1
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
2
|
Valorization of Side Stream Products from Sea Cage Fattened Bluefin Tuna (Thunnus thynnus): Production and In Vitro Bioactivity Evaluation of Enriched ω-3 Polyunsaturated Fatty Acids. Mar Drugs 2022; 20:md20050309. [PMID: 35621959 PMCID: PMC9147267 DOI: 10.3390/md20050309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
The valorization of side streams from fishery and aquaculture value-chains is a valuable solution to address one of the challenges of the circular economy: turning wastes into profit. Side streams produced after filleting of sea cage fattened bluefin tuna (Thunnus thynnus) were analyzed for proximate composition and fatty acid profile to evaluate the possibility of producing tuna oil (TO) as a valuable source of ω-3 polyunsaturated fatty acids (PUFA) and testing its bioactivity in vitro. Ethyl esters of total fatty acids (TFA), obtained from TO, were pre-enriched by urea complexation (PUFA-Ue) and then enriched by short path distillation (SPD) up to almost 85% of the PUFA fraction (PUFA-SPe). The bioactivity of TFA, PUFA-SPe, and ethyl esters of depleted PUFA (PUFA-SPd) were tested in vitro, through analysis of lipid metabolism genes, in gilthead sea bream (Sparus aurata) fibroblast cell line (SAF-1) exposed to oils. TFA and PUFA-SPd upregulated transcription factors (pparβ and pparγ) and lipid metabolism-related genes (D6D, fas, fabp, fatp1, and cd36), indicating the promotion of adipogenesis. PUFA-SPe treated cells were similar to control. PUFA-SPe extracted from farmed bluefin tuna side streams could be utilized in fish feed formulations to prevent excessive fat deposition, contributing to improving both the sustainability of aquaculture and the quality of its products.
Collapse
|
3
|
Ree J, Kim JI, Lee CW, Lee J, Kim HJ, Kim SC, Sohng JK, Park YI. Quinizarin suppresses the differentiation of adipocytes and lipogenesis in vitro and in vivo via downregulation of C/EBP-beta/SREBP pathway. Life Sci 2021; 287:120131. [PMID: 34767806 DOI: 10.1016/j.lfs.2021.120131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022]
Abstract
AIMS Potential anti-obesity effects of quinizarin, a plant anthraquinone, were investigated using 3 T3-L1 preadipocyte cells and high-fat diet (HD)-induced obese mice. MAIN METHOD Cell viability was determined using the MTT assay. Triglyceride (TG) and lipid accumulation were determined using a TG assay kit and Oil Red O staining, respectively. Adipogenic, lipogenic, and lipolytic gene and protein expression was measured by RT-PCR or Western blot. Serum biochemical indices, including cholesterol and blood glucose, in HD-fed obese mice were determined using corresponding assay kits. Histological analysis was performed with haematoxylin and eosin (H&E) staining. RESULTS Quinizarin (0-10 μM) significantly reduced intracellular TG and lipid droplets during the differentiation of preadipocytes. Quinizarin significantly suppressed the expression of adipocyte differentiation marker proteins, such as CCAAT/enhancer-binding protein β (C/EBP-β), C/EBP-α, PPAR-γ, and aP2, and lipogenic marker proteins, including SREBP1c, SREBP2, fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1), reduced ACC2 expression and increased carnitine palmitoyltransferase 1 (CPT1) expression. Oral administration of quinizarin (15-30 mg/kg/day) to HD-fed mice for 6 weeks reduced the body weight gain and size of liver adipocytes and epididymal fat tissues, with significant reductions in liver TG and serum total cholesterol, blood glucose, LDL, and HDL levels. SIGNIFICANCE The results of this study indicated that quinizarin exerts anti-obesity effects by inhibiting both adipogenesis and lipogenesis and stimulating lipolysis in vitro and in vivo mainly by downregulating the SREBP signalling pathway; thus, it might be a potent candidate as a health-beneficial food or therapeutic agent to prevent or treat obesity.
Collapse
Affiliation(s)
- Jin Ree
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jun Il Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam 31460, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
4
|
Balogun O, Kang HW. Garlic Scape ( Allium sativum L.) Extract Decreases Adipogenesis by Activating AMK-Activated Protein Kinase During the Differentiation in 3T3-L1 Adipocytes. J Med Food 2021; 25:24-32. [PMID: 34619042 DOI: 10.1089/jmf.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulating adipogenesis and lipogenesis in white adipose tissue (WAT) is an efficient strategy to reduce obesity. This study investigates whether garlic scape extract (GSE) has anti-adipogenic and anti-lipogenic effects and which stage of adipogenesis is critical for its effect using 3T3-L1 cells. 3T3-L1 cells that were treated with GSE during adipogenesis and differentiation exhibited reduced peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein a (Cebpa) and Cebpb, acetyl-CoA carboxylase, fatty acid synthase, sterol regulatory element binding protein 1c, diacylglycerol acyltransferase 1, and perilipin 1 genes. When the cells were treated with GSE during postdifferentiation or during preadipocytes, they showed less reduction and no change, respectively. Consistent with this, lipid accumulation was strongly reduced in the cells that were treated during adipogenesis and differentiation and to a lesser extent in the cells that were treated during preadipocytes and postdifferentiation. Phosphorylation on AMP-activated protein kinase (AMPK) and its downstream proteins was increased together with increased carnitine palmitoyl transferase 1α and phosphorylation on hormone-sensitive lipase in the cells that were treated with GSE during differentiation. In summary, GSE reduced intracellular lipid accumulation by suppressing adipogenic and lipogenic genes and proteins by possibly the activation of AMPK signaling pathway during adipocyte differentiation. This result indicates that garlic scape may have the potential to prevent obesity by regulating lipid metabolism in WAT.
Collapse
Affiliation(s)
- Olugbenga Balogun
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| |
Collapse
|
5
|
Castelli V, Brandolini L, d’Angelo M, Giorgio C, Alfonsetti M, Cocchiaro P, Lombardi F, Cimini A, Allegretti M. CXCR1/2 Inhibitor Ladarixin Ameliorates the Insulin Resistance of 3T3-L1 Adipocytes by Inhibiting Inflammation and Improving Insulin Signaling. Cells 2021; 10:cells10092324. [PMID: 34571976 PMCID: PMC8471705 DOI: 10.3390/cells10092324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 01/02/2023] Open
Abstract
Type 2 diabetes mellitus is a severe public health issue worldwide. It displays a harmful effect on different organs as the eyes, kidneys and neural cells due to insulin resistance and high blood glucose concentrations. To date, the available treatments for this disorder remain limited. Several reports have correlated obesity with type 2 diabetes. Mainly, dysfunctional adipocytes and the regulation of high secretion of inflammatory cytokines are the crucial links between obesity and insulin resistance. Several clinical and epidemiological studies have also correlated the onset of type 2 diabetes with inflammation, which is now indicated as a new target for type 2 diabetes treatment. Thus, it appears essential to discover new drugs able to inhibit the secretion of proinflammatory adipocytokines in type 2 diabetes. Adipocytes produce inflammatory cytokines in response to inflammation or high glucose levels. Once activated by a specific ligand, CXCR1 and CXCR2 mediate some cytokines’ effects by activating an intracellular signal cascade once activated by a specific ligand. Therefore, it is conceivable to hypothesize that a specific antagonist of these receptors may ameliorate type 2 diabetes and glucose metabolism. Herein, differentiated 3T3-L1-adipocytes were subjected to high glucose or inflammatory conditions or the combination of both and then treated with ladarixin, a CXCR1/2 inhibitor. The results obtained point towards the positive regulation by ladarixin on insulin sensitivity, glucose transporters GLUT1 and GLUT4, cytokine proteome profile and lipid metabolism, thus suggesting ladarixin as a potentially helpful treatment in type 2 diabetes mellitus and obesity.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.d.); (M.A.); (F.L.)
| | - Laura Brandolini
- Dompè Farmaceutici SpA, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (C.G.); (P.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.d.); (M.A.); (F.L.)
| | - Cristina Giorgio
- Dompè Farmaceutici SpA, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (C.G.); (P.C.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.d.); (M.A.); (F.L.)
| | - Pasquale Cocchiaro
- Dompè Farmaceutici SpA, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (C.G.); (P.C.)
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.d.); (M.A.); (F.L.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.d.); (M.A.); (F.L.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.A.)
| | - Marcello Allegretti
- Dompè Farmaceutici SpA, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (C.G.); (P.C.)
- Correspondence: (A.C.); (M.A.)
| |
Collapse
|
6
|
Harvey I, Stephens JM. Artemisia scoparia promotes adipogenesis in the absence of adipogenic effectors. Obesity (Silver Spring) 2021; 29:1309-1319. [PMID: 34227239 PMCID: PMC8883808 DOI: 10.1002/oby.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Extracts of Artemisia scoparia (SCO) have antidiabetic properties in mice and enhance adipogenesis in vitro, but the underlying mechanisms are unknown. Thiazolidinediones, including rosiglitazone (ROSI), are pharmacological activators of peroxisome proliferator-activated receptor gamma that also promote adipogenesis. The aim of this study was to examine adipogenic pathways responsible for SCO-mediated adipogenesis and identify potential differences between SCO and ROSI in the ability to promote adipocyte development. METHODS The ability of SCO or ROSI to promote adipogenesis in 3T3-L1 cells following systematic omission of the common triad of adipogenic effectors dexamethasone, 1-methyl-3-isobutylxanthine (MIX), and insulin was examined. Adipogenesis was assessed by both neutral lipid quantitation and adipocyte marker gene expression. RESULTS The results demonstrate that SCO and ROSI promote adipogenesis and increase the expression of several peroxisome proliferator-activated receptor gamma target genes involved in lipid accumulation in the absence of MIX. However, ROSI can enhance adipogenesis in the absence of MIX and insulin and differentially regulates adipogenic and lipid metabolism genes as compared with SCO. CONCLUSIONS These data demonstrate the adipogenic capabilities of SCO are similar but not identical to ROSI, thereby warranting further research into SCO as a promising source of therapeutic compounds in the treatment of metabolic disease states.
Collapse
Affiliation(s)
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Phone (225) 763-2648, FAX (225) 578-2597,
| |
Collapse
|
7
|
Jin R, Hao J, Yi Y, Sauter E, Li B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158964. [PMID: 33984518 PMCID: PMC8169605 DOI: 10.1016/j.bbalip.2021.158964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are almost everywhere in the body, where they serve pivotal functions in maintaining tissue homeostasis, remodeling, and immunoregulation. Macrophages are traditionally thought to differentiate from bone marrow-derived hematopoietic stem cells (HSCs). Emerging studies suggest that some tissue macrophages at steady state originate from embryonic precursors in the yolk sac or fetal liver and are maintained in situ by self-renewal, but bone marrow-derived monocytes can give rise to tissue macrophages in pathogenic settings, such as inflammatory injuries and cancer. Macrophages are popularly classified as Th1 cytokine (e.g. IFNγ)-activated M1 macrophages (the classical activation) or Th2 cytokine (e.g. IL-4)-activated M2 macrophages (the alternative activation). However, given the myriad arrays of stimuli macrophages may encounter from local environment, macrophages exhibit notorious heterogeneity in their phenotypes and functions. Determining the underlying metabolic pathways engaged during macrophage activation is critical for understanding macrophage phenotypic and functional adaptivity under different disease settings. Fatty acid binding proteins (FABPs) represent a family of evolutionarily conserved proteins facilitating lipid transport, metabolism and responses inside cells. More specifically, adipose-FABP (A-FABP) and epidermal-FABP (E-FABP) are highly expressed in macrophages and play a central role in integrating metabolic and inflammatory pathways. In this review we highlight how A-FABP and E-FABP are respectively upregulated in different subsets of activated macrophages and provide a unique perspective in defining macrophage phenotypic and functional heterogeneity through FABP-regulated lipid metabolic and inflammatory pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, China
| | - Edward Sauter
- Division of Cancer Prevention, NIH/NCI, Bethesda, MD, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
9
|
Tsai MC, Huang SC, Chang WT, Chen SC, Hsu CL. Effect of Astaxanthin on the Inhibition of Lipid Accumulation in 3T3-L1 Adipocytes via Modulation of Lipogenesis and Fatty Acid Transport Pathways. Molecules 2020; 25:molecules25163598. [PMID: 32784687 PMCID: PMC7466122 DOI: 10.3390/molecules25163598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is defined as a condition of excessive fat tissue accumulation. It was the major factor most closely associated with lifestyle-related diseases. In the present study, we investigated the effect of astaxanthin on the inhibition of lipid accumulation in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with 0–25 µg/mL of astaxanthin for 0–48 h. The result indicated that astaxanthin significantly decreased the oil Red O stained material (OROSM), intracellular triglyceride accumulation, and glycerol 3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 adipocytes (p < 0.05). At the molecular level, astaxanthin significantly down-regulated the mRNA expression of peroxisome proliferator-activated receptor-γ (PPARγ) in 3T3-L1 adipocytes (p < 0.05). Moreover, target genes of PPARγ on the inhibition of lipogenesis, such as Acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), fatty acid binding protein (aP2), cluster of differentiation 36 (CD36), and lipoprotein lipase (LPL) in 3T3-L1 adipocytes were significantly down-regulated at a time-dependent manner (p < 0.05). These results suggested that astaxanthin efficiently suppressed lipid accumulation in 3T3-L1 adipocytes and its action is associated with the down-regulation of lipogenesis-related genes and the triglyceride accumulation in 3T3-L1 adipocytes. Therefore, astaxanthin can be developed as a potential nutraceutical ingredient for the prevention of obesity in a niche market.
Collapse
Affiliation(s)
- Mei-Chih Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-C.T.); (S.-C.H.)
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-C.T.); (S.-C.H.)
| | - Wei-Tang Chang
- Department of Nutrition and Health Nutrition, Chinese Culture University, Taipei 11114, Taiwan;
| | - Shiuan-Chih Chen
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (M.-C.T.); (S.-C.H.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022
| |
Collapse
|
10
|
Xie G, Wang Y, Xu Q, Hu M, Zhu J, Bai W, Lin Y. Knockdown of adiponectin promotes the adipogenesis of goat intramuscular preadipocytes. Anim Biotechnol 2020; 33:408-416. [PMID: 32755436 DOI: 10.1080/10495398.2020.1800484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intramuscular fat (IMF) content determined by the intramuscular preadipocytes differentiation has a huge influence on the sensory quality traits of meats. It was reported that the adiponectin (ADIPOQ) gene could promote adipocytes differentiation, but the underlying molecular and functional characterization of the ADIPOQ for regulating goat IMF deposition remained unknown. Herein, the knockdown of ADIPOQ was mediated by siRNAs during goat intramuscular preadipocytes differentiation. Also, the qRT-PCR technique was performed to detect the mRNA levels of target genes in multiply experiment groups. These results showed that the ADIPOQ was expressed more than ∼400 folds in subcutaneous adipose tissue compared to that of heart tissue, and the mRNA level of ADIPOQ reached a peak at Hour 60 during the differentiation process, while at Hour 36 did ADIPOR1 and ADIPOR2. Moreover, the knockdown of ADIPOQ promoted the intramuscular preadipocytes differentiation and accelerated the lipid accumulation in the mature adipocytes with down-regulating the ADIPOR1 and preadipocyte factor 1 (Pref-1) mRNA levels and up-regulating the mRNA expression levels of the CAAT/enhancer-binding proteins (C/EBPs) and transcription factor peroxisomal proliferator-activated receptor γ (PPARγ), etc. Our study will provide a new opposite insight that the inhibition of ADIPOQ expression during intramuscular preadipocytes differentiation promotes goat IMF deposition.
Collapse
Affiliation(s)
- Guangjie Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Meng Hu
- College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Life Science and Technique, Southwest Minzu University, Chengdu, China
| |
Collapse
|
11
|
Park PJ, Kim ST. Caveolae-Associated Protein 3 (Cavin-3) Influences Adipogenesis via TACE-Mediated Pref-1 Shedding. Int J Mol Sci 2020; 21:ijms21145000. [PMID: 32679831 PMCID: PMC7404391 DOI: 10.3390/ijms21145000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Abnormal adipogenesis regulation is accompanied by a variety of metabolic dysfunctions and disorders. Caveolae play an important role in the regulation of fat production, modulated by caveolae-associated proteins (Cavin-1 to 4). Here, we investigated the role of Cavin-3 in lipogenesis and adipocyte differentiation, as the regulatory functions and roles of Cavin-3 in adipocytes are unknown. A Cavin-3 knockdown/overexpression stable cell line was established, and adipogenesis-related gene and protein expression changes were investigated by real-time quantitative PCR and Western blot analysis, respectively. Additionally, confocal immune-fluorescence microscopy was used to verify the intracellular position of the relevant factors. The results showed that Cavin-3 mRNA and protein expression were elevated, along with physiological factors such as lipid droplet formation, during adipogenesis. Cavin-3 silencing resulted in retarded adipocyte differentiation, and its overexpression accelerated this process. Furthermore, Cavin-3 knockdown resulted in decreased expression of adipogenesis-related genes, such as PPAR-γ, FAS, aP2, and Adipoq, whereas preadipocyte factor-1 (Pref-1) was markedly increased during adipocyte maturation. Overall, Cavin-3 influences caveolar stability and modulates the tumor necrosis factor-alpha-converting enzyme (TACE)-mediated Pref-1 shedding process in both mouse and human adipocytes. The Cavin-3-dependent shedding mechanism appears to be an important process in adipocyte maturation, providing a potential therapeutic target for obesity-related disorders.
Collapse
Affiliation(s)
- Phil June Park
- Bioscience Laboratory, AMOREPACIFIC R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea
- Correspondence: (P.J.P.); (S.T.K.); Tel.: +82-31-280-5639 (P.J.P.); +82-55-320-4038 (S.T.K.)
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Korea
- Correspondence: (P.J.P.); (S.T.K.); Tel.: +82-31-280-5639 (P.J.P.); +82-55-320-4038 (S.T.K.)
| |
Collapse
|
12
|
Xu Y, Du X, Turner N, Brown AJ, Yang H. Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. J Biol Chem 2019; 294:19306-19321. [PMID: 31727739 DOI: 10.1074/jbc.ra119.011160] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Cholesterol plays essential structural and signaling roles in mammalian cells, but too much cholesterol can cause cytotoxicity. Acyl-CoA:cholesterol acyltransferases 1 and 2 (ACAT1/2) convert cholesterol into its storage form, cholesteryl esters, regulating a key step in cellular cholesterol homeostasis. Adipose tissue can store >50% of whole-body cholesterol. Interestingly, however, almost no ACAT activity is present in adipose tissue, and most adipose cholesterol is stored in its free form. We therefore hypothesized that increased cholesterol esterification may have detrimental effects on adipose tissue function. Here, using several approaches, including protein overexpression, quantitative RT-PCR, immunofluorescence, and various biochemical assays, we found that ACAT1 expression is significantly increased in the adipose tissue of the ob/ob mice. We further demonstrated that ACAT1/2 overexpression partially inhibited the differentiation of 3T3-L1 preadipocytes. In mature adipocytes, increased ACAT activity reduced the size of lipid droplets (LDs) and inhibited lipolysis and insulin signaling. Paradoxically, the amount of free cholesterol increased on the surface of LDs in ACAT1/2-overexpressing adipocytes, accompanied by increased LD localization of caveolin-1. Moreover, cholesterol depletion in adipocytes by treating the cells with cholesterol-deficient media or β-cyclodextrins induced changes in cholesterol distribution that were similar to those caused by ACAT1/2 overexpression. Our results suggest that ACAT1/2 overexpression increases the level of free cholesterol on the LD surface, thereby impeding adipocyte function. These findings provide detailed insights into the role of free cholesterol in LD and adipocyte function and suggest that ACAT inhibitors have potential utility for managing disorders associated with extreme obesity.
Collapse
Affiliation(s)
- Yanqing Xu
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nigel Turner
- School of Medical Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
14
|
Abstract
The 3T3-L1 murine preadipocyte cell line is a commonly used tool for analysis of the subcellular pathways involved in preadipocytic cell differentiation (a process also commonly known as adipogenesis). The major characteristic of adipogenesis is the intracellular accumulation of membrane-bound lipid droplets. Here, we describe methods used for the culture and transformation of these preadipocytes into mature adipocytes and quantification of intracellular lipid accumulation using the lipid specific dye, Oil Red O.
Collapse
Affiliation(s)
- Eleanor Cave
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Porskjær Christensen L, Bahij El-Houri R. Development of an In Vitro Screening Platform for the Identification of Partial PPARγ Agonists as a Source for Antidiabetic Lead Compounds. Molecules 2018; 23:molecules23102431. [PMID: 30248999 PMCID: PMC6222920 DOI: 10.3390/molecules23102431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder where insulin-sensitive tissues show reduced sensitivity towards insulin and a decreased glucose uptake (GU), which leads to hyperglycaemia. Peroxisome proliferator-activated receptor (PPAR)γ plays an important role in lipid and glucose homeostasis and is one of the targets in the discovery of drugs against T2D. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain, a process that alters the transcription of several target genes involved in glucose and lipid metabolism. Depending on the ligands, they can induce different sets of genes that depends of their recruitment of coactivators. The activation of PPARγ by full agonists such as the thiazolidinediones leads to improved insulin sensitivity but also to severe side effects probably due to their behavior as full agonists. Partial PPARγ agonists are compounds with diminished agonist efficacy compared to full agonist that may exhibit the same antidiabetic effect as full agonists without inducing the same magnitude of side effects. In this review, we describe a screening platform for the identification of partial PPARγ agonists from plant extracts that could be promising lead compounds for the development of antidiabetic drugs. The screening platform includes a series of in vitro bioassays, such as GU in adipocytes, PPARγ-mediated transactivation, adipocyte differentiation and gene expression as well as in silico docking for partial PPARγ agonism.
Collapse
Affiliation(s)
- Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Rime Bahij El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
16
|
R-Limonene Enhances Differentiation and 2-Deoxy-D-Glucose Uptake in 3T3-L1 Preadipocytes by Activating the Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4573254. [PMID: 30250490 PMCID: PMC6140011 DOI: 10.1155/2018/4573254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Adipocyte is an important place for lipid storage. Defects in lipid storage in adipocytes can lead to lipodystrophy and lipid accumulation in muscle, liver, and other organs. It is the condition of mixed dyslipidemia which may favor the development of insulin resistance via lipotoxic mechanisms. Our objective of the study was to investigate the potential role of R-limonene (LM) on differentiation, lipid storage, and 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 preadipocytes. Genes and proteins associated with differentiation, lipid accumulation, 2DG uptake and its signaling pathways in the adipocytes were analyzed using qPCR and western blot methods. LM treatment increased differentiation, lipid accumulation, and the expression of adipogenic and lipogenic markers such as C/EBP-α, C/EBP-β, PPARγ, SREBP-1, RXR, FAS, and adiponectin. However, the LM concentration at 10μM decreased (p < 0.05) adipogenesis and lipogenesis via regulating key transcriptional factors. LM treatment increased activation of Akt by increasing its phosphorylation, but p44/42 activation was not altered. MK-2206, an Akt specific inhibitor, reduced the activation of Akt phosphorylation whereas LM treatment aborted the MK-2206 mediated inhibition of Akt activation. LM enhanced glucose uptake in differentiated adipocytes. Overall data suggested that LM treatment favored lipid storage and glucose uptake in adipocytes via activation of key transcriptional factors through activation of Akt phosphorylation in 3T3-L1 adipocytes.
Collapse
|
17
|
Synergistic Effect of Bupleuri Radix and Scutellariae Radix on Adipogenesis and AMP-Activated Protein Kinase: A Network Pharmacological Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5269731. [PMID: 30210572 PMCID: PMC6126083 DOI: 10.1155/2018/5269731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Abstract
Obesity has become a major health threat in developed countries. However, current medications for obesity are limited because of their adverse effects. Interest in natural products for the treatment of obesity is thus rapidly growing. Korean medicine is characterized by the wide use of herbal formulas. However, the combination rule of herbal formulas in Korean medicine lacks experimental evidence. According to Shennong's Classic of Materia Medica, the earliest book of herbal medicine, Bupleuri Radix (BR) and Scutellariae Radix (SR) possess the Sangsoo relationship, which means they have synergistic features when used together. Therefore these two are frequently used together in prescriptions such as Sosiho-Tang. In this study, we used the network pharmacological method to predict the interaction between these two herbs and then investigated the effects of BR, SR, and their combination on obesity in 3T3-L1 adipocytes. BR, SR, and BR-SR mixture significantly decreased lipid accumulation and the expressions of two major adipogenic factors, peroxisome proliferator-activated receptor-gamma (PPARγ) and CCAAT/enhancer-binding protein-alpha (C/EBPα), and their downstream genes, Adipoq, aP2, and Lipin1 in 3T3-L1 cells. In addition, the BR-SR mixture had synergistic effects compared with BR or SR on inhibition of adipogenic-gene expressions. BR and SR also inhibited the protein expressions of PPARγ and C/EBPα. Furthermore, the two extracts successfully activated AMP-activated protein kinase alpha (AMPK α), the key regulator of energy metabolism. When compared to those of BR or SR, the BR-SR mixture showed higher inhibition rates of PPARγ and C/EBPα, along with higher activation rate of AMPK. These results indicate a new potential antiobese pharmacotherapy and also provide scientific evidence supporting the usage of herbal combinations instead of mixtures in Korean medicine.
Collapse
|
18
|
Ilavenil S, Kim DH, Srigopalram S, Kuppusamy P, Valan Arasu M, Lee KD, Lee JC, Song YH, Jeong YI, Choi KC. Ferulic acid in Lolium multiflorum inhibits adipogenesis in 3T3-L1 cells and reduced high-fat-diet-induced obesity in Swiss albino mice via regulating p38MAPK and p44/42 signal pathways. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Mangal P, Khare P, Jagtap S, Bishnoi M, Kondepudi KK, Bhutani KK. Screening of six Ayurvedic medicinal plants for anti-obesity potential: An investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:138-146. [PMID: 27469197 DOI: 10.1016/j.jep.2016.07.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an effort to identify newer anti-obesity lead(s) we have selected 13 plant materials from the six plant species which have been reported in Indian Ayurvedic medicine as remedy against complications affecting glucose and lipid homeostasis. AIM OF THE STUDY In vitro screening of six Indian Ayurvedic medicinal plants on anti-adipogenic and pancreatic lipase (PL) inhibition potential followed by bioactivity guided isolation from most active plant material. MATERIALS AND METHODS In vitro anti-adipogenic assay using 3T3-L1 preadipocytes and pancreatic lipase (PL) inhibition assay were performed for hexanes, dichloromethane, ethyl acetate and methanolic extracts of all the plant materials. Bioactivity guided isolation approach was used to identify active constituent for anti-adipogenesis and PL inhibition assay. Inhibition of lipid accumulation and adipogenic transcription factor was measured by oil Red 'O' staining and quantitative real-time PCR method respectively. RESULTS Ethyl acetate extract of Oroxylum indicum bark was found to be most active in screening of anti-adipogenesis (59.12±1.66% lipid accumulation as compared to control at 50μg/mL dose) and PL inhibition (89.12±6.87% PL inhibition at 250μg/mL dose) assays. Further, three bioactive flavonoids were isolated and identified as oroxylin A, chrysin and baicalein from O. indicum bark. Oroxylin A, chrysin, and baicalein were inhibited lipid accumulation in 3T3-L1 preadipocytes (75.00±5.76%, 70.21±4.23% and 77.21±5.49% lipid accumulation respectively in comparison to control at 50μM dose) and PL enzyme (69.86±2.96%, 52.08±2.14% and 45.06±2.42% PL inhibition respectively at 250μg/mL dose). In addition, oroxylin A and chrysin also inhibited PPARγ and C/EBPα, major adipogenic transcription factors, in 3T3L-1 preadipocytes during adipogenesis process at 50μM dose. CONCLUSION The present study augurs the anti-obesity potential of well practiced Ayurvedic herb O. indicum and its flavonoids.
Collapse
Affiliation(s)
- Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | | | - Kamlesh Kumar Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
20
|
Song HI, Yoon MS. PLD1 regulates adipogenic differentiation through mTOR - IRS-1 phosphorylation at serine 636/639. Sci Rep 2016; 6:36968. [PMID: 27872488 PMCID: PMC5181839 DOI: 10.1038/srep36968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Phospholipase D1 (PLD1) plays a known role in several differentiation processes, but its role in adipogenic differentiation remains unknown. In the present study, we identified PLD1 as a negative regulator of adipogenic differentiation. We showed that PLD activity was downregulated by both 3-Isobutyl-1-methylxanthine (IBMX) and insulin upon induction of differentiation in 3T3-L1 adipogenic cells. In line with this observation, PLD activity decreased in both high fat diet (HFD)-fed mice and ob/ob mice. We also found that differentiation of 3T3-L1 preadipocytes was enhanced by the depletion of PLD1 levels or inhibition of PLD1 activity by VU0155069, a PLD1-specific inhibitor. Conversely, treatment with phosphatidic acid (PA), a PLD product, and overexpression of PLD1 both caused a decrease in adipogenic differentiation. Moreover, the elevated differentiation in PLD1-knockdown 3T3-L1 cells was reduced by either PA treatment or PLD1 expression, confirming negative roles of PLD1 and PA in adipogenic differentiation. Further investigation revealed that PA displaces DEP domain-containing mTOR-interacting protein (DEPTOR) from mTORC1, which subsequently phosphorylates insulin receptor substrate-1 (IRS-1) at serine 636/639 in 3T3-L1 cells. Taken together, our findings provide convincing evidence for a direct role of PLD1 in adipogenic differentiation by regulating IRS-1 phosphorylation at serine 636/639 through DEPTOR displacement and mTOR activation.
Collapse
Affiliation(s)
- Hae-In Song
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
21
|
Zhang H, Lamon BD, Moran G, Sun T, Gotto AM, Hajjar DP. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages. PLoS One 2016; 11:e0159130. [PMID: 27415822 PMCID: PMC4945056 DOI: 10.1371/journal.pone.0159130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 06/21/2016] [Indexed: 01/29/2023] Open
Abstract
There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30%) by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122) and down-regulated (107) in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin). Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
| | - Brian D. Lamon
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
- Center of Vascular Biology, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
| | - George Moran
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
- Center of Vascular Biology, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
| | - Antonio M. Gotto
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
| | - David P. Hajjar
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
- Center of Vascular Biology, Weill Medical College of Cornell University, 1300 York Ave, New York, New York, 10065, United States of America
- * E-mail:
| |
Collapse
|
22
|
Yang X, Zhang W, Chen Y, Li Y, Sun L, Liu Y, Liu M, Yu M, Li X, Han J, Duan Y. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE. J Biol Chem 2016; 291:15108-18. [PMID: 27226602 DOI: 10.1074/jbc.m116.726737] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy.
Collapse
Affiliation(s)
| | | | - Yuanli Chen
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China School of Medicine, and
| | - Yan Li
- From the College of Life Sciences
| | - Lei Sun
- From the College of Life Sciences
| | - Ying Liu
- From the College of Life Sciences
| | | | - Miao Yu
- From the College of Life Sciences
| | | | - Jihong Han
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| | - Yajun Duan
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| |
Collapse
|
23
|
Patel M, Moon HJ, Ko DY, Jeong B. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5160-9. [PMID: 26844684 DOI: 10.1021/acsami.5b12324] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(L-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Du Young Ko
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
24
|
Role of c-Jun N-terminal kinase in the osteogenic and adipogenic differentiation of human adipose-derived mesenchymal stem cells. Exp Cell Res 2015; 339:112-21. [PMID: 26272544 DOI: 10.1016/j.yexcr.2015.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 01/02/2023]
Abstract
Although previous studies have characterized the osteogenic potential of adipose-derived mesenchymal stem cells (AMSCs) in vitro and in vivo, the molecular mechanism involved remains to be fully determined. Previously, we demonstrated that the ERK pathway plays an important role in osteogenesis and regulation of the balance between osteogenesis and adipogenesis. Here, we explored the possible role of JNKs in osteogenesis and adipogenesis of AMSCs. JNK activation in osteo-induced AMSCs was initiated at 15 min, peaked at 30 min, and declined from 45 min to basal levels. Inhibition of the JNK signaling pathway using SP600125 blocked osteogenic differentiation in a dose-dependent manner, which was revealed by an ALP activity assay, extracellular calcium deposition detection, and expression of osteogenesis-relative genes (Runx2, ALP, and OCN) via RT-PCR and real-time PCR. However, blockage of JNK did not induce a switch between osteogenesis and adipogenesis of AMSCs in the presence of dexamethasone, which is different from that of blockage of ERK. Significantly, the blockage of JNK activation in adipo-induced AMSCs by SP600125 stimulated adipogenic differentiation, which was confirmed by Oil Red O staining to detect intracellular lipid droplets, and RT-PCR and real-time PCR analysis for expression of adipogenesis-relative genes (PPARγ2 and aP2). This study suggested a potential function of the JNK pathway in committing osteogenic and adipogenic differentiation of AMSCs in vitro. However, blockage of the JNK pathway is not sufficient to induce a switch from osteogenesis to adipogenesis of AMSCs.
Collapse
|
25
|
Yang X, Yao H, Chen Y, Sun L, Li Y, Ma X, Duan S, Li X, Xiang R, Han J, Duan Y. Inhibition of Glutathione Production Induces Macrophage CD36 Expression and Enhances Cellular-oxidized Low Density Lipoprotein (oxLDL) Uptake. J Biol Chem 2015; 290:21788-99. [PMID: 26187465 DOI: 10.1074/jbc.m115.654582] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 01/30/2023] Open
Abstract
The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and
| | - Hui Yao
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and
| | - Yuanli Chen
- From the State Key Laboratory of Medicinal Chemical Biology, Medicine, Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| | - Lei Sun
- Colleges of Life Sciences and
| | - Yan Li
- Colleges of Life Sciences and
| | | | - Shengzhong Duan
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Rong Xiang
- From the State Key Laboratory of Medicinal Chemical Biology, Medicine
| | - Jihong Han
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| | - Yajun Duan
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and
| |
Collapse
|
26
|
Sciorati C, Clementi E, Manfredi AA, Rovere-Querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015; 72:2135-56. [PMID: 25854633 PMCID: PMC11113943 DOI: 10.1007/s00018-015-1857-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
Collapse
Affiliation(s)
- Clara Sciorati
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | |
Collapse
|
27
|
Qin L, Yao D, Zheng L, Liu WC, Liu Z, Lei M, Huang L, Xie X, Wang X, Chen Y, Yao X, Peng J, Gong H, Griffith JF, Huang Y, Zheng Y, Feng JQ, Liu Y, Chen S, Xiao D, Wang D, Xiong J, Pei D, Zhang P, Pan X, Wang X, Lee KM, Cheng CY. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: Proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits. Biomaterials 2015; 59:125-43. [PMID: 25968462 PMCID: PMC7111223 DOI: 10.1016/j.biomaterials.2015.04.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Steroid-associated osteonecrosis (SAON) may lead to joint collapse and subsequent joint replacement. Poly lactic-co-glycolic acid/tricalcium phosphate (P/T) scaffold providing sustained release of icaritin (a metabolite of Epimedium-derived flavonoids) was investigated as a bone defect filler after surgical core-decompression (CD) to prevent femoral head collapse in a bipedal SAON animal model using emu (a large flightless bird). The underlying mechanism on SAON was evaluated using a well-established quadrupedal rabbit model. Fifteen emus were established with SAON, and CD was performed along the femoral neck for the efficacy study. In this CD bone defect, a P/T scaffold with icaritin (P/T/I group) or without icaritin (P/T group) was implanted while no scaffold implantation was used as a control. For the mechanistic study in rabbits, the effects of icaritin and composite scaffolds on bone mesenchymal stem cells (BMSCs) recruitment, osteogenesis, and anti-adipogenesis were evaluated. Our efficacy study showed that P/T/I group had the significantly lowest incidence of femoral head collapse, better preserved cartilage and mechanical properties supported by more new bone formation within the bone tunnel. For the mechanistic study, our in vitro tests suggested that icaritin enhanced the expression of osteogenesis related genes COL1α, osteocalcin, RUNX2, and BMP-2 while inhibited adipogenesis related genes C/EBP-ß, PPAR-γ, and aP2 of rabbit BMSCs. Both P/T and P/T/I scaffolds were demonstrated to recruit BMSCs both in vitro and in vivo but a higher expression of migration related gene VCAM1 was only found in P/T/I group in vitro. In conclusion, both efficacy and mechanistic studies show the potential of a bioactive composite porous P/T scaffold incorporating icaritin to enhance bone defect repair after surgical CD and prevent femoral head collapse in a bipedal SAON emu model.
Collapse
Affiliation(s)
- Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.
| | - Dong Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wai-Ching Liu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhong Liu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Lei
- Department of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xinluan Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Yang Chen
- Department of Orthopaedics, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Jiang Peng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Orthopaedic Research Institute, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, PR China
| | - James F Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yanping Huang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Yongping Zheng
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Jian Q Feng
- Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Ying Liu
- Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Shihui Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Deming Xiao
- Department of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Daping Wang
- Department of Orthopaedics, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Jiangyi Xiong
- Department of Orthopaedics, The Second People's Hospital of Shenzhen, Shenzhen, PR China
| | - Duanqing Pei
- Guangzhou Institutes of Biomedical and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Peng Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xiaohua Pan
- Department of Orthopaedics, The First Peoples' Hospital, Shenzhen, PR China
| | - Xiaohong Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, PR China
| | - Kwong-Man Lee
- Lee Hysan Clinical Research Laboratories, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chun-Yiu Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
28
|
Huang C, Dai J, Zhang XA. Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochim Biophys Acta Gen Subj 2015; 1850:1261-6. [PMID: 25727396 DOI: 10.1016/j.bbagen.2015.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. SCOPE OF REVIEW Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. MAJOR CONCLUSIONS Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. GENERAL SIGNIFICANCE These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxing Dai
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Anatomy, Southern Medical University, Guangzhou, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
29
|
Alinejad B, Shafiee-Nick R, Sadeghian H, Ghorbani A. Metabolic effects of newly synthesized phosphodiesterase-3 inhibitor 6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one on rat adipocytes. ACTA ACUST UNITED AC 2015; 23:19. [PMID: 25880831 PMCID: PMC4355504 DOI: 10.1186/s40199-015-0100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Background Clinical use of selective PDE3 inhibitors as cardiotonic agents is limited because of their chronotropic and lipolytic side effects. In our previous work, we synthesized a new PDE3 inhibitor named MC2 (6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one) which produced a high positive inotropic action with a negative chronotropic effect. This work was done to evaluate the effects of MC2 on adipocytes and compare its effects with those of amrinone and cilostamide. Methods Preadipocytes were isolated from rat adipose tissue and differentiated to adipocyte in the presence of cilostamide, amrinone or MC2. Lipolysis and adipogenesis was evaluated by measuring glycerol level and Oil Red O staining, respectively. Adipocyte proliferation and apoptosis were determined with MTT assay and Annexin V/PI staining, respectively. Results Differentiation to adipocyte was induced by amrinone but not by cilostamide or MC2. Basal and isoproterenol-stimulated lipolysis significantly increased by cilostamide (p < 0.05). Similarly, amrinone enhanced the stimulated lipolysis (p < 0.01). On the other hand, MC2 significantly decreased both adipogenesis (p < 0.05) and stimulated lipolysis (p < 0.001). Also, incubation of differentiated adipocytes with MC2 caused the loss of cell viability, which was associated with the elevation in apoptotic rate (p < 0.05). Conclusion Our data indicate that selective PDE3 inhibitors produce differential effects on adipogenesis and lipolysis. MC2 has proapoptotic and antilipolytic effects on adipocytes and does not stimulate adipogenesis. Therefore, in comparison with the clinically available selective PDE3 inhibitors, MC2 has lowest metabolic side effects and might be a good candidate for treatment of congestive heart failure.
Collapse
Affiliation(s)
- Bagher Alinejad
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Shafiee-Nick
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Sadeghian
- Department of laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
El-Houri RB, Kotowska D, Christensen KB, Bhattacharya S, Oksbjerg N, Wolber G, Kristiansen K, Christensen LP. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct 2015; 6:2135-44. [DOI: 10.1039/c5fo00223k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Falcarinol and falcarindiol isolated from a carrot extract stimulate glucose uptake in adipocytes and myotubes, and may represent scaffolds for novel partial PPARγ agonists.
Collapse
Affiliation(s)
- Rime B. El-Houri
- Department of Chemical Engineering
- Biotechnology and Environmental Technology
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | - Dorota Kotowska
- Department of Biology
- University of Copenhagen
- 2200 Copenhagen N
- Denmark
| | - Kathrine B. Christensen
- Department of Chemical Engineering
- Biotechnology and Environmental Technology
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | | | - Niels Oksbjerg
- Department of Food Science
- Aarhus University
- 8830 Tjele
- Denmark
| | - Gerhard Wolber
- Computer-Aided Drug Design
- Institute of Pharmacy
- Medicinal and Pharmaceutical Chemistry
- Freie Universität Berlin
- 14195 Berlin
| | | | - Lars P. Christensen
- Department of Chemical Engineering
- Biotechnology and Environmental Technology
- University of Southern Denmark
- 5230 Odense M
- Denmark
| |
Collapse
|
31
|
Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, Choi GJ, Mayakrishnan V, Choi KC. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:758-765. [PMID: 24369814 DOI: 10.1016/j.phymed.2013.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.
Collapse
Affiliation(s)
- Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Mariadhas Valan Arasu
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Jeong-Chae Lee
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Da Hye Kim
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan; The United Graduate School of Agricultural Sciences, Tottori University, Tottori-Shi 680-8553, Japan
| | - Sang Gun Roh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Hyung Su Park
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Gi Jun Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Vijayakumar Mayakrishnan
- Mushroom Research Centre, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea.
| |
Collapse
|
32
|
Tamoxifen inhibits macrophage FABP4 expression through the combined effects of the GR and PPARγ pathways. Biochem J 2013; 454:467-77. [DOI: 10.1042/bj20130580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023]
Abstract
Macrophage adipocyte fatty acid-binding protein (FABP4) plays an important role in foam cell formation and development of atherosclerosis. Tamoxifen inhibits this disease process. In the present study, we determined whether the anti-atherogenic property of tamoxifen was related to its inhibition of macrophage FABP4 expression. We initially observed that tamoxifen inhibited macrophage/foam cell formation, but the inhibition was attenuated when FABP4 expression was selectively inhibited by siRNA. We then observed that tamoxifen and 4-hydroxytamoxifen inhibited FABP4 protein expression in primary macrophages isolated from both the male and female wild-type mice, suggesting that the inhibition is sex-independent. Tamoxifen and 4-hydroxytamoxifen inhibited macrophage FABP4 protein expression induced either by activation of GR (glucocorticoid receptor) or PPARγ (peroxisome-proliferator-activated receptor γ). Associated with the decreased protein expression, Fabp4 mRNA expression and promoter activity were also inhibited by tamoxifen and 4-hydroxytamoxifen, indicating transcriptional regulation. Analysis of promoter activity and EMSA/ChIP assays indicated that tamoxifen and 4-hydroxytamoxifen activated the nGRE (negative glucocorticoid regulatory element), but inhibited the PPRE (PPARγ regulatory element) in the Fabp4 gene. In vivo, administration of tamoxifen to ApoE (apolipoprotein E)-deficient (apoE−/−) mice on a high-fat diet decreased FABP4 expression in macrophages and adipose tissues as well as circulating FABP4 levels. Tamoxifen also inhibited FABP4 protein expression by human blood monocyte-derived macrophages. Taken together, the results of the present study show that tamoxifen inhibited FABP4 expression through the combined effects of GR and PPARγ signalling pathways. Our findings suggest that the inhibition of macrophage FABP4 expression can be attributed to the anti-atherogenic properties of tamoxifen.
Collapse
|
33
|
Reddy AT, Lakshmi SP, Dornadula S, Pinni S, Rampa DR, Reddy RC. The nitrated fatty acid 10-nitro-oleate attenuates allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:2053-63. [PMID: 23913958 DOI: 10.4049/jimmunol.1300730] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asthma is a serious, growing problem worldwide. Inhaled steroids, the current standard therapy, are not always effective in this chronic inflammatory disease and can cause adverse effects. We tested the hypothesis that nitrated fatty acids (NFAs) may provide an effective alternative treatment. NFAs are endogenously produced by nonenzymatic reaction of NO with unsaturated fatty acids and exert anti-inflammatory actions both by activating the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)γ and via PPAR-independent mechanisms, but whether they might ameliorate allergic airway disease was previously untested. We found that pulmonary delivery of the NFA 10-nitro-oleic acid (OA-NO2) reduced the severity of murine allergic airway disease, as assessed by various pathological and molecular markers. Fluticasone, an inhaled steroid commonly used to treat asthma, produced similar effects on most end points, but only OA-NO2 induced robust apoptosis of neutrophils and their phagocytosis by alveolar macrophages. This suggests that OA-NO2 may be particularly effective in neutrophil-rich, steroid-resistant severe asthma. In primary human bronchial epithelial cells, OA-NO2 blocked phosphorylation and degradation of IκB and enhanced inhibitory binding of PPARγ to NF-κB. Our results indicate that the NFA OA-NO2 is efficacious in preclinical models of allergic airway disease and may have potential for treating asthma patients.
Collapse
Affiliation(s)
- Aravind T Reddy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
34
|
Voltage-gated K+ channels in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Pharmacol Sin 2013; 34:129-36. [PMID: 23222271 DOI: 10.1038/aps.2012.142] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To determine the presence of voltage-gated K(+) (Kv) channels in bone marrow-derived human mesenchymal stem cells (hMSCs) and their impact on differentiation of hMSCs into adipocytes. METHODS For adipogenic differentiation, hMSCs were cultured in adipogenic medium for 22 d. The degrees of adipogenic differentiation were examined using Western blot, Oil Red O staining and Alamar assay. The expression levels of Kv channel subunits Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv2.1, Kv3.1, Kv3.3, Kv4.2, Kv4.3, and Kv9.3 in the cells were detected using RT-PCR and Western blot analysis. RESULTS The expression levels of Kv2.1 and Kv3.3 subunits were markedly increased on d 16 and 22. In contrast, the expression levels of other Kv channel subunits, including Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv4.2, Kv4.3, and Kv9.3, were decreased as undifferentiated hMSCs differentiated into adipocytes. Addition of the Kv channel blocker tetraethylammonium (TEA, 10 mmol/L) into the adipogenic medium for 6 or 12 d caused a significant decrease, although not complete, in lipid droplet formation and adipocyte fatty acid-binding protein 2 (aP(2)) expressions. Addition of the selective Kv2.1 channel blocker guangxitoxin (GxTX-1, 40 nmol/L) into the adipogenic medium for 21 d also suppressed adipogenic differentiation of the cells. CONCLUSION The results demonstrate that subsets of Kv channels including Kv2.1 and Kv3.3 may play an important role in the differentiation of hMSCs into adipocytes.
Collapse
|
35
|
Hu W, Zhou X, Jiang M, Duan Y, Chen Y, Li X, Yin Z, He GW, Yao Z, Zhu Y, Hajjar DP, Han J. Statins synergize dexamethasone-induced adipocyte fatty acid binding protein expression in macrophages. Atherosclerosis 2012; 222:434-43. [DOI: 10.1016/j.atherosclerosis.2012.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 12/30/2022]
|
36
|
Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. Altern Ther Health Med 2012; 12:31. [PMID: 22471389 PMCID: PMC3350436 DOI: 10.1186/1472-6882-12-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/03/2012] [Indexed: 01/06/2023]
Abstract
Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.
Collapse
|
37
|
Yang CC, Deng SJ, Hsu CC, Liu BH, Lin EC, Cheng WTK, Wang PH, Ding ST. Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J Anim Sci 2010; 88:3233-41. [PMID: 20562354 DOI: 10.2527/jas.2010-2799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visfatin is a visceral adipose tissue-specific adipocytokine that plays a positive role in attenuating insulin resistance by binding to the insulin receptor. Visfatin has been suggested to play a role in the regulation of lipid metabolism and inflammation; however, the mechanism remains unclear. We investigated the effects of visfatin on the regulation of gene expression in cultured porcine preadipocytes and differentiated adipocytes. In preadipocytes, the mRNA abundance of lipoprotein lipase and PPARgamma were significantly increased by visfatin or insulin treatment after 8 d (all P < 0.05). In the presence of insulin, the mRNA abundance of adipocyte fatty acid-binding protein was 24.7-fold greater than in the untreated group (P < 0.05), whereas visfatin alone had no effect on adipocyte fatty acid-binding protein mRNA abundance. Adipocyte differentiation was induced by insulin treatment for 8 d. In differentiated porcine adipocytes, exposure to insulin or visfatin for 24 h increased (P < 0.05) fatty acid synthase mRNA abundance but had no effect on the expression of sterol regulatory element binding-protein 1c mRNA. We also found a 5.8-fold upregulation of IL-6 expression in porcine adipocytes after 24 h of treatment with visfatin (P < 0.05). These results demonstrated that visfatin upregulated lipoprotein lipase expression in preadipocytes, potentially facilitating lipid uptake, and increased the gene expression of fatty acid synthase in differentiated adipocytes to potentially enhance lipogenic activity. Furthermore, visfatin can upregulate IL-6 expression in differentiated porcine adipocytes. The information presented in this study provides insights into the roles of visfatin in lipid metabolism in pigs.
Collapse
Affiliation(s)
- C C Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Q, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y, Cui L. The Role of the Extracellular Signal-Related Kinase Signaling Pathway in Osteogenic Differentiation of Human Adipose-Derived Stem Cells and in Adipogenic Transition Initiated by Dexamethasone. Tissue Eng Part A 2009; 15:3487-97. [PMID: 19438323 DOI: 10.1089/ten.tea.2009.0175] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Qihai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Lian Cen
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Heng Zhou
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Shuo Yin
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Guangpeng Liu
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Lei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Salehzadeh F, Al-Khalili L, Kulkarni SS, Wang M, Lönnqvist F, Krook A. Glucocorticoid-mediated effects on metabolism are reversed by targeting 11 beta hydroxysteroid dehydrogenase type 1 in human skeletal muscle. Diabetes Metab Res Rev 2009; 25:250-8. [PMID: 19222059 DOI: 10.1002/dmrr.944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Adipose tissue and liver play important roles in mediating the metabolic actions of glucocorticoids. However, the effects of glucocorticoids on glucose and lipid metabolism in skeletal muscle are not understood completely. Intracellular glucocorticoid action is dependent on 11 beta-hydroxysteroid dehydrogenase 1 (HSD1), an enzyme that converts cortisone to active cortisol. METHODS We investigated the direct role of HSD1 in cultured primary human skeletal muscle cells using siRNA and pharmacological inhibitors of the enzyme. Primary human skeletal muscle cells were cultured in the presence of 0.5 microM cortisone or 0.5 microM cortisol for eight days. siRNA was utilized to reduce expression of either HSD1 or pyruvate dehydrogenase kinase (PDK) 4. Effects of pharmacological inhibitors of HSD1 were also studied. RESULTS Exposure to cortisone or cortisol decreased basal glucose uptake and glucose incorporation into glycogen, but was without effect on the insulin-stimulated response. Glucocorticoid exposure increased palmitate oxidation, as well as the expression of PDK4. siRNA-mediated reduction or pharmacological inhibition of HSD1 prevented the effects of cortisone, but not cortisol, on metabolic responses. siRNA-mediated reduction of PDK4 prevented the effect of cortisol to attenuate glycogen synthesis. CONCLUSION Targeted reduction or pharmacological inhibition of HSD1 in primary human skeletal muscle cells prevents the effects of cortisone, but not cortisol, on glucose metabolism and palmitate oxidation. Furthermore, the glucocorticoid-mediated reductions in glucose metabolism are dependent on PDK4.
Collapse
Affiliation(s)
- Firoozeh Salehzadeh
- Department of Molecular Medicine and Surgery, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Inflammatory reaction versus endogenous peroxisome proliferatoractivated receptors expression, re-exploring secondary organ complications of spontaneously hypertensive rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Activation of peroxisome proliferator-activated receptor-alpha in mice induces expression of the hepatic low-density lipoprotein receptor. Br J Pharmacol 2008; 155:596-605. [PMID: 18852694 PMCID: PMC2518458 DOI: 10.1038/bjp.2008.331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background and purpose: Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolaemia in humans and deletion of the LDLR induces lesion development in mice fed a high-fat diet. LDLR expression is predominantly regulated by sterol regulatory element-binding protein 2 (SREBP2). Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) ligand, belongs to a drug class used to treat dyslipidaemic patients. We have investigated the effects of fenofibrate on hepatic LDLR expression. Experimental approach: The effects of fenofibrate on hepatic LDLR expression (mRNA and protein) and function were evaluated by both in vitro (with AML12 cells) and in vivo experiments in mice. Key results: Fenofibrate increased LDLR expression and LDL binding in a mouse hepatoma cell line, AML12 cells. Fenofibrate restored sterol-inhibited hepatocyte LDLR expression. Mechanistic studies demonstrated that induction of LDLR expression by fenofibrate was dependent on PPARα and sterol regulatory elements (SRE). Specifically, fenofibrate induced LDLR expression by increasing maturation of SREBP2 and phosphorylation of protein kinase B (Akt) but had no effect on SREBP cleavage-activating protein. In vivo, a high-fat diet suppressed LDLR expression in mouse liver while elevating total and LDL cholesterol levels in plasma. However, fenofibrate restored LDLR expression inhibited by high-fat diets in the liver and reduced LDL cholesterol levels in plasma. Conclusions and implications: Our data suggest that fenofibrate increased hepatic LDLR expression in mice by a mechanism involving Akt phosphorylation and LDLR gene transcription mediated by SREBP2.
Collapse
|
42
|
Abdelwahab SA, Owada Y, Kitanaka N, Adida A, Sakagami H, Ono M, Watanabe M, Spener F, Kondo H. Enhanced expression of adipocyte-type fatty acid binding protein in murine lymphocytes in response to dexamethasone treatment. Mol Cell Biochem 2007; 299:99-107. [PMID: 17111194 DOI: 10.1007/s11010-005-9050-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids have a great influence on the process of lymphocyte apoptosis which is considered as a modulating factor of immune response in both humans and animals. However the mechanism underlying the function of fatty acids in the process of lymphocyte apoptosis is not fully understood. In this study we show that the appearance of adipocyte-type fatty acid binding protein (A-FABP) is induced upon administration of dexamethasone (DEX) in both in vivo and cultured lymphocytes, and its distinct nuclear localization occurs in close relation to the DEX-induced apoptosis process. In immunohistochemistry of mouse spleen, A-FABP-immunoreactivity starts to occur 3 h after DEX stimulation, and it massively localizes in the nucleus 8 h after the treatment, while no A-FABP-immunoreactivity is discerned in the lymphocytes of normal as well as 24 h post-injection spleen. In the murine T-cell leukemia CTLL-2 cells, A-FABP-immunoreactivity is also induced in both of the cytoplasm and nucleus when the apoptosis is induced by IL-2 retrieval together with DEX treatment, while in the presence of IL-2 A-FABP-immunoreactivity is confined to the cytoplasm with DEX treatment. On the other hand, A-FABP-immunoreactivity is not detected by IL-2 retrieval alone. The present findings altogether suggest that A-FABP and its ligands, fatty acids, play an important role in the process of apoptosis and the immune modulation induced by DEX.
Collapse
Affiliation(s)
- Soha Abdelkawi Abdelwahab
- Division of Histology, Department of Cell Biology, Graduate School of Medical Science, Tohoku University, Tohoku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nicholson AC, Hajjar DP, Zhou X, He W, Gotto AM, Han J. Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPARgamma and Pref-1 expression. Br J Pharmacol 2007; 151:807-15. [PMID: 17549051 PMCID: PMC2014134 DOI: 10.1038/sj.bjp.0707250] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Adipocyte differentiation in vitro is coordinately activated by two transcription factors, peroxisome proliferator-activated receptor gamma (PPARgamma) and CCAAT enhancer binding protein alpha (C/EBPalpha), but it is inhibited by preadipocyte factor-1 (pref-1). Statins, inhibitors of HMG-CoA reductase and de novo cholesterol synthesis, can have pleiotropic effects which influence adipocyte phenotype by ill-defined mechanisms. We investigated the effects of pitavastatin (NK-104) on adipocyte differentiation and the transcriptional pathways involved. EXPERIMENTAL APPROACH The effects of pitavastatin on adipocyte differentiation were evaluated by the formation of oil droplets, content of cellular triglyceride and expression of adipocyte-specific genes. Regulatory mechanisms were assessed by analysis of PPARgamma, C/EBPalpha and pref-1 expression. KEY RESULTS Pitavastatin significantly inhibited adipocyte differentiation of 3T3-L1 preadipocytes in response to adipogenic inducers. Evidence for inhibition included fewer Oil Red O positive droplets, less cellular triglyceride and decreased expression of adipocyte-specific genes, including fatty acid binding protein (aP2), CD36, adipsin and glucose transporter 4 (GLUT4). The inhibitory effects of pitavastatin on adipocyte differentiation of 3T3-L1 preadipocytes were time and concentration dependent. Pitavastatin significantly blocked induction of PPARgamma expression, but not C/EBPalpha expression or DNA binding activity of PPARgamma. Also, pitavastatin induced pref-1 expression in preadipocytes and maintained expression of pref-1 at high levels in differentiated cells. CONCLUSIONS AND IMPLICATIONS Our data suggest that pitavastatin inhibits adipocyte differentiation by blocking PPARgamma expression and activating pref-1 expression. These studies may have implications in the regulation of adipogenesis in response to statins.
Collapse
Affiliation(s)
- A C Nicholson
- Department of Pathology, Center of Vascular Biology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wagatsuma A. Adipogenic potential can be activated during muscle regeneration. Mol Cell Biochem 2007; 304:25-33. [PMID: 17487458 DOI: 10.1007/s11010-007-9482-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 04/14/2007] [Indexed: 12/12/2022]
Abstract
Fatty degeneration is observed in various neuromuscular diseases, but the mechanism(s) of its initiation remains unclear. To gain insight into the regulation of fatty degeneration, we employed a freeze-induced model of muscle degeneration/regeneration. Using this model, we examined the distribution of adipocyte-like cells with Oil Red-O staining and the expression pattern of adipogenic transcriptional factors, an adipocyte-terminal differentiation marker, and Wnt10b signaling molecules during muscle regeneration. Mice were subjected to freeze injury, and the gastrocnemius muscles were isolated 1, 3, 5, 7, 10, 14 and 28 days after surgery. Adipocyte-like cells with nuclei were readily observed, but not in normal muscle. Large amount of lipid accumulation was also observed in regenerating muscle. The area of Oil Red-O staining was significantly increased from 3 to 5 days after muscle injury and then rapidly decreased to almost control levels by day 10. Adipogenic transcriptional factors, sterol regulatory element binding protein-1c, CCAAT/enhancer-binding proteins alpha, beta and delta, peroxisome-proliferator activated receptors gamma1 and gamma2, and the terminal differentiation marker, leptin were significantly up-regulated in the early stage of muscle regeneration, suggesting activation of the adipogenic potential. Secreted Frizzled-related protein-2, a Wnt pathway inhibitory protein, was strongly up-regulated 3 days after muscle injury, suggesting active repression of the Wnt10b pathway. In regenerating muscle, expression of CCAAT/enhancer-binding protein alpha and peroxisome-proliferator activated receptor gamma2 proteins were increased 3 days after muscle injury. Taken together, our results suggest that adipogenic potential can be activated during muscle regeneration through increased adipogenic signaling in conjunction with decreased Wnt10b signaling.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Biochemical Sciences, National Institute of Fitness and Sports, 1 Shiromizu, Kanoya, Kagoshima 891-2393, Japan.
| |
Collapse
|
45
|
Hausman GJ, Poulos SP, Richardson RL, Barb CR, Andacht T, Kirk HC, Mynatt RL. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells. J Anim Sci 2006; 84:1666-81. [PMID: 16775050 DOI: 10.2527/jas.2005-539] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although microarray and proteomic studies have indicated the expression of unique and unexpected genes and their products in human and rodent adipose tissue, similar studies of meat animal adipose tissue have not been reported. Thus, total RNA was isolated from stromal-vascular (S-V) cell cultures (n = 4; 2 arrays; 2 cultures/array) from 90-d (79% of gestation) fetuses and adipose tissue from 105-d (92% of gestation) fetuses (n = 2) and neonatal (5-d-old) pigs (n = 2). Duplicate adipose tissue microarrays (n = 4) represented RNA samples from a pig and a fetus. Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing more than 600 pig genes involved in growth and reproduction. Microarray studies showed significant expression of 40 genes encoding for known adipose tissue secreted proteins in fetal S-V cell cultures and adipose tissue. Expression of 10 genes encoding secreted proteins not known to be expressed by adipose tissue was also observed in neonatal adipose tissue and fetal S-V cell cultures. Additionally, the agouti gene was detected by reverse transcription-PCR in pig S-V cultures and adipose tissue. Proteomic analysis of adipose tissue and fetal and young pig S-V cell culture-conditioned media identified multiple secreted proteins including heparin-like epidermal growth factor-like growth factor and several apolipoproteins. Another adipose tissue secreted protein, plasminogen activator inhibitor-1, was identified by ELISA in S-V cell culture media. A group of 20 adipose tissue secreted proteins were detected or identified using the gene microarray and the proteomic and protein assay approaches including apolipoprotein-A1, apolipoprotein-E, relaxin, brain-derived neurotrophic factor, and IGF binding protein-5. These studies demonstrate, for the first time, the expression of several major secreted proteins in pig adipose tissue that may influence local and central metabolism and growth.
Collapse
Affiliation(s)
- G J Hausman
- USDA-ARS, Russell Agricultural Research Center, Athens, GA 30604, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR. Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler Thromb Vasc Biol 2005; 25:1220-4. [PMID: 15705927 DOI: 10.1161/01.atv.0000159163.52632.1b] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Toll-like receptors (TLRs) recognize pathogens and mediate signaling pathways important for host defense. Recent studies implicate TLR polymorphisms in atherosclerosis risk in humans. Adipocyte fatty acid-binding protein (aP2) is present in macrophages and has an important role in atherosclerotic plaque development. We investigated aP2 expression in RAW 264.7 cells treated with lipopolysaccharide (LPS) and other TLR agonists and assessed lipid accumulation in these activated murine macrophages. METHODS AND RESULTS Stimulation with LPS, a TLR4 ligand, resulted in a 56-fold increase in aP2 mRNA expression, and zymosan, a TLR2 ligand, induced an approximately 1500-fold increase. Polyinosine: polycytidylic acid (poly I:C), a TLR3 ligand, led to a 9-fold increase. Levels of aP2 protein were significantly increased in LPS or zymosan-treated macrophages compared with control or poly I:C-treated cells. In addition, the cholesteryl ester content of LPS or zymosan-treated macrophages was approximately 5-fold greater in the presence of low-density lipoprotein, and triglyceride content was approximately 2-fold greater in the absence of exogenous lipid than control or poly I:C-treated cells. CONCLUSIONS Expression of macrophage aP2 is induced on TLR activation and parallels increases in cholesteryl ester and triglyceride levels. These results provide a molecular link between the known roles of TLR and aP2 in foam cell formation.
Collapse
Affiliation(s)
- Mahmood R Kazemi
- Metabolism Section, Department of Veterans Affairs Medical Center, San Francisco, Calif, CA 94121, USA.
| | | | | | | | | |
Collapse
|