1
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
2
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024:S0300-9084(24)00216-5. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
3
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TD, Deschênes A, Belleau P, Hwang CI, Sánchez-Rivera FJ, Cox H, Brosnan E, Doshi A, Lumia RP, Khaledi K, Park Y, Trotman LC, Lowe SW, Krasnitz A, Vakoc CR, Tuveson DA. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med 2020; 217:151922. [PMID: 32633781 PMCID: PMC7478739 DOI: 10.1084/jem.20192389] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.
Collapse
Affiliation(s)
- Tobiloba E. Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lindsey A. Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Claudia Tonelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Chang-il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Rebecca P. Lumia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Kimia Khaledi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY
| | | | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY,Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY,Correspondence to David A. Tuveson:
| |
Collapse
|
7
|
Xu Y, Zhu Y, Bawa FC, Hu S, Pan X, Yin L, Zhang Y. Hepatocyte-Specific Expression of Human Carboxylesterase 1 Attenuates Diet-Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatol Commun 2020; 4:527-539. [PMID: 32258948 PMCID: PMC7109343 DOI: 10.1002/hep4.1487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Rodents have at least five carboxylesterase 1 (Ces1) genes, whereas there is only one CES1 gene in humans, raising the question as to whether human CES1 and mouse Ces1 genes share the same functions. In this study, we investigate the role of human CES1 in the development of steatohepatitis or dyslipidemia in C57BL/6 mice. Hepatocyte-specific expression of human CES1 prevented Western diet or alcohol-induced steatohepatitis and hyperlipidemia. Mechanistically, human CES1 induced lipolysis and fatty acid oxidation, leading to a reduction in hepatic triglyceride and free fatty acid levels. Human CES1 also reduced hepatic-free cholesterol levels and induced low-density lipoprotein receptor. In addition, human CES1 induced hepatic lipoprotein lipase and apolipoprotein C-II expression. Conclusion: Hepatocyte-specific overexpression of human CES1 attenuates diet-induced steatohepatitis and hyperlipidemia.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Liya Yin
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| |
Collapse
|
8
|
He W, Xu Y, Ren X, Xiang D, Lei K, Zhang C, Liu D. Vitamin E Ameliorates Lipid Metabolism in Mice with Nonalcoholic Fatty Liver Disease via Nrf2/CES1 Signaling Pathway. Dig Dis Sci 2019; 64:3182-3191. [PMID: 31076985 DOI: 10.1007/s10620-019-05657-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin E has been reported to have a beneficial effect on nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanism of action has not yet been clearly defined. AIM We aimed to evaluate the effects and mechanisms of vitamin E on lipid and glucose homeostasis both in vivo and in vitro. METHODS An NAFLD model was established in C57BL/6 mice fed a 30% fructose solution for 8 weeks. Subsequently, NAFLD mice were given vitamin E (70 mg/kg) for 2 weeks. In addition, L02 cells were treated with 5 mM fructose and 100 nM vitamin E to explore the potential mechanisms of action. RESULTS Vitamin E reversed the impaired glucose tolerance of fructose-treated mice. Histopathological examination showed that liver steatosis was significantly relieved in vitamin E-treated mice. These effects may be attributed to the upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2), carboxylesterase 1 (CES1), and downregulated proteins involved in lipid synthesis by vitamin E treatment. In vivo, vitamin E also significantly reduced lipid accumulation in fructose-treated L02 cells, and the Nrf2 inhibitor ML385 reversed the protective effects of vitamin E. CONCLUSION These data indicated that the therapeutic effects of vitamin E on lipid and glucose homeostasis may be associated with activation of the Nrf2/CES1 signaling pathway.
Collapse
Affiliation(s)
- Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
10
|
He H, Wang J, Yannie PJ, Kakiyama G, Korzun WJ, Ghosh S. Sterol carrier protein-2 deficiency attenuates diet-induced dyslipidemia and atherosclerosis in mice. J Biol Chem 2018; 293:9223-9231. [PMID: 29700117 DOI: 10.1074/jbc.ra118.002290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Indexed: 01/05/2023] Open
Abstract
Intracellular cholesterol transport proteins move cholesterol to different subcellular compartments and thereby regulate its final metabolic fate. In hepatocytes, for example, delivery of high-density lipoprotein (HDL)-associated cholesterol for bile acid synthesis or secretion into bile facilitates cholesterol elimination from the body (anti-atherogenic effect), whereas delivery for esterification and subsequent incorporation into apolipoprotein B-containing atherogenic lipoproteins (e.g. very-low-density lipoprotein (VLDL)) enhances cholesterol secretion into the systemic circulation (pro-atherogenic effect). Intracellular cholesterol transport proteins such as sterol carrier protein-2 (SCP2) should, therefore, play a role in regulating these pro- or anti-atherosclerotic processes. Here, we sought to evaluate the effects of SCP2 deficiency on the development of diet-induced atherosclerosis. We generated LDLR-/- mice deficient in SCP2/SCPx (LS) and examined the effects of this deficiency on Western diet-induced atherosclerosis. SCP2/SCPx deficiency attenuated atherosclerosis in LS mice by >80% and significantly reduced plasma cholesterol and triglyceride levels. Investigation of the likely underlying mechanisms revealed a significant reduction in intestinal cholesterol absorption (given as an oral gavage) in SCP2/SCPx-deficient mice. Consistently, siRNA-mediated knockdown of SCP2 in intestinal cells significantly reduced cholesterol uptake. Furthermore, hepatic triglyceride/VLDL secretion from the liver or hepatocytes isolated from SCP2/SCPx-deficient mice was significantly reduced. These results indicate an important regulatory role for SCP2 deficiency in attenuating diet-induced atherosclerosis by limiting intestinal cholesterol absorption and decreasing hepatic triglyceride/VLDL secretion. These findings suggest targeted inhibition of SCP2 as a potential therapeutic strategy to reduce Western diet-induced dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
| | - Jing Wang
- From the Departments of Internal Medicine and
| | - Paul J Yannie
- the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - Genta Kakiyama
- the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| | - William J Korzun
- Clinical and Laboratory Sciences, Virginia Commonwealth University (VCU) Medical Center, Richmond, Virginia 23298 and
| | - Shobha Ghosh
- From the Departments of Internal Medicine and .,the Hunter Homes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249
| |
Collapse
|
11
|
He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, Lancina MG, Zolotarskaya OY, Korzun W, Yang H, Ghosh S. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res 2018; 193:13-30. [PMID: 29172034 PMCID: PMC6198660 DOI: 10.1016/j.trsl.2017.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden.
Collapse
Affiliation(s)
- Hongliang He
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - Quan Yuan
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Jinghua Bie
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Ryan L Wallace
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Va
| | - Jing Wang
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | | | - Olga Yu Zolotarskaya
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - William Korzun
- Dept. of Clinical and Laboratory Sciences, VCU Medical Center, Richmond, Va
| | - Hu Yang
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va; Dept. of Pharmaceutics, VCU, Richmond, Va; Massey Cancer Center, VCU Medical Center, Richmond, Va
| | - Shobha Ghosh
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va; Hunter Homes McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|
12
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
13
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Xu J, Xu Y, Li Y, Jadhav K, You M, Yin L, Zhang Y. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury. Sci Rep 2016; 6:24277. [PMID: 27075303 PMCID: PMC4831009 DOI: 10.1038/srep24277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Min You
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
15
|
El Asmar Z, Terrand J, Jenty M, Host L, Mlih M, Zerr A, Justiniano H, Matz RL, Boudier C, Scholler E, Garnier JM, Bertaccini D, Thiersé D, Schaeffer C, Van Dorsselaer A, Herz J, Bruban V, Boucher P. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. J Biol Chem 2016; 291:5116-27. [PMID: 26792864 DOI: 10.1074/jbc.m116.714485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.
Collapse
Affiliation(s)
- Zeina El Asmar
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jérome Terrand
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Marion Jenty
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Lionel Host
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Mohamed Mlih
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Aurélie Zerr
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Hélène Justiniano
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Rachel L Matz
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Christian Boudier
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Estelle Scholler
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jean-Marie Garnier
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM 964/CNRS UMR 7104, University of Strasbourg, 67401 Illkirch, France
| | - Diego Bertaccini
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | - Danièle Thiersé
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | | | | | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Véronique Bruban
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| | - Philippe Boucher
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| |
Collapse
|
16
|
Zhang W, Lei XJ, Wang YF, Wang DQ, Yuan ZY. Role of Kir2.1 in human monocyte-derived foam cell maturation. J Cell Mol Med 2015; 20:403-12. [PMID: 26689595 PMCID: PMC4759473 DOI: 10.1111/jcmm.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/25/2015] [Indexed: 01/17/2023] Open
Abstract
The role of K+ channels in macrophage immunomodulation has been well‐established. However, it remains unclear whether K+ channels are involved in the lipid uptake of macrophages. The expression and function of the inward rectifier potassium channel (Kir2.1, KCNJ2) in Human acute monocytic leukemia cell line (THP‐1) cells and human monocytes derived macrophages (HMDMs) were investigated using RT‐PCR and western blotting, and patch clamp technique. The expression of scavenger receptors in THP‐1–derived macrophages was detected using western blotting. Expressions of Kir2.1 mRNA and protein in HMDMs were significantly decreased by 60% (P < 0.05) and 90% (P < 0.001) on macrophage maturation, but overexpressed by approximately 1.3 (P > 0.05) and 3.8 times (P = 0.001) after foam cell formation respectively. Concurrently, the Kir2.1 peak current density in HMDMs, mature macrophages and foam cells, measured at −150 mV, were −22.61 ± 2.1 pA/pF, −7.88 ± 0.60 pA/pF and −13.39 ± 0.80 pA/pF respectively (P < 0.05). In association with an up‐regulation of Kir2.1 in foam cells, the SR‐A protein level was significantly increased by over 1.5 times compared with macrophages (P < 0.05). THP‐1 cells contained much less lipids upon Kir2.1 knockdown and cholesterol ester/total cholesterol ratio was 29.46 ± 2.01% (P < 0.05), and the SR‐BI protein level was increased by over 6.2 times, compared to that of macrophages (P < 0.001). Kir2.1 may participate in macrophage maturation and differentiation, and play a key role in lipid uptake and foam cell formation through modulating the expression of scavenger receptors.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin-Jun Lei
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi-Fan Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dong-Qi Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Gene Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Wang JM, Wang D, Tan YY, Zhao G, Ji ZL. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ-LXRα-ABCA1 pathway in cholesterosis of the gallbladder. Biochem Biophys Res Commun 2014; 447:152-7. [PMID: 24704452 DOI: 10.1016/j.bbrc.2014.03.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ-LXRα-ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.
Collapse
Affiliation(s)
- Jing-Min Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Dong Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Yu-Yan Tan
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Gang Zhao
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhen-Ling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
18
|
Krahmer N, Farese RV, Walther TC. Balancing the fat: lipid droplets and human disease. EMBO Mol Med 2013; 5:973-83. [PMID: 23740690 PMCID: PMC3721468 DOI: 10.1002/emmm.201100671] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 01/04/2023] Open
Abstract
Lipid droplets (LDs) are dynamic, cytosolic lipid-storage organelles found in nearly all cell types. Too many or too few LDs during excess or deficient fat storage lead to many different human diseases. Recent insights into LD biology and LD protein functions shed new light on mechanisms underlying those metabolic pathologies. These findings will likely provide opportunities for treatment of diseases associated with too much or too little fat.
Collapse
Affiliation(s)
- Natalie Krahmer
- Department of Cell Biology, Yale School of MedicineNew Haven, CT, USA
| | - Robert V Farese
- Gladstone Institutes, Departments of Medicine and Biochemistry & Biophysics, University of CaliforniaSan Francisco, CA, USA
| | - Tobias C Walther
- Department of Cell Biology, Yale School of MedicineNew Haven, CT, USA
| |
Collapse
|
19
|
Zhao B, Bie J, Wang J, Marqueen SA, Ghosh S. Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. Am J Physiol Cell Physiol 2012; 303:C427-35. [PMID: 22700792 DOI: 10.1152/ajpcell.00103.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesteryl ester (CE) hydrolysis is the rate-limiting step in the removal of free cholesterol (FC) from macrophage foam cells, and several enzymes have been identified as intracellular CE hydrolases in human macrophages. We have previously reported the antiatherogenic role of a carboxylesterase [carboxylesterase 1 (CES1)], and the objective of the present study was to determine the contribution of CES1 to total CE hydrolytic activity in human macrophages. Two approaches, namely, immune depletion and short hairpin (sh)RNA-mediated knockdown, were used. Immuneprecipitation by a CES1-specific antibody resulted in a 70-80% decrease in enzyme activity, indicating that CES1 is responsible for >70% of the total CE hydrolytic activity. THP1-shRNA cells were generated by stably transfecting human THP1 cells with four different CES1-specific shRNA vectors. Despite a significant (>90%) reduction in CES1 expression both at the mRNA and protein levels, CES1 knockdown neither decreased intracellular CE hydrolysis nor decreased FC efflux. Examination of the underlying mechanisms for the observed lack of effects of CES1 knockdown revealed a compensatory increase in the expression of a novel CES, CES3, which is only expressed at <30% of the level of CES1 in human macrophages. Transient overexpression of CES3 led to an increase in CE hydrolytic activity, mobilization of intracellular lipid droplets, and a reduction in cellular CE content, establishing CES3 as a bona fide CE hydrolase. This study provides the first evidence of functional compensation whereby increased expression of CES3 restores intracellular CE hydrolytic activity and FC efflux in CES1-deficient cells. Furthermore, these data support the concept that intracellular CE hydrolysis is a multienzyme process.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, USA
| | | | | | | | | |
Collapse
|
20
|
Ghosh S. Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases. Curr Opin Endocrinol Diabetes Obes 2012; 19:136-41. [PMID: 22262001 DOI: 10.1097/med.0b013e3283507836] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Several controversies exist related to the molecular identity and subcellular localization of the enzyme catalyzing macrophage cholesteryl ester hydrolysis. Some of these issues have been reviewed earlier and this review summarizes new developments that describe effects of overexpression or gene ablation. The main objective is to highlight the disagreement between lack of gene expression and incomplete abolition of macrophage cholesteryl ester hydrolytic activity and to emphasize the importance of redundancy. RECENT FINDINGS New information resulting from the continuing characterization of the various cholesteryl ester hydrolases (hormone-sensitive lipase, HSL; cholesteryl ester hydrolase, CEH; and KIAA1363/NCEH1) is reviewed. Whereas CEH overexpression leads to beneficial effects such as decreased inflammation, improved glucose tolerance/insulin sensitivity, and attenuation of atherosclerotic lesion progression, deficiency/ablation of HSL or KIAA1363/NCEH1 results in incomplete loss of macrophage cholesteryl ester hydrolysis/turnover. New paradigms challenging the classical view of cytoplasmic cholesteryl ester hydrolysis and reverse cholesterol transport are also presented. SUMMARY The observed beneficial effects of CEH overexpression identify macrophage cholesteryl ester hydrolysis as an important therapeutic target and future studies will determine whether similar effects are obtained with overexpression of HSL or KIAA1363/NCEH1. It is imperative that, for clinical benefit, mechanisms to enhance endogenous cholesteryl ester hydrolase(s) are established.
Collapse
Affiliation(s)
- Shobha Ghosh
- Division of Pulmonary and Critical Care, Department of Internal Medicine, VCU Medical Center, Richmond, Virginia 23298-0050, USA.
| |
Collapse
|
21
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
22
|
Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3:173-81. [PMID: 22447659 DOI: 10.1007/s13238-012-2025-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | |
Collapse
|
23
|
Bie J, Zhao B, Ghosh S. Atherosclerotic lesion progression is attenuated by reconstitution with bone marrow from macrophage-specific cholesteryl ester hydrolase transgenic mice. Am J Physiol Regul Integr Comp Physiol 2011; 301:R967-74. [PMID: 21795638 DOI: 10.1152/ajpregu.00277.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulation of cholesteryl ester (CE)-enriched macrophage foam cells is central to the development of atherosclerotic lesions. Intracellular CE hydrolysis is the rate-limiting step in the removal of free cholesterol from macrophage foam cells. Enhancing this process by transgenic overexpression of CE hydrolase (CEH) resulted in a significant decrease in diet-induced atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. However, for development of this step as an antiatherosclerotic target it is imperative to demonstrate that increase in CE hydrolysis after initiation of lesion formation will also attenuate further lesion progression. The objective of the present study was to directly address this issue using an animal model. LDLR-/- mice were fed a high-fat high-cholesterol diet (Western Diet) for 8 wk to initiate lesion formation and were then divided into three groups. Group 1 mice were killed to determine baseline lesion development. Mice in groups 2 and 3 were irradiated and transplanted with either LDLR-/- or LDLR-/-CEH transgenic bone marrow and maintained on Western Diet. Atherosclerotic lesion progression was assessed after 12 wk. While a more than fourfold increase in total lesions (compared to group 1) was seen in group 2 receiving LDLR-/- marrow, a significantly lower increase (<2-fold) was noted in mice reconstituted with CEH transgenic marrow (group 3). Lesions in group 3 mice were also more cellular with smaller necrotic cores. Lesion progression is associated with a switch in macrophage phenotype from anti-inflammatory M2 to proinflammatory M1 phenotype and is consistent with reduced lesion progression. Aortas from group 3 mice contained a significantly higher percentage of macrophages in M2 phenotype (Ly6C(lo)). These data demonstrate for the first time that enhancing macrophage CE hydrolysis even after lesion initiation can still attenuate further lesion progression and also switches the phenotype of lesion-associated macrophages to anti-inflammatory M2 phenotype establishing intracellular CE hydrolysis as an anti-atherosclerotic as well as anti-inflammatory target.
Collapse
Affiliation(s)
- Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0050, USA
| | | | | |
Collapse
|
24
|
Ghosh S. Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization. Expert Rev Cardiovasc Ther 2011; 9:329-40. [PMID: 21438812 DOI: 10.1586/erc.11.16] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherogenic dyslipidemia, including low HDL levels, is the major contributor of residual risk of cardiovascular disease that remains even after aggressive statin therapy to reduce LDL-cholesterol. Currently, distinction is not made between HDL-cholesterol and HDL, which is a lipoprotein consisting of several proteins and a core containing cholesteryl esters (CEs). The importance of assessing HDL functionality, specifically its role in facilitating cholesterol efflux from foam cells, is relevant to atherogenesis. Since HDLs can only remove unesterified cholesterol from macrophages while cholesterol is stored as CEs within foam cells, intracellular CE hydrolysis by CE hydrolase is vital. Reduction in macrophage lipid burden not only attenuates atherosclerosis but also reduces inflammation and linked pathologies such as Type 2 diabetes and chronic kidney disease. Targeting reduction in macrophage CE levels and focusing on enhancing cholesterol flux from peripheral tissues to liver for final elimination is proposed.
Collapse
Affiliation(s)
- Shobha Ghosh
- Department of Internal Medicine, Division of Pulmonary and Critical Care, VCU Medical Center, Richmond, VA 23298-0050, USA.
| |
Collapse
|
25
|
|
26
|
Quiroga AD, Lehner R. Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab 2011; 22:218-25. [PMID: 21531146 DOI: 10.1016/j.tem.2011.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 01/19/2023]
Abstract
Lipid droplets are universal intracellular organelles composed of a triglyceride, cholesteryl ester and retinyl ester core, surrounded by a monolayer of phospholipids and free (unesterified) cholesterol and lipid droplet-associated proteins. Core lipids are hydrolyzed by lipases to provide fatty acids, cholesterol and retinol for various cellular functions. In addition to cytosolic adipose triglyceride lipase and hormone-sensitive lipase, recent studies show the existence of other neutral lipid hydrolases that reside in the endoplasmic reticulum. In this review we highlight the role of these novel lipases including several members of the carboxylesterase family and enzymes termed arylacetamide deacetylase and KIAA1363/neutral cholesteryl ester hydrolase1/arylacetamide deacetylase-like 1. Some of these enzymes might be attractive targets for the treatment of dyslipidemias, viral infection and atherosclerosis.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
27
|
Abstract
Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells.
Collapse
Affiliation(s)
- W Gray Jerome
- Department of Pathology, U-2206 Medical Center North Vanderbilt University School of Medicine 1161 21st Avenue, South Nashville, TN 37232-32561, USA, Tel.: +1 615 322 5530
| |
Collapse
|
28
|
Igarashi M, Osuga JI, Uozaki H, Sekiya M, Nagashima S, Takahashi M, Takase S, Takanashi M, Li Y, Ohta K, Kumagai M, Nishi M, Hosokawa M, Fledelius C, Jacobsen P, Yagyu H, Fukayama M, Nagai R, Kadowaki T, Ohashi K, Ishibashi S. The Critical Role of Neutral Cholesterol Ester Hydrolase 1 in Cholesterol Removal From Human Macrophages. Circ Res 2010; 107:1387-95. [DOI: 10.1161/circresaha.110.226613] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masaki Igarashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Jun-ichi Osuga
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Hiroshi Uozaki
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Motohiro Sekiya
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Shuichi Nagashima
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Manabu Takahashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Satoru Takase
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Mikio Takanashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Yongxue Li
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Keisuke Ohta
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masayoshi Kumagai
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Makiko Nishi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masakiyo Hosokawa
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Christian Fledelius
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Poul Jacobsen
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Hiroaki Yagyu
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masashi Fukayama
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Ryozo Nagai
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Takashi Kadowaki
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Ken Ohashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Shun Ishibashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| |
Collapse
|
29
|
Buchebner M, Pfeifer T, Rathke N, Chandak PG, Lass A, Schreiber R, Kratzer A, Zimmermann R, Sattler W, Koefeler H, Fröhlich E, Kostner GM, Birner-Gruenberger R, Chiang KP, Haemmerle G, Zechner R, Levak-Frank S, Cravatt B, Kratky D. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363. J Lipid Res 2010; 51:2896-908. [PMID: 20625037 PMCID: PMC2936755 DOI: 10.1194/jlr.m004259] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 07/12/2010] [Indexed: 12/24/2022] Open
Abstract
Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.
Collapse
Affiliation(s)
- Marlene Buchebner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Thomas Pfeifer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Nora Rathke
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Prakash G. Chandak
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Adelheid Kratzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Koefeler
- Center of Molecular Medicine, and Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center of Molecular Medicine, and Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Gerhard M. Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Center of Molecular Medicine, and Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Kyle P. Chiang
- Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sanja Levak-Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin Cravatt
- Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Bie J, Zhao B, Song J, Ghosh S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J Biol Chem 2010; 285:13630-7. [PMID: 20189995 DOI: 10.1074/jbc.m109.069781] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular cholesterol balance induces changes in the inflammatory status of macrophages, and low grade chronic inflammation is increasingly being recognized as one of the key steps in the development of atherosclerosis as well as insulin resistance. Cholesteryl ester hydrolase (CEH) catalyzes the hydrolysis of intracellular stored cholesteryl esters (CEs) and thereby enhances free cholesterol efflux and reduces cellular CE content. We have earlier reported reduced atherosclerosis and lesion necrosis in macrophage-specific CEH transgenic mice on a Ldlr(-/-) background. In the present study, we tested the hypothesis that reduced intracellular accumulation of CE in macrophages from CEH transgenic mice will attenuate expression of proinflammatory mediators, thereby reducing infiltration into adipose tissue, alleviating inflammation, and resulting in improved insulin sensitivity. Western diet fed Ldlr(-/-)CEH transgenic mice showed improved insulin sensitivity as assessed by glucose and insulin tolerance tests. Macrophages from CEH transgenic mice expressed significantly lower levels of proinflammatory cytokines (interleukin-1beta and interleukin-6) and chemokine (MCP-1; monocyte chemoattractant protein). Attenuation of NF-kappaB- and AP-1-driven gene expression was determined to be the underlying mechanism. Infiltration of macrophages into the adipose tissue that increases inflammation and impairs insulin signaling was also significantly reduced in Ldlr(-/-)CEH transgenic mice. In the OP-9 adipocyte peritoneal macrophage co-culture system, macrophages from CEH transgenic mice had a significantly reduced effect on insulin signaling as measured by Akt phosphorylation compared with nontransgenic macrophages. Taken together, these studies demonstrate that macrophage-specific overexpression of CEH decreases expression of proinflammatory mediators and attenuates macrophage infiltration into the adipose tissue, resulting in decreased circulating cytokines and improved insulin sensitivity.
Collapse
Affiliation(s)
- Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0050, USA
| | | | | | | |
Collapse
|
31
|
Ghosh S, Zhao B, Bie J, Song J. Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul Pharmacol 2009; 52:1-10. [PMID: 19878739 DOI: 10.1016/j.vph.2009.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/30/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
Accumulation of cholesteryl esters (CE) stored as cytoplasmic lipid droplets is the main characteristic of macrophage foam cells that are central to the development of atherosclerotic plaques. Since only unesterified or free cholesterol (FC) can be effluxed from the cells to extracellular cholesterol acceptors, hydrolysis of CE is the obligatory first step in CE mobilization from macrophages. This reaction, catalyzed by neutral cholesteryl ester hydrolase (CEH), is increasingly being recognized as the rate-limiting step in FC efflux. CEH, therefore, regulates the process of reverse cholesterol transport and ultimate elimination of cholesterol from the body. In this review, we summarize the earlier controversies surrounding the identity of CEH in macrophages, discuss the characteristics of the various candidates recognized to date and examine their role in mobilizing cellular CE and thus regulating atherogenesis. In addition, physiological requirements to hydrolyze lipid droplet-associated substrate and complexities of interfacial catalysis are also discussed to emphasize the importance of evaluating the biochemical characteristics of candidate enzymes that may be targeted in the future to attenuate atherosclerosis.
Collapse
Affiliation(s)
- Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0050, USA.
| | | | | | | |
Collapse
|
32
|
Ghosh S, Zhao B, Bie J, Song J. Role of cholesteryl ester hydrolase in atherosclerosis. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:643-54. [PMID: 18762277 PMCID: PMC2574903 DOI: 10.1016/j.bbalip.2008.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/24/2008] [Accepted: 07/24/2008] [Indexed: 11/15/2022]
Abstract
Cholesteryl esters are hydrolyzed by cholesteryl ester hydrolase (CEH) yielding free cholesterol for export from macrophages. Hence, CEH has an important regulatory role in macrophage reverse cholesterol transport (RCT). CEH and human carboxylesterase 1 (CES1) appear to be the same enzyme. CES1 is inhibited by oxons, the bioactive metabolites of organophosphate (OP) pesticides. Here, we show that CES1 protein is robustly expressed in human THP-1 monocytes/macrophages and its biochemical activity inhibited following treatment of cell lysates and intact cells with chlorpyrifos oxon, paraoxon, or methyl paraoxon (with nanomolar IC(50) values) or after immunodepletion of CES1 protein. CES1 protein expression in cells is unaffected by a 24-h paraoxon treatment, suggesting that the reduced hydrolytic activity is due to covalent inhibition of CES1 by oxons and not down-regulation of expression. Most significantly, treatment of cholesterol-loaded macrophages with either paraoxon (a non-specific CES inhibitor) or benzil (a specific CES inhibitor) caused enhanced retention of intracellular cholesteryl esters and a "foamy" phenotype, consistent with reduced cholesteryl ester mobilization. Thus, exposure to OP pesticides, which results in the inhibition of CES1, may also inhibit macrophage RCT, an important process in the regression of atherosclerosis.
Collapse
Affiliation(s)
- J. Allen Crow
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - Brandy L. Middleton
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| | - M. Jason Hatfield
- Department of Molecular Pharmacology St. Jude Children’s Research Hospital 332 North Lauderdale Memphis, TN 38105, USA
| | - Philip M. Potter
- Department of Molecular Pharmacology St. Jude Children’s Research Hospital 332 North Lauderdale Memphis, TN 38105, USA
| | - Matthew K. Ross
- Center for Environmental Health Sciences Department of Basic Sciences College of Veterinary Medicine Mississippi State University P.O. Box 6100 Mississippi State, MS 39762-6100, USA
| |
Collapse
|
34
|
Zhao B, Song J, Ghosh S. Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. J Lipid Res 2008; 49:2212-7. [PMID: 18599737 DOI: 10.1194/jlr.m800277-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutral cholesteryl ester hydrolase (CEH)-mediated hydrolysis of cellular cholesteryl esters (CEs) is required not only to generate free cholesterol (FC) for efflux from macrophages but also to release FC from lipoprotein-delivered CE in the liver for bile acid synthesis or direct secretion into the bile. We hypothesized that hepatic expression of CEH would regulate the hydrolysis of lipoprotein-derived CE and enhance reverse cholesterol transport (RCT). Adenoviral-mediated CEH overexpression led to a significant increase in bile acid output. To assess the role of hepatic CEH in promoting flux of cholesterol from macrophages to feces, cholesterol-loaded and [3H]cholesterol-labeled J774 macrophages were injected intraperitoneally into mice and the appearance of [3H]cholesterol in gallbladder bile and feces over 48 h was quantified. Mice overexpressing CEH had significantly higher [3H]cholesterol radiolabel in bile and feces, and it was associated with bile acids. This CEH-mediated increased movement of [3H]cholesterol from macrophages to bile acids and feces was significantly attenuated in SR-BI(-/-) mice. These studies demonstrate that similar to macrophage CEH that rate-limits the first step, hepatic CEH regulates the last step of RCT by promoting the flux of cholesterol entering the liver via SR-BI and increasing hepatic bile acid output.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0050, USA
| | | | | |
Collapse
|
35
|
Zhao B, Song J, Chow WN, St. Clair RW, Rudel LL, Ghosh S. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 2007; 117:2983-92. [PMID: 17885686 PMCID: PMC1978419 DOI: 10.1172/jci30485] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 06/26/2007] [Indexed: 01/20/2023] Open
Abstract
Accumulation of cholesteryl esters (CEs) in macrophage foam cells, central to atherosclerotic plaque formation, occurs as a result of imbalance between the cholesterol influx and efflux pathways. While the uptake, or influx, of modified lipoproteins is largely unregulated, extracellular acceptor-mediated free cholesterol (FC) efflux is rate limited by the intracellular hydrolysis of CE. We previously identified and cloned a neutral CE hydrolase (CEH) from human macrophages and demonstrated its role in cellular CE mobilization. In the present study, we examined the hypothesis that macrophage-specific overexpression of CEH in atherosclerosis-susceptible Ldlr(-/-) mice will result in reduction of diet-induced atherosclerosis. Transgenic mice overexpressing this CEH specifically in the macrophages (driven by scavenger receptor promoter/enhancer) were developed and crossed into the Ldlr(-/-) background (Ldlr(-/-)CEHTg mice). Macrophage-specific overexpression of CEH led to a significant reduction in the lesion area and cholesterol content of high-fat, high-cholesterol diet-induced atherosclerotic lesions. The lesions from Ldlr(-/-)CEHTg mice did not have increased FC, were less necrotic, and contained significantly higher numbers of viable macrophage foam cells. Higher CEH-mediated FC efflux resulted in enhanced flux of FC from macrophages to gall bladder bile and feces in vivo. These studies demonstrate that by enhancing cholesterol efflux and reverse cholesterol transport, macrophage-specific overexpression of CEH is antiatherogenic.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jingmei Song
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Woon N. Chow
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Richard W. St. Clair
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Lawrence L. Rudel
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Shobha Ghosh
- Department of Internal Medicine and
Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Pathology, Lipid Sciences Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
36
|
Ross MK, Crow JA. Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J Biochem Mol Toxicol 2007; 21:187-96. [PMID: 17936933 DOI: 10.1002/jbt.20178] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Carboxylesterases (CEs) are traditionally regarded as xenobiotic metabolizing enzymes that hydrolyze esterified xenobiotics to alcohol and carboxylic acid products. However, there is a growing appreciation for the role of CEs in the processing of endobiotics, including cholesteryl esters and triacylglycerols. Human liver microsomes (HLMs) are often used in reaction phenotyping studies to discern interindividual variability in xenobiotic metabolism. The two major CE isoforms expressed in human liver are hCE1 and hCE2. These two isoforms are different gene products. We have begun studies to evaluate the CE phenotype'' of human liver samples, i.e. to determine both the levels of hCE1 and hCE2 protein and the hydrolytic activity of each. We have previously shown that there is little variation in hCE1 protein expression in HLM samples from 11 individuals [a 1.3-fold difference between the highest and lowest individuals; coefficient of variation (CV), 9%]. hCE2 protein expression in individual HLMs is only slightly more variable than hCE1 (2.3-fold difference between the highest and lowest individuals; CV, 36%). However, hCE1 protein is found in 46-fold higher amounts in HLMs than hCE2 protein (64.4 +/- 16.5 microg hCE1/mg microsomal protein compared to 1.4 +/- 0.2 microg hCE2/mg microsomal protein). The hydrolytic activity specifically attributable to hCE1 and hCE2 in individual HLMs was measured using bioresmethrin (a pyrethroid insecticide hydrolyzed specifically by hCE1, but not by hCE2) and procaine (an analgesic drug hydrolyzed by hCE2, but not by hCE1). The hydrolytic activity of individual HLMs toward bioresmethrin and procaine did not correlate with the protein content of hCE1 and hCE2. Thus, the mere abundance of CE proteins is not a good predictor of CE activity in HLMs. Identification of the factors that lead to altered CE activities in HLMs will be important to characterize since several pharmaceutical agents, environmental toxicants, and endobiotics are metabolized by these enzymes.
Collapse
Affiliation(s)
- Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| | | |
Collapse
|
37
|
Zhu Y, Wang HJ, Chen LF, Fang Q, Yan XW. Study of ATP-binding cassette transporter A1 (ABCA1)-mediated cellular cholesterol efflux in diabetic golden hamsters. J Int Med Res 2007; 35:508-16. [PMID: 17697528 DOI: 10.1177/147323000703500410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of cyclic adenosine monophosphate (cAMP) and atorvastatin on macrophage adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux were investigated in a diabetic animal model. Golden hamsters were fed a high-fat diet which resulted in insulin resistance. Diabetes was induced by a single intraperitoneal injection of streptozotocin (30 mg/kg). Normal golden hamsters were used as controls. Peritoneal macrophages were incubated with apolipoprotein A-1 (apoA-1), 8-bromoadenosine-3',5'-cyclic monophosphate (8-br-cAMP), and atorvastatin in vitro. Intracellular cholesterol accumulation was greater in the diabetic animals than in the insulin-resistant animals. Expression of ABCA1 mRNA in macrophages from diabetic animals was upregulated by 8-br-cAMP and atorvastatin. ApoA-1 caused a time-dependent cellular cholesterol efflux. Both atorvastatin and 8-br-cAMP significantly facilitated ABCA1-mediated cellular cholesterol efflux, with the maximal cholesterol efflux rate observed in the macrophages from diabetic animals. Accumulation of cholesterol in the macrophages of diabetic animals can be significantly alleviated by atorvastatin or 8-br-cAMP through improving ABCA1-mediated cellular cholesterol efflux.
Collapse
Affiliation(s)
- Y Zhu
- Division of Cardiology, Department of Internal Medicine, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Naslavsky N, Rahajeng J, Rapaport D, Horowitz M, Caplan S. EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem Biophys Res Commun 2007; 357:792-9. [PMID: 17451652 PMCID: PMC1978283 DOI: 10.1016/j.bbrc.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/16/2022]
Abstract
Endocytic transport is critical for the subcellular distribution of free cholesterol and the endocytic recycling compartment (ERC) is an important organelle that stores cholesterol and regulates its trafficking. The C-terminal EHD protein, EHD1, controls receptor recycling through the ERC and affects free cholesterol distribution in the cell. We utilized embryonic fibroblasts from EHD1 knockout mice (Ehd1(-/-)MEF) and SiRNA in normal MEF cells to assess the role of EHD1 in intracellular transport of cholesterol. Surprisingly, Ehd1(-/-)MEFs displayed reduced levels of esterified and free cholesterol, which returned to normal level upon re-introduction of wild-type, but not dysfunctional EHD1. Moreover, triglyceride and cholesterol storage organelles known as 'lipid droplets' were smaller in size in cells lacking EHD1, indicating that less esterified cholesterol and triglycerides were being stored. Decreased cellular cholesterol and reduced lipid droplet size in Ehd1(-/-)MEFs correlated with ineffectual cholesterol uptake via LDL receptor, suggesting involvement of EHD1 in LDL receptor internalization.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Juliati Rahajeng
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Debora Rapaport
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
- Address correspondence to: Steve Caplan, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, e-mail: , phone: 402-559-7556
| |
Collapse
|
39
|
Wei E, Gao W, Lehner R. Attenuation of Adipocyte Triacylglycerol Hydrolase Activity Decreases Basal Fatty Acid Efflux. J Biol Chem 2007; 282:8027-35. [PMID: 17237500 DOI: 10.1074/jbc.m605789200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids released from adipose triacylglycerol stores by lipolysis provide vertebrates with an important source of energy. We investigated the role of microsomal triacylglycerol hydrolase (TGH) in the mobilization of adipocyte triacylglycerols through inactivation of the TGH activity by RNA interference or chemical inhibition. Attenuation of TGH activity resulted in decreased basal but not isoproterenol-stimulated efflux of fatty acids from 3T3-L1 adipocytes. Lack of TGH activity was accompanied by accumulation of cellular triacylglycerols and cholesteryl esters without any changes in the expression of enzymes catalyzing triacylglycerol synthesis (diacylglycerol acyltransferases 1 and 2) or degradation (adipose triglyceride lipase and hormone-sensitive lipase). Inhibition of TGH-mediated lipolysis also did not affect insulin-stimulated Glut4 translocation from intracellular compartments to the plasma membrane or glucose uptake into adipocytes. These data suggest that TGH plays a role in adipose tissue triacylglycerol metabolism and may be a suitable pharmacological target for lowering fatty acid efflux from adipose tissue without altering glucose import.
Collapse
Affiliation(s)
- Enhui Wei
- Department of Pediatrics, Canadian Institutes of Health Research Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
40
|
Natarajan R, Fisher BJ, Fowler AA. Hypoxia inducible factor-1 modulates hemin-induced IL-8 secretion in microvascular endothelium. Microvasc Res 2007; 73:163-72. [PMID: 17336340 DOI: 10.1016/j.mvr.2007.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/05/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Ischemia/Reperfusion injury and hemolysis are characterized by erythrocyte lysis and release of free heme into the microcirculation. Following substantial erythrocyte lysis, heme overwhelms circulatory heme-binding protein networks rapidly forming hemin, the oxidized form of iron protoporphyrin IX. Hemin's role in modulating inflammatory responses in microvascular endothelium (MVEC) remains ill-defined. We studied the impact of hemin exposure on human MVEC interleukin-8 (IL-8) expression. Hemin significantly up-regulated MVEC IL-8 secretion and was associated with cellular iron loading. Hemin-induced IL-8 up-regulation was significantly attenuated by increasing environmental serum concentrations. As well, hemin-induced IL-8 secretion was significantly reduced in a concentration-dependent fashion following pyrrolidine dithiocarbamate exposure, suggesting that induction occurred via an oxidant-sensitive mechanism. Interestingly, transfection studies revealed that oxidant-driven transcription factors NF-kappaB and AP-1 played no role in hemin-induced IL-8 transcription. In studies employing actinomycin D, hemin was found to dramatically lengthen IL-8 mRNA half-life. Of major importance in the current report was the finding that hypoxia inducible factor-1 (HIF-1), a powerful transcription factor mediating tissue responses to hypoxia, potently regulated hemin-induced IL-8 secretion in human MVEC. Activation of HIF-1 via the prolyl hydroxylase inhibitor dimethyloxalylglycine attenuated hemin-induced IL-8 secretion. These studies were confirmed via DNA-directed siRNA silencing of HIF-1alpha. In conclusion, hemin induces a serum protein-sensitive pro-inflammatory phenotype in MVEC via an oxidant-sensitive mechanism that is powerfully regulated by HIF-1.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Box 980050, Richmond, VA 23298, USA
| | | | | |
Collapse
|
41
|
Zhao B, Song J, St Clair RW, Ghosh S. Stable overexpression of human macrophage cholesteryl ester hydrolase results in enhanced free cholesterol efflux from human THP1 macrophages. Am J Physiol Cell Physiol 2007; 292:C405-12. [PMID: 16971496 DOI: 10.1152/ajpcell.00306.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of the lipid burden of atherosclerotic lesion-associated macrophage foam cells is a logical strategy to reduce the plaque volume. Since extracellular cholesterol acceptor-mediated cholesterol efflux is the only recognized mechanism of cholesterol removal from foam cells and this process is rate limited at the level of intracellular cholesterol ester hydrolysis, a reaction catalyzed by neutral cholesteryl ester hydrolase (CEH), we examined the hypothesis that CEH overexpression in the human macrophage monocyte/macrophage cell line THP1 results in increased cholesterol efflux, as well as decreased cellular cholesterol ester accumulation. We generated THP1-CEH cells with stable integration of human macrophage CEH cDNA driven by the cytomegalovirus promoter. Compared with wild-type THP1 cells (THP1-WT), THP1-CEH cells showed increased CEH mRNA expression and increased CEH activity. Efflux of free or unesterified cholesterol by acetylated LDL-loaded THP1-CEH cells to ApoA-I by an ABCA1-dependent pathway or to HDL by an ABCG1-dependent pathway was significantly higher than that in THP1-WT cells. In addition, THP1-CEH cells accumulated significantly lower amount of esterified cholesterol. CEH overexpression, therefore, not only enhances cholesterol efflux but also reduces cellular accumulation of cholesteryl esters. Taken together, these data provide evidence for evaluating CEH expression in human macrophages as a potential target for attenuation of foam cell formation and regression of atherosclerotic plaques.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA 23298-0050, USA
| | | | | | | |
Collapse
|
42
|
Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 2006; 84:763-73. [PMID: 17167540 DOI: 10.1139/o06-093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular matrix proteins (ECMs) play a significant role in the transfer of mechanical strain to monocyte-derived macrophages (MDMs) affecting morphological changes in a foreign body reaction. This study investigated how the functional responses of U937 macrophage-like cells differed when subjected to 2 dynamic strain types (nonuniform biaxial or uniform uniaxial strain) while cultured on siloxane membranes coated with either collagen type I or RGD peptide repeats (ProNectin®). Biaxial strain caused an increase in intracellular esterase and acid phosphatase (AP) activities, as well as monocyte-specific esterase (MSE) protein levels in cells that were seeded on either uncoated surfaces (shown previously) or collagen, but not ProNectin®. Released AP activity, but not released esterase activity, was increased on all surfaces. Biaxial strain increased IL-6, but not IL-8 on all surfaces. When cells were subjected to uniaxial strain, intracellular esterase increased on coated surfaces only, whereas intracellular AP activity was unaffected. Both esterase and AP released activities increased on all surfaces. Uniaxial strain increased the release of IL-6 on all surfaces, but IL-8 on coated surfaces only. This study demonstrated for the first time that ECM proteins could specifically modulate cellular responses to different types of strain. Using this approach with an in vitro cell system may help to unravel the complex function of MDMs in the foreign-body reaction.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | | | | | | |
Collapse
|
43
|
Bencharit S, Edwards CC, Morton CL, Howard-Williams EL, Kuhn P, Potter PM, Redinbo MR. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J Mol Biol 2006; 363:201-14. [PMID: 16962139 PMCID: PMC1762004 DOI: 10.1016/j.jmb.2006.08.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 11/26/2022]
Abstract
Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following endogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and taurocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligand-binding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCE1, multiple non-specific sites are employed to perform distinct catalytic actions.
Collapse
Affiliation(s)
- Sompop Bencharit
- Department of Chemistry
- Department of Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, School of Medicine
- Department of Prosthodontics, School of Dentistry
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Carol C. Edwards
- Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christopher L. Morton
- Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Peter Kuhn
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Rd, MS 69, Menlo Park, CA 94025, USA
| | - Philip M. Potter
- Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry
- Department of Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, School of Medicine
- *To Whom Correspondence Should be Addressed: Matthew R. Redinbo, Department of Chemistry, Campus Box #3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA, (919) 843-8910, (919) 966-3675 fax,
| |
Collapse
|
44
|
Tam SP, Ancsin JB, Tan R, Kisilevsky R. Peptides derived from serum amyloid A prevent, and reverse, aortic lipid lesions in apoE−/− mice. J Lipid Res 2005; 46:2091-101. [PMID: 16061946 DOI: 10.1194/jlr.m500191-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages (Mphi) at sites of acute tissue injury accumulate and export cholesterol quickly. This metabolic activity is likely dependent on the physiological function of a major acute-phase protein, serum amyloid A 2.1 (SAA2.1), that is synthesized by hepatocytes as part of a systemic response to acute injury. Our previous studies using cholesterol-laden J774 mouse Mphi showed that an N-terminal domain of SAA2.1 inhibits acyl-CoA:cholesterol acyltransferase activity, and a C-terminal domain enhances cholesteryl ester hydrolase activity. The net effect of this enzymatic regulation is to drive intracellular cholesterol to its unesterified state, the form readily exportable to an extracellular acceptor such as HDL. Here, we demonstrate that these domains from mouse SAA2.1, when delivered in liposomal formulation, are effective at preventing and reversing aortic lipid lesions in apolipoprotein E-deficient mice maintained on high-fat diets. Furthermore, mouse SAA peptides, in liposomal formulation, are effective at regulating cholesterol efflux in THP-1 human Mphi, and homologous domains from human SAA are effective in mouse J774 cells. These peptides operate at the level of the foam cell in the reverse cholesterol pathway and therefore may be used in conjunction with other agents that act more distally in this process. Such human peptides, or small molecule mimics of their structure, may prove to be potent antiatherogenic agents in humans.
Collapse
Affiliation(s)
- Shui Pang Tam
- Department of Pathology and Molecular Medicine, Queen's University, and The Syl and Molly Apps Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Zhao B, Natarajan R, Ghosh S. Human liver cholesteryl ester hydrolase: cloning, molecular characterization, and role in cellular cholesterol homeostasis. Physiol Genomics 2005; 23:304-10. [PMID: 16131527 DOI: 10.1152/physiolgenomics.00187.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The liver regulates cholesterol homeostasis and eliminates excess cholesterol as bile acids or biliary cholesterol. Free cholesterol for bile acid synthesis or biliary secretion is obtained by the hydrolysis of stored cholesteryl esters or from cholesteryl esters taken up by the liver from high-density lipoproteins via a selective uptake pathway. The present study was undertaken to characterize the enzyme catalyzing this reaction, namely, cholesterol ester hydrolase (CEH) from the human liver, and demonstrate its role in regulating bile acid synthesis. Two cDNAs were isolated from the human liver that differed only in the presence of an additional alanine at position 18 in one of the clones. Transient transfection of COS-7 cells with a eukaryotic expression vector containing either of these two cDNAs resulted in significant increase in the hydrolysis of cholesteryl esters, authenticating these clones as human liver CEH. CEH mRNA and protein expression in human hepatocytes were demonstrated by real-time PCR and Western blot analyses, respectively, confirming the location of this enzyme in the cell type involved in hepatic cholesterol homeostasis. Overexpression of these CEH clones in human hepatocytes resulted in significant increase in bile acid synthesis, demonstrating a role for liver CEH in modulating bile acid synthesis. This CEH gene mapped on human chromosome 16, and the two clones represent two different transcript variants resulting from splice shifts at exon 1. In conclusion, these data identify that human liver CEH was expressed in hepatocytes, where it potentially regulates the synthesis of bile acids and thus the removal of cholesterol from the body.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0050, USA
| | | | | |
Collapse
|
46
|
Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S. Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res 2005; 46:2114-21. [PMID: 16024911 DOI: 10.1194/jlr.m500207-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrolysis of intracellular cholesteryl esters (CEs) represents the first step in the removal of cholesterol from lipid-laden foam cells associated with atherosclerotic lesions. Neutral cholesteryl ester hydrolase (CEH) catalyzes this reaction, and we recently cloned the cDNA for the human macrophage CEH and demonstrated increased mobilization of intracellular CE droplets by CEH overexpression. The present study was undertaken to test the hypothesis that for CE hydrolysis, CEH must become associated with the surface of the cytoplasmic lipid droplets. Our data show the redistribution of CEH from cytosol to lipid droplets upon lipid loading of human THP-1 macrophages. Depletion of triacylglycerol (TG) by incubation with the acyl-CoA synthetase inhibitor Triacsin D had no effect on CEH association with the lipid droplets, suggesting that CEH associates with mixed (CE + TG) as well as TG-depleted CE droplets. However, CEH had 2.5-fold higher activity when mixed droplets were used as substrate in an in vitro assay, consistent with the reported higher cholesterol efflux from cells containing mixed isotropic droplets. Perilipin as well as adipophilin, two lipid droplet-associated proteins, were also present on the lipid droplets in THP-1 macrophages. In conclusion, CEH associates with its intracellular substrate (lipid droplets) and hydrolyzes CE more efficiently from mixed droplets.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0050, USA
| | | | | | | | | |
Collapse
|
47
|
Redinbo MR, Potter PM. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today 2005; 10:313-25. [PMID: 15749280 DOI: 10.1016/s1359-6446(05)03383-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our understanding of the detailed recognition and processing of clinically useful therapeutic agents has grown rapidly in recent years, and we are now able to begin to apply this knowledge to the rational treatment of disease. Mammalian carboxylesterases (CEs) are enzymes with broad substrate specificities that have key roles in the metabolism of a wide variety of clinical drugs, illicit narcotics and chemical nerve agents. Here, the functions, mechanism of action and structures of human CEs are reviewed, with the goal of understanding how these proteins are able to act in such a non-specific fashion, yet catalyze a remarkably specific chemical reaction. Current approaches to harness these enzymes as protein-based therapeutics for drug and chemical toxin clearance are described, as well as their uses for targeted chemotherapeutic prodrug activation. Also included is an outline of how selective CE inhibitors could be used as co-drugs to improve the efficacy of clinically approved agents.
Collapse
Affiliation(s)
- Matthew R Redinbo
- Department of Chemistry, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | | |
Collapse
|
48
|
Yeaman SJ. Hormone-sensitive lipase--new roles for an old enzyme. Biochem J 2004; 379:11-22. [PMID: 14725507 PMCID: PMC1224062 DOI: 10.1042/bj20031811] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/14/2004] [Accepted: 01/15/2004] [Indexed: 01/01/2023]
Abstract
Although described initially as an intracellular adipocyte-specific triacylglycerol lipase, it is now clear that HSL (hormone-sensitive lipase) is expressed in multiple tissues and plays a number of roles in lipid metabolism, including that of a neutral cholesteryl ester hydrolase. The major isoform is a single polypeptide with a molecular mass of approx. 84 kDa and which comprises three major domains: a catalytic domain, a regulatory domain encoding several phosphorylation sites and an N-terminal domain involved in protein-protein and protein-lipid interactions. The activity of HSL is regulated acutely by several mechanisms, including reversible phosphorylation by a number of different protein kinases, translocation to different sites within the cell and interaction with a number of proteins, some of which may serve to direct the inhibitory products of HSL away from the protein. It is also apparent from work with HSL null mice that more than one enzyme species may be classified as a hormone-sensitive lipase. The possible presence of HSL in macrophages remains controversial, and the role of the protein in pancreatic beta-cells has yet to be fully elucidated. Altered expression of HSL in different cell types may be associated with a number of pathological states, including obesity, atherosclerosis and Type II diabetes.
Collapse
Affiliation(s)
- Stephen J Yeaman
- School of Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
49
|
Abstract
Intracellular cholesterol transport is essential for the maintenance of cholesterol homeostasis. Many aspects of cholesterol metabolism are well-known, including its synthesis in the endoplasmic reticulum, its extracellular transport in plasma lipoproteins, its uptake by the low-density lipoprotein receptor, and its regulation of SREBP and LXR transcription factors. These fundamental pathways in cholesterol metabolism all rely on its proper intracellular distribution among subcellular organelles and the plasma membrane. Transport involving the ER and endosomes is essential for cholesterol synthesis, uptake, and esterification, whereas cholesterol catabolism by enzymes in mitochondria and ER generates steroids, bile acids, and oxysterols. Cholesterol is a highly hydrophobic lipid that requires specialized transport in the aqueous cytosol, involving either vesicles or nonvesicular mechanisms. The latter includes hydrophobic cavity transporters such as StAR-related lipid transfer (START) proteins. Molecular understanding of intracellular cholesterol trafficking has lagged somewhat behind other aspects of cholesterol metabolism, but recent advances have defined some transport pathways and candidate proteins. In this review, we discuss cholesterol transport among specific intracellular compartments, emphasizing the relevance of these pathways to cholesterol homeostasis.
Collapse
Affiliation(s)
- Raymond E Soccio
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Lada AT, Davis M, Kent C, Chapman J, Tomoda H, Omura S, Rudel LL. Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay. J Lipid Res 2004; 45:378-86. [PMID: 14617738 DOI: 10.1194/jlr.d300037-jlr200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyl CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2 are enzymes responsible for the formation of cholesteryl esters in tissues. While both ACAT1 and ACAT2 are present in the liver and intestine, the cells containing either enzyme within these tissues are distinct, suggesting that ACAT1 and ACAT2 have separate functions. In this study, NBD-cholesterol was used to screen for specific inhibitors of ACAT1 and ACAT2. Incubation of AC29 cells, which do not contain ACAT activity, with NBD-cholesterol showed weak fluorescence when the compound was localized in the membrane. When AC29 cells stably transfected with either ACAT1 or ACAT2 were incubated with NBD-cholesterol, the fluorescent signal localized to the nonpolar core of cytoplasmic lipid droplets was strongly fluorescent and was correlated with two independent measures of ACAT activity. Several compounds were found to have greater inhibitory activity toward ACAT1 than ACAT2, and one compound was identified that specifically inhibits ACAT2. The demonstration of selective inhibition of ACAT1 and ACAT2 provides evidence for uniqueness in structure and function of these two enzymes. To the extent that ACAT2 is confined to hepatocytes and enterocytes, the only two cell types that secrete lipoproteins, selective inhibition of ACAT2 may prove to be most beneficial in the reduction of plasma lipoprotein cholesterol concentrations.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Arteriosclerosis Research Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|