1
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Ling M, Qian H, Guo H. Knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy. In Vitro Cell Dev Biol Anim 2024; 60:258-265. [PMID: 38424378 DOI: 10.1007/s11626-024-00861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.
Collapse
Affiliation(s)
- Mingfa Ling
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Heying Qian
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huiduo Guo
- Jiangsu Key laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
3
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
4
|
Górecka M, Krzemiński K, Mikulski T, Ziemba AW. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run. Sci Rep 2022; 12:19940. [PMID: 36402848 PMCID: PMC9675781 DOI: 10.1038/s41598-022-17439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to reveal whether marathon running influences regulators of lipid metabolism i.e. angiopoietin-like protein 4 (ANGPTL4), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Plasma concentration of ANGPTL4, IL-6, TNF-α and lipids were determined in samples collected from 11 male runners before the marathon, immediately after the run and at 90 min of recovery. Plasma ANGPTL4 increased during exercise from 55.5 ± 13.4 to 78.1 ± 15.0 ng/ml (P < 0.001). This was accompanied by a significant increase in IL-6, TNF-α, free fatty acids (FFA) and glycerol (Gly) and a decrease in triacylglycerols (TG). After 90 min of recovery ANGPTL4 and TG did not differ from the exercise values, while plasma IL-6, TNF-α, FFA and Gly concentration were significantly lower. The exercise-induced increase in plasma concentration of ANGPTL4 correlated positively with the rise in plasma IL-6, TNF-α, FFA and Gly and negatively with the duration of the run. The increase in plasma IL-6 and TNF-α correlated positively with the rise in Gly. Summarizing, marathon running induced an increase in plasma ANGPTL4 and the value was higher in faster runners. The increase in plasma FFA, IL-6 and TNF-α concentration during a marathon run may be involved in plasma ANGPTL4 release, which could be a compensatory mechanism against FFA-induced lipotoxicity and oxidative stress. All of the analyzed cytokines may stimulate lipolysis during exercise.
Collapse
Affiliation(s)
- Monika Górecka
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Krzemiński
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Tomasz Mikulski
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Andrzej Wojciech Ziemba
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Triglycerides as Biomarker for Predicting Systemic Lupus Erythematosus Related Kidney Injury of Negative Proteinuria. Biomolecules 2022; 12:biom12070945. [PMID: 35883502 PMCID: PMC9312825 DOI: 10.3390/biom12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Fewer biomarkers can be used to predict systemic lupus erythematosus (SLE) related kidney injury. This paper presents an apriori algorithm of association rules to mine the predictive biomarkers for SLE-related kidney injury of negative proteinuria. An apriori algorithm of association rules was employed to identify biomarkers, and logistic regression analysis and spearman correlation analysis were used to evaluate the correlation between triglycerides and SLE-related kidney injury of negative proteinuria. Triglycerides were mined out by the apriori algorithm of association rules. The level of triglycerides was significantly higher, and it was an independent risk factor for SLE-related kidney injury. In the high-triglycerides group, the number of patients with SLE-related kidney injury, SLEDAI-2K, urine P-CAST, the level of blood urea nitrogen, serum creatinine, and proteinuria were increased. Triglycerides level was positively correlated with proteinuria and P-CAST and negatively correlated with albumin and IgG. The area under the ROC curve of triglycerides and triglycerides combined proteinuria was 0.72 and 0.82, respectively. Significantly, 50% of SLE-related kidney injuries of negative proteinuria could be identified by high triglycerides levels. High triglycerides level was found at the time of onset of kidney injury, and it was opposite to glomerular filtration rate. Triglycerides may be a potential marker for predicting SLE-related kidney injury, especially in SLE-related kidney injury of negative proteinuria. Triglycerides combined proteinuria could predict SLE-related kidney injury effectively.
Collapse
|
6
|
Li L, Ma L, Wen Y, Xie J, Yan L, Ji A, Zeng Y, Tian Y, Sheng J. Crude Polysaccharide Extracted From Moringa oleifera Leaves Prevents Obesity in Association With Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:861588. [PMID: 35548566 PMCID: PMC9083904 DOI: 10.3389/fnut.2022.861588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera is a commonly used plant with high nutritional and medicinal values. M. oleifera leaves are considered a new food resource in China. However, the biological activities of M. oleifera polysaccharides (MOP) in regulating gut microbiota and alleviating obesity remain obscure. In the present study, we prepared the MOP and evaluated its effects on obesity and gut microbiota in high-fat diet (HFD)-induced C57BL/6J mice. The experimental mice were supplemented with a normal chow diet (NCD group), a high-fat diet (HFD group), and HFD along with MOP at a different dose of 100, 200, and 400 mg/kg/d, respectively. Physiological, histological, biochemical parameters, genes related to lipid metabolism, and gut microbiota composition were compared among five experimental groups. The results showed that MOP supplementation effectively prevented weight gain and lipid accumulation induced by HFD, ameliorated blood lipid levels and insulin resistance, alleviated the secretion of pro-inflammatory cytokines, and regulated the expression of genes related to lipid metabolism and bile acid metabolism. In addition, MOP positively reshaped the gut microbiota composition, significantly increasing the abundance of Bacteroides, norank_f_Ruminococcaceae, and Oscillibacter, while decreasing the relative abundance of Blautia, Alistipes, and Tyzzerella, which are closely associated with obesity. These results demonstrated that MOP supplementation has a protective effect against HFD-induced obesity in mice, which was associated with reshaping the gut microbiota. To the best of our knowledge, this is the first report on the potential of MOP to prevent obesity and modulating gut microbiota, which suggests that MOP can be used as a potential prebiotic.
Collapse
Affiliation(s)
- Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Aibing Ji
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yin Zeng
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Angiopoietin-like Proteins in Colorectal Cancer-A Literature Review. Int J Mol Sci 2021; 22:ijms22168439. [PMID: 34445141 PMCID: PMC8395131 DOI: 10.3390/ijms22168439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy, with an annual incidence of about 10% of the total number of new cases. Despite well-developed screening tests, mortality from this type of cancer remains unchanged. Therefore, it is important to search for more accurate markers that are useful in the detection of colorectal cancer (especially in its early stages), and treatment. Angiopoietin-like proteins (ANGPTLs) are a family of eight proteins with a diversity of applications, including pro- and anti-angiogenic properties. Consequently, we performed an extensive search of the literature, pertaining to our investigation, via the MEDLINE/PubMed database. Based on the available literature, we summarize that some of those proteins are characterized by increased or decreased concentrations during the course of CRC. We can also assume that some ANGPTLs can inhibit the development of CRC, while others induce its progress. Moreover, some factors are dependent on the stage or histological type of the tumor, the presence of hypoxia, or metastases. Most importantly, some ANGPTLs can be useful in anti-cancer therapy. Therefore, further studies on ANGPTLs as potential markers of CRC should be continued.
Collapse
|
8
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
9
|
Wu Y, Gao J, Liu X. Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation. Cancer Cell Int 2021; 21:171. [PMID: 33726754 PMCID: PMC7968256 DOI: 10.1186/s12935-021-01865-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a tissue-specific proangiogenic or antiangiogenic agent, angiopoietin-like 4 (ANGPTL4) has recently gained attention in many diseases, such as metabolic syndrome, cardiovascular disease and cancer. However, the roles of ANGPTL4 in angiogenesis and tumor growth in epithelial ovarian cancer, the most lethal gynecologic malignancy, remain unclear. OBJECTIVE To identify a novel mechanism of ANGPTL4 inhibition in epithelial ovarian cancer. METHODS Western blot, quantitative reverse transcription PCR, and immunofluorescence analyses were applied to evaluate ANGPTL4 expression in ovarian cancer cell lines. Cell proliferation, migration, and invasion were investigated through 5-ethynyl-2'-deoxyuridine (EdU) incorporation, CCK-8 and Transwell assays. The expression of epithelial-mesenchymal transition (EMT)-related proteins in ovarian cancer cells and tumor-bearing mice was evaluated. CD31 staining was used to identify tumor angiogenesis. Immunoprecipitation was performed to examine the regulatory relationship between ANGPTL4 and the vascular endothelial growth factor receptor 2 (VEGFR2)/vascular endothelial (VE)-cadherin/Src complex. VEGFR2 phosphorylation at Y949 and VE-cadherin expression were assessed by western blotting. Inactivation of VEGFR2 Y949 phosphorylation was achieved in a MISIIR-TAg VEGFR2Y949F/Y949F mouse model. RESULTS Here, we demonstrated that ANGPTL4 was overexpressed in A2780 and CAOV3 ovarian cancer cells. In vitro assays indicated that inhibition of ANGPTL4 by lentiviral small interfering RNA does not alter ovarian cancer cell proliferation, migration, invasion, and EMT, while ANGPTL4 silencing exhibited significant inhibitory effects on tumor angiogenesis, growth, and metastasis in vivo. Immunoprecipitation analysis showed that suppression of ANGPTL4 was accompanied by dissociation of the VEGFR2/VE-cadherin/Src complex and phosphorylation of VEGFR2 Y949 in A2780 and CAOV3 ovarian tumors. Inactivation of VEGFR2 Y949 phosphorylation in MISIIR-TAg VEGFR2Y949F/Y949F mice abolished all tumor-suppressive effects of ANGPTL4 inhibition in spontaneous ovarian carcinoma. CONCLUSIONS Overall, our results indicate that ANGPLT4 silencing delays tumor progression in specific types of ovarian cancer and may be a potential target for individualized treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuxian Wu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jinghai Gao
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
10
|
Tong Z, Peng J, Lan H, Sai W, Li Y, Xie J, Tan Y, Zhang W, Zhong M, Wang Z. Cross-talk between ANGPTL4 gene SNP Rs1044250 and weight management is a risk factor of metabolic syndrome. J Transl Med 2021; 19:72. [PMID: 33593372 PMCID: PMC7885568 DOI: 10.1186/s12967-021-02739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of metabolic syndrome (Mets) is closely related to an increased incidence of cardiovascular events. Angiopoietin-like protein 4 (ANGPTL4) is contributory to the regulation of lipid metabolism, herein, may provide a target for gene-aimed therapy of Mets. This observational case control study was designed to elucidate the relationship between ANGPTL4 gene single nucleotide polymorphism (SNP) rs1044250 and the onset of Mets, and to explore the interaction between SNP rs1044250 and weight management on Mets. Methods We have recruited 1018 Mets cases and 1029 controls in this study. The SNP rs1044250 was genotyped with blood samples, base-line information and Mets-related indicators were collected. A 5-year follow-up survey was carried out to track the lifestyle interventions and changes in Mets-related indicators. Results ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference (OR 1.618, 95% CI [1.119–2.340]; p = 0.011), elevated blood pressure (OR 1.323, 95% CI [1.002–1.747]; p = 0.048), and Mets (OR 1.875, 95% CI [1.363–2.580]; p < 0.001). The follow-up survey shows that rs1044250 CC genotype patients with weight gain have an increased number of Mets components (M [Q1, Q3]: CC 1 (0, 1), CT + TT 0 [− 1, 1]; p = 0.021); The interaction between SNP rs1044250 and weight management is a risk factor for increased systolic blood pressure (β = 0.075, p < 0.001) and increased diastolic blood pressure (β = 0.097, p < 0.001), the synergistic effect of weight management and SNP rs1044250 is negative (S < 1). Conclusion ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference and elevated blood pressure, therefore, for Mets. However, patients with wild type SNP 1044250 are more likely to have Mets when the body weight is increased, mainly due to elevated blood pressure.
Collapse
Affiliation(s)
- Zhoujie Tong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jie Peng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China
| | - Hongtao Lan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China
| | - Wenwen Sai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yulin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jiaying Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanmin Tan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Association of Gut Hormones and Microbiota with Vascular Dysfunction in Obesity. Nutrients 2021; 13:nu13020613. [PMID: 33668627 PMCID: PMC7918888 DOI: 10.3390/nu13020613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
In the past few decades, obesity has reached pandemic proportions. Obesity is among the main risk factors for cardiovascular diseases, since chronic fat accumulation leads to dysfunction in vascular endothelium and to a precocious arterial stiffness. So far, not all the mechanisms linking adipose tissue and vascular reactivity have been explained. Recently, novel findings reported interesting pathological link between endothelial dysfunction with gut hormones and gut microbiota and energy homeostasis. These findings suggest an active role of gut secretome in regulating the mediators of vascular function, such as nitric oxide (NO) and endothelin-1 (ET-1) that need to be further investigated. Moreover, a central role of brain has been suggested as a main player in the regulation of the different factors and hormones beyond these complex mechanisms. The aim of the present review is to discuss the state of the art in this field, by focusing on the processes leading to endothelial dysfunction mediated by obesity and metabolic diseases, such as insulin resistance. The role of perivascular adipose tissue (PVAT), gut hormones, gut microbiota dysbiosis, and the CNS function in controlling satiety have been considered. Further understanding the crosstalk between these complex mechanisms will allow us to better design novel strategies for the prevention of obesity and its complications.
Collapse
|
12
|
Hari P, Khandelwal P, Smoyer WE. Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr Nephrol 2020; 35:1601-1619. [PMID: 31302760 DOI: 10.1007/s00467-019-04301-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Children with steroid-resistant nephrotic syndrome (SRNS) are exposed to multiple cardiovascular risk factors predisposing them to accelerated atherosclerosis. This risk is negligible in steroid-sensitive nephrotic syndrome, but a substantial proportion of children with SRNS progress to chronic kidney disease, exacerbating the already existing cardiovascular risk. While dyslipidemia is an established modifiable risk factor for cardiovascular disease in adults with NS, it is uncertain to what extent analogous risks exist for children. There is increasing evidence of accelerated atherosclerosis in children with persistently high lipid levels, especially in refractory NS. Abnormalities of lipid metabolism in NS include hypertriglyceridemia and hypercholesterolemia due to elevated apolipoprotein B-containing lipoproteins, decreased lipoprotein lipase and hepatic lipase activity, increased hepatic PCSK9 levels, and reduced hepatic uptake of high-density lipoprotein. Existing guidelines for the management of dyslipidemia in children may be adapted to target lower lipid levels in children with NS, but they will most likely require both lifestyle modifications and pharmacological therapy. While there is a lack of data from randomized controlled trials in children with NS demonstrating the benefit of lipid-lowering drugs, therapies including statins, bile acid sequestrants, fibrates, ezetimibe, and LDL apheresis have all been suggested and/or utilized. However, concerns with the use of lipid-lowering drugs in children include unclear side effect profiles and unknown long-term impacts on neurological development and puberty. The recent introduction of anti-PCSK9 monoclonal antibodies and other therapies targeted to the molecular mechanisms of lipid transport disrupted in NS holds promise for the future treatment of dyslipidemia in NS.
Collapse
Affiliation(s)
- Pankaj Hari
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - William E Smoyer
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
13
|
Effect of mountain ultra-marathon running on plasma angiopoietin-like protein 4 and lipid profile in healthy trained men. Eur J Appl Physiol 2019; 120:117-125. [PMID: 31707478 PMCID: PMC6969869 DOI: 10.1007/s00421-019-04256-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Purpose Angiopoietin-like protein 4 (ANGPTL4) regulates lipid metabolism by inhibiting lipoprotein lipase activity and stimulating lipolysis in adipose tissue. The aim of this study was to find out whether the mountain ultra-marathon running influences plasma ANGPTL4 and whether it is related to plasma lipid changes. Methods Ten healthy men (age 31 ± 1.1 years) completed a 100-km ultra-marathon running. Plasma ANGPTL4, free fatty acids (FFA), triacylglycerols (TG), glycerol (Gly), total cholesterol (TC), low (LDL-C) and high (HDL-C) density lipoprotein-cholesterol were determined before, immediately after the run and after 90 min of recovery. Results Plasma ANGPTL4 increased during exercise from 68.0 ± 16.5 to 101.2 ± 18.1 ng/ml (p < 0.001). This was accompanied by significant increases in plasma FFA, Gly, HDL-C and decreases in plasma TG concentrations (p < 0.01). After 90 min of recovery, plasma ANGPTL4 and TG did not differ significantly from the exercise values, while plasma FFA, Gly, TC and HDL-C were significantly lower than immediately after the run. TC/HDL-C and TG/HDL-C molar ratios were significantly reduced. The exercise-induced changes in plasma ANGPTL4 correlated positively with those of FFA (r = 0.73; p < 0.02), and HDL-C (r = 0.69; p < 0.05). Positive correlation was found also between plasma ANGPTL4 and FFA concentrations after 90 min of recovery (r = 0.77; p < 0.01). Conclusions The present data suggest that increase in plasma FFA during mountain ultra-marathon run may be involved in plasma ANGPTL4 release and that increase in ANGPTL4 secretion may be a compensatory mechanism against fatty acid-induced oxidative stress. Increase in plasma HDL-C observed immediately after the run may be due to the protective effect of ANGPTL4 on HDL.
Collapse
|
14
|
Brain structural differences in monozygotic twins discordant for body mass index. Neuroimage 2019; 201:116006. [DOI: 10.1016/j.neuroimage.2019.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
|
15
|
Abstract
The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.
Collapse
Affiliation(s)
- Gaël Ennequin
- PEPITE EA4267, EPSI, Université de Bourgogne Franche-Comté , Besançon , France
| | - Pascal Sirvent
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), CRNH Auvergne, Clermont-Ferrand , France
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
16
|
Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med 2019; 25:723-734. [PMID: 31235370 DOI: 10.1016/j.molmed.2019.05.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Alterations in circulating lipids and ectopic lipid deposition impact on the risk of developing cardiovascular and metabolic diseases. Lipoprotein lipase (LPL) hydrolyzes fatty acids (FAs) from triglyceride (TAG)-rich lipoproteins including very low density lipoproteins (VLDLs) and chylomicrons, and regulates their distribution to peripheral tissues. Angiopoietin-like 4 (ANGPTL4) mediates the inhibition of LPL activity under different circumstances. Accumulating evidence associates ANGPTL4 directly with the risk of atherosclerosis and type 2 diabetes (T2D). This review focuses on recent findings on the role of ANGPTL4 in metabolic and cardiovascular diseases. We highlight human and murine studies that explore ANGPTL4 functions in different tissues and how these effect disease development through possible autocrine and paracrine forms of regulation.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suarez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
ANGPTL-4 is Associated with Obesity and Lipid Profile in Children and Adolescents. Nutrients 2019; 11:nu11061340. [PMID: 31207920 PMCID: PMC6628529 DOI: 10.3390/nu11061340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL-4) regulates lipidic metabolism and affects energy homeostasis. However, its function in children with obesity remains unknown. We investigated plasma ANGPTL-4 levels in children and its relationship with body mass index (BMI) and different lipidic parameters such as free fatty acids (FFA). Plasma ANGPTL-4 levels were analyzed in two different cohorts. In the first cohort (n = 150, age 3–17 years), which included children with normal weight or obesity, we performed a cross-sectional study. In the second cohort, which included only children with obesity (n = 20, age 5–18 years) followed up for two years after an intervention for weight loss, in which we performed a longitudinal study measuring ANGPTL-4 before and after BMI-loss. In the cross-sectional study, circulating ANGPTL-4 levels were lower in children with obesity than in those with normal weight. Moreover, ANGPTL-4 presented a negative correlation with BMI, waist circumference, weight, insulin, homeostasis model assessment of insulin resistance index (HOMA index), triglycerides, and leptin, and a positive correlation with FFA and vitamin-D. In the longitudinal study, the percent change in plasma ANGPTL-4 was correlated with the percent change in FFA, total-cholesterol and high-density lipoprotein cholesterol. This study reveals a significant association of ANGPTL-4 with pediatric obesity and plasma lipid profile.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The influence of gut bacteria upon host physiology is increasingly recognized, but mechanistic links are lacking. Diseases of energetic imbalance such as obesity and diabetes represent major risk factors for cardiovascular diseases such as hypertension. Thus, here, we review current mechanistic contributions of the gut microbiota to host energetics. RECENT FINDINGS Gut bacteria generate a multitude of small molecules which can signal to host tissues within and beyond the gastrointestinal tract to influence host physiology, and gut bacteria can also influence host digestive efficiency by altering the bioavailability of polysaccharides, yet the quantitative energetic effects of these processes remain unclear. Recently, our team has demonstrated that gut bacteria constitute a major anaerobic thermogenic biomass, which can quantitatively account for obesity. Quantitative understanding of the mechanisms by which gut bacteria influence energy homeostasis may ultimately inform the relationship between gut bacteria and cardiovascular dysfunction.
Collapse
|
19
|
Dijk W, Schutte S, Aarts EO, Janssen IMC, Afman L, Kersten S. Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue. J Clin Lipidol 2018; 12:773-783. [PMID: 29555209 DOI: 10.1016/j.jacl.2018.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated plasma triglycerides are increasingly viewed as a causal risk factor for coronary artery disease. One protein that raises plasma triglyceride levels and that has emerged as a modulator of coronary artery disease risk is angiopoietin-like 4 (ANGPTL4). ANGPTL4 raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL), the enzyme that catalyzes the hydrolysis of circulating triglycerides on the capillary endothelium. OBJECTIVE The objective of the present study was to assess the association between ANGPTL4 and LPL in human adipose tissue, and to examine the influence of nutritional status on ANGPTL4 expression. METHODS We determined ANGPTL4 and LPL mRNA and protein levels in different adipose tissue depots in a large number of severely obese patients who underwent bariatric surgery. Furthermore, in 72 abdominally obese subjects, we measured ANGPTL4 and LPL mRNA levels in subcutaneous adipose tissue in the fasted and postprandial state. RESULTS ANGPTL4 mRNA levels were highest in subcutaneous adipose tissue, whereas LPL mRNA levels were highest in mesenteric adipose tissue. ANGPTL4 and LPL mRNA levels were strongly positively correlated in the omental and subcutaneous adipose tissue depots. In contrast, ANGPTL4 and LPL protein levels were negatively correlated in subcutaneous adipose tissue, suggesting a suppressive effect of ANGPTL4 on LPL protein abundance in subcutaneous adipose tissue. ANGPTL4 mRNA levels were 38% higher in the fasted compared to the postprandial state. CONCLUSION Our data provide valuable insights into the relationship between ANGPTL4 and LPL in human adipose tissue, as well as the physiological function and regulation of ANGPTL4 in humans.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Edo O Aarts
- Rijnstate Hospital and Vitalys Clinics, Arnhem, The Netherlands
| | | | - Lydia Afman
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Sadeghabadi ZA, Nourbakhsh M, Alaee M, Larijani B, Razzaghy-Azar M. Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents. J Endocrinol Invest 2018; 41:241-247. [PMID: 28733963 DOI: 10.1007/s40618-017-0730-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE The peroxisome proliferator-activated receptor γ (PPARγ) is highly expressed in adipose tissue and functions as transcriptional regulator of metabolism and adipocyte differentiation. Angiopoietin-like protein 4 (ANGPTL4), a central player in various aspects of energy homoeostasis, is induced by PPARγ. The aim of this study was to evaluate ANGPTL4 plasma levels and PPARγ gene expression in peripheral blood mononuclear cells (PBMCs) of children and adolescents with obesity and their association with metabolic parameters. METHODS Seventy children and adolescents (35 obese and 35 age- and gender-matched control subjects), were selected. PBMCs were separated and their total RNA was extracted. After cDNA synthesis, PPARG gene expression was analyzed by real-time PCR. Relative differences in gene expression were calculated by ΔCt method using β-actin as a normalizer. Serum ANGPTL4 and insulin were measured using ELISA, and insulin resistance (IR) was calculated by the homeostatic model assessment of insulin resistance (HOMA-IR). Fasting plasma glucose (FPG), triglyceride, total cholesterol, LDL-C and HDL-C were also measured. RESULTS The expression of the PPARG gene as well as the plasma ANGPTL4 levels were significantly diminished in obese subjects as compared to control ones. However, they were not significantly different in obese children with IR compared to obese children without IR or in those with or without metabolic syndrome. A significant positive correlation was found between PPARγ and ANGPTL4 (r = 0.364, p = 0.002). PPARγ expression levels were also significantly correlated with FPG (r = -0.35, p = 0.003). CONCLUSION PPARγ is decreased in childhood obesity and may be responsible for diminished ANGPTL4 levels.
Collapse
Affiliation(s)
- Z A Sadeghabadi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - M Alaee
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- H. Aliasghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Popova P, Vasilyeva L, Tkachuck A, Puzanov M, Golovkin A, Bolotko Y, Pustozerov E, Vasilyeva E, Li O, Zazerskaya I, Dmitrieva R, Kostareva A, Grineva E. A Randomised, Controlled Study of Different Glycaemic Targets during Gestational Diabetes Treatment: Effect on the Level of Adipokines in Cord Blood and ANGPTL4 Expression in Human Umbilical Vein Endothelial Cells. Int J Endocrinol 2018; 2018:6481658. [PMID: 29861725 PMCID: PMC5976949 DOI: 10.1155/2018/6481658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
Our aim was to study the expression of adipokine-encoding genes (leptin, adiponectin, and angiopoietin-like protein 4 (ANGPTL4)) in human umbilical vein endothelial cells (HUVECs) and adipokine concentration in cord blood from women with gestational diabetes mellitus (GDM) depending on glycaemic targets. GDM patients were randomised to 2 groups per target glycaemic levels: GDM1 (tight glycaemic targets, fasting blood glucose < 5.1 mmol/L and <7.0 mmol/L postprandial, N = 20) and GDM2 (less tight glycaemic targets, <5.3 mmol/L and < 7.8 mmol/L, respectively, N = 21). The control group included 25 women with normal glucose tolerance. ANGPTL4 expression was decreased in the HUVECs from GDM patients versus the control group (23.11 ± 5.71, 21.47 ± 5.64, and 98.33 ± 20.92, for GDM1, GDM2, and controls; p < 0.001) with no difference between GDM1 and GDM2. The level of adiponectin gene expression was low and did not differ among the groups. Leptin gene expression was undetectable in HUVECs. In cord blood, leptin/adiponectin ratio (LAR) was increased in GDM2 compared to controls and GDM1 (p = 0.038) and did not differ between GDM1 and controls. Tight glycaemic targets were associated with normalisation of increased LAR in the cord blood. ANGPTL4 expression was downregulated in HUVECs of newborns from GDM mothers and was not affected by the intensity of glycaemic control.
Collapse
Affiliation(s)
- P. Popova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Internal Diseases and Endocrinology, St. Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| | - L. Vasilyeva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - A. Tkachuck
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - M. Puzanov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - A. Golovkin
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Y. Bolotko
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - E. Pustozerov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Biomedical Engineering, Saint Petersburg State Electrotechnical University, Saint Petersburg, Russia
| | - E. Vasilyeva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - O. Li
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - I. Zazerskaya
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - R. Dmitrieva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - A. Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - E. Grineva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Internal Diseases and Endocrinology, St. Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| |
Collapse
|
22
|
Nielsen SD, Amer B, Blaabjerg K, Dalsgaard TK, Jessen R, Petrat-Melin B, Rasmussen MK, Poulsen HD, Young JF. Whole Milk Increases Intestinal ANGPTL4 Expression and Excretion of Fatty Acids through Feces and Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:281-290. [PMID: 28004575 DOI: 10.1021/acs.jafc.6b04135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The angiopoietin-like 4 (ANGPLT4) protein is involved in lipid metabolism and is known to inhibit lipoprotein lipase in the bloodstream. We investigated the effect of milk on intestinal ANGPTL4 and the metabolic profile of growing pigs and the effect of free fatty acids (FFAs) on ANGPTL4 in ex vivo and in vitro assays. Feeding pigs whole milk increased intestinal ANGPTL4 mRNA and increased fecal excretion of long-chain FFA compared to the control group fed soybean oil (n = 9). Furthermore, FFAs (C4-C8) induced ANGPTL4 gene expression in porcine intestinal tissue mounted in Ussing chambers and ANGPTL4 protein secretion to both the apical and basolateral sides of intestinal Caco-2 cells on permeable membranes. Altogether, these results support an ANGPTL4-induced secretion of fecal FFAs. Urinary levels of FFAs (C4-C12), 3-hydroxyadipic acid, and suberic acid were also increased by milk consumption, indicating higher energy expenditure compared to the control group.
Collapse
Affiliation(s)
- Søren Drud Nielsen
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Bashar Amer
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Karoline Blaabjerg
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Trine K Dalsgaard
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Randi Jessen
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Bjørn Petrat-Melin
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Martin Krøyer Rasmussen
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Hanne D Poulsen
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| | - Jette F Young
- Department of Food Science and ‡Department of Animal Science, Aarhus University , 8830 Tjele, Denmark
| |
Collapse
|
23
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res 2017; 2017:8187235. [PMID: 28182091 PMCID: PMC5274667 DOI: 10.1155/2017/8187235] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs.
Collapse
Affiliation(s)
- Laura La Paglia
- ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
| | - Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
24
|
Abstract
Obesity afflicts 36.5% of the US population and 600 million individuals world-wide. Thus, it is imperative to understand the risk factors underlying metabolic disease including diet, activity level, sleep, and genetics. Another key contributory factor is the gut microbiota given its widely reported role in the development of metabolic disease. The gut microbiota, particularly its structure and function, is heavily influenced by Western style diets rich in a complex mixture of fats and high in simple sugars. In this review, the profound impact of obesity and Western diets on the gut microbiota will be illustrated, and the following research questions will be addressed: 1) to what extent do high fat diets (HFDs) alter community membership and function and does this depend upon the amount or type of fat consumed?, 2) how rapidly do dietary shifts alter gut microbial communities?, 3) are these alterations sustained or can the microbiome recover from dietary stress?, 4) how does diet drive host-microbe interactions leading to obesity?, and 5) what can be done to restore the detrimental impact of HFD on the gut microbiota? The goal of this review is to address these questions by parsing out the effects and underlying mechanisms of how Western diets impact the gut microbiota and host. By doing so, potential avenues for further exploration and strategies for microbiome-based interventions to prevent or treat diet-induced obesity may become more apparent.
Collapse
Affiliation(s)
- Kristina B. Martinez
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago IL, USA
| | - Vanessa Leone
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago IL, USA
| | - Eugene B. Chang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago IL, USA,CONTACT Eugene B. Chang, MD Martin Boyer Professor of Medicine, Department of Medicine, Knapp Center for Biomedical Discovery, Rm. 9130, 900 E 57th Street, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Mizukami-Murata S, Kishi-Kadota K, Nishida T. 17β-Trenbolone exposure programs metabolic dysfunction in larval medaka. ENVIRONMENTAL TOXICOLOGY 2016; 31:1539-1551. [PMID: 26040664 DOI: 10.1002/tox.22158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 05/02/2023]
Abstract
Here, we used physiological and transcriptomic analyses to evaluate the effects of 17β-trenbolone (TB) on metabolism during the early life stage of medaka (Oryzias latipes). In the physiological experiments, sex reversal rates increased continuously in proportion to TB concentrations (2-100 ng/L), and were 100% (all males) in the 200 ng/L treatment group. TB caused a significant increase in the gonadosomatic index of females at concentrations of 60 and 100 ng/L. These females exhibited swollen abdomens and decreased egg production and fertility. Significant increases were observed in the body mass index of these females. TB caused decreased fertility in males at concentrations >20 ng/L, but no other effects were observed. In the transcriptomic (microarray) experiments, larvae were exposed to TB for up to 7 d. Analyses using the KEGG Orthology Database revealed that predominant categories of significantly upregulated genes included "lipid metabolism" and "metabolism of terpenoids and polyketides." Thirteen genes (including those for hydroxymethylglutaryl-CoA synthase, cytoplasmic synthase, and lanosterol synthase) related to cholesterol biosynthesis via the mevalonate pathway were highlighted in these categories. Reverse transcriptase-polymerase chain reaction analyses were consistent with the microarray results, in terms of the direction and magnitude of change to gene expression. Among the downregulated genes, angiopoietin-like 4 and mitochondrial uncoupling protein 1, which are inversely correlated with obesity, were detected in the TB treatments. In conclusion, the results suggest that the exposure of females to TB during the early life stage may cause metabolic dysfunctions, including obesity and disrupted cholesterol synthesis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1539-1551, 2016.
Collapse
Affiliation(s)
- Satomi Mizukami-Murata
- Japan Pulp & Paper Research Institute, Tokodai 5-13-11, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Katsuyuki Kishi-Kadota
- Japan Pulp & Paper Research Institute, Tokodai 5-13-11, Tsukuba, Ibaraki, 300-2635, Japan
| | - Takashi Nishida
- Japan Pulp & Paper Research Institute, Tokodai 5-13-11, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
26
|
Cheung OKW, Cheng ASL. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front Genet 2016; 7:168. [PMID: 27703473 PMCID: PMC5029146 DOI: 10.3389/fgene.2016.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.
Collapse
Affiliation(s)
- Otto K-W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Alfred S-L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
27
|
Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 2016; 5:759-70. [PMID: 27617199 PMCID: PMC5004227 DOI: 10.1016/j.molmet.2016.06.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The twin pandemics of obesity and Type 2 diabetes (T2D) are a global challenge for health care systems. Changes in the environment, behavior, diet, and lifestyle during the last decades are considered the major causes. A Western diet, which is rich in saturated fat and simple sugars, may lead to changes in gut microbial composition and physiology, which have recently been linked to the development of metabolic diseases. METHODS We will discuss evidence that demonstrates the influence of the small and large intestinal microbiota on weight regulation and the development of insulin resistance, based on literature search. RESULTS Altered large intestinal microbial composition may promote obesity by increasing energy harvest through specialized gut microbes. In both large and small intestine, microbial alterations may increase gut permeability that facilitates the translocation of whole bacteria or endotoxic bacterial components into metabolic active tissues. Moreover, changed microbial communities may affect the production of satiety-inducing signals. Finally, bacterial metabolic products, such as short chain fatty acids (SCFAs) and their relative ratios, may be causal in disturbed immune and metabolic signaling, notably in the small intestine where the surface is large. The function of these organs (adipose tissue, brain, liver, muscle, pancreas) may be disturbed by the induction of low-grade inflammation, contributing to insulin resistance. CONCLUSIONS Interventions aimed to restoring gut microbial homeostasis, such as ingestion of specific fibers or therapeutic microbes, are promising strategies to reduce insulin resistance and the related metabolic abnormalities in obesity, metabolic syndrome, and type 2 diabetes. This article is part of a special issue on microbiota.
Collapse
Key Words
- 16s rRNA, 16S ribosomal RNA (30S small subunit of prokaryotic ribosomes)
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- AS160, Akt substrate of 160 kDa
- Angptl4, Angiopoietin-like 4
- CB1R, cannabinoid receptor type 1
- CCL2, Chemokine (C–C motif) ligand 2
- DIO, diet-induced obesity
- Diabetes
- GF, germ-free
- GLP, glucagon-like peptide
- Gpr, G-protein coupled receptor
- Gut microbiota
- HFD, high fat diet
- IL, interleukin
- IRS-1, insulin receptor substrate 1
- Insulin resistance
- JNK, C-Jun N-terminal kinase
- LBP, LPS-binding protein
- LPL, lipoprotein lipase
- LPS, lipopolysaccharide
- MCP-1, monocyte chemotactic protein 1
- NOD1, nucleotide-binding oligomerization domain-containing protein 1
- Obesity
- PKB, protein kinase B (also known as Akt)
- PYY, peptide YY (for tyrosine–tyrosine)
- RYGB, Roux-en-Y gastric bypass
- SCFA, short-chain fatty acid
- T2D, Type 2 diabetes mellitus
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor alpha
- VLDL, very low density lipoprotein
- WHO, World Health Organization
- Weight regulation
- ZO, zonula occludens
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M. de Vos
- WU Agrotechnology and Food Sciences, Wagening University, Wageningen, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| | - Daniël H. van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The angiopoietin-like proteins (ANGPTLs) 3, 4 and 8 have emerged as key regulators of plasma lipid metabolism by serving as potent inhibitors of the enzyme lipoprotein lipase (LPL). In this review, we provide an integrated picture of the role of ANGPTL3, ANGPTL4 and ANGPTL8 in lipid metabolism by focusing on their impact on LPL activity and plasma triglyceride clearance during physiological conditions such as fasting, refeeding, exercise and cold exposure. RECENT FINDINGS Upon refeeding, circulating ANGPTL3 and ANGPTL8 promote the replenishment of white adipose tissue depots by specifically inhibiting LPL activity in oxidative tissues. During exercise and cold exposure, ANGPTL4 represses local LPL activity to assure that plasma triglycerides are specifically shuttled to exercising muscle and brown adipose tissue, respectively. Overall, ANGPTL4 is the central component of a fatty acid-driven feedback mechanism that regulates plasma triglyceride hydrolysis and subsequent tissue fatty acid uptake in response to changes in lipid availability and cellular fuel demand. SUMMARY ANGPTL3, ANGPTL4 and ANGPTL8 together ensure that triglycerides from triglyceride-rich lipoproteins are adequately distributed during different physiological conditions. The impact of the ANGPTLs on plasma lipid levels has led to scrutiny of ANGPTLs as therapeutic targets for dyslipidemia.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | | |
Collapse
|
29
|
Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 2016; 90:41-52. [PMID: 27165836 DOI: 10.1016/j.kint.2016.02.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022]
Abstract
Nephrotic syndrome results in hyperlipidemia and profound alterations in lipid and lipoprotein metabolism. Serum cholesterol, triglycerides, apolipoprotein B (apoB)-containing lipoproteins (very low-density lipoprotein [VLDL], immediate-density lipoprotein [IDL], and low-density lipoprotein [LDL]), lipoprotein(a) (Lp[a]), and the total cholesterol/high-density lipoprotein (HDL) cholesterol ratio are increased in nephrotic syndrome. This is accompanied by significant changes in the composition of various lipoproteins including their cholesterol-to-triglyceride, free cholesterol-to-cholesterol ester, and phospholipid-to-protein ratios. These abnormalities are mediated by changes in the expression and activities of the key proteins involved in the biosynthesis, transport, remodeling, and catabolism of lipids and lipoproteins including apoproteins A, B, C, and E; 3-hydroxy-3-methylglutaryl-coenzyme A reductase; fatty acid synthase; LDL receptor; lecithin cholesteryl ester acyltransferase; acyl coenzyme A cholesterol acyltransferase; HDL docking receptor (scavenger receptor class B, type 1 [SR-B1]); HDL endocytic receptor; lipoprotein lipase; and hepatic lipase, among others. The disorders of lipid and lipoprotein metabolism in nephrotic syndrome contribute to the development and progression of cardiovascular and kidney disease. In addition, by limiting delivery of lipid fuel to the muscles for generation of energy and to the adipose tissues for storage of energy, changes in lipid metabolism contribute to the reduction of body mass and impaired exercise capacity. This article provides an overview of the mechanisms, consequences, and treatment of lipid disorders in nephrotic syndrome.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, Irvine, California.
| |
Collapse
|
30
|
Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG, Kersten S. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res 2016; 57:1670-83. [PMID: 27034464 DOI: 10.1194/jlr.m067363] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
LPL hydrolyzes triglycerides in triglyceride-rich lipoproteins along the capillaries of heart, skeletal muscle, and adipose tissue. The activity of LPL is repressed by angiopoietin-like 4 (ANGPTL4) but the underlying mechanisms have not been fully elucidated. Our objective was to study the cellular location and mechanism for LPL inhibition by ANGPTL4. We performed studies in transfected cells, ex vivo studies, and in vivo studies with Angptl4(-/-) mice. Cotransfection of CHO pgsA-745 cells with ANGPTL4 and LPL reduced intracellular LPL protein levels, suggesting that ANGPTL4 promotes LPL degradation. This conclusion was supported by studies of primary adipocytes and adipose tissue explants from wild-type and Angptl4(-/-) mice. Absence of ANGPTL4 resulted in accumulation of the mature-glycosylated form of LPL and increased secretion of LPL. Blocking endoplasmic reticulum (ER)-Golgi transport abolished differences in LPL abundance between wild-type and Angptl4(-/-) adipocytes, suggesting that ANGPTL4 acts upon LPL after LPL processing in the ER. Finally, physiological changes in adipose tissue ANGPTL4 expression during fasting and cold resulted in inverse changes in the amount of mature-glycosylated LPL in wild-type mice, but not Angptl4(-/-) mice. We conclude that ANGPTL4 promotes loss of intracellular LPL by stimulating LPL degradation after LPL processing in the ER.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Anne P Beigneux
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Mikael Larsson
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA
| | - André Bensadoun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Stephen G Young
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
31
|
Jacouton E, Mach N, Cadiou J, Lapaque N, Clément K, Doré J, van Hylckama Vlieg JET, Smokvina T, Blottière HM. Lactobacillus rhamnosus CNCMI-4317 Modulates Fiaf/Angptl4 in Intestinal Epithelial Cells and Circulating Level in Mice. PLoS One 2015; 10:e0138880. [PMID: 26439630 PMCID: PMC4595210 DOI: 10.1371/journal.pone.0138880] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro.
Collapse
Affiliation(s)
- Elsa Jacouton
- Danone Nutricia Research, Palaiseau, France
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
| | - Núria Mach
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
| | - Julie Cadiou
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
| | - Nicolas Lapaque
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
| | - Karine Clément
- INSERM, U872, centre de recherche des Cordeliers, Paris, France
- UPMC, Paris, France
- ICAN, APHP, CNRH-Ile de France, Paris, France
| | - Joël Doré
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
- INRA, US 1367, Metagenopolis, Jouy en Josas, France
| | | | | | - Hervé M Blottière
- INRA, UMR 1319 Micalis, Jouy en Josas, France
- AgroParistech, UMR Micalis, Jouy en Josas, France
- INRA, US 1367, Metagenopolis, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
32
|
Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells. PLoS One 2015; 10:e0125371. [PMID: 25946041 PMCID: PMC4422599 DOI: 10.1371/journal.pone.0125371] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.
Collapse
|
33
|
Enhanced gastrointestinal expression of cytosolic malic enzyme (ME1) induces intestinal and liver lipogenic gene expression and intestinal cell proliferation in mice. PLoS One 2014; 9:e113058. [PMID: 25402228 PMCID: PMC4234650 DOI: 10.1371/journal.pone.0113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/19/2014] [Indexed: 12/12/2022] Open
Abstract
The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1) is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown. We generated transgenic (Tg) mice expressing rat ME1 in the gastrointestinal epithelium under the control of the murine villin1 promoter/enhancer. Levels of intestinal ME1 protein (endogenous plus transgene) were greater in Tg than wildtype (WT) littermates. Effects of elevated intestinal ME1 on body weight, circulating insulin, select adipocytokines, blood glucose, and metabolism-related genes were examined. Male Tg mice fed a high-fat (HF) diet gained significantly more body weight than WT male littermates and had heavier livers. ME1-Tg mice had deeper intestinal and colon crypts, a greater intestinal 5-bromodeoxyuridine labeling index, and increased expression of intestinal lipogenic (Fasn, Srebf1) and cholesterol biosynthetic (Hmgcsr, Hmgcs1), genes. The livers from HF diet-fed Tg mice also exhibited an induction of cholesterol and lipogenic pathway genes and altered measures (Irs1, Irs2, Prkce) of insulin sensitivity. Results indicate that gastrointestinal ME1 via its influence on intestinal epithelial proliferation, and lipogenic and cholesterologenic genes may concomitantly impact signaling in liver to modify this tissue’s metabolic state. Our work highlights a new mouse model to address the role of intestine-expressed ME1 in whole body metabolism, hepatomegaly, and crypt cell proliferation. Intestinal ME1 may thus constitute a therapeutic target to reduce obesity-associated pathologies.
Collapse
|
34
|
Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët DA, Deloukas P, Samani NJ. DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014; 383:1990-8. [PMID: 24630777 DOI: 10.1016/s0140-6736(13)62674-4] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. METHODS 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. We typed their whole-blood DNA with the Infinium HumanMethylation450 array. After quality control, methylation levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery rate q value of 0·05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern European origin from the MARTHA cohort. Sites that remained significant in this primary replication cohort were tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined whether methylation levels at identified sites also showed an association with BMI in DNA from adipose tissue (n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we examined the association of methylation at BMI-associated sites with genetic variants and with gene expression. FINDINGS 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 459 participants. After adjustment for covariates, we identified an association (q value ≤0·05) between methylation at five probes across three different genes and BMI. The associations with three of these probes--cg22891070, cg27146050, and cg16672562, all of which are in intron 1 of HIF3A--were confirmed in both the primary and second replication cohorts. For every 0·1 increase in methylation β value at cg22891070, BMI was 3·6% (95% CI 2·4-4·9) higher in the discovery cohort, 2·7% (1·2-4·2) higher in the primary replication cohort, and 0·8% (0·2-1·4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was associated with BMI in adipose tissue (p=1·72 × 10(-5)) but not in skin (p=0·882). We observed a significant inverse correlation (p=0·005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in adipose tissue. Two single nucleotide polymorphisms--rs8102595 and rs3826795--had independent associations with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not significantly associated with BMI. INTERPRETATION Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue. Our findings suggest that perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people. FUNDING The European Commission, National Institute for Health Research, British Heart Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Katherine J Dick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Loukia Tsaprouni
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; ISPAR Institute, University of Bedforshire, Bedford, UK
| | - Johanna K Sandling
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dylan Aïssi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Simone Wahl
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eshwar Meduri
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harald Grallert
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany; German Centre for Cardiovascular Research, Hamburg/Kiel/Lübeck, Germany
| | - Christian Hengstenberg
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Francois Cambien
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Willem H Ouwehand
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Haematology, University of Cambridge, Cambridge, UK; National Health Service Blood and Transplant, Cambridge, UK
| | - Heribert Schunkert
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - John R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Panos Deloukas
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
35
|
Vaziri ND, Moradi H. Dual role of circulating angiopoietin-like 4 (ANGPTL4) in promoting hypertriglyceridemia and lowering proteinuria in nephrotic syndrome. Am J Kidney Dis 2014; 64:495-8. [PMID: 24838183 DOI: 10.1053/j.ajkd.2014.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/12/2022]
|
36
|
Dijk W, Kersten S. Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol Metab 2014; 25:146-55. [PMID: 24397894 DOI: 10.1016/j.tem.2013.12.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
Triglyceride (TG)-rich chylomicrons and very low density lipoproteins (VLDL) distribute fatty acids (FA) to various tissues by interacting with the enzyme lipoprotein lipase (LPL). The protein angiopoietin-like 4 (Angptl4) is under sensitive transcriptional control by FA and the FA-activated peroxisome proliferator activated receptors (PPARs), and its tissue expression largely overlaps with that of LPL. Growing evidence indicates that Angptl4 mediates the physiological fluctuations in LPL activity, including the decrease in adipose tissue LPL activity during fasting. This review focuses on the major ambiguities concerning the mechanism of LPL inhibition by Angptl4, as well as on the physiological role of Angptl4 in lipid metabolism, highlighting its function in a variety of tissues, and uses this information to make suggestions for further research.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism, and Genomics group, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands.
| |
Collapse
|
37
|
Abstract
Angiopoietin-like proteins (ANGPTLs) are a family of proteins structurally similar to the angiopoietins. To date, eight ANGPTLs have been discovered, namely ANGPTL1 to ANGPTL8. Emerging evidence implies a key role for ANGPTLs in the regulation of a plethora of physiological and pathophysiological processes. Most of the ANGPTLs exhibit multibiological properties, including established functional roles in lipid and glucose metabolism, inflammation, hematopoiesis, and cancer. This report represents a systematic and updated appraisal of this class of proteins, focusing on the main features of each ANGPTL.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- *Correspondence: Gaetano Santulli, College of Physicians and Surgeons, Columbia University Medical Center, St. Nicholas Avenue, RB-5-513, Manhattan, NY 10032, USA e-mail:
| |
Collapse
|
38
|
Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Graf K, Abou-Dakn M, Herrera E. Lack of relationship between cord serum angiopoietin-like protein 4 (ANGPTL4) and lipolytic activity in human neonates born by spontaneous delivery. PLoS One 2013; 8:e81201. [PMID: 24324678 PMCID: PMC3852178 DOI: 10.1371/journal.pone.0081201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/17/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Ligands of peroxisome-proliferator activated receptors (PPARs), such as non-esterified fatty acids (NEFAs), induce expression of angiopoietin-like protein 4 (ANGPTL4). Recently ANGPTL4 has been reported to be a mediator of intracellular adipose lipolysis induced by glucocorticoids. OBJECTIVE To determine the concentrations of ANGPTL4 in cord serum of neonates born by spontaneous vaginal delivery (SVD) and by pre-labor cesarean section (CS) from healthy women, and to relate them to parameters of neonatal lipolytic activity at birth. MEASUREMENTS In 54 neonates born by SVD and in 56 neonates born by CS, arterial cord blood was drawn to determine insulin, cortisol, triacylglycerols (TAGs), glycerol, non-esterified fatty acids (NEFAs), individual fatty acids, ANGPTL4, adiponectin, retinol binding protein 4 (RBP4) and leptin. RESULTS Birth weight and neonatal fat mass in SVD and CS showed no difference, but the concentrations of glycerol, adiponectin, RBP4, NEFAs and most individual fatty acids were higher in cord serum of neonates born by SVD compared to CS, indicating a higher adipose tissue breakdown in the SVD group. The concentrations of TAG and cortisol were also higher and that of insulin was lower in cord serum of SVD compared to the CS group. However, the concentration in cord serum of ANGPTL4 did not differ between the two groups and no positive correlation with either NEFA or glycerol concentrations were detected. CONCLUSION ANGPTL4 is known to stimulate lipolysis in adults, but does not appear to mediate the increased activity in SVD, indicating the presence of different regulatory inputs.
Collapse
Affiliation(s)
- Henar Ortega-Senovilla
- Department of Chemistry and Biochemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - Ute Schaefer-Graf
- Department of Obstetrics and Gynecology, Berlin Center for Diabetes in Pregnancy, St. Joseph's Hospital, Berlin, Germany
| | - Katrin Meitzner
- Department of Obstetrics and Gynecology, Berlin Center for Diabetes in Pregnancy, St. Joseph's Hospital, Berlin, Germany
| | - Kristof Graf
- Department of Cardiology, Jewish Hospital, Berlin, Germany
| | - Michael Abou-Dakn
- Department of Obstetrics and Gynecology, Berlin Center for Diabetes in Pregnancy, St. Joseph's Hospital, Berlin, Germany
| | - Emilio Herrera
- Department of Chemistry and Biochemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
39
|
Lin JM, Naot D, Watson M, Costa JL, Reid IR, Cornish J, Grey A. Skeletal actions of fasting-induced adipose factor (FIAF). Endocrinology 2013; 154:4685-94. [PMID: 24169549 DOI: 10.1210/en.2013-1238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several adipokines are known to influence skeletal metabolism. Fasting-induced adipose factor (FIAF) is an adipokine that gives rise to 2 further peptides in vivo, the N-terminal coiled-coil domain (FIAF(CCD)) and C-terminal fibrinogen-like domain (FIAF(FLD)). The skeletal action of these peptides is still uncertain. Our results show that FIAF(CCD) is a potent inhibitor of osteoclastogenesis and function, as seen in mouse bone marrow and RAW264.7 cell cultures, and in a resorption assay using isolated primary mature osteoclasts. The inhibitory effects at 500 ng/mL were approximately 90%, 50% and 90%, respectively, in these assays. FIAF(CCD) also stimulated osteoblast mitogenesis by approximately 30% at this concentration. In comparison, FIAF(FLD) was only active in decreasing osteoblast mitogenesis, and intact FIAF had no effect in any of these assays. In murine bone marrow cultures, FIAF(CCD) reduced the expression of macrophage colony-stimulating factor (M-CSF), nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP), and to lesser extent suppressed the expression of connective tissue growth factor (CTGF). FIAF(CCD) also decreased expression of M-CSF and CTGF in stromal/osteoblastic ST2 cells. Its effect on receptor activator of nuclear factor κB (RANKL) and osteoprotegerin expression in bone marrow was not consistent with its inhibitory action on osteoclastogenesis, but it decreased RANKL expression in ST2 cells. In RAW264.7 cell cultures, FIAF(CCD) significantly reduced the expression of NFATc1 and DC-STAMP. In conclusion, FIAF(CCD) inhibits osteoclast differentiation and function in vitro and decreases expression of genes encoding key osteoclastogenic factors such as M-CSF, CTGF, NFATc1, and DC-STAMP. FIAF(CCD)'s action on osteoclasts may be independent of the RANKL/osteoprotegerin pathway. These results suggest a novel mechanism by which adipose tissue may regulate bone resorption and skeletal health.
Collapse
Affiliation(s)
- Jian-ming Lin
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
40
|
Robciuc MR, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Öörni K, Metso J, Minicocci I, Ciociola E, Ceci F, Montali A, Arca M, Ehnholm C, Jauhiainen M. Angptl3 Deficiency Is Associated With Increased Insulin Sensitivity, Lipoprotein Lipase Activity, and Decreased Serum Free Fatty Acids. Arterioscler Thromb Vasc Biol 2013; 33:1706-13. [DOI: 10.1161/atvbaha.113.301397] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Angiopoietin-like 3 (Angptl3) is a regulator of lipoprotein metabolism at least by inhibiting lipoprotein lipase activity. Loss-of-function mutations in
ANGPTL3
cause familial combined hypolipidemia through an unknown mechanism.
Approach and Results—
We compared lipolytic activities, lipoprotein composition, and other lipid-related enzyme/lipid transfer proteins in carriers of the S17X loss-of-function mutation in
ANGPTL3
and in age- and sex-matched noncarrier controls. Gel filtration analysis revealed a severely disturbed lipoprotein profile and a reduction in size and triglyceride content of very low density lipoprotein in homozygotes as compared with heterozygotes and noncarriers. S17X homozygotes had significantly higher lipoprotein lipase activity and mass in postheparin plasma, whereas heterozygotes showed no difference in these parameters when compared with noncarriers. No changes in hepatic lipase, endothelial lipase, paraoxonase 1, phospholipid transfer protein, and cholesterol ester transfer protein activities were associated with the S17X mutation. Plasma free fatty acid, insulin, glucose, and homeostatic model assessment of insulin resistance were significantly lower in homozygous subjects compared with heterozygotes and noncarriers subjects.
Conclusions—
These results indicate that, although partial Angptl3 deficiency did not affect the activities of lipolytic enzymes, the complete absence of Angptl3 results in an increased lipoprotein lipase activity and mass and low circulating free fatty acid levels. This latter effect is probably because of decreased mobilization of free fatty acid from fat stores in human adipose tissue and may result in reduced hepatic very low density lipoprotein synthesis and secretion via attenuated hepatic free fatty acid supply. Altogether, Angptl3 may affect insulin sensitivity and play a role in modulating both lipid and glucose metabolism.
Collapse
Affiliation(s)
- Marius R. Robciuc
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Marianna Maranghi
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Anna Lahikainen
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Daniel Rader
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Andre Bensadoun
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Katariina Öörni
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Jari Metso
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Ilenia Minicocci
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Ester Ciociola
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Fabrizio Ceci
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Anna Montali
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Marcello Arca
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Christian Ehnholm
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| | - Matti Jauhiainen
- From the Public Health Genomics Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.R.R., A.L., J. Metso, C.E., M. Jauhiainen); Wihuri Research Institute, Biomedicum, Helsinki, Finland (M.R.R., K.Ö.); Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Translational Research Center, Philadelphia, PA, (D.R.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); and Department of
| |
Collapse
|
41
|
Korecka A, de Wouters T, Cultrone A, Lapaque N, Pettersson S, Doré J, Blottière HM, Arulampalam V. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1025-37. [PMID: 23518684 DOI: 10.1152/ajpgi.00293.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Short-chain fatty acids (SCFAs), such as butyrate and propionate, are metabolic products of carbohydrate fermentation by the microbiota and constitute the main source of energy for host colonocytes. SCFAs are also important for gastrointestinal health, immunity, and host metabolism. Intestinally produced angiopoietin-like protein 4 (ANGPTL4) is a secreted protein with metabolism-altering properties and may offer a route by which microbiota can regulate host metabolism. Peroxisome proliferator-activated receptor (PPAR)-γ has previously been shown to be involved in microbiota-induced expression of intestinal ANGPTL4, but the role of bacterial metabolites in this process has remained elusive. Here, we show that the SCFA butyrate regulates intestinal ANGPTL4 expression in a PPAR-γ-independent manner. Although PPAR-γ is not required for butyrate-driven intestinal ANGPTL4 expression, costimulating with PPAR-γ ligands and SCFAs leads to additive increases in ANGPTL4 levels. We suggest that PPAR-γ and butyrate rely on two separate regulatory sites, a PPAR-responsive element downstream the transcription start site and a butyrate-responsive element(s) within the promoter region, 0.5 kb upstream of the transcription start site. Furthermore, butyrate gavage and colonization with Clostridium tyrobutyricum, a SCFA producer, can independently induce expression of intestinal ANGPTL4 in germ-free mice. Thus, oral administration of SCFA or use of SCFA-producing bacteria may be additional routes to maintain intestinal ANGPTL4 levels for preventive nutrition or therapeutic purposes.
Collapse
Affiliation(s)
- Agata Korecka
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Haas BE, Horvath S, Pietiläinen KH, Cantor RM, Nikkola E, Weissglas-Volkov D, Rissanen A, Civelek M, Cruz-Bautista I, Riba L, Kuusisto J, Kaprio J, Tusie-Luna T, Laakso M, Aguilar-Salinas CA, Pajukanta P. Adipose co-expression networks across Finns and Mexicans identify novel triglyceride-associated genes. BMC Med Genomics 2012; 5:61. [PMID: 23217153 PMCID: PMC3543280 DOI: 10.1186/1755-8794-5-61] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/27/2012] [Indexed: 01/22/2023] Open
Abstract
Background High serum triglyceride (TG) levels is an established risk factor for coronary heart disease (CHD). Fat is stored in the form of TGs in human adipose tissue. We hypothesized that gene co-expression networks in human adipose tissue may be correlated with serum TG levels and help reveal novel genes involved in TG regulation. Methods Gene co-expression networks were constructed from two Finnish and one Mexican study sample using the blockwiseModules R function in Weighted Gene Co-expression Network Analysis (WGCNA). Overlap between TG-associated networks from each of the three study samples were calculated using a Fisher’s Exact test. Gene ontology was used to determine known pathways enriched in each TG-associated network. Results We measured gene expression in adipose samples from two Finnish and one Mexican study sample. In each study sample, we observed a gene co-expression network that was significantly associated with serum TG levels. The TG modules observed in Finns and Mexicans significantly overlapped and shared 34 genes. Seven of the 34 genes (ARHGAP30, CCR1, CXCL16, FERMT3, HCST, RNASET2, SELPG) were identified as the key hub genes of all three TG modules. Furthermore, two of the 34 genes (ARHGAP9, LST1) reside in previous TG GWAS regions, suggesting them as the regional candidates underlying the GWAS signals. Conclusions This study presents a novel adipose gene co-expression network with 34 genes significantly correlated with serum TG across populations.
Collapse
Affiliation(s)
- Blake E Haas
- Department of Human Genetics, Gonda Center, Los Angeles, California, 90095-7088, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ma Y, Chen N, Li R, Yang T, Xu Y, Li F, Gao H, Zheng X, Li S, Zhang H, Huang Y, Bai F, Wang J, Li Y, Wang X, Li J. Tissues expression analysis, novel SNPs of the bovine Angptl4 gene and its effects on bovine bioeconomic traits. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Robciuc MR, Skrobuk P, Anisimov A, Olkkonen VM, Alitalo K, Eckel RH, Koistinen HA, Jauhiainen M, Ehnholm C. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes. PLoS One 2012; 7:e46212. [PMID: 23056264 PMCID: PMC3464237 DOI: 10.1371/journal.pone.0046212] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/30/2012] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.
Collapse
Affiliation(s)
- Marius R Robciuc
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Koliwad SK, Gray NE, Wang JC. Angiopoietin-like 4 (Angptl4): A glucocorticoid-dependent gatekeeper of fatty acid flux during fasting. Adipocyte 2012; 1:182-187. [PMID: 23700531 PMCID: PMC3609093 DOI: 10.4161/adip.20787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Angiopoietin-like 4 (Angptl4) is a secreted protein modulating triacylglycerol homeostasis. Its transcription is induced by glucocorticoids, which act to elevate circulating Angptl4 levels during fasting. In investigating the role of Angptl4 in glucocorticoid action, we identified that in addition to its known ability to inhibit lipoprotein lipase, Angptl4 stimulates intracellular adipocyte lipolysis. Fatty acid release by murine adipocytes following fasting or treatment with glucocorticoids or catecholamines is highly Angptl4-dependent. In fact, Angptl4 can directly stimulate cAMP-dependent PKA signaling and lipolysis when added to adipocytes. Here, we detail this novel Angptl4-dependent lipolytic regulatory mechanism and discuss its physiological and therapeutic implications.
Collapse
|
46
|
Nilsson SK, Anderson F, Ericsson M, Larsson M, Makoveichuk E, Lookene A, Heeren J, Olivecrona G. Triacylglycerol-rich lipoproteins protect lipoprotein lipase from inactivation by ANGPTL3 and ANGPTL4. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1370-8. [PMID: 22732211 DOI: 10.1016/j.bbalip.2012.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/13/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Lipoprotein lipase (LPL) is important for clearance of triacylglycerols (TG) from plasma both as an enzyme and as a bridging factor between lipoproteins and receptors for endocytosis. The amount of LPL at the luminal side of the capillary endothelium determines to what extent lipids are taken up. Mechanisms to control both the activity of LPL and its transport to the endothelial sites are regulated, but poorly understood. Angiopoietin-like proteins (ANGPTLs) 3 and 4 are potential control proteins for LPL, but plasma concentrations of ANGPTLs do not correlate with plasma TG levels. We investigated the effects of recombinant human N-terminal (NT) ANGPTLs3 and 4 on LPL-mediated bridging of TG-rich lipoproteins to primary mouse hepatocytes and found that the NT-ANGPTLs, in concentrations sufficient to cause inactivation of LPL in vitro, were unable to prevent LPL-mediated lipoprotein uptake. We therefore investigated the effects of lipoproteins (chylomicrons, VLDL and LDL) on the inactivation of LPL in vitro by NT-ANGPTLs3 and 4 and found that LPL activity was protected by TG-rich lipoproteins. In vivo, postprandial TG protected LPL from inactivation by recombinant NT-ANGPTL4 injected to mice. We conclude that lipoprotein-bound LPL is stabilized against inactivation by ANGPTLs. The levels of ANGPTLs found in blood may not be sufficient to overcome this stabilization. Therefore it is likely that the prime site of action of ANGPTLs on LPL is in subendothelial compartments where TG-rich lipoprotein concentration is lower than in blood. This could explain why the plasma levels of TG and ANGPTLs do not correlate.
Collapse
Affiliation(s)
- Stefan K Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW. Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 2012; 61:652-60. [PMID: 22078753 DOI: 10.1016/j.metabol.2011.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/27/2011] [Indexed: 11/22/2022]
Abstract
Our aims were to compare the systemic effects of insulin on lipoprotein lipase (LPL) in tissues from subjects with different degrees of insulin sensitivity. The effects of insulin on LPL during a 4-hour hyperinsulinemic, euglycemic clamp were studied in skeletal muscle, adipose tissue, and postheparin plasma from young healthy subjects (YS), older subjects with type 2 diabetes mellitus (DS), and older control subjects (CS). In addition, we studied the effects of insulin on the expression of 2 recently recognized candidate genes for control of LPL activity: angiopoietin-like protein 4 (ANGPTL4) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. As an effect of insulin, LPL activity decreased by 20% to 25% in postheparin plasma and increased by 20% to 30% in adipose tissue in all groups. In YS, the levels of ANGPTL4 messenger RNA in adipose tissue decreased 3-fold during the clamp. In contrast, there was no significant change in DS or CS. Regression analysis showed that the ability of insulin to reduce the expression of ANGPTL4 was positively correlated with M-values and inversely correlated with factors linked to the metabolic syndrome. Expression of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 tended to be higher in YS than in DS or CS, but the expression was not affected by insulin in any of the groups. Our data imply that the insulin-mediated regulation of LPL is not directly linked to the control of glucose turnover by insulin or to ANGPTL4 expression in adipose tissue or plasma. Interestingly, the response of ANGPTL4 expression in adipose tissue to insulin was severely blunted in both DS and CS.
Collapse
Affiliation(s)
- Toralph Ruge
- Department of Surgery and Peri-Operative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Regulation of triglyceride metabolism by Angiopoietin-like proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:782-9. [DOI: 10.1016/j.bbalip.2011.10.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 12/30/2022]
|
49
|
Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem 2012; 287:8444-56. [PMID: 22267746 DOI: 10.1074/jbc.m111.294124] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.
Collapse
Affiliation(s)
- Nora E Gray
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720-3104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The past decade has seen a rapid development and increasing recognition of ANGPTL4 (angiopoietin-like 4) as a remarkably multifaceted protein that is involved in many metabolic and non-metabolic conditions. ANGPTL4 has been recognised as a central player in various aspects of energy homoeostasis, at least in part, via the inhibitory interaction between the coiled-coil domain of ANGPTL4 and LPL (lipoprotein lipase). The fibrinogen-like domain of ANGPTL4 interacts and activates specific integrins to facilitate wound healing, modulates vascular permeability, and regulates ROS (reactive oxygen species) level to promote tumorigenesis. The present review summarizes these landmark findings about ANGPTL4 and highlights several important implications for future clinical practice. Importantly, these implications have also raised many questions that are in urgent need of further investigations, particularly the transcription regulation of ANGPTL4 expression, and the post-translation cleavage and modifications of ANGPTL4. The research findings over the past decade have laid the foundation for a better mechanistic understanding of the new scientific discoveries on the diverse roles of ANGPTL4.
Collapse
|