1
|
Bugueno IM, Alastra G, Balic A, Stadlinger B, Mitsiadis TA. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int J Mol Sci 2024; 25:11105. [PMID: 39456888 PMCID: PMC11508566 DOI: 10.3390/ijms252011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis-dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Anamaria Balic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, CH-8032 Zurich, Switzerland;
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| |
Collapse
|
2
|
Lin B, Li Z, Lin Y, Shu Y, Wang J. Evaluation of intracellular lipid droplets viscosity by a probe with high fluorescence quantum yield. Anal Chim Acta 2023; 1279:341776. [PMID: 37827674 DOI: 10.1016/j.aca.2023.341776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Lipid droplets (LDs) are an important organelle as the main energy storage site in cells. LDs viscosity controls the material and energy exchange between it and other organelles. Furthermore, the LDs metabolic abnormalities, cell dysfunction, some diseases may be attributed to the singular LDs viscosity. Currently, the fluorescent probes for sensing the variations of LDs viscosity are still scarce and expose some drawbacks of low fluorescence quantum yield, low sensitivity and LDs polarity interference. Thus, the development of high performance probes is significant to detect LDs viscosity. RESULTS We hereby provide a lipophilic fluorescent probe (TPE-BET) with high fluorescence quantum yield (Φf, 0.91 in glycerol) for imaging LDs viscosity in living cells. With the increase of viscosity from 0.54 cp to 934 cp, the fluorescence at λex/λem = 405/520 nm and the fluorescence quantum yield of TPE-BET linearly increased by 64.9 and 128.5 folds, respectively. Meanwhile, the outstanding LDs staining capability of TPE-BET may provide a high spatial resolution for LDs imaging. The cell imaging of TPE-BET not only successfully observed the viscosity variations of LDs in cell stress models, e.g., ferroptosis, inflammation and mitophagy, but also revealed the increased viscosity and extracellular delivery of LDs in heavy metal cell injury models (Hg/As) for the first time, which may supply concrete evidence for understanding the structure and function of LDs. SIGNIFICANCE This represents a new fluorescent probe TPE-BET with high fluorescence quantum yield for imaging LDs viscosity, which may decrease the dose of probe and excitation light intensity along with the improvement on signal noise ratio (S/N). The imaging results of TPE-BET clarified that LDs viscosity may be an appraisal index on cell differentiation, state evaluation and drug screening.
Collapse
Affiliation(s)
- Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhenru Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yanna Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
3
|
Ishihara S, Kurosawa H, Haga H. Stiffness-Modulation of Collagen Gels by Genipin-Crosslinking for Cell Culture. Gels 2023; 9:gels9020148. [PMID: 36826318 PMCID: PMC9957210 DOI: 10.3390/gels9020148] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The stiffness of extracellular matrices (ECMs) is critical for cellular functions. Therefore, modulating the stiffness of ECMs in vitro is necessary to investigate the role of stiffness in cellular phenomena. Collagen gels are widely used for cell culture matrices in vitro. However, modulation of the stiffness in collagen gels for cell culture is challenging owing to the limited knowledge of the method to increase the stiffness while maintaining low cytotoxicity. Here, we established a novel method to modulate collagen gel stiffness from 0.0292 to 12.5 kPa with low cytotoxicity. We prepared collagens with genipin, a low-cytotoxic crosslinker of amines, at different concentrations and successfully modulated the stiffness of the gels. In addition, on 10 mM genipin-mixed collagen gels (approximately 12.5 kPa), H1299 human lung cancer cells showed spreading morphology and nuclear localization of yes-associated protein (YAP), typical phenomena of cells on stiff ECMs. Mouse mesenchymal stromal cells on 10 mM genipin-mixed collagen gels differentiated to vascular smooth muscle cells. On the other hand, the cells on 0 mM genipin-mixed collagen gels (approximately 0.0292 kPa) differentiated to visceral smooth muscle cells. Our new method provides a novel way to prepare stiffness-modulated collagen gels with low cytotoxicity in cell culture.
Collapse
Affiliation(s)
- Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: (S.I.); (H.H.)
| | - Haruna Kurosawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: (S.I.); (H.H.)
| |
Collapse
|
4
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Septin 9 and phosphoinositides regulate lysosome localization and their association with lipid droplets. iScience 2022; 25:104288. [PMID: 35573204 PMCID: PMC9097704 DOI: 10.1016/j.isci.2022.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The accumulation of lipid droplets (LDs) in the liver is a hallmark of steatosis, which is often associated with lysosomal dysfunction. Nevertheless, the underlying mechanisms remain unclear. Here, using Huh7 cells loaded with oleate as a model to study LD metabolism, we show that cellular content and distribution of LDs are correlated with those of the lysosome and regulated by oleate and septin 9. High expression of septin 9 promotes perinuclear clustering of lysosomes which co-localized with Golgi and not with their surrounding LDs. On the other hand, knockdown of septin 9 disperses the two organelles which colocalize at the cell periphery. The Rab7 is present around these peripheral LDs. PtdIns5P which binds septin 9 and MTMR3 which converts PtdIns(3,5)P2 into PtdIns(5) recapitulates the effects of septin 9. By contrast, PtdIns(3,5)P2 promotes LD/lysosome co-localization. Overall, our data reveal a phosphoinositide/septin 9-dependent mechanism that regulates LD behavior through the control of their association with lysosomes. Septin 9 is regulates oleate-induced lysosome perinuclear clustering Septin 9 and MTs regulate oleate-induced lysosome co-localization with Golgi LDs with high septin 9 have less interaction with Rab7 and LAMP1 PIs have specific effects on LD and lysosome
Collapse
|
6
|
Ahmed M, Lai TH, Kim DR. A Small Fraction of Progenitors Differentiate Into Mature Adipocytes by Escaping the Constraints on the Cell Structure. Front Cell Dev Biol 2021; 9:753042. [PMID: 34708046 PMCID: PMC8542793 DOI: 10.3389/fcell.2021.753042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Differentiating 3T3-L1 pre-adipocytes are a mixture of non-identical culture cells. It is vital to identify the cell types that respond to the induction stimulus to understand the pre-adipocyte potential and the mature adipocyte behavior. To test this hypothesis, we deconvoluted the gene expression profiles of the cell culture of MDI-induced 3T3-L1 cells. Then we estimated the fractions of the sub-populations and their changes in time. We characterized the sub-populations based on their specific expression profiles. Initial cell cultures comprised three distinct phenotypes. A small fraction of the starting cells responded to the induction and developed into mature adipocytes. Unresponsive cells were probably under structural constraints or were committed to differentiating into alternative phenotypes. Using the same population gene markers, similar proportions were found in induced human primary adipocyte cell cultures. The three sub-populations had diverse responses to treatment with various drugs and compounds. Only the response of the maturating sub-population resembled that estimated from the profiles of the mixture. We then showed that even at a low division rate, a small fraction of cells could increase its share in a dynamic two-populations model. Finally, we used a cell cycle expression index to validate that model. To sum, pre-adipocytes are a mixture of different cells of which a limited fraction become mature adipocytes.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| |
Collapse
|
7
|
Li J, Zhang S, Lao J, Zou H. Direct Transition-Metal Free Benzene C-H Functionalization by Intramolecular Non-Nitroarene Nucleophilic Aromatic Substitution of Hydrogen to Diverse AIEgens. CHEMSUSCHEM 2021; 14:3208-3218. [PMID: 34132487 DOI: 10.1002/cssc.202101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Direct C(sp2 )-H functionalization through nitroarene-triggered nucleophilic aromatic substitution of hydrogen (SNArH ) has attracted growing attention, owing to its high efficiency and low carbon footprint. In this study, non-nitro-group-assisted SN ArH has been developed for direct benzene functionalization in one pot under mild conditions. The electron-withdrawing carbonyl group and the halide or trifluoromethyl group on the phenyl ring enable the σH adduct formation to fulfill the intramolecular C(sp2 )-C(sp3 ) bond construction. Notably, the cyano group serves as both the electron-withdrawing group to activate the C(sp3 )-H bond and the leaving group to fulfill the β-elimination. Three series of pyrrolo[1,2-b]isoquinolinones, as well as unexpected rearrangement products 3-(1H-pyrrol-2-yl)-1H-inden-1-ones are regioselectively obtained through a simple and efficient base-catalyzed one-pot strategy. Mechanistic studies indicate that the σH adduct from carbanion addition to hydrogen serves as the sole intermediate for all of the aforementioned transformations. These molecules show intense luminescence and the subsequent one-step structural modification results in the aggregation-induced emission (AIE) derivatives with redshifted full-color tunable fluorescence, large Stokes shifts, and good quantum yields. Further living cell imaging investigations suggest their potential application as specific bioprobes for lipid droplet localization and visualization.
Collapse
Affiliation(s)
- Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuaizhong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiaxin Lao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
8
|
Zhang F, Liu Y, Yang B, Guan P, Chai J, Wen G, Liu B. Tunable NIR AIE-active optical materials for lipid droplet imaging in typical model organisms and photodynamic therapy. J Mater Chem B 2021; 9:2417-2427. [PMID: 33623937 DOI: 10.1039/d0tb02801k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) luminescent materials with aggregation-induced emission (AIE) features have attracted enormous attention in the areas of medical imaging and diagnostic therapeutics because of their low background fluorescence and strong tissue penetration. This study reports a series of easily synthesized AIEgen molecules that feature NIR emission. These molecules have a donor-donor-π-acceptor (D1-D2-π-A) structure with intramolecular charge transfer (ICT) character. The nature of charge transfer transition can be modified by different structures of D2, i.e. phenyl, thiophene, and furan ring. These AIEgens have high selectivity towards lipid droplets (LDs) in vitro and in vivo, such as zebrafish, Caenorhabditis elegans, and oil crop tissue. In addition, the effect of photodynamic therapy (PDT) on SMMC-7721 cells was investigated, and the results indicate that these AIEgens have potential application for PDT on cancer cells with white light illumination. This study reveals that these triphenylamine (TPA)-based AIEgens have great potential for biological imaging and preclinical applications of PDT.
Collapse
Affiliation(s)
- Fei Zhang
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Yaoming Liu
- Scientific Instrument Center of Shanxi University, Taiyuan, China
| | - Binsheng Yang
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Pengli Guan
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Jie Chai
- Department of Chemistry, Jinzhong University, Taiyuan, 030619, China
| | - Guangming Wen
- Department of Chemistry, Jinzhong University, Taiyuan, 030619, China
| | - Bin Liu
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Liu C, Yin J, Lu B, Lin W. A fluorogenic probe for dynamic tracking of lipid droplets’ polarity during the evolution of cancer. NEW J CHEM 2021. [DOI: 10.1039/d0nj05900e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exploring the changes in the polarity of intracellular lipid droplets (LDs) during the evolution of cancer is important for cancer detection and treatment.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
10
|
Yang T, Zuo Y, Zhang Y, Gou Z, Wang X, Lin W. AIE-active polysiloxane-based fluorescent probe for identifying cancer cells by locating lipid drops. Anal Chim Acta 2019; 1091:88-94. [DOI: 10.1016/j.aca.2019.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
|
11
|
Wang X, Zuo Y, Zhang Y, Yang T, Lin W. Triphenylamine Schiff base as a lipid droplet-targeted fluorescent probe using Si-O-Si as a bridge for the detection of Cr 6+ applied in bio-imaging. Analyst 2019; 144:5373-5377. [PMID: 31386702 DOI: 10.1039/c9an01174a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipid droplets are known to play an important role in many cellular activities, as revealed by recent studies. Additionally, hexavalent chromium is considered extremely toxic because it readily passes through cellular membranes and easily accumulates in living cells. In this study, a novel lipid droplet-targeted fluorescent probe (Si-LDS) for recognition of Cr6+ in living cells was designed and synthesized using triphenylamine derivatives and organosiloxane. Si-LDS detected Cr6+ with high selectivity and sensitivity. The novel probe was successfully applied to cell imaging of exogenous Cr6+ in HeLa cells, and Si-LDS was able to localize mainly in the lipid droplets of HeLa cells. Si-LDS is the first lipid droplet-targeted fluorescent probe for monitoring Cr6+.
Collapse
Affiliation(s)
- Xiaoni Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P.R. China.
| | | | | | | | | |
Collapse
|
12
|
Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A 2019; 116:17970-17979. [PMID: 31420514 PMCID: PMC6731669 DOI: 10.1073/pnas.1906512116] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Single-cell sequencing technologies have revealed an unexpectedly broad repertoire of cells required to mediate complex functions in multicellular organisms. Despite the multiple roles of adipose tissue in maintaining systemic metabolic homeostasis, adipocytes are thought to be largely homogenous with only 2 major subtypes recognized in humans so far. Here we report the existence and characteristics of 4 distinct human adipocyte subtypes, and of their respective mesenchymal progenitors. The phenotypes of these distinct adipocyte subtypes are differentially associated with key adipose tissue functions, including thermogenesis, lipid storage, and adipokine secretion. The transcriptomic signature of "brite/beige" thermogenic adipocytes reveals mechanisms for iron accumulation and protection from oxidative stress, necessary for mitochondrial biogenesis and respiration upon activation. Importantly, this signature is enriched in human supraclavicular adipose tissue, confirming that these cells comprise thermogenic depots in vivo, and explain previous findings of a rate-limiting role of iron in adipose tissue browning. The mesenchymal progenitors that give rise to beige/brite adipocytes express a unique set of cytokines and transcriptional regulators involved in immune cell modulation of adipose tissue browning. Unexpectedly, we also find adipocyte subtypes specialized for high-level expression of the adipokines adiponectin or leptin, associated with distinct transcription factors previously implicated in adipocyte differentiation. The finding of a broad adipocyte repertoire derived from a distinct set of mesenchymal progenitors, and of the transcriptional regulators that can control their development, provides a framework for understanding human adipose tissue function and role in metabolic disease.
Collapse
|
13
|
Shi L, Li K, Li LL, Chen SY, Li MY, Zhou Q, Wang N, Yu XQ. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging. Chem Sci 2018; 9:8969-8974. [PMID: 30647889 PMCID: PMC6301202 DOI: 10.1039/c8sc03369b] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, tetraphenylethene, triphenylamine and other man-made core AIE luminescent materials (AIEgens) have attracted significant scientific interest. However, the design and synthesis of natural product based, facile and color tunable AIEgens remains challenging. Herein, a novel series of AIEgens based on purine-core molecular rotors is reported, which can be facilely synthesized and shows color tunable emission. Moreover, these purine-based AIEgens exhibit lipid droplet specific properties in live cellular imaging with low background, high selectivity and excellent biocompatibility.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Meng-Yang Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| |
Collapse
|
14
|
Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice. Sci Rep 2017; 7:6648. [PMID: 28751675 PMCID: PMC5532220 DOI: 10.1038/s41598-017-07206-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/26/2017] [Indexed: 01/26/2023] Open
Abstract
We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.
Collapse
|
15
|
Minaguchi JA, Ogata S, Takahashi N, Hirose T, Ueda H, Takehana K. Remodeling of rat stromal-vascular cells to brite/beige adipocytes by prolyl-hydroxyproline. J Vet Med Sci 2017; 79:547-553. [PMID: 28123139 PMCID: PMC5383175 DOI: 10.1292/jvms.16-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the effects of prolyl-hydroxyproline (Pro-Hyp) on the proliferation and differentiation of rat stromal-vascular cells
(SVCs) being cultured in a medium with (Pro-Hyp group) or without Pro-Hyp (control group). The results showed that there was no significant difference in
proliferation rate of SVCs, lipid droplet (LD) diameter or intracellular concentration of triglycerides between two groups. However, the diameter range of LDs
in the Pro-Hyp group tended to be smaller than that in the control group. Transmission electron microscopy showed a tendency for increase in the area of
mitochondria and decrease in the number of mitochondria in the Pro-Hyp-treated SVCs. The mRNA expression levels of white adipose tissue differentiation markers
(Cbp, Fabp and Serpina3k) were significantly lower, but those of the brown adipose tissue differentiation
markers (Dio2, Ucp1 and Ucp3) were significantly higher in the Pro-Hyp group than in the control group. Our
results suggested that Pro-Hyp can facilitate SVCs to differentiate into “brite/beige” adipocytes.
Collapse
Affiliation(s)
- Jun A Minaguchi
- Laboratory of Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Gao M, Su H, Li S, Lin Y, Ling X, Qin A, Tang BZ. An easily accessible aggregation-induced emission probe for lipid droplet-specific imaging and movement tracking. Chem Commun (Camb) 2017; 53:921-924. [DOI: 10.1039/c6cc09471f] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An easily accessible aggregation-induced emission (AIE) probe is developed for LD-specific imaging and dynamic movement tracking with advantages of NIR two-photon excited red emission and fast cell permeability.
Collapse
Affiliation(s)
- Meng Gao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Huifang Su
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Shiwu Li
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Yuhan Lin
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Xia Ling
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
17
|
Shukla A, Slater JH, Culver JC, Dickinson ME, West JL. Biomimetic Surface Patterning Promotes Mesenchymal Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21883-92. [PMID: 26674708 PMCID: PMC5641978 DOI: 10.1021/acsami.5b08978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Both chemical and mechanical stimuli can dramatically influence cell behavior. By optimizing the signals cells experience, it may be possible to control the behavior of therapeutic cell populations. In this work, biomimetic geometries of adhesive ligands, which recapitulate the morphology of mature cells, are used to direct human mesenchymal stem cell (HMSC) differentiation toward a desired lineage. Specifically, adipocytes cultured in 2D are imaged and used to develop biomimetic virtual masks used in laser scanning lithography to form patterned fibronectin surfaces. The impact of adipocyte-derived pattern geometry on HMSC differentiation is compared to the behavior of HMSCs cultured on square and circle geometries, as well as adipocyte-derived patterns modified to include high stress regions. HMSCs on adipocyte mimetic geometries demonstrate greater adipogenesis than HMSCs on the other patterns. Greater than 45% of all HMSCs cultured on adipocyte mimetic patterns underwent adipogenesis as compared to approximately 19% of cells on modified adipocyte patterns with higher stress regions. These results are attributed to variations in cytoskeletal tension experienced by cells on the different protein micropatterns. The effects of geometry on adipogenesis are mitigated by the incorporation of a cytoskeletal protein inhibitor; exposure to this inhibitor leads to increased adipogenesis on all patterns examined.
Collapse
Affiliation(s)
- Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
- Corresponding Author
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - James C. Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
18
|
Kaneko G, Shirakami H, Hirano Y, Oba M, Yoshinaga H, Khieokhajonkhet A, Nagasaka R, Kondo H, Hirono I, Ushio H. Diversity of Lipid Distribution in Fish Skeletal Muscle. Zoolog Sci 2016; 33:170-8. [DOI: 10.2108/zs150096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Anayama H, Fukuda R, Yamate J. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system. Cell Biol Int 2015; 39:1288-98. [PMID: 26095163 DOI: 10.1002/cbin.10503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.
Collapse
Affiliation(s)
- Hisashi Anayama
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.,Veterinary Pathology, Osaka Prefecture University, 1-58, Rinku-Oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Ryo Fukuda
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Jyoji Yamate
- Veterinary Pathology, Osaka Prefecture University, 1-58, Rinku-Oraikita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
20
|
Winterhalder MJ, Zumbusch A. Beyond the borders--Biomedical applications of non-linear Raman microscopy. Adv Drug Deliv Rev 2015; 89:135-44. [PMID: 25959426 DOI: 10.1016/j.addr.2015.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Raman spectroscopy offers great promise for label free imaging in biomedical applications. Its use, however, is hampered by the long integration times required and the presence of autofluorescence in many samples which outshines the Raman signals. In order to overcome these limitations, a variety of different non-linear Raman imaging techniques have been developed over the last decade. This review describes biomedical applications of these novel but already mature imaging techniques.
Collapse
|
21
|
Proteomic analysis of murine testes lipid droplets. Sci Rep 2015; 5:12070. [PMID: 26159641 PMCID: PMC4498221 DOI: 10.1038/srep12070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis.
Collapse
|
22
|
Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréac'h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs 2015; 13:2629-65. [PMID: 25939034 PMCID: PMC4446598 DOI: 10.3390/md13052629] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;
Collapse
Affiliation(s)
- Vandana Vinayak
- Department of Criminology & Forensic Science, School of Applied Sciences, Dr. H.S. Gour University (Central University), Sagar Madhya Pradesh, India.
| | - Kalina M Manoylov
- Department of Biological & Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Hélène Gateau
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Vincent Blanckaert
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Josiane Hérault
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Gaëlle Pencréac'h
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Justine Marchand
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Richard Gordon
- Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA.
- Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| |
Collapse
|
23
|
Lyu Y, Su X, Deng J, Liu S, Zou L, Zhao X, Wei S, Geng B, Xu G. Defective differentiation of adipose precursor cells from lipodystrophic mice lacking perilipin 1. PLoS One 2015; 10:e0117536. [PMID: 25695774 PMCID: PMC4335001 DOI: 10.1371/journal.pone.0117536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/27/2014] [Indexed: 01/14/2023] Open
Abstract
Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs) from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xueying Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jingna Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shangxin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liangqiang Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Suning Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- * E-mail:
| |
Collapse
|
24
|
Varlamov O, Chu M, Cornea A, Sampath H, Roberts CT. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology 2015; 156:80-9. [PMID: 25356825 PMCID: PMC4272393 DOI: 10.1210/en.2014-1699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic diversity may play an adaptive role by providing graded biological responses to fluctuations in environmental stimuli. We used single-cell imaging of the metabolizable fluorescent fatty acid analog 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-C12 and fluorescent 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) to explore cellular heterogeneity in nutrient uptake in white adipose tissue (WAT) explants of rhesus macaques. Surprisingly, WAT displayed a striking cell size-independent mosaic pattern, in that adjacent adipocytes varied with respect to insulin-stimulated BODIPY-C12 and 2-NBDG uptake. Relative free fatty acid (FFA) transport activity correlated with the cellular levels of FFA transporter protein-1 and the scavenger receptor CD36 in individual adipocytes. In vitro incubation of WAT explants for 24 hours caused partial desynchronization of cellular responses, suggesting that adipocytes may slowly alter their differential nutrient uptake activity. In vitro-differentiated human adipocytes also exhibited a mosaic pattern of BODIPY-C12 uptake. WAT from animals containing a homogeneous population of large adipocytes was nonmosaic, in that every adipocyte exhibited a similar level of BODIPY-C12 fluorescence, suggesting that the development of obesity is associated with the loss of heterogeneity in WAT. Hence, for the first time, we demonstrate an intrinsic heterogeneity in FFA and glucose transport activity in WAT.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science (O.V., C.T.R.), and Division of Neuroscience (A.C.), Oregon National Primate Research Center, Beaverton, Oregon 97006; and Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine (M.C., C.T.R.) and Center for Research Occupational and Environmental Toxicology (H.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | |
Collapse
|
25
|
Sims JK, Rohr B, Miller E, Lee K. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes. Tissue Eng Part C Methods 2014; 21:605-13. [PMID: 25390760 DOI: 10.1089/ten.tec.2014.0513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to identify LDs based on several distinctive optical and morphological characteristics of these cellular bodies as they appear under bright-field. The algorithm was developed against images of 3T3-L1 preadipocyte cultures induced to differentiate into adipocytes. We show that the calculated lipid volumes are in excellent agreement with enzymatic assay data on total intracellular triglyceride content. We also demonstrate that the image processing method can efficiently characterize the highly heterogeneous spatial distribution of LDs in a culture by showing that differentiation occurs in distinct clusters separated by regions of nearly undifferentiated cells. Prospectively, the LD detection method described in this work could be applied to time-lapse data collected with simple visible light microscopy equipment to quantitatively investigate LD dynamics.
Collapse
Affiliation(s)
- James Kenneth Sims
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Brian Rohr
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Eric Miller
- 2Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts
| | - Kyongbum Lee
- 1Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
26
|
Histamine-induced Ca²⁺ signalling is mediated by TRPM4 channels in human adipose-derived stem cells. Biochem J 2014; 463:123-34. [PMID: 25001294 DOI: 10.1042/bj20140065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular Ca2+ oscillations are frequently observed during stem cell differentiation, and there is evidence that it may control adipogenesis. The transient receptor potential melastatin 4 channel (TRPM4) is a key regulator of Ca2+ signals in excitable and non-excitable cells. However, its role in human adipose-derived stem cells (hASCs), in particular during adipogenesis, is unknown. We have investigated TRPM4 in hASCs and examined its impact on histamine-induced Ca2+ signalling and adipogenesis. Using reverse transcription (RT)-PCR, we have identified TRPM4 gene expression in hASCs and human adipose tissue. Electrophysiological recordings revealed currents with the characteristics of those reported for the channel. Furthermore, molecular suppression of TRPM4 with shRNA diminished the Ca2+ signals generated by histamine stimulation, mainly via histamine receptor 1 (H1) receptors. The increases in intracellular Ca2+ were due to influx via voltage-dependent Ca2+ channels (VDCCs) of the L-type (Ca(v)1.2) and release from the endoplasmic reticulum. Inhibition of TRPM4 by shRNA inhibited adipogenesis as indicated by the reduction in lipid droplet accumulation and adipocyte gene expression. These results suggest that TRPM4 is an important regulator of Ca2+ signals generated by histamine in hASCs and is required for adipogenesis.
Collapse
|
27
|
Cuaranta-Monroy I, Simandi Z, Kolostyak Z, Doan-Xuan QM, Poliska S, Horvath A, Nagy G, Bacso Z, Nagy L. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Res 2014; 13:88-97. [PMID: 24858493 DOI: 10.1016/j.scr.2014.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
Abstract
Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocytes mimic the gene-expression profile of subcutaneous isolated adipocytes in vivo remarkably well, much closer than 3T3-L1 derived ones. Moreover, the differentiated cells are in a monolayer, allowing a broad range of genome-wide studies in early and late stages of adipocyte differentiation to be performed.
Collapse
Affiliation(s)
- Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zoltan Simandi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Quang-Minh Doan-Xuan
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, Hungary.
| |
Collapse
|
28
|
Inoue K, Maeda N, Mori T, Sekimoto R, Tsushima Y, Matsuda K, Yamaoka M, Suganami T, Nishizawa H, Ogawa Y, Funahashi T, Shimomura I. Possible involvement of Opa-interacting protein 5 in adipose proliferation and obesity. PLoS One 2014; 9:e87661. [PMID: 24516558 PMCID: PMC3916335 DOI: 10.1371/journal.pone.0087661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/27/2013] [Indexed: 12/15/2022] Open
Abstract
Obesity is an epidemic matter increasing risk for cardiovascular diseases and metabolic disorders such as type 2 diabetes. We recently examined the association between visceral fat adiposity and gene expression profile of peripheral blood cells in human subjects. In a series of studies, Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) was nominated as a molecule of unknown function in adipocytes and thus the present study was performed to investigate the role of OIP5 in obesity. Adenovirus overexpressing Oip5 (Ad-Oip5) was generated and infected to 3T3-L1 cells stably expressing Coxsackie-Adenovirus Receptor (CAR-3T3-L1) and to mouse subcutaneous fat. For a knockdown experiment, siRNA against Oip5 (Oip5-siRNA) was introduced into 3T3-L1 cells. Proliferation of adipose cells was measured by BrdU uptake, EdU-staining, and cell count. Significant increase of Oip5 mRNA level was observed in obese white adipose tissues and such increase was detected in both mature adipocytes fraction and stromal vascular cell fraction. Ad-Oip5-infected CAR-3T3-L1 preadipocytes and adipocytes proliferated rapidly, while a significant reduction of proliferation was observed in Oip5-siRNA-introduced 3T3-L1 preadipocytes. Fat weight and number of adipocytes were significantly increased in Ad-Oip5-administered fat tissues. Oip5 promotes proliferation of pre- and mature-adipocytes and contributes adipose hyperplasia. Increase of Oip5 may associate with development of obesity.
Collapse
Affiliation(s)
- Kana Inoue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Takuya Mori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryohei Sekimoto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yu Tsushima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Matsuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaya Yamaoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Suganami
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:938081. [PMID: 24391675 PMCID: PMC3874339 DOI: 10.1155/2013/938081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.
Collapse
|
30
|
Li G, Fu N, Yang X, Li M, Ba K, Wei X, Fu Y, Yao Y, Cai X, Lin Y. Mechanical compressive force inhibits adipogenesis of adipose stem cells. Cell Prolif 2013; 46:586-94. [PMID: 24033415 DOI: 10.1111/cpr.12053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/11/2013] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate effects of mechanical compressive force on differentiation of adipose-derived stem cells (ASCs) in vitro. MATERIALS AND METHODS Mice ASCs were treated with compressive force (2000 με, 1 Hz) for 2 or 6 h after adipogenic induction for 3 days, then oil red O staining was used to examine oil droplet-filled cells. Adipogenic genes, PPAR-γ1 and APN, were examined by real-time PCR and immunofluorescence (IF) staining was performed to test expression of de-PPAR-γ and ph-PPAR-γ at the protein level. RESULTS Our data showed that mechanical compressive force reduced numbers of oil droplet-filled cells, and down-regulated mRNA levels of both PPAR-γ1 and APN and protein level of PPAR-γ, in ASCs. CONCLUSIONS In culture medium containing adipogenic stimuli, mechanical compressive force inhibited adipogenesis of ASCs.
Collapse
Affiliation(s)
- G Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maki S, Kadokawa H. Increased ectopic fat cells in the longitudinal muscularis layer of the oviduct isthmus in obese Japanese Black cows. Anim Sci J 2013; 85:207-12. [PMID: 23981058 DOI: 10.1111/asj.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022]
Abstract
In obese humans, mesenchymal stem cells differentiate to become ectopic fat cells in muscles. These ectopic fat cells inhibit the contraction of vascular smooth muscles. Stem cells have been recently identified in the human oviduct, a structure important in reproduction. We therefore investigated the number of Oil Red O (ORO)-positive cells in the oviducts of control Japanese Black cows (n = 6; body condition score [BCS], 3.0 on a 5-point scale) compared to those with diet-induced obesity (n = 5; BCS, 4.0). We stained the ampulla and isthmus collected on the second day after ovulation with ORO and then counted the positive cells in each layer in 10 cross-sections of the ampulla or isthmus. The obese group (23.4 ± 3.4 in the 10 sections) had larger numbers of ORO-positive cells in the longitudinal muscularis of the isthmus (P < 0.05) than did the control group (15.0 ± 2.4). ORO-positive cells were also observed in all other layers of the isthmus and ampulla; however, the number of cells in these layers did not differ significantly between obese cows and controls. Whether this observed increase in ORO-positive cells in the oviducts of obese cows affects their reproduction warrants further study.
Collapse
Affiliation(s)
- Sachiko Maki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | |
Collapse
|
32
|
Kraemer FB, Khor VK, Shen WJ, Azhar S. Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol 2013; 371:15-9. [PMID: 23089211 PMCID: PMC3584206 DOI: 10.1016/j.mce.2012.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
Intracellular lipid droplets (LDs) are dynamic organelles that contain a number of associated proteins including perilipin (Plin) and vimentin. Cholesteryl ester (CE)-rich LDs normally accumulate in steroidogenic cells and their mobilization is the preferred initial source of cholesterol for steroidogenesis. Plin1a, 1b and 5 were found to preferentially associate with triacylglycerol-rich LDs and Plin1c and Plin4 to associate with CE-rich LDs, but the biological significance of this remains unanswered. Vimentin null mice were found to have decreased ACTH-stimulated corticosterone levels, and decreased progesterone levels in females, but normal hCG-stimulated testosterone levels in males. Smaller LDs were seen in null cells. Lipoprotein cholesterol delivery to adrenals and ovary was normal, as was the expression of steroidogenic genes; however, the movement of cholesterol to mitochondria was reduced in vimentin null mice. These results suggest that vimentin is important in the maintenance of CE-rich LDs and in the movement of cholesterol for steroidogenesis.
Collapse
|
33
|
Christian P, Sacco J, Adeli K. Autophagy: Emerging roles in lipid homeostasis and metabolic control. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:819-24. [PMID: 23274236 DOI: 10.1016/j.bbalip.2012.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023]
Abstract
Current evidence implicates autophagy in the regulation of lipid stores within the two main organs involved in maintaining lipid homeostasis, the liver and adipose tissue. Critical to this role in hepatocytes is the breakdown of cytoplasmic lipid droplets, a process referred to as lipophagy. Conversely, autophagy is required for adipocyte differentiation and the concurrent accumulation of lipid droplets. Autophagy also affects lipid metabolism through contributions to lipoprotein assembly. A number of reports have now implicated autophagy in the degradation of apolipoprotein B, the main structural protein of very-low-density-lipoprotein. Aberrant autophagy may also be involved in conditions of deregulated lipid homeostasis in metabolic disorders such as the metabolic syndrome. First, insulin signalling and autophagy activity appear to diverge in a mechanism of reciprocal regulation, suggesting a role for autophagy in insulin resistance. Secondly, upregulation of autophagy may lead to conversion of white adipose tissue into brown adipose tissue, thus regulating energy expenditure and obesity. Thirdly, upregulation of autophagy in hepatocytes could increase breakdown of lipid stores controlling triglyceride homeostasis and fatty liver. Taken together, autophagy appears to play a very complex role in lipid homeostasis, affecting lipid stores differently depending on the tissue, as well as contributing to pathways of lipoprotein metabolism.
Collapse
Affiliation(s)
- Patricia Christian
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
34
|
Palgunow D, Klapper M, Döring F. Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 2012. [PMID: 23185233 PMCID: PMC3502458 DOI: 10.1371/journal.pone.0046198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary restriction (DR) extends lifespan in man species and modulates evolutionary conserved signalling and metabolic pathways. Most of these studies were done in adult animals. Here we investigated fat phenotypes of C. elegans larvae and adults which were exposed to DR during development. This approach was named "developmental-DR" (dDR). Moderate as well as stringent dDR increased the triglyceride to protein ratio in L4 larvae and adult worms. This alteration was accompanied by a marked expansion of intestinal and hypodermal lipid droplets. In comparison to ad libitum condition, the relative proportion of fat stored in large lipid droplets (>50 µm(3)) was increased by a factor of about 5 to 6 in larvae exposed to dDR. Microarray-based expression profiling identified several dDR-regulated genes of lipolysis and lipogenesis which may contribute to the observed fat phenotypes. In conclusion, dDR increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism in C. elegans. These changes might be an effective adaptation to conserve fat stores in animals subjected to limiting food supply during development.
Collapse
Affiliation(s)
| | | | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
35
|
van Beekum O, Gao Y, Berger R, Koppen A, Kalkhoven E. A novel RNAi lethality rescue screen to identify regulators of adipogenesis. PLoS One 2012; 7:e37680. [PMID: 22679485 PMCID: PMC3367974 DOI: 10.1371/journal.pone.0037680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/25/2012] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis, the differentiation of fibroblast-like mesenchymal stem cells into mature adipocytes, is tightly regulated by a complex cascade of transcription factors, including the nuclear receptor Peroxisome proliferator activator receptor γ (PPARγ). RNAi-mediated knock down libraries may present an atractive method for the identification of additional adipogenic factors. However, using in vitro adipogenesis model systems for high-throughput screening with siRNA libraries is limited since (i) differentiation is not homogeneous, but results in mixed cell populations, and (ii) the expression levels (and activity) of adipogenic regulators is highly dynamic during differentiation, indicating that the timing of RNAi-mediated knock down during differentiation may be extremely critical. Here we report a proof-of-principle for a novel RNAi screening method to identify regulators of adipogenesis that is based on lethality rescue rather than differentiation, using microRNA expression driven by a PPARγ responsive RNA polymerase II promoter. We validated this novel method through screening of a dedicated deubiquitinase knock down library, resulting in the identification of UCHL3 as an essential deubiquitinase in adipogenesis. This system therefore enables the identification of novel genes regulating PPARγ-mediated adipogenesis in a high-throughput setting.
Collapse
Affiliation(s)
- Olivier van Beekum
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yuan Gao
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arjen Koppen
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Identification of new genes involved in human adipogenesis and fat storage. PLoS One 2012; 7:e31193. [PMID: 22384002 PMCID: PMC3287999 DOI: 10.1371/journal.pone.0031193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/04/2012] [Indexed: 12/29/2022] Open
Abstract
Since the worldwide increase in obesity represents a growing challenge for health care systems, new approaches are needed to effectively treat obesity and its associated diseases. One prerequisite for advances in this field is the identification of genes involved in adipogenesis and/or lipid storage. To provide a systematic analysis of genes that regulate adipose tissue biology and to establish a target-oriented compound screening, we performed a high throughput siRNA screen with primary (pre)adipocytes, using a druggable siRNA library targeting 7,784 human genes. The primary screen showed that 459 genes affected adipogenesis and/or lipid accumulation after knock-down. Out of these hits, 333 could be validated in a secondary screen using independent siRNAs and 110 genes were further regulated on the gene expression level during adipogenesis. Assuming that these genes are involved in neutral lipid storage and/or adipocyte differentiation, we performed InCell-Western analysis for the most striking hits to distinguish between the two phenotypes. Beside well known regulators of adipogenesis and neutral lipid storage (i.e. PPARγ, RXR, Perilipin A) the screening revealed a large number of genes which have not been previously described in the context of fatty tissue biology such as axonemal dyneins. Five out of ten axonemal dyneins were identified in our screen and quantitative RT-PCR-analysis revealed that these genes are expressed in preadipocytes and/or maturing adipocytes. Finally, to show that the genes identified in our screen are per se druggable we performed a proof of principle experiment using an antagonist for HTR2B. The results showed a very similar phenotype compared to knock-down experiments proofing the “druggability”. Thus, we identified new adipogenesis-associated genes and those involved in neutral lipid storage. Moreover, by using a druggable siRNA library the screen data provides a very attractive starting point to identify anti-obesity compounds targeting the adipose tissue.
Collapse
|
37
|
Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 2012; 287:11164-73. [PMID: 22311986 PMCID: PMC3322829 DOI: 10.1074/jbc.m111.316794] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.
Collapse
Affiliation(s)
- Margret Paar
- Institute of Molecular Biosciences, Lipidomics Research Center LRC Graz, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Naito M, Omoteyama K, Mikami Y, Takagi M, Takahashi T. Suppression of lamin A/C by short hairpin RNAs promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26. Histochem Cell Biol 2011; 137:235-47. [PMID: 22119912 DOI: 10.1007/s00418-011-0890-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2011] [Indexed: 01/07/2023]
Abstract
Lamin A/C gene encodes a nuclear membrane protein, and mutations in this gene are associated with diverse degenerative diseases that are linked to premature aging. While lamin A/C is involved in the regulation of tissue homeostasis, the distinct expression patterns are poorly understood in the mesenchymal cells differentiating into adipocytes. Here, we examined the expression of lamin A/C in a rat mesenchymal progenitor cell-line, ROB-C26 (C26). Immunocytochemical analysis showed that lamin A/C was transiently down-regulated in immature adipocytes, but its expression increased with terminal differentiation. To elucidate the role of lamin A/C expression on mesenchymal cell differentiation, lamin A/C expression was suppressed using short hairpin RNA (shRNA) molecules in C26 cells. In the absence of adipogenic stimuli, lamin A/C shRNA decreased alkaline phosphatase (ALP) activity, but induced preadipocyte factor -1 (Pref-1) mRNA expression. In the presence of adipogenic stimuli, lamin A/C knockdown promotes adipocytes differentiation, as assessed by the detection of an increase in Oil Red O staining. RT-PCR analysis showed that lamin A/C shRNA resulted in increased mRNA expression of PPARγ2 and aP2 during adipocyte differentiation. These results suggest that decreased lamin A/C expression levels not only suppress osteoblast phenotypes but also promote adipocyte differentiation in C26 cells.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Kanda-Surugadai, Chiyodaku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
39
|
Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 2011; 287:2273-9. [PMID: 22090029 DOI: 10.1074/jbc.r111.309088] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets (LDs) are organelles found in most types of cells in the tissues of vertebrates, invertebrates, and plants, as well as in bacteria and yeast. They differ from other organelles in binding a unique complement of proteins and lacking an aqueous core but share aspects of protein trafficking with secretory membrane compartments. In this minireview, we focus on recent evidence supporting an endoplasmic reticulum origin for LD formation and discuss recent findings regarding LD maturation and fusion.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
40
|
Gandolfi G, Mazzoni M, Zambonelli P, Lalatta-Costerbosa G, Tronca A, Russo V, Davoli R. Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Sci 2011; 88:631-7. [PMID: 21420243 DOI: 10.1016/j.meatsci.2011.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
Abstract
This study investigated the lipid droplet coat proteins perilipin 1 (PLIN1) and perilipin 2 (PLIN2) localization in pig skeletal muscle and their relationship with intramuscular fat (IMF) content. PLIN1 and PLIN2 proteins were immunostained in semimembranosus muscle cross-sections from two groups of samples divergent for IMF and the gene expression was quantified. PLIN1 localized in the periphery of intramuscular adipocytes, whereas PLIN2 localized within myofibers with high lipid content. The high IMF group showed higher total cross-sectional area of PLIN1-stained adipocytes compared with the low IMF group (P<0.05), while the cross-sectional area and percentage of PLIN2-positive myofibers did not differ between IMF-divergent groups. This suggested that IMF content is mainly determined by extra-myocellular lipids. At mRNA level, PLIN2 expression was higher in high IMF muscles (P<0.05). The results indicate for the first time that in pig muscle PLIN1 and PLIN2 proteins are localized in correspondence with extra and intra-myocellular lipids, respectively.
Collapse
Affiliation(s)
- G Gandolfi
- Department of Agri-food Protection and Valorization (DIPROVAL), Faculty of Agriculture, University of Bologna, Reggio Emilia, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA. Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol 2011; 12:9. [PMID: 21349165 PMCID: PMC3051913 DOI: 10.1186/1471-2121-12-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.
Collapse
Affiliation(s)
- Yanxun V Yu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
42
|
Or-Tzadikario S, Sopher R, Gefen A. Quantitative monitoring of lipid accumulation over time in cultured adipocytes as function of culture conditions: toward controlled adipose tissue engineering. Tissue Eng Part C Methods 2011; 16:1167-81. [PMID: 20163242 DOI: 10.1089/ten.tec.2009.0755] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue engineering is investigated for native fat substitutes and wound healing model systems. Research and clinical applications of bioartificial fat require a quantitative and objective method to continuously measure adipogenesis in living cultures as opposed to currently used culture-destructive techniques that stain lipid droplet (LD) accumulation. To allow standardization, automatic quantification of LD size is further needed, but currently LD size is measured mostly manually. We developed an image processing-based method that does not require staining to monitor adipose cell maturation in vitro nondestructively using optical micrographs taken consecutively during culturing. We employed our method to monitor LD accumulation in 3T3-L1 and mesenchymal stem cells over 37 days. For each cell type, percentage of lipid area, number of droplets per cell, and droplet diameter were obtained every 2-3 days. In 3T3-L1 cultures, high insulin concentration (10 microg/mL) yielded a significantly different (p < 0.01) time course of all three outcome measures. In mesenchymal stem cell cultures, high fetal bovine serum concentration (12.5%) produced significantly more lipid area (p < 0.01). Our method was able to successfully characterize time courses and extents of adipogenesis and is useful for a wide range of applications testing the effects of biochemical, mechanical, and thermal stimulations in tissue engineering of bioartificial fat constructs.
Collapse
Affiliation(s)
- Shira Or-Tzadikario
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
43
|
Murphy S, Martin S, Parton RG. Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 2010; 5:e15030. [PMID: 21203462 PMCID: PMC3009727 DOI: 10.1371/journal.pone.0015030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/13/2010] [Indexed: 01/03/2023] Open
Abstract
Lipid droplets (LDs) are dynamic cytoplasmic organelles containing neutral lipids and bounded by a phospholipid monolayer. Previous studies have suggested that LDs can undergo constitutive homotypic fusion, a process linked to the inhibitory effects of fatty acids on glucose transporter trafficking. Using strict quantitative criteria for LD fusion together with refined light microscopic methods and real-time analysis, we now show that LDs in diverse cell types show low constitutive fusogenic activity under normal growth conditions. To investigate the possible modulation of LD fusion, we screened for agents that can trigger fusion. A number of pharmacological agents caused homotypic fusion of lipid droplets in a variety of cell types. This provided a novel cell system to study rapid regulated fusion between homotypic phospholipid monolayers. LD fusion involved an initial step in which the two adjacent membranes became continuous (<10 s), followed by the slower merging (100 s) of the neutral lipid cores to produce a single spherical LD. These fusion events were accompanied by changes to the LD surface organization. Measurements of LDs undergoing homotypic fusion showed that fused LDs maintained their initial volume, with a corresponding decrease in surface area suggesting rapid removal of membrane from the fused LD. This study provides estimates for the level of constitutive LD fusion in cells and questions the role of LD fusion in vivo. In addition, it highlights the extent of LD restructuring which occurs when homotypic LD fusion is triggered in a variety of cell types.
Collapse
Affiliation(s)
- Samantha Murphy
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Brisbane, Australia
| | - Sally Martin
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Brisbane, Australia
- * E-mail: (RGP); (SM)
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Brisbane, Australia
- * E-mail: (RGP); (SM)
| |
Collapse
|
44
|
Morozov A, Downey RJ, Healey J, Moreira AL, Lou E, Franceschino A, Dogan Y, Leung R, Edgar M, LaQuaglia M, Maki RG, Moore MAS. Benign mesenchymal stromal cells in human sarcomas. Clin Cancer Res 2010; 16:5630-40. [PMID: 21138865 PMCID: PMC3820159 DOI: 10.1158/1078-0432.ccr-09-2886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent evidence suggests that at least some sarcomas arise through aberrant differentiation of mesenchymal stromal cells (MSCs), but MSCs have never been isolated directly from human sarcoma specimens. EXPERIMENTAL DESIGN We examined human sarcoma cell lines and primary adherent cultures derived from human sarcoma surgical samples for features of MSCs. We further characterized primary cultures as either benign or malignant by the presence of tumor-defining genetic lesions and tumor formation in immunocompromised mice. RESULTS We show that a dedifferentiated liposarcoma cell line DDLS8817 posesses fat, bone, and cartilage trilineage differentiation potential characteristic of MSCs. Primary sarcoma cultures have the morphology, surface immunophenotype, and differentiation potential characteristic of MSCs. Surprisingly, many of these cultures are benign, as they do not form tumors in mice and lack sarcoma-defining genetic lesions. Consistent with the recently proposed pericyte origin of MSCs in normal human tissues, sarcoma-derived benign MSCs (SDBMSCs) express markers of pericytes and cooperate with endothelial cells in tube formation assays. In human sarcoma specimens, a subset of CD146-positive microvascular pericytes expresses CD105, an MSC marker, whereas malignant cells largely do not. In an in vitro coculture model, SDBMSCs as well as normal human pericytes markedly stimulate the growth of sarcoma cell lines. CONCLUSIONS SDBMSCs/pericytes represent a previously undescribed stromal cell type in sarcoma that may contribute to tumor formation.
Collapse
Affiliation(s)
- Alexei Morozov
- Departments of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Granneman JG, Kimler VA, Moore HPH. Cell Biology Symposium: imaging the organization and trafficking of lipolytic effectors in adipocytes. J Anim Sci 2010; 89:701-10. [PMID: 20852075 DOI: 10.2527/jas.2010-3370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The storage and mobilization of lipid energy are central functions of adipocytes. Lipid energy is stored as triglyceride in lipid droplet structures that are now recognized as bona fide organelles and whose functions are greatly influenced by members of the perilipin family of lipid droplet scaffolds. Recent work indicates that the signaling events underlying fatty acid mobilization involve protein trafficking to a specialized subset of lipid droplets. Furthermore, the core lipolytic machinery is composed of evolutionarily conserved proteins whose functions are conserved in avian and mammalian production species. Lipolysis affects many aspects of animal nutrition and physiology, which can have an important influence on growth efficiency, lactation, and meat quality. This review focuses on recent research that addresses the organization and trafficking of key players in hormone-stimulated lipolysis, and the central role of perilipin1A in adipocyte lipolysis. The review emphasizes recent work from the laboratories of the authors that utilizes imaging techniques to explore the organization and interactions among lipolytic effectors in live cells during lipolytic activation. A mechanistic understanding of lipolysis may lead to new strategies for promoting human and animal health.
Collapse
Affiliation(s)
- J G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
46
|
Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience 2010; 171:50-61. [PMID: 20800660 DOI: 10.1016/j.neuroscience.2010.08.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
Abstract
To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. Immunofluorescence observation revealed that the construction of complicated neuronal networks required the same initial plating density as for synchronized bursts, and that overly sparse cultures showed significant decreases of neurons and neurites. We also found that the final densities of surviving neurons at 1 month decreased greatly compared with the initial plating densities and became saturated in denser cultures. In addition, the area of neurites and the number of nuclei were saturated in denser cultures. By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.
Collapse
|
47
|
Song SH, Hong YH, Sasaki SI, Roh SG, Katoh K. Prostatic androgen-repressed message-1 as a regulator of adipocyte differentiation in the mouse. TOHOKU J EXP MED 2010; 219:311-7. [PMID: 19966531 DOI: 10.1620/tjem.219.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adipocyte differentiation is an important aspect in energy homeostasis. Although the regulation of adipocyte differentiation is relatively well understood, the underlying molecular mechanism remains unclear. In this study, subcutaneous and epididymal adipose tissues were used to study the differential expression of associated genes. We found that the expression level of mouse homologue of rat prostatic androgen-repressed message-1 (mPARM-1) gene was higher in subcutaneous, perirenal and mesenteric adipose tissues than in epididymal adipose tissue. In mouse subcutaneous, perirenal, and mesenteric adipose tissues, the expression level of this gene was higher in adipocytes than in non-adipocyte cells, i.e. stromal-vascular cells. Furthermore, mPARM-1 mRNA expression was up-regulated in subcutaneous, mesenteric, and epididymal adipose tissues of mice fed a high-fat diet compared to those fed a normal-fat diet. Expression level of mPARM-1 mRNA increased in the early stage of the chemically induced adipocyte differentiation, preceding the increase in peroxisome proliferator-activated receptor-gamma 2 (PPAR-gamma2) mRNA. Tumor necrosis factor-alpha (TNF-alpha), an inhibitor of adipocyte differentiation, reduced the expression of mPARM-1 mRNA in differentiated 3T3-L1 cells and subsequently down-regulated the expression of adipogenic genes, including PPAR-gamma2, leptin and adipogenin. Moreover, knockdown of mPARM-1 expression with siRNA reduced lipid accumulation and the expression levels of PPAR-gamma2 and adipocyte protein 2 mRNAs, which suggest that the degree of adipocyte differentiation of 3T3-L1 cells has been reduced. These results indicate that mPARM-1 might be involved in the regulation of fat accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sang-Houn Song
- Lab of Animal Physiology, Graduate School of Agriculture Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
48
|
Nagayama M, Shimizu K, Taira T, Uchida T, Gohara K. Shrinking and development of lipid droplets in adipocytes during catecholamine-induced lipolysis. FEBS Lett 2010; 584:86-92. [PMID: 19896941 DOI: 10.1016/j.febslet.2009.10.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/30/2009] [Accepted: 10/31/2009] [Indexed: 12/29/2022]
Abstract
Time-lapse observation of adipocytes during catecholamine-induced lipolysis clearly shows that shrinking of existing lipid droplets (LDs) occurs in some adipocytes and that small LDs are newly developed in almost all cells. Immunofluorescence imaging reveals that activation and localization of hormone-sensitive lipase (HSL) on the surface of LDs, which are required for conferring maximal lipolysis, are necessary for the shrinking of the LDs. However, not all adipocytes in which phosphorylated HSL is localized on LDs exhibit shrinking of LDs. The simultaneous shrinking and development of LDs yield apparent fragmentation and dispersion of LDs in adipocytes stimulated with catecholamine.
Collapse
Affiliation(s)
- Masafumi Nagayama
- Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
49
|
Loo LH, Lin HJ, Singh DK, Lyons KM, Altschuler SJ, Wu LF. Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes. ACTA ACUST UNITED AC 2009; 187:375-84. [PMID: 19948481 PMCID: PMC2779244 DOI: 10.1083/jcb.200904140] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A systems biology–based analysis shows that differentiating adipocytes look very different at the single-cell level and form distinct cellular subpopulations. Increases in key components of adipogenesis and lipolysis pathways correlate at the population-averaged level during adipogenesis. However, differentiating preadipocytes are highly heterogeneous in cellular and lipid droplet (LD) morphologies, and the degree to which individual cells follow population-averaged trends is unclear. In this study, we analyze the molecular heterogeneity of differentiating 3T3-L1 preadipocytes using immunofluorescence microscopy. Unexpectedly, we only observe a small percentage of cells with high simultaneous expression of markers for adipogenesis (peroxisome proliferator-activated receptor γ [PPARγ], CCAAT/enhancer-binding protein α, and adiponectin) and lipid accumulation (hormone-sensitive lipase, perilipin A, and LDs). Instead, we identify subpopulations of cells with negatively correlated expressions of these readouts. Acute perturbation of adipocyte differentiation with PPARγ agonists, forskolin, and fatty acids induced subpopulation-specific effects, including redistribution of the percentage of cells in observed subpopulations and differential expression levels of PPARγ. Collectively, our results suggested that heterogeneity observed during 3T3-L1 adipogenesis reflects a dynamic mixture of subpopulations with distinct physiological states.
Collapse
Affiliation(s)
- Lit-Hsin Loo
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
An understanding of how lipid droplets grow in the cell is important to current human health issues. Homotypic fusion of small lipid droplets to create larger ones is one proposed mechanism though the evidence for this process continues to be debated. By applying the technique of freeze-fracture electron microscopy to cells that have been stimulated to accumulate lipid droplets, we here present images which suggest that at least some large lipid droplets may indeed result from amalgamation of multiple smaller ones. These visual data add significantly to the notion that fusion contributes to lipid droplet growth.
Collapse
Affiliation(s)
- Horst Robenek
- Leibniz Institute for Arteriosclerosis Research, University of Münster, Münster, Germany.
| | | |
Collapse
|