1
|
Toma T, Miyakawa N, Arakaki Y, Watanabe T, Nakahara R, Ali TFS, Biswas T, Todaka M, Kondo T, Fujita M, Otsuka M, Araki E, Tateishi H. An antifibrotic compound that ameliorates hyperglycaemia and fat accumulation in cell and HFD mouse models. Diabetologia 2024; 67:2568-2584. [PMID: 39251430 DOI: 10.1007/s00125-024-06260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024]
Abstract
AIMS/HYPOTHESIS Appropriate management of blood glucose levels and the prevention of complications are important in the treatment of diabetes. We have previously reported on a compound named HPH-15 that is not only antifibrotic but also AMP-activated protein kinase (AMPK)-activating. In this study, we evaluated whether HPH-15 is useful as a therapeutic medication for diabetes. METHODS We examined the effects of HPH-15 on AMPK activation, glucose uptake, fat accumulation and lactic acid production in L6-GLUT4, HepG2 and 3T3-L1 cells, as a model of muscle, liver and fat tissue, respectively. Additionally, we investigated the glucose-lowering, fat-accumulation-suppressing, antifibrotic and AMPK-activating effect of HPH-15 in mice fed a high-fat diet (HFD). RESULTS HPH-15 at a concentration of 10 µmol/l increased AMPK activation, glucose uptake and membrane translocation of GLUT4 in each cell model to the same extent as metformin at 2 mmol/l. The production of lactic acid (which causes lactic acidosis) in HPH-15-treated cells was equal to or less than that observed in metformin-treated cells. In HFD-fed mice, HPH-15 lowered blood glucose from 11.1±0.3 mmol/l to 8.2±0.4 mmol/l (10 mg/kg) and 7.9±0.4 mmol/l (100 mg/kg) and improved insulin resistance. The HPH-15 (10 mg/kg) group showed the same level of AMPK activation as the metformin (300 mg/kg) group in all organs. The HPH-15-treated HFD-fed mice also showed suppression of fat accumulation and fibrosis in the liver and fat tissue; these effects were more significant than those obtained with metformin. Mice treated with high doses of HPH-15 also exhibited a 44% reduction in subcutaneous fat. CONCLUSIONS/INTERPRETATION HPH-15 activated AMPK at lower concentrations than metformin in vitro and in vivo and improved blood glucose levels and insulin resistance in vivo. In addition, HPH-15 was more effective than metformin at ameliorating fatty liver and adipocyte hypertrophy in HFD-fed mice. HPH-15 could be effective in preventing fatty liver, a common complication in diabetic individuals. Additionally, in contrast to metformin, high doses of HPH-15 reduced subcutaneous fat in HFD-fed mice. Presumably, HPH-15 has a stronger inhibitory effect on fat accumulation and fibrosis than metformin, accounting for the reduction of subcutaneous fat. Therefore, HPH-15 is potentially a glucose-lowering medication that can lower blood glucose, inhibit fat accumulation and ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuiichi Arakaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryosei Nakahara
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taha F S Ali
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tanima Biswas
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Research and Development, Science Farm Ltd, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Kikuchi Medical Association Hospital, Kumamoto, Japan.
- Research Center for Health and Sport Sciences, Kumamoto Health Science University, Kumamoto, Japan.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Research and Development Department, Research and Development Headquarters, Hirata Corporation, Kumamoto, Japan.
| |
Collapse
|
2
|
Moon BR, Park JE, Han JS. HM-chromanone attenuates obesity and adipose tissue inflammation by downregulating SREBP-1c and NF-κb pathway in high-fat diet-fed mice. Arch Physiol Biochem 2024:1-9. [PMID: 39359053 DOI: 10.1080/13813455.2024.2399554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Background: Obese adipose tissue produces various pro-inflammatory cytokines that are major contributors to adipose tissue inflammation. Objective: The present study aimed to determine the effects of HM-chromanone (HMC) against obesity and adipose tissue inflammation in high-fat diet-fed mice. Materials and methods: Twenty-four C57BL/6J male mice were divided into three groups: ND (normal diet), HFD (high-fat diet), and HFD + HMC. The ND group was fed a normal diet, whereas the HFD and HFD + HMC groups were fed a high-fat diet. After 10 weeks of feeding, the animals were orally administered the treatments daily for 9 weeks. The ND and HFD group received distilled water as treatment. The HFD+HMC group was treated with HM-chromaone (50 mg/kg). Results: HM-chromanone administration decreased body weight, fat mass, and adipocyte diameter. HM-chromanone also improved plasma lipid profiles, decreased leptin levels, and increased adiponectin levels. The inhibiting effect of HM-chromanone on SREBP-1c, PPARγ, C/EBPα, and FAS decreased adipogenesis, thereby alleviating lipid accumulation. Furthermore, HM-chromanone administration exhibited a reduction in macrophage infiltration and the expression of pro-inflammatory cytokines. HM-chromanone suppressed the phosphorylation of IκBα and NF-κB, leading to the inhibition of iNOS and COX2 expressions, resulting in decreased inflammation in adipose tissue. Discussion and conclusion: These results highlight the anti-obesity and anti-inflammatory properties of HM-chromanone, achieved through the downregulation of the SREBP-1c and NF-κB pathway in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Bo Ra Moon
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jae Eun Park
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Xu S, Chen Y, Gong Y. Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus. Foods 2024; 13:1763. [PMID: 38890991 PMCID: PMC11171799 DOI: 10.3390/foods13111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Shiyu Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Ying Chen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Yushun Gong
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
5
|
Fang Y, Wang J, Cao Y, Liu W, Duan L, Hu J, Peng J. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J Med Food 2024; 27:1-11. [PMID: 38060708 DOI: 10.1089/jmf.2023.k.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenrui Liu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianxiang Duan
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education of China, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
6
|
Šmid A, Štajdohar M, Milek M, Urbančič D, Karas Kuželički N, Tamm R, Metspalu A, Mlinarič-Raščan I. Transcriptome analysis reveals involvement of thiopurine S-methyltransferase in oxidation-reduction processes. Eur J Pharm Sci 2024; 192:106616. [PMID: 37865284 DOI: 10.1016/j.ejps.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Thiopurine S-methyltransferase (TPMT) is an important enzyme involved in the deactivation of thiopurines and represents a major determinant of thiopurine-related toxicities. Despite its well-known importance in thiopurine metabolism, the understanding of its endogenous role is lacking. In the present study, we aimed to gain insight into the molecular processes involving TPMT by applying a data fusion approach to analyze whole-genome expression data. The RNA profiling was done on whole blood samples from 1017 adult male and female donors to the Estonian biobank using Illumina HTv3 arrays. Our results suggest that TPMT is closely related to genes involved in oxidoreductive processes. The in vitro experiments on different cell models confirmed that TPMT influences redox capacity of the cell by altering S-adenosylmethionine (SAM) consumption and consequently glutathione (GSH) synthesis. Furthermore, by comparing gene networks of subgroups of individuals, we identified genes, which could have a role in regulating TPMT activity. The biological relevance of identified genes and pathways will have to be further evaluated in molecular studies.
Collapse
Affiliation(s)
- Alenka Šmid
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia.
| | | | - Miha Milek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia; Core Unit Bioinformatics, Berlin Institute of Health at Charite, Germany
| | - Dunja Urbančič
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Riin Tamm
- Estonian Genome Center, Institute of Genomics and Institute of Molecular and Cell Biology, University of Tartu, Estonia; Youth and Talent Policy Department, Estonian Ministry of Education and Research, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics and Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Irena Mlinarič-Raščan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia.
| |
Collapse
|
7
|
Toma T, Miyakawa N, Tateishi M, Todaka M, Kondo T, Fujita M, Otsuka M, Araki E, Tateishi H. An ADAM17 selective inhibitor promotes glucose uptake by activating AMPK. J Pharmacol Sci 2024; 154:37-46. [PMID: 38081682 DOI: 10.1016/j.jphs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
AMPK activation promotes glucose and lipid metabolism. Here, we found that our previously reported ADAM17 inhibitor SN-4 activates AMPK and promotes membrane translocation and sugar uptake of GLUT4. AMPK inhibitor dorsomorphin reversed this effect of SN-4, confirming that the effect is mediated by AMPK activation. In addition, SN-4 inhibited lipid accumulation in HepG2 under high glucose conditions by promoting lipid metabolism and inhibiting lipid synthesis. Although lactic acidosis is a serious side effect of biguanides such as metformin, SN-4 did not affect lactate production. Furthermore, SN-4 was confirmed to inhibit the release of TNF-α, a causative agent of insulin resistance, from adipocytes. In diabetes treatment, it is important to not only regulate blood sugar levels but also prevent complications. Our findings reveal the therapeutic potential of SN-4 as a new antidiabetic drug that can also help prevent future complications.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mika Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mikio Todaka
- Todaka Internal Medical Clinic, 2-13-5 Shimoezu, Higashi-ku, Kumamoto, 862-0960, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Kikuchi Medical Association Hospital, 75-3 Dairinji, Kikuchi, Kumamoto, 861-1306, Japan; Research Center for Health and Sport Sciences, Kumamoto Health Science University, 325 Izumicho, Kita-ku, Kumamoto, 861-5533, Japan.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Research & Development, Hirata Corporation, 111 Hitotsugi Uekimachi, Kita-ku, Kumamoto, 861-0135, Japan.
| |
Collapse
|
8
|
Li J, Luo T, Li X, Liu X, Deng ZY. Comparison of fresh and browning lotus roots ( Nelumbo nucifera Gaertn.) on modulating cholesterol metabolism via decreasing hepatic cholesterol deposition and increasing fecal bile acid excretion. Curr Res Food Sci 2023; 7:100630. [PMID: 38021260 PMCID: PMC10654003 DOI: 10.1016/j.crfs.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Lotus root (LR) is prone to browning after harvest due to the oxidation of phenolic compounds by polyphenol oxidase (PPO). This study compared the effects of LR extract and BLR extract on cholesterol metabolism in high-fat diet (HFD) mice. Our findings highlighted the innovative potentiality of BLR extract in effectively regulating cholesterol metabolism via inhibiting the intestinal FXR-FGF15 signaling pathway and boosting probiotics in gut microbiota, offering valuable insights for hypercholesterolemia and metabolic disorders. In detail, catechin was the main phenolic compound in LR, while after browning, theaflavin was the main oxidation product of phenolic compounds in BLR. Both the intake of LR extract and BLR extract regulated the disorder of cholesterol metabolism induced by HFD. In particular, BLR extract intake exhibited more robust effects on increasing the BAs contents synthesized in the liver and excreted in feces compared with LR extract intake. Furthermore, the consumption of BLR extract was more effective than that of LR extract in reducing the ileal protein expressions of FXR and FGF15 and shifting BAs biosynthesis from the classical pathway to the alternative pathway. Moreover, LR extract and BLR extract had distinct effects on the gut microbiota in HFD-fed mice: BLR extract significantly elevated probiotics Akkermansia abundance, while LR extract increased Lactobacillus abundance. Therefore, both LR extract and BLR extract improved the cholesterol deposition effectively and BLR extract even showed a stronger effect on regulating key gene and protein expressions of cholesterol metabolism.
Collapse
Affiliation(s)
- Jingfang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
9
|
Shu G, Sun H, Zhang T, Zhu A, Lei X, Wang C, Song A, Deng X. Theaflavine inhibits hepatic stellate cell activation by modulating the PKA/LKB1/AMPK/GSK3β cascade and subsequently enhancing Nrf2 signaling. Eur J Pharmacol 2023; 956:175964. [PMID: 37549726 DOI: 10.1016/j.ejphar.2023.175964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Activation of hepatic stellate cells (HSCs) constitutes a crucial etiological factor leading to liver fibrosis. Theaflavine (TF) is a characteristic bioactive compound in fermented tea. Here, we found that TF attenuated the activation of LX-2 HSCs induced by transforming growth factor-β1 (TGF-β1). TF potentiated nuclear factor erythroid 2-related Factor 2 (Nrf2) signaling. Knockdown of Nrf2 abrogated TF-mediated resistance to TGF-β1. Liver kinase B1 (LKB1), AMP-activated kinase (AMPK), and glycogen synthase kinase-3β (GSK3β) are upstream regulators of Nrf2. TF modulated the LKB1/AMPK/GSK3β axis. Inhibition of AMPK or knockdown of LKB1 crippled TF-mediated potentiation of Nrf2. Protein kinase A (PKA) catalyzes LKB1 phosphorylation. In LX-2 cells, TF increased the LKB1/PKA interaction without affecting their contents. Inhibition of PKA abolished TF-mediated potentiation of LKB1/Nrf2 and abrogated the inhibitory effects of TF on their activation. TF also enhanced direct binding between purified catalytic subunit α of PKA (PKA-Cα) and LKB1 proteins in vitro. Molecular docking indicated that TF showed binding activity with both LKB1 and PKA-Cα proteins. In mouse primary HSCs, TF elevated LKB1/PKA-Cα binding, boosted LKB1 phosphorylation, potentiated Nrf2 and suppressed their spontaneous activation. PKA inhibition or LKB1 knockdown eliminated TF-mediated induction of Nrf2 and suppression of HSC activation. Furthermore, TF considerably alleviated CCl4-induced mouse liver fibrosis. In mouse livers, TF increased the LKB1/PKA-Cα interaction, upregulated LKB1 phosphorylation and modulated its downstream AMPK/GSK3β/Nrf2 cascade. Our findings collectively indicated that TF suppresses HSC activation. Mechanistically, TF elevated the LKB1/PKA interaction in HSCs, which increased LKB1 phosphorylation and subsequently modulated the downstream AMPK/GSK3β/Nrf2 axis.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anqi Zhu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Chen Y, Wei Z, Song Z, Chang H, Guo Y, Sun Y, Wang H, Zheng Z, Zhang G. Theaflavin inhibits African swine fever virus replication by disrupting lipid metabolism through activation of the AMPK signaling pathway in virto. Virus Res 2023; 334:199159. [PMID: 37385349 PMCID: PMC10410600 DOI: 10.1016/j.virusres.2023.199159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), which is one of the most harmful swine diseases in the pig industry because of its nearly 100% mortality rate in domestic pigs and results in incalculable economic loss. Ever since ASF was initially reported, scientists have worked to develop anti-ASF vaccines; however, currently no clinically effective vaccine for ASF is available. Therefore, the development of novel measures to prevent ASFV infection and transmission is essential. In this study, we aimed to investigate the anti-ASF activity of theaflavin (TF), a natural compound mainly isolated from black tea. We found that TF potently inhibited ASFV replication at non-cytotoxic concentrations ex vivo in primary porcine alveolar macrophages (PAMs). Mechanistically, we found that TF inhibited ASFV replication by acting on cells rather than interacting directly with ASFV to inhibit viral replication. Further, we found that TF upregulated the AMPK (5'-AMP-activated protein kinase) signaling pathway in ASFV-infected and uninfected cells, and treatment with the AMPK agonist MK8722 upregulated the AMPK signaling pathway and inhibited ASFV proliferation in a dose-dependent manner. Notably, the effects of TF on AMPK activation and ASFV inhibition were partially reversed by the AMPK inhibitor dorsomorphin. In addition, we found that TF down-regulated the expression of genes related to lipid synthesis and decreased the intracellular accumulation of total cholesterol and total triglycerides in ASFV-infected cells, suggesting that TF may inhibit ASFV replication by disrupting lipid metabolism. In summary, our results demonstrated that TF is an ASFV infection inhibitor and revealed the mechanism by which ASFV replication is inhibited, providing a novel mechanism and potential lead compound for the development of anti-ASFV drugs.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zhi Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China.
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
11
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
12
|
Li X, Li R, Wang X, Zhang X, Xiao Z, Wang H, Sun W, Yang H, Yu P, Hu Q, Guo Q, Sun H. Effects and mechanism of action of Chrysanthemum morifolium (Jinsi Huangju) on hyperlipidemia and non-alcoholic fatty liver disease. Eur J Med Chem 2023; 255:115391. [PMID: 37099836 DOI: 10.1016/j.ejmech.2023.115391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
As a popular healthy tea beverage, Jinsi Huangju has been consumed in China for hundreds of years. However, its active ingredients which dissolved in hot water have not been fully determined. In this study, 14 compounds were identified by different spectroscopic techniques, including 11 compounds identified in this plant for the first time. For in-depth studies, apigenin-7-O-6″-malonylglucoside (8) and luteolin-7-O-6″-malonylglucoside (9) were synthesized for the first time by 5 steps in 1.2% overall yields. Further analyses of the natural compounds showed that 8 could inhibit pancreatic lipase, reduce cellular lipid contents, and attenuate insulin resistance in vitro. Furthermore, 8 restore lipid and inflammatory profiles in the plasma and liver (TG, TC, ALT, AST, LDL-C, HDL-C, MPO, and IL-6) and attenuated hepatic steatosis in NAFLD mouse models. In conclusion, Jinsi Huangju and its active ingredients are candidates for developing drug, functional foods and therapeutic strategies for hyperlipidaemia and NAFLD.
Collapse
Affiliation(s)
- Xiang Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Rongxia Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xueyu Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinying Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Zhiyi Xiao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Haibo Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Wenhui Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Hao Yang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Qing Hu
- Jiangsu Lingyuan Yi'an Technology Co., Ltd., Xuzhou, 221431, Jiangsu, PR China
| | - Qinghui Guo
- Tianjin Powersource Beverage Co., Ltd., Tianjin, 300272, PR China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
13
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
14
|
Adigun TO, Danazumi AU, Umar HI, Na'Allah A, Alabi MA, Joel WO, Aberuagba A, Alejolowo OO, Bamidele JO, Omotayo OS, Medayedupin OA. In silico molecular modeling and simulations of black tea theaflavins revealed theaflavin-3'-gallate as putative liver X receptor-beta agonist. J Biomol Struct Dyn 2023; 41:13015-13028. [PMID: 36729100 DOI: 10.1080/07391102.2023.2175264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
The low constitutive activation of Liver X receptor, an endogenous nuclear receptor with two subtypes (α and β), is a condition lying at the crossroad of cancer and cardiovascular disease. Both natural and synthetic Liver X receptor agonists have reportedly shown remarkable antiproliferative and atheroprotective effects but the repeated doses of its synthetic ones are also paradoxically associated with hyperlipidaemic effects and neurotoxicity, though attributed to the alpha subtype. This highlights the need for novel, safe, and potent LXR-beta-selective agonists. Hypocholesterolaemic effects of black theaflavins have been widely reported, but data on the exact theaflavin compound (s) responsible for these effects is currently lacking. Neither is information on the possible modulatory effects of the compound (s) on LXR-beta nor its possible implications in the context of drug development for cardiovascular diseases and cancers is explored. On this account, we investigated the potential interaction of four main theaflavin monomers (TF1, TF2A, TF2B & TF3) with human LXR-beta through robust computational modelling that entails molecular docking, free energy calculations and molecular dynamics simulations. The ligands were further profiled (in silico) for absorption, distribution, metabolism, excretion, and toxicological properties. Our result revealed theaflavin TF2B as a putative LXR-beta agonist, possibly responsible for the widely observed hypocholesterolaemic effect in black tea. This finding, while encouraging, needs to be experimentally verified in wet studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Temidayo O Adigun
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ammar U Danazumi
- Faculty of Chemistry, Warsaw, University of Technology, Warsaw, Poland
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Haruna I Umar
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Computer-aided Therapeutic Discovery and Design Group, Federal University of Technology Akure, Akure, Nigeria
| | - Asiat Na'Allah
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Mutiu A Alabi
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Wisdom O Joel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Adepeju Aberuagba
- Department of Biochemistry, McPherson University, Seriki Sotayo, Nigeria
| | | | - Joy O Bamidele
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | - Olakunle S Omotayo
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | | |
Collapse
|
15
|
Son HK, Lee J, Byun J, Lee JJ. Saccharified and Fermented Helianthus tuberosus L. Beverage Attenuates High-Fat Diet-Inducible Metabolic Complications in C57BL/6 Mice. J Med Food 2023; 26:146-161. [PMID: 36724308 DOI: 10.1089/jmf.2022.k.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The prevalence of obesity has been recognized as a major public health issue with rapid increase globally. Obesity triggers other metabolic complications, such as diabetes, dyslipidemia, liver diseases, and cardiovascular diseases. Helianthus tuberosus L. (the Jerusalem artichoke) is an important edible plant that may provide health benefits in treating metabolic diseases. In this study, we investigated potential antiobesity effects of saccharified H. tuberosus L. (SH) and its fermented vinegar (fermented H. tuberosus L. [FH]) in a high-fat diet (HFD)-induced obesity murine model. FH exhibited significantly lower pH, Brix, and total sugar content compared with the SH, along with higher radical-scavenging activity. The body weight and adipose tissue weights were significantly decreased with the administration of SH and FH compared with the HFD group. SH and FH groups significantly attenuated hepatomegaly and lipid accumulation. The increased triglyceride (TG) content in obese mice was remarkably lower in the SH and FH groups. SH and FH alleviated serum dyslipidemia and atherogenic risk. Furthermore, expression of adipogenic genes was significantly downregulated after SH and FH supplementation compared with the HFD group. The TG and total cholesterol (TC) content of serum and adipose tissues significantly decreased by SH and FH administration in comparison with the HFD group. Reduced adiposity with SH and FH administration was confirmed by reduced adipocyte size and weight with inhibition of lipoprotein lipase expression. Our study showed that SH and FH, indeed FH was superior to SH, had antiobesity effects by decreasing adiposity, regulating dyslipidemia in systemic tissues, and inhibiting adipogenic gene expression.
Collapse
Affiliation(s)
- Hee-Kyoung Son
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Jae-Joon Lee
- Department of Food and Nutrition, Chosun University, Gwangju, South Korea
| |
Collapse
|
16
|
Cai G, Xiao Y, Yang M, Guo Q, Su T, Liu Y, Jiang T, Li C. Long noncoding RNA Gm31629 promotes bone regeneration by maintaining bone marrow mesenchymal stem cells activity. PeerJ 2022; 10:e13475. [PMID: 35702257 PMCID: PMC9188769 DOI: 10.7717/peerj.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2022] [Indexed: 01/14/2023] Open
Abstract
Background Long noncoding RNA Gm31629 can regulate hypothalamic neural stem cells (htNSCs) senescence and the aging process. However, the effect of Gm31629 on the senescence of bone marrow mesenchymal stem cells (BMSCs) and bone regeneration is unclear. In the present study, we investigated the effects of Gm31629 on the senescence of BMSCs and bone regeneration. Methods Gm31629 knockout (Gm31629-KO) and wild-type (WT) mice were used to establish a bone regeneration model. The Brdu labelling, CCK8 assay, wound healing assay, β-gal staining and osteogenic differentiation assay were used to assess the effects of Gm31629 on the functions of BMSCs. Micro-computed tomography (CT), histochemical and immunohistochemical staining were used to evaluate the ability of bone regeneration. The mimic of Gm31629, theaflavin 3-gallate, was used to investigate its role on the senescence of BMSCs and bone regeneration. Results The expression of Gm31629 reduced in BMSCs of middle-aged mice was compared with that of young mice. The deletion of Gm31629 was sufficient to drive the senescence of BMSCs, resulting in impaired bone regeneration in mice. Mechanistically, Gm31629 could interact with Y-box protein 1(YB-1) and delay its degradation, decreasing the transcription of p16INK4A of BMSCs. We also found that theaflavin 3-gallate could alleviate the senescence of BMSCs and promote bone regeneration in middle-aged mice. Conclusion These results indicated that Gm31629 played an important role on BMSCs senescence and bone regeneration and provided a therapeutic target to promote bone regeneration.
Collapse
Affiliation(s)
- Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
17
|
Pan X, Xie K, Chen K, He Z, Sakao K, Hou DX. Involvement of AMP-activated Protein Kinase α/Nuclear Factor (Erythroid-derived 2) Like 2-iniatived Signaling Pathway in Cytoprotective Effects of Wasabi 6-(Methylsulfinyl) Hexyl Isothiocyanate. J Cancer Prev 2022; 27:58-67. [PMID: 35419303 PMCID: PMC8984653 DOI: 10.15430/jcp.2022.27.1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is an active ingredient present in Wasabi, which is a popular pungent spice used in Japanese cuisine. Our previous studies suggested that the primary antioxidant activity of 6-MSITC may link to other biological activity. This study aimed to clarify how the antioxidant activity of 6-MSITC contributes to preventing overloaded lipid stress in hepatic cell model. HepG2 cells were treated with 6-MSITC at defined concentrations and times in normal medium or in combined fatty acids (CFA) medium, and the targeted proteins were detected by Western blotting. The kinetic data revealed that 6-MSITC activated AMP-activated protein kinase α (AMPKα) and nuclear factor (erythroid-derived 2) like 2 (Nrf2), and then enhanced the protein expression of Forkhead box protein O1 (FOXO1) and Sirtuin1 as well as that of the Nrf2 target proteins, NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase (HO-1). Furthermore, lipid metabolic stress was mimicked in HepG2 cells by overloading CFA. 6-MSITC significantly alleviated CFA-induced formation of thiobarbituric acid reactive substances and fat accumulation. Signaling analysis data revealed that 6-MSITC enhanced phosphorylation of AMPKα, upregulated the expression of Nrf2, NQO1, heme oxygenase 1, FOXO1, and Siruin1, and downregulated the expression of PPARα. Taken together, our results suggested that the AMPKα/Nrf2-mediated signaling pathways might be involved in the cytoprotective effects of Wasabi 6-MSITC against metabolic lipid stress.
Collapse
Affiliation(s)
- Xuchi Pan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kun Xie
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Keyu Chen
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ziyu He
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kozue Sakao
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - De-Xing Hou
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
18
|
Zhong R, Chen L, Liu Y, Xie S, Li S, Liu B, Zhao C. Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Shan Z, Nisar MF, Li M, Zhang C, Wan C(C. Theaflavin Chemistry and Its Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256618. [PMID: 34804369 PMCID: PMC8601833 DOI: 10.1155/2021/6256618] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Huge epidemiological and clinical studies have confirmed that black tea is a rich source of health-promoting ingredients, such as catechins and theaflavins (TFs). Furthermore, TF derivatives mainly include theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3). All of these TFs exhibit extensive usages in pharmaceutics, foods, and traditional medication systems. Various indepth studies reported that how TFs modulates health effects in cellular and molecular mechanisms. The available literature regarding the pharmacological activities of TFs has revealed that TF3 has remarkable anti-inflammatory, antioxidant, anticancer, antiobesity, antiosteoporotic, and antimicrobial properties, thus posing significant effects on human health. The current manuscript summarizes both the chemistry and various pharmacological effects of TFs on human health, lifestyle or aging associated diseases, and populations of gut microbiota. Furthermore, the biological potential of TFs has also been focused to provide a deeper understanding of its mechanism of action.
Collapse
Affiliation(s)
- Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er 665099, China
| | - Muhammad Farrukh Nisar
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er 665099, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
20
|
Cai X, Liu Z, Dong X, Wang Y, Zhu L, Li M, Xu Y. Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice. Food Funct 2021; 12:9922-9931. [PMID: 34492673 DOI: 10.1039/d1fo01966j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theaflavins (TFs) are the characteristic components of black tea and have been widely acknowledged for their health benefits. The current study aimed to investigate the effects and mechanism of TFs, TF1, TF2a and TF3 on glycolipid metabolism in obese mice induced by a high-fat diet (HFD). Mice were randomly divided into seven groups (n = 8 per group) as follows: low-fat diet (LFD), HFD, HFD + metformin (Met, 100 mg kg-1 d-1), HFD + TFs (TFs, 200 mg kg-1 d-1), HFD + TF1 (TF1, 100 mg kg-1 d-1), HFD + TF2a (TF2a, 100 mg kg-1 d-1), and HFD + TF3 (TF3, 100 mg kg-1 d-1). All groups were studied for 9 weeks continuously. The levels of serum glucose, insulin, TC, TG, LDL and HLD in the plasma, lipid accumulation in the liver, and injury of the liver were investigated. In addition, the effects of TFs and their monomers on the SIRT6/AMPK/SREBP-1/FASN pathway were also evaluated. The results showed that oral administration of TFs, TF1, TF2a and TF3 not only dramatically suppressed weight gain, reduced blood glucose level, and ameliorated insulin resistance but also obviously lowered the levels of serum TC, TG and LDL, suppressed the activities of ALT and AST, and ameliorated hepatic damage in mice fed a HFD when compared to the HFD group. Western blot analysis showed that TFs, TF1, TF2a and TF3 treatments increased the expression of SIRT6 and suppressed the expression levels of SREBP-1 and FASN significantly in mice fed a HFD as compared to the HFD group. The phosphorylation of AMPK in mice fed a HFD was obviously elevated by TF2a and TF3 when compared to the HFD group. These results proved for the first time that TF1, TF2a and TF3 improved the glucolipid metabolism of mice fed a HFD, and activated the SIRT6/AMPK/SREBP-1/FASN signaling pathway to inhibit the synthesis and accumulation of lipids in the liver to ameliorate obesity in mice fed a HFD. These findings indicate that TFs, TF1, TF2a and TF3 as the main functional components of black tea might potentially be used as a food additive for improving glycolipid metabolism and ameliorating obesity, and TF3 may be the best choice.
Collapse
Affiliation(s)
- Xiaqiang Cai
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Zenghui Liu
- Anhui Academy of Medical Sciences, Hefei 230061, China
| | - Xu Dong
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Ying Wang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Luwei Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Mengli Li
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| |
Collapse
|
21
|
Rocha S, Oskolkova O, de Freitas V, Reis A. (Poly)phenol-Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological Properties in Cultured Endothelial Cells. Mol Nutr Food Res 2021; 65:e2001130. [PMID: 34050718 DOI: 10.1002/mnfr.202001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Processed and ready-to-eat foods become routinely consumed resulting in a sharp rise of sugar intake in people's daily diets. The inclusion of fresh fruits and vegetables rich in (poly)phenols has been encouraged by the World Health Organization (WHO) as part of the daily choices to ameliorate endothelial dysfunction and ease the socio-economic burden of diabetes. Research in Food, Nutrition, and Cell Metabolism areas is revealing that the health benefits of (poly)phenol-rich foods go beyond their antioxidant properties and are in fact key modulators of redox and glycaemia status, and inflammatory response contributing to improved endothelial function and vascular health in diabetes. Other beneficial aspects include appetite modulation, regulation of hydrolytic enzymes involved in sugar and lipid metabolism, and mediation of cell-cell aggregation events. This work overviews the current knowledge on the biological properties of ingested (poly)phenols in cultured endothelial cells with emphasis on the circulating (poly)phenols, providing support to (poly)phenol-rich diets as alternatives to drug-based therapies in the prevention, treatment, and management of diabetes. A critical evaluation on the caveats and challenges involve in current experimental cell-based designs and approaches adopted is also discussed.
Collapse
Affiliation(s)
- Sara Rocha
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Olga Oskolkova
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, Graz, 8010, Austria
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| |
Collapse
|
22
|
Zhang Z, Zhou H, Guan M, Zhou X, Liang X, Lv Y, Bai L, Zhang J, Gong P, Liu T, Yi H, Wang J, Zhang L. Lactobacillus casei YRL577 combined with plant extracts reduce markers of non-alcoholic fatty liver disease in mice. Br J Nutr 2021; 125:1081-1091. [PMID: 32718364 DOI: 10.1017/s0007114520003013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and plant extracts are considered to prevent the development of non-alcoholic fatty liver disease (NAFLD). The present study explores the effects of using both probiotics and plant extracts on NAFLD. The present study evaluated the effects of plant extracts on lipid droplet accumulation and the growth of probiotics in vitro. A C57BL/6 mouse model was used to examine the effects of probiotics and plant extracts on NAFLD. Body weight and food intake were measured. The levels of serum lipids, oxidative stress and the liver injury index were determined using commercial kits. Haematoxylin and eosin staining, GC and real-time PCR were also used for analysis. The results revealed that administration of Lactobacillus casei YRL577 and L. paracasei X11 with resveratrol (RES) or tea polyphenols (TP) significantly reduced the levels of total cholesterol, TAG and LDL-cholesterol and increased the level of the HDL-cholesterol. The groups of L. casei YRL577 with RES and TP also regulated the liver structure, oxidative stress and injury. Furthermore, L. casei YRL577 with TP exhibited a more positive effect towards improving the NAFLD and increased the concentrations of the butyric acid than other three combined groups. L. casei YRL577 with TP up-regulated the mRNA levels of the farnesoid X receptor and fibroblast growth factor 15 and decreased the mRNA levels of the apical Na-dependent bile acid transporter. These findings showed that L. casei YRL577 + TP-modified genes in the intestinal bile acid pathway improved markers of NAFLD.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Hui Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Meiyu Guan
- Qingdao Central Hospital, Qingdao, 266042, People's Republic of China
| | - Xiaohong Zhou
- Qingdao Central Hospital, Qingdao, 266042, People's Republic of China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Youyou Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Lu Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Junxue Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
23
|
Wang R, Dang M, Zhu W, Li C. Galloyl Group in B-type Proanthocyanidin Dimers Was Responsible for Its Differential Inhibitory Activity on 3T3-L1 Preadipocytes due to the Strong Lipid Raft-Perturbing Potency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5216-5225. [PMID: 33891410 DOI: 10.1021/acs.jafc.1c00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of three B-type proanthocyanidin (PA) dimers covering procyanidin B2 (B-0g), procyanidin B2 3'-O-gallate (B-1g), and procyanidin B2 3,3'-di-O-gallate (B-2g) on 3T3-L1 preadipocyte differentiation and the underlying mechanisms were investigated. The results showed that digalloylated B-type PA dimers (B-2g) strongly inhibited 3T3-L1 preadipocyte differentiation through disrupting the integrity of the lipid raft structure and inhibiting the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) and then downregulating the expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) factors, followed by B-1g, while B-0g had little effect. The different inhibitory effects were mainly due to the difference in the B-type PA dimer structure and the ability to interfere with lipid rafts. The greater the galloylation degree of B-type PA dimers, the stronger the ability to disrupt the lipid raft structure and oppose 3T3-L1 preadipocyte differentiation. In addition, galloylated B-type PA dimers had greater molecular hydrophobicity and topological polarity surface area and could penetrate into the lipid rafts to form multiple hydrogen bonds with the rafts by molecular dynamics simulation. These findings highlighted that the strong lipid raft-perturbing potency of galloylated B-type PA dimers was responsible for inhibition of 3T3-L1 preadipocyte differentiation.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meizhu Dang
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450000, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhanz 430070, China
| |
Collapse
|
24
|
Pietrzyk N, Zakłos-Szyda M, Koziołkiewicz M, Podsędek A. Viburnum opulus L. fruit phenolic compounds protect against FFA-induced steatosis of HepG2 cells via AMPK pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab ( Eriocheir sinensis) fed different percentage of lipid. Br J Nutr 2021; 127:666-678. [PMID: 33910655 DOI: 10.1017/s0007114521001409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-β (CaMKKβ)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKβ/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.
Collapse
|
26
|
Xu J, Li T, Xia X, Fu C, Wang X, Zhao Y. Dietary Ginsenoside T19 Supplementation Regulates Glucose and Lipid Metabolism via AMPK and PI3K Pathways and Its Effect on Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14452-14462. [PMID: 33237753 DOI: 10.1021/acs.jafc.0c04429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ginseng, as a functional food, is widely used worldwide because of its multifarious benefits. Studies have verified that 25-hydroxyl-protopanaxatriol (T19) is a new ginsenoside from ginseng, which had an important inhibitory effect on α-glucosidase and protein tyrosine phosphatase 1B in vitro. This study aims to assess the regulation of T19 against glycolipid metabolism by insulin-resistant HepG2 cells and diabetes mice induced with high-fat diet combined with streptozotocin (STZ). T19 effectively lowered the levels of blood glucose and lipid, alleviated insulin resistance, and improved histological pathology of liver and pancreas. Further study demonstrated that regulation of AMP-activated protein kinase- and phosphoinositide-3-kinase-signaling pathways was involved in the potential mechanism of T19 efficiency. Simultaneously, high-throughput sequencing of 16S rDNA revealed that T19 remarkably ameliorated the high-fat diet/STZ-induced disorders of intestinal microbiota by decreasing the value of Firmicutes/Bacteroidetes, and remarkably raised the relative abundance of the Lachnospiraceae family, which are the beneficial bacteria that can regulate glucose and lipid metabolism. The results may provide clues for further understanding the mechanism of T19 in regulating glycolipid metabolism, and may provide a scientific basis for ginseng as a potential dietary food to prevent metabolic diseases.
Collapse
Affiliation(s)
- Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Li
- College of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyan Xia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chaofan Fu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
27
|
Zhang K, Shi Y, Huang C, Huang C, Xu P, Zhou C, Liu P, Hu R, Zhuang Y, Li G, Hu G, Guo X. Activation of AMP-activated protein kinase signaling pathway ameliorates steatosis in laying hen hepatocytes. Poult Sci 2020; 100:100805. [PMID: 33516482 PMCID: PMC7936166 DOI: 10.1016/j.psj.2020.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/12/2023] Open
Abstract
The fatty liver hemorrhage syndrome in laying hens is a disease of lipid metabolism disorders. Importantly, energy sensor AMP-activated protein kinase (AMPK) plays an essential role in homeostasis regulation of liver lipid. The current research aims to investigate the relationship between AMPK signaling pathway and lipid metabolism in laying hen hepatocytes and explore the underlying mechanisms. The steatotic hepatocytes model of laying hen was established and treated with AMPK agonist AICAR and inhibitor compound C. The results showed that the levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol significantly declined while high-density lipoprotein cholesterol level increased in the AICAR-treated steatosis group compared with the steatosis group. Furthermore, the mRNA levels of liver kinase B1 and AMP-activated protein kinase α1 declined significantly in the steatosis group compared with those in the normal group. However, AMPK activation significantly upregulated the mRNA levels of peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase-1 while downregulated the mRNA levels of acetyl CoA carboxylase, fatty acid synthase, 3-hydroxy-3-methyl glutaryl coenzyme A reductase, Sn-glycerol-3-phosphate acyltransferase, and hepatocyte nuclear factor 4α. These results suggest that activated AMPK signaling pathway increases fatty acid oxidation and reduces lipid synthesis in laying hen hepatocytes, thereby ameliorating liver steatosis.
Collapse
Affiliation(s)
- Kun Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chunli Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
28
|
Zhang M, Wang Z, Hao S, Hao L, Zhang X, Yu P, Sun H. Synthesis of natural 3'-Prenylchalconaringenin and biological evaluation of ameliorating non-alcoholic fatty liver disease and metabolic syndrome. Eur J Med Chem 2020; 205:112649. [PMID: 32791402 DOI: 10.1016/j.ejmech.2020.112649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and important risk factor for cardiac diseases, diabetes and extrahepatic cancers. Natural 3'-geranylchalconaringenin (GC) and desmethylxanthohumol (DX) from hop were synthesized using a regio-selective iodination and the Suzuki coupling reaction as key steps. GC and DX, along with their aglycone naringenin chalcone (NC) were investigated their decreasing the accumulation of cellular lipids. GC reduced lipid content and activated the AMP-activated protein kinase (AMPK) pathway in HepG2 and 3T3-L1 cells. In addition, GC had an obvious therapeutic effect on alleviating NAFLD and metabolic syndrome by activating the AMPK pathway in vivo. In conclusion, GC may be potentially used as a candidate drug and functional food for treating NAFLD and metabolic syndrome.
Collapse
Affiliation(s)
- Mengdi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zhaoxin Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Siyu Hao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Lei Hao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xinying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China.
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
29
|
Cheng J, Liu Y, Liu Y, Liu D, Liu Y, Guo Y, Wu Z, Li H, Wang H. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro. J Food Sci 2020; 85:3998-4008. [PMID: 33001454 DOI: 10.1111/1750-3841.15475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mechanism underlying the effect of ursolic acid (UA) on lipid metabolism remains unclear. This study aimed to explore the mechanisms of UA in reducing lipid accumulation in free fatty acids-cultured HepG2 cells and in high-fat-diet-fed C57BL/6J mice. In vivo, UA effectively alleviated liver steatosis and decreased the size of adipocytes in the epididymis. It also significantly decreased the total cholesterol (TC) and triglyceride (TG) contents in the liver and plasma in C57BL/6 mice. In vitro, UA (20 µM) significantly reduced lipid accumulation; the intracellular TC contents decreased from 0.078 ± 0.0047 to 0.049 ± 0.0064 µmol/mg protein, and TG contents from 0.133 ± 0.005 to 0.066 ± 0.0047 µmol/mg protein, in HepG2 cells. Furthermore, UA reduced the mRNA expression related to fat synthesis, enhanced the mRNA expression related to adipose decomposition, and dramatically upregulated the protein expression of P-AMPK in vivo and in vitro. Of note, these protective effects of UA on a high-fat environment were blocked by the AMPK inhibitor (compound C) in vitro. In addition, the molecular docking results suggested that UA could be docked to the AMPK protein as an AMPK activator. These results indicated that UA lowered the lipid content probably via activating the AMPK signaling pathway, thereby inhibiting lipid synthesis and promoting fat decomposition. PRACTICAL APPLICATION: Ursolic acid (UA) widely exists in vegetables and fruits. This study highlighted a lipid-lowing mechanism of UA in HepG2 cells and C57BL/6J mice. The data indicated that UA might be used in lipid-lowering functional foods.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yaojie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yang Liu
- Animal and Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, 300461, China
| | - Yatu Guo
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300384, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300143, China
| | - Heyu Li
- Tianjin Ubasio Biotechnology Group Co. Ltd., Tianjin, 300457, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| |
Collapse
|
30
|
Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
32
|
Thayer TE, Lino Cardenas CL, Martyn T, Nicholson CJ, Traeger L, Wunderer F, Slocum C, Sigurslid H, Shakartzi HR, O'Rourke C, Shelton G, Buswell MD, Barnes H, Neitzel LR, Ledsky CD, Li JP, Burke MF, Farber-Eger E, Perrien DS, Kumar R, Corey KE, Wells QS, Bloch KD, Hong CC, Bloch DB, Malhotra R. The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease. Sci Rep 2020; 10:9831. [PMID: 32561790 PMCID: PMC7305229 DOI: 10.1038/s41598-020-66770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.
Collapse
Affiliation(s)
- Timothy E Thayer
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian L Lino Cardenas
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Trejeeve Martyn
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher J Nicholson
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Florian Wunderer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles Slocum
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Haakon Sigurslid
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hannah R Shakartzi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Caitlin O'Rourke
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Georgia Shelton
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary D Buswell
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna Barnes
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leif R Neitzel
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Clara D Ledsky
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jason Pingcheng Li
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan F Burke
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric Farber-Eger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel S Perrien
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kathleen E Corey
- GI Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kenneth D Bloch
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
33
|
(-)-Hydroxycitric acid regulates energy metabolism by activation of AMPK - PGC1α - NRF1 signal pathway in primary chicken hepatocytes. Life Sci 2020; 254:117785. [PMID: 32416167 DOI: 10.1016/j.lfs.2020.117785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
As the most important bioactive substance in Garcinia cambogia, (-)-hydroxycitric acid (HCA) is widely used in food additives to regulate obesity and diabetes in animals or humans, while the mechanism is poorly understood. The purpose of this study was to elucidate the regulatory effect and mechanism of (-)-HCA in regulating glucose and lipid metabolism in chicken primary hepatocytes. The results showed that (-)-HCA obviously decreased triglyceride content through inhibiting the fatty acid synthase protein level, and enhancing the protein level of phosphorylated acetyl CoA carboxylase, enoyl coenzyme A hydratase short chain 1 and carnitine palmitoyltransferase 1A in hepatocytes. Moreover, (-)-HCA markedly enhanced the protein level of phosphofructokinase-1, pyruvate dehydrogenase, succinate dehydrogenase A and complex IV, and which led to the enhancing of glucose uptake and catabolism in hepatocytes. Importantly, the regulation of (-)-HCA on these key factors associated with lipid and glucose metabolism in hepatocytes was mainly achieved through activation of AMP-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1α-nuclear respiratory factor 1 signaling pathway. These results convincingly demonstrated the mechanism of (-)-HCA's regulating on glucose and lipid metabolism, and provided a strategy in prevention of diseases associated with glycolipid metabolic abnormalities in animals, even in humans.
Collapse
|
34
|
Zhang W, An R, Li Q, Sun L, Lai X, Chen R, Li D, Sun S. Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2673-2683. [PMID: 32050765 DOI: 10.1021/acs.jafc.0c00148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the leading cause of chronic liver diseases throughout the world. The deficit of pharmacotherapy for NAFLD calls for an urgent need for a new drug discovery and lifestyle management. Black tea is the most popular and functional drink consumed worldwide. Its main bioactive constituent theaflavin helps to prevent obesity-a major risk factor for NAFLD. To find new targets for the development of effective and safe therapeutic drugs from natural plants for NAFLD, we found a theaflavin monomer theaflavin-3,3'-digallate (TF3), which significantly reduced lipid droplet accumulation in hepatocytes, and directly bound and inhibited the activation of plasma kallikrein (PK), which was further proved to stimulate adenosine monophosphate activated protein kinase (AMPK) and its downstream targets. Taken together, we proposed that the TF3-PK-AMPK regulatory axis is a novel mechanism of lipid deposition mitigation, and PK could be a new target for NAFLD treatment.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, P. R. China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
35
|
da Silva LGS, Morelli AP, Pavan ICB, Tavares MR, Pestana NF, Rostagno MA, Simabuco FM, Bezerra RMN. Protective effects of beet (Beta vulgaris) leaves extract against oxidative stress in endothelial cells in vitro. Phytother Res 2020; 34:1385-1396. [PMID: 31989717 DOI: 10.1002/ptr.6612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Beetroot is an herb used worldwide as a food product, raw material for food industry, ethanol production and source of food coloring. Beet leaves are an unconventional food with antioxidant properties, which might neutralize reactive oxygen species (ROS) induced by oxidized Low-Density Lipoprotein (LDL) present in dyslipidemias. This study aimed to elucidate the effects of beet leaves on the suppression of LDL oxidative processes. Beet leaves extract was produced, characterized, and tested for its antioxidant capacity using endothelial cells in vitro. A model of human umbilical vein endothelial cells was used in various tests, including viability assay, molecular analysis of antioxidant genes, ROS labeling, and macrophage adhesion assay. The extract improved the antioxidative protection of endothelial cells against different agents including oxidized LDL-cholesterol and H2 O2 . It acted on ROS directly due to its high content of natural antioxidants, but also due to the activation and improvement of cellular defenses such as Superoxide dismutase 1, Superoxide dismutase 2, and catalase. The inhibition of LDL-mediated oxidative effects on endothelial cells may turn this unconventional food a functional food with great potential for phytotherapy of atherosclerosis as an adjuvant for medicinal treatments.
Collapse
Affiliation(s)
- Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Nathalie Fortes Pestana
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
36
|
Gao Y, Xu Y, Ruan J, Yin J. Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:225-234. [PMID: 31512247 DOI: 10.1002/jsfa.10027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/18/2019] [Accepted: 09/04/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Metabolic syndrome, a group of factors that increase the risk of health problems, is becoming increasingly common. Strategies to prevent metabolic syndrome have received substantial attention. Black tea consumption and selenium (Se) intake have been reported to be associated negatively with the prevalence of metabolic syndrome. We therefore sought to investigate whether Se-rich black tea might have a stronger effect than Se-deficient black tea in the prevention of metabolic syndrome. RESULTS Sprague-Dawley rats were divided into four groups and fed a normal rodent diet, high-fat diet, high-fat diet containing 3% Se-rich black tea, or a high-fat diet containing 3% Se-deficient black tea for 4 weeks. Blood and tissue samples were tested at the end of the experiment. The results suggested that both types of black tea ameliorated high-fat diet-induced body-weight gain, lowered serum triglycerides and attenuated intestinal barrier dysfunction. Selenium-rich black tea showed stronger activity in decreasing fasting serum glucose and increasing insulin sensitivity, as well as stronger hepatoprotection, owing to higher total antioxidant capacity and activated hepatic antioxidant enzymes. However, it did not exhibit better effects in preventing fat accumulation. The different effects of Se-rich and Se-deficient black tea on the gut microbiota might have been partially responsible for the results. CONCLUSION Compared with Se-deficient black tea, Se-rich black tea displayed stronger activity in preventing high-fat diet-induced hyperglycemia and liver damage but was not better at preventing fat accumulation and attenuating dysbiosis. More experiments are needed to understand the underlying mechanisms further. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Gao
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongquan Xu
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Junfeng Yin
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
37
|
Kuo FY, Cheng KC, Li Y, Cheng JT, Tsai CC. Promotion of Adropin Expression by Hyperglycemia Is Associated with STAT3 Activation in Diabetic Rats. Diabetes Metab Syndr Obes 2020; 13:2269-2277. [PMID: 32636661 PMCID: PMC7334037 DOI: 10.2147/dmso.s243755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adropin is a secreted polypeptide that has been demonstrated to play an important role in energy homeostasis and lipid metabolism. Signal transducer and activator of transcription 3 (STAT3) may promote the transcription of target genes including adropin. In the current study, we investigated the effect of adropin on glucose metabolism in diabetic rats and the mechanism that governs this effect was subsequently assessed. MATERIALS AND METHODS Rats received a single injection of streptozotocin to induce type 1 diabetes. The diabetic rats were treated with insulin or phloridzin, another antidiabetic agent through inhibition of glucose reabsorption, for 7 days. Plasma glucose levels and adropin levels were measured. The interaction between STAT3 and adropin was evaluated using the human hepatoma HepG2 cell line. HepG2 cells were pretreated with the specific antagonist Stattic or with STAT3-specific siRNAs to knockout STAT3. Changes in energy homeostasis-associated gene expression were measured using real-time PCR. The protein expression levels of pSTAT3 and STAT3 were measured using Western blotting. RESULTS In diabetic rats, the serum concentrations of adropin were increased in the vehicle-treated group and decreased in the insulin- or phloridzin-treated group. In liver tissues, the Enho expression level and the activity of STAT3 also showed similar tendencies. After HepG2 cells were treated with medium containing high glucose, the ratio of p-STAT3 to STAT3, Enho mRNA levels and reactive oxygen species expression levels in HepG2 cells were significantly increased in conjunction with increased glucose levels. The effect was inhibited after pretreatment with Stattic or knockdown with STAT3-specific siRNAs. CONCLUSION STAT3 is involved in the genetic regulation of adropin, increasing the levels of circulating adropin and promoting Enho expression in the livers of diabetic rats.
Collapse
Affiliation(s)
- Feng Yu Kuo
- Cardiovascular Centre, Kaohsiung Veterans General Hospital, Kaohsiung Citty, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Kai-Chun Cheng
- Pharmacological Department of Herbal Medicine and Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima Unuversity, Kagoshima, Japan
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien97005, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Correspondence: Juei-Tang Cheng Department of Medical Research,Chi-Mei Medical Center, No. 901, Zhonghua Road Yongkang District, Tainan71004, TaiwanTel +886-6-2517864 Email
| | - Cheng-Chia Tsai
- Department of Surgery, Mackay Memorial Hospital, Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Cheng-Chia Tsai Department of Surgery,Mackay Memorial Hospital, No. 92, Sec.2, Chung-Shan North Road, Taipei City10449, TaiwanTel +886-2-25433535 Email
| |
Collapse
|
38
|
Villa-Rodriguez JA, Ifie I, Gonzalez-Aguilar GA, Roopchand DE. The Gastrointestinal Tract as Prime Site for Cardiometabolic Protection by Dietary Polyphenols. Adv Nutr 2019; 10:999-1011. [PMID: 31144710 PMCID: PMC6855987 DOI: 10.1093/advances/nmz038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Substantial evidence from nutritional epidemiology links polyphenol-rich diets with reduced incidence of chronic disorders; however, biological mechanisms underlying polyphenol-disease relations remain enigmatic. Emerging evidence is beginning to unmask the contribution of the gastrointestinal tract on whole-body energy homeostasis, suggesting that the intestine may be a prime target for intervention and a fundamental site for the metabolic actions of polyphenols. During their transit through the gastrointestinal tract, polyphenols may activate enteric nutrient sensors ensuing appropriate responses from other peripheral organs to regulate metabolic homeostasis. Furthermore, polyphenols can modulate the absorption of glucose, attenuating exaggerated hormonal responses and metabolic imbalances. Polyphenols that escape absorption are metabolized by the gut microbiota and the resulting catabolites may act locally, activating nuclear receptors that control enteric functions such as intestinal permeability. Finally, polyphenols modulate gut microbial ecology, which can have profound effects on cardiometabolic health.
Collapse
Affiliation(s)
- Jose A Villa-Rodriguez
- Institute for Food, Nutrition, and Health, Center for Nutrition, Microbiome, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ,Address correspondence to JAV-R (e-mail: )
| | - Idolo Ifie
- Department of Food Science and Technology, Delta State University, Abraka, Nigeria
| | - Gustavo A Gonzalez-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Sonora, Mexico
| | - Diana E Roopchand
- Institute for Food, Nutrition, and Health, Center for Nutrition, Microbiome, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ,Address correspondence to DER (e-mail: )
| |
Collapse
|
39
|
Cheng J, Liu D, Zhao J, Li X, Yan Y, Wu Z, Wang H, Wang C. Lutein attenuates oxidative stress and inhibits lipid accumulation in free fatty acids-induced HepG2 cells by activating the AMPK pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Cynandione A from Cynanchum wilfordii inhibits hepatic de novo lipogenesis by activating the LKB1/AMPK pathway in HepG2 cells. J Nat Med 2019; 74:142-152. [DOI: 10.1007/s11418-019-01356-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
|
41
|
Momtaz S, Salek-Maghsoudi A, Abdolghaffari AH, Jasemi E, Rezazadeh S, Hassani S, Ziaee M, Abdollahi M, Behzad S, Nabavi SM. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Crit Rev Clin Lab Sci 2019; 56:472-492. [PMID: 31418340 DOI: 10.1080/10408363.2019.1648376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regarding the widespread progression of diabetes, its related complications and detrimental effects on human health, investigations on this subject seems compulsory. AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a key player in energy metabolism regulation. AMPK is also considered as a prime target for pharmaceutical and therapeutic studies on disorders such as diabetes, metabolic syndrome and obesity, where the body energy homeostasis is imbalanced. Following the activation of AMPK (physiological or pharmacological), a cascade of metabolic events that improve metabolic health is triggered. While there are several publications on this subject, this is the first report that has focused solely on polyphenols targeting diabetes via AMPK pathway. The multiple characteristics of polyphenolic compounds and their favorable influence on diabetes pathogenesis, as well as their intersections with the AMPK signaling pathway, indicate that these compounds have a beneficial effect on the regulation of glucose homeostasis. PPs could potentially occupy a significant position in the future anti-diabetic drug market.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran
| | - Armin Salek-Maghsoudi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Eghbal Jasemi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences , Karaj , Iran.,Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
42
|
Shen Z, Chen Q, Jin T, Wang M, Ying H, Lu J, Wang M, Zhang W, Qiu F, Jin C, Zhao Y, Fu G. Theaflavin 3,3'-digallate reverses the downregulation of connexin 43 and autophagy induced by high glucose via AMPK activation in cardiomyocytes. J Cell Physiol 2019; 234:17999-18016. [PMID: 30847932 DOI: 10.1002/jcp.28432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Theaflavin 3,3'-digallate (TF3), is reported to protect cardiomyocytes from lipotoxicity and reperfusion injury. However, the role of TF3 in the protection of high-glucose injury is still poorly understood. This study investigated the protective effects of TF3 on gap junctions and autophagy in neonatal cardiomyocytes (NRCMs). NRCMs preincubated with high glucose were coincubated with TF3. The expression of connexins and autophagy-related proteins was determined. The functioning of gap-junctional intercellular communication (GJIC) was measured by a dye transfer assay. Adenosine monophosphate-activated protein kinase (AMPK) activity was determined by western blot. Moreover, AMPK was activated with aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or inhibited by AMPKα small interfering RNA (siRNA) to explore the role of AMPK in the modulation of connexin 43 (Cx43) and autophagy. Meanwhile, autophagy was activated or blocked to observe the change in Cx43 expression. It was found that the protein expression of Cx43 and autophagy-related proteins was increased in a TF3 dose- and time-dependent manner under high glucose. TF3 also recovered the reduced GJIC function induced by high glucose concentrations. TF3 activated phosphorylated AMPK in a time-dependent way. AMPKα siRNA abrogated the protection of TF3, while AICAR showed similar results compared to the TF3 treatment. Meanwhile, autophagy activation caused decreased Cx43, while cotreatment with baf A1 enhanced Cx43 expression further compared with the TF3 treatment alone under high glucose. We concluded that TF3 partly reversed the inhibition of Cx43 expression and autophagy induced by high glucose in NRCMs, partly by restoring AMPK activity. Inhibition of autophagy might be protective by preserving Cx43 expression in NRCMs stimulated by high glucose.
Collapse
Affiliation(s)
- Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- Department of Cardiology Basic Research, Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangying Ying
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chongying Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
The Foxo1-Inducible Transcriptional Repressor Zfp125 Causes Hepatic Steatosis and Hypercholesterolemia. Cell Rep 2019; 22:523-534. [PMID: 29320745 DOI: 10.1016/j.celrep.2017.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an ∼60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like" metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.
Collapse
|
44
|
Liu Y, Zhang D, Liu GM, Chen Q, Lu Z. Ameliorative effect of dieckol-enriched extraction from Laminaria japonica on hepatic steatosis induced by a high-fat diet via β-oxidation pathway in ICR mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
45
|
Park PJ, Rha CS, Kim ST. Theaflavin-Enriched Fraction Stimulates Adipogenesis in Human Subcutaneous Fat Cells. Int J Mol Sci 2019; 20:E2034. [PMID: 31027178 PMCID: PMC6515531 DOI: 10.3390/ijms20082034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Skin provides the first defense line against the environment while preserving physiological homeostasis. Subcutaneous tissues including fat depots that are important for maintaining skin structure and alleviating senescence are altered during aging. This study investigated whether theaflavin (TF) in green tea (GT) has skin rejuvenation effects. Specifically, we examined whether high ratio of TF contents can induce the subcutaneous adipogenesis supporting skin structure by modulating lipid metabolism. The co-fermented GT (CoF-GT) fraction containing a high level of TF was obtained by co-fermentation with garland chrysanthemum (Chrysanthemum coronarium) and the conventionally fermented GT (F-GT) fraction was also obtained. The effects of the CoF- or F-GT fractions on adipogenesis were assessed using primary human subcutaneous fat cells (hSCF). Adipogenesis was evaluated based on lipid droplet (LD) formation, as visualized by Oil Red O staining; by analyzing of adipogenesis-related factors by real-time quantitative polyperase chain reaction (RT-qPCR); and by measuring the concentration of adiponectin released into the culture medium by enzyme-linked immunosorbent assay. TF-enriched CoF-GT fraction did not adversely affect hSCF cell viability but induced their adipogenic differentiation, as evidenced by LD formation, upregulation of adipogenesis-related genes, and adiponectin secretion. TF and TF-enriched CoF-GT fraction promoted differentiation of hSCFs and can therefore be used as an ingredient in rejuvenating agents.
Collapse
Affiliation(s)
- Phil June Park
- Basic Research & Innovation Research Institute, AmorePacific Corporation R&D Unit., 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Chan-Su Rha
- Vital Beautie Research Institute, AmorePacific Corporation R&D Unit, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si 50834, Korea.
| |
Collapse
|
46
|
Penta-O-galloyl-β-d-glucose, a hydrolysable tannin from Radix Paeoniae Alba, inhibits adipogenesis and TNF-α-mediated inflammation in 3T3-L1 cells. Chem Biol Interact 2019; 302:156-163. [PMID: 30721698 DOI: 10.1016/j.cbi.2019.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
Penta-O-galloyl-β-d-glucose (PGG) was purified and identified from Radix Paeoniae Alba by HSCCC and HPLC/ESI-MS, and its inhibitory effects on adipogenesis and TNF-α-induced inflammation were assessed in 3T3-L1 cell line. The results showed that PGG dose-dependently reduced intracellular lipids accumulation, and this involved decrease the expression levels of major adipogenic markers, PPARγ, C/EBP α, through MAPKs inhibition. This was accompanied by a reduction of lipogenic genes, ACC, FAS, and SCD-1, involved in fatty acid synthesis. Furthermore, PGG also inhibited TNF-α-induced expression of inflammatory cytokines including IL-6 and MCP-1 in the matured 3T3-L1 adipocytes. The inhibitions were likely mediated by blocking the MAPKs and NF-κB activation. These findings highlighted that PGG could serve as a potent therapeutic agent for controlling obesity and obesity-related chronic inflammation.
Collapse
|
47
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
48
|
Teng W, Yin W, Zhao L, Ma C, Huang J, Ren F. Resveratrol metabolites ameliorate insulin resistance in HepG2 hepatocytes by modulating IRS-1/AMPK. RSC Adv 2018; 8:36034-36042. [PMID: 35558476 PMCID: PMC9088716 DOI: 10.1039/c8ra05092a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV), a naturally occurring biologically active polyphenol has been observed to induce numerous beneficial effects in diabetic animals and humans. However, its protective effects are somewhat controversial due to low bioavailability and rapid clearance rate. Therefore, we in this study have tried to investigate if its main metabolites, RSV-3-O-glucuronide (R3G) and RSV-4-O-glucuronide (R4G) could ameliorate insulin resistance, similar to RSV in insulin-resistant HepG2 cells. Herein, we first established an insulin-resistant cell model by treating HepG2 cells with 1 × 10−6 mol L−1 insulin for 24 h. Subsequently, the effects of R3G and R4G on insulin resistance inhibition were evaluated in HepG2 cells. Interestingly, our data indicated that R3G and R4G treatment improved cellular glucose uptake and glycogen synthesis contents, and blocked generation of intracellular reactive oxygen species (ROS). Additionally, R3G and R4G also modulated insulin signaling and improved insulin sensitivity by modulating the IRS-1/AMPK signaling pathway. Taken together, our data provided a significant new insight into the effects and molecular mechanism of R3G and R4G on ameliorating insulin resistance in HepG2 cells. Overall, our data supported the hypothesis that despite low bioavailability in vivo, RSV biological effects could be mediated through its metabolites. RSV metabolites R3G and R4G protected HepG2 cell from insulin resistance by improving glucose uptake and glycogen synthesis, along with inhibiting ROS generation and modulating the RS-1/AMPK signaling pathway.![]()
Collapse
Affiliation(s)
- Wendi Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Wenjing Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Changwei Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University P.O. Box 287, No. 17 Qinghua East Road Beijing 100083 China +86-10-62736344.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China.,Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University Beijing China
| |
Collapse
|
49
|
Melatonin Modulates lipid Metabolism in HepG2 Cells Cultured in High Concentrations of Oleic Acid: AMPK Pathway Activation may Play an Important Role. Cell Biochem Biophys 2018; 76:463-470. [DOI: 10.1007/s12013-018-0859-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
|
50
|
Madushani Herath KHIN, Cho J, Kim A, Eom TK, Kim JS, Kim JB, Doh YH, Jee Y. Phenolic acid and flavonoid-rich fraction of Sasa quelpaertensis Nakai leaves prevent alcohol induced fatty liver through AMPK activation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:335-348. [PMID: 29906537 DOI: 10.1016/j.jep.2018.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sasa quelpaertensis Nakai is an edible dwarf bamboo cultivated mainly in Jeju Island, South Korea and its leaf displays various health-promoting properties including antioxidant scavenging. AIM OF THE STUDY In this study, we aimed at elucidating its hepatoprotective effect against alcohol-induced fatty liver. METHODS In in vitro study, we evaluated the cytotoxicity and hepatoprotective effect of different solvent fractions (aqua, butanol, chloroform, ethyl acetate and hexane) of 80% EtOH extract of S. quelpaertensis Nakai leaf. In vivo experiment performed using binge alcohol consumption model. RESULTS Although all five fractions (0-1000 µg/mL) were non-cytotoxic to HepG2 cells, only ethyl acetate fraction (SQEA), rich in phenolic acids such as p-coumaric acid and flavonoids particularly myristin, showed hepatoprotective effect against EtOH (400 mM) in HepG2 cells. Furthermore, SQEA significantly decreased the ethanol induced cell death and enhanced the cell proliferation. In in vivo experiment using binge consumption model (5 g of EtOH/kg body weight in every 12 h for 3 times), SQEA treatment (10, 50 and 100 mg/kg) markedly reduced the alcohol induced histopathological changes and serum EtOH content, and reversed the reduction of glutathione level in ethanol challenged livers. Further, it suppressed the expression of cytochrome P450 2E1 (CYP2E1). In particular, SQEA activated AMP activated protein kinase (AMPK) pathway, and decreased the expression of tumor necrosis factor receptor-1 (TNFR1), which attenuated lipogenesis via decreased expression of fatty acid synthase (FAS). Inhibited lipogenesis due to SQEA treatment directed towards decreased perilipin-2 expression. These results indicate that SQEA has hypolipidemic effect which is mediated by decreased oxidative stress, increased fatty acid oxidation response and decreased lipogenesis. CONCLUSION Our results suggest the possibility of developing SQEA as a natural hepatoprotective agent potent in attenuating alcohol-induced fatty liver.
Collapse
Affiliation(s)
| | - Jinhee Cho
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea.
| | - Areum Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.
| | - Tae Kil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Republic of Korea.
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture and Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea.
| | - Jae-Bum Kim
- Korea Institute of Industrial Technology, Republic of Korea.
| | - Yang Hoi Doh
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Republic of Korea.
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|