholesterol was detected in peripheral nerves biopsied at 49 and 97 days after [4-14C]cholesterol given intravenously. Of the 18 tissues analyzed at biopsy and autopsy, the cholestanol content varied from 0.09 mg/g in psoas muscle to 76 mg/g in a cerebellar xanthoma. With the assumption that the cholestanol-to-cholesterol ratio is 1.0, the relative cholestanol-to-cholesterol ratio varied from 1.0 in plasma and liver to 30.0 in the cerebellar xanthoma; cholestanol was especially high in nerve tissue. Our data indicate that CTX patients absorb cholestanol from the diet. They have a higher than normal cholestanol production rate. Cholestanol was derived from cholesterol. In CTX patients, the blood-brain barrier was intact to the passage of [4-14C]cholesterol and [4-14C]cholestanol. The deposition of large amounts of cholestanol (up to 30% of total sterols in cerebellum) in nerve tissues must have an important role in the neurological symptoms in CTX patients. In view of the intact blood-brain barrier, several other explanations for the large amounts of cholestanol in the brain were postulated.
Collapse
Affiliation(s)
- Ashim K Bhattacharyya
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
34
|
Piĭr EA, Morozevich GE, Drozdov FV, Timofeev VP, Misharin AI. Δ5-7-Ketosterols with modified side chain: The synthesis and the effects on viability and cholesterol biosynthesis in Hep G2 cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 32:551-8. [PMID: 17042274 DOI: 10.1134/s1068162006050141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
(22E)-3beta-Hydroxysitosta-5,22-dien-7-one, (22R, 23R)-3beta,22,23-trihydroxysitost-5-en-7-one, and (22R, 23R)-3beta-hydroxy-22,23-isopropylidenedioxysitost-5-en-7-one were synthesized. The cytotoxicity and effects on cholesterol biosynthesis of the resulting 7-ketosterols, 7-ketocholesterol, and (22S,23S)-3beta-hydroxy-22,23-oxidositost-5-en-7-one were studied in hepatoblastoma Hep G2 cells.
Collapse
|
35
|
Mast N, Murtazina D, Liu H, Graham SE, Bjorkhem I, Halpert JR, Peterson J, Pikuleva IA. Distinct binding of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol to cytochrome P450 27A1: evidence from modeling and site-directed mutagenesis studies. Biochemistry 2006; 45:4396-404. [PMID: 16584175 DOI: 10.1021/bi052654w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 27A1 (P450 27A1 or CYP27A1) is an important enzyme that participates in different pathways of cholesterol degradation as well as in the activation of vitamin D(3). Several approaches were utilized to investigate how two physiological substrates, cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol, interact with CYP27A1. The enzyme active site was first probed spectrally by assessing binding of the two substrates and five substrate analogues followed by computer modeling and site-directed mutagenesis. The computer models suggest that the spatial positions and orientations of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol are different in the enzyme active site. As a result, some of the active site residues interact with both substrates, although they are situated differently relative to each steroid, and some residues bind only one substrate. Mutation of the overlapping substrate-contact residues (W100, H103, T110, M301C, V367, I481, and V482) affected CYP27A1 binding and enzyme activity in a substrate-dependent manner and allowed identification of several important side chains. T110 is proposed to interact with the 12alpha-hydroxyl of 5beta-cholestane-3alpha,7alpha,12alpha-triol, whereas V367 seems to be crucial for correct positioning of the cholesterol C26 methyl group and for regioselective hydroxylation of this substrate. Distinct binding of the CYP27A1 substrates may provide insight into why phenotypic manifestations of cerebrotendinous xanthomatosis, a disease associated with CYP27A1 deficiency, are so diverse.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124:1209-23. [PMID: 16529801 DOI: 10.1016/j.cell.2006.01.037] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 11/22/2022]
Abstract
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Collapse
Affiliation(s)
- Daniel L Motola
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Prosser DE, Guo Y, Jia Z, Jones G. Structural motif-based homology modeling of CYP27A1 and site-directed mutational analyses affecting vitamin D hydroxylation. Biophys J 2006; 90:3389-409. [PMID: 16500955 PMCID: PMC1440725 DOI: 10.1529/biophysj.105.069369] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D(3) and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D(3) structures into the active site of this model identified potential substrate contact residues in the F-helix, the beta-3 sheet, and the beta-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1alpha-hydroxyvitamin D(3) to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the beta-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the beta-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.
Collapse
Affiliation(s)
- David E Prosser
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2004; 280:7377-87. [PMID: 15591071 DOI: 10.1074/jbc.m409071200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the neurotoxic peptide beta-amyloid, which is produced by proteolysis of amyloid precursor protein (APP). APP is a large membrane-bound copper-binding protein that is essential in maintaining synaptic function and may play a role in synaptogenesis. beta-Amyloid has been shown to contribute to the oxidative stress that accompanies AD. Later stages of AD are characterized by neuronal apoptosis. However, the biochemical function of APP and the mechanism of the toxicity of beta-amyloid are still unclear. In this study, we show that both beta-amyloid and APP can oxidize cholesterol to form 7beta-hydroxycholesterol, a proapoptotic oxysterol that was neurotoxic at nanomolar concentrations. 7beta-Hydroxycholesterol inhibited secretion of soluble APP from cultured rat hippocampal H19-7/IGF-IR neuronal cells and inhibited tumor necrosis factor-alpha-converting enzyme alpha-secretase activity but had no effect on beta-site APP-cleaving enzyme 1 activity. 7beta-Hydroxycholesterol was also a potent inhibitor of alpha-protein kinase C, with a K(i) of approximately 0.2 nm. The rate of reaction between cholesterol and beta-amyloid was comparable to the rates of cholesterol-metabolizing enzymes (k(cat) = 0.211 min(-)1). The rate of production of 7beta-hydroxycholesterol by APP was approximately 200 times lower than by beta-amyloid. Oxidation of cholesterol was accompanied by stoichiometric production of hydrogen peroxide and required divalent copper. The results suggest that a function of APP may be to produce low levels of 7-hydroxycholesterol. Higher levels produced by beta-amyloid could contribute to the oxidative stress and cell loss observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
39
|
Meaney S, Bonfield TL, Hansson M, Babiker A, Kavuru MS, Thomassen MJ. Serum cholestenoic acid as a potential marker of pulmonary cholesterol homeostasis: increased levels in patients with pulmonary alveolar proteinosis. J Lipid Res 2004; 45:2354-60. [PMID: 15466366 DOI: 10.1194/jlr.m400302-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conversion of cholesterol into the more polar metabolites 27-hydroxycholesterol (27-OH) and cholestenoic acid by the cytochrome P450 sterol 27-hydroxylase is a cholesterol-removal mechanism used by almost all cells. Most of the cholestenoic acid present in the circulation originates from the lung, and it has been suggested that sterol 27-hydroxylase is of particular importance for cholesterol homeostasis in this organ. As an example of pulmonary cholesterol accumulation, a known disorder of surfactant homeostasis, pulmonary alveolar proteinosis (PAP), was studied. Analysis of bronchoalveolar lavage fluid from PAP patients revealed a significant accumulation of the cholesterol metabolites cholestenoic acid and 27-OH. This pattern was recapitulated in serum, with a significant increase in the levels of both cholestenoic acid (P=0.003) and 27-OH (P=0.017) in PAP patients compared with healthy controls. Analysis of PAP alveolar macrophages did not reveal a significant change in mRNA expression levels of either sterol 27-hydroxylase or the cholesterol-esterifying enzyme acyl-CoA:cholesterol acyltransferase-1. These results are consistent with the contention that substrate availability, rather than enzyme expression, is the key factor in regulating the production of cholestenoic acid by the lung and that serum cholestenoic acid may be a marker of pulmonary cholesterol homeostasis.
Collapse
Affiliation(s)
- Steve Meaney
- Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|