1
|
Krüger P, Schroll M, Fenzl F, Lederer EM, Hartinger R, Arnold R, Cagla Togan D, Guo R, Liu S, Petry A, Görlach A, Djabali K. Inflammation and Fibrosis in Progeria: Organ-Specific Responses in an HGPS Mouse Model. Int J Mol Sci 2024; 25:9323. [PMID: 39273272 PMCID: PMC11395088 DOI: 10.3390/ijms25179323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder that causes accelerated aging, due to a pathogenic variant in the LMNA gene. This pathogenic results in the production of progerin, a defective protein that disrupts the nuclear lamina's structure. In our study, we conducted a histopathological analysis of various organs in the LmnaG609G/G609G mouse model, which is commonly used to study HGPS. The objective of this study was to show that progerin accumulation drives systemic but organ-specific tissue damage and accelerated aging phenotypes. Our findings show significant fibrosis, inflammation, and dysfunction in multiple organ systems, including the skin, cardiovascular system, muscles, lungs, liver, kidneys, spleen, thymus, and heart. Specifically, we observed severe vascular fibrosis, reduced muscle regeneration, lung tissue remodeling, depletion of fat in the liver, and disruptions in immune structures. These results underscore the systemic nature of the disease and suggest that chronic inflammation and fibrosis play crucial roles in the accelerated aging seen in HGPS. Additionally, our study highlights that each organ responds differently to the toxic effects of progerin, indicating that there are distinct mechanisms of tissue-specific damage.
Collapse
Affiliation(s)
- Peter Krüger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Moritz Schroll
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Felix Fenzl
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Rouven Arnold
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Deniz Cagla Togan
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Runjia Guo
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Shiyu Liu
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital, Heart Diseases, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital, Heart Diseases, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
2
|
Li Y, Cui J, Liu L, Hambright WS, Gan Y, Zhang Y, Ren S, Yue X, Shao L, Cui Y, Huard J, Mu Y, Yao Q, Mu X. mtDNA release promotes cGAS-STING activation and accelerated aging of postmitotic muscle cells. Cell Death Dis 2024; 15:523. [PMID: 39039044 PMCID: PMC11263593 DOI: 10.1038/s41419-024-06863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Jie Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Lei Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - William S Hambright
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yajun Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Shifeng Ren
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Xianlin Yue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Liwei Shao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Yan Cui
- Department of Orthopaedic Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yanling Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Xiaodong Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| |
Collapse
|
3
|
Kim PH, Kim JR, Tu Y, Jung H, Jeong JYB, Tran AP, Presnell A, Young SG, Fong LG. Progerin forms an abnormal meshwork and has a dominant-negative effect on the nuclear lamina. Proc Natl Acad Sci U S A 2024; 121:e2406946121. [PMID: 38917015 PMCID: PMC11228511 DOI: 10.1073/pnas.2406946121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.
Collapse
Affiliation(s)
- Paul H Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Joonyoung R Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - J Y Brian Jeong
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Anh P Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ashley Presnell
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
4
|
Yang Y, Zhang J, Lv M, Cui N, Shan B, Sun Q, Yan L, Zhang M, Zou C, Yuan J, Xu D. Defective prelamin A processing promotes unconventional necroptosis driven by nuclear RIPK1. Nat Cell Biol 2024; 26:567-580. [PMID: 38538837 DOI: 10.1038/s41556-024-01374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024]
Abstract
Defects in the prelamin A processing enzyme caused by loss-of-function mutations in the ZMPSTE24 gene are responsible for a spectrum of progeroid disorders characterized by the accumulation of farnesylated prelamin A. Here we report that defective prelamin A processing triggers nuclear RIPK1-dependent signalling that leads to necroptosis and inflammation. We show that accumulated prelamin A recruits RIPK1 to the nucleus to facilitate its activation upon tumour necrosis factor stimulation in ZMPSTE24-deficient cells. Kinase-activated RIPK1 then promotes RIPK3-mediated MLKL activation in the nucleus, leading to nuclear envelope disruption and necroptosis. This signalling relies on prelamin A farnesylation, which anchors prelamin A to nuclear envelope to serve as a nucleation platform for necroptosis. Genetic inactivation of necroptosis ameliorates the progeroid phenotypes in Zmpste24-/- mice. Our findings identify an unconventional nuclear necroptosis pathway resulting from ZMPSTE24 deficiency with pathogenic consequences in progeroid disorder and suggest RIPK1 as a feasible target for prelamin A-associated progeroid disorders.
Collapse
Affiliation(s)
- Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingming Lv
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qi Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lingjie Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Yue X, Cui J, Sun Z, Liu L, Li Y, Shao L, Feng Q, Wang Z, Hambright WS, Cui Y, Huard J, Mu Y, Mu X. Nuclear softening mediated by Sun2 suppression delays mechanical stress-induced cellular senescence. Cell Death Discov 2023; 9:167. [PMID: 37198162 DOI: 10.1038/s41420-023-01467-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear decoupling and softening are the main cellular mechanisms to resist mechanical stress-induced nuclear/DNA damage, however, its molecular mechanisms remain much unknown. Our recent study of Hutchinson-Gilford progeria syndrome (HGPS) disease revealed the role of nuclear membrane protein Sun2 in mediating nuclear damages and cellular senescence in progeria cells. However, the potential role of Sun2 in mechanical stress-induced nuclear damage and its correlation with nuclear decoupling and softening is still not clear. By applying cyclic mechanical stretch to mesenchymal stromal cells (MSCs) of WT and Zmpset24-/- mice (Z24-/-, a model for HGPS), we observed much increased nuclear damage in Z24-/- MSCs, which also featured elevated Sun2 expression, RhoA activation, F-actin polymerization and nuclear stiffness, indicating the compromised nuclear decoupling capacity. Suppression of Sun2 with siRNA effectively reduced nuclear/DNA damages caused by mechanical stretch, which was mediated by increased nuclear decoupling and softening, and consequently improved nuclear deformability. Our results reveal that Sun2 is greatly involved in mediating mechanical stress-induced nuclear damage by regulating nuclear mechanical properties, and Sun2 suppression can be a novel therapeutic target for treating progeria aging or aging-related diseases.
Collapse
Affiliation(s)
- Xianlin Yue
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Cui
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zewei Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Liu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liwei Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi Feng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyue Wang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - William S Hambright
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO, USA
| | - Yanling Mu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiaodong Mu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
7
|
Kuehnemann C, Hughes JB, Desprez P, Melov S, Wiley CD, Campisi J. Antiretroviral protease inhibitors induce features of cellular senescence that are reversible upon drug removal. Aging Cell 2023; 22:e13750. [PMID: 36539941 PMCID: PMC9835573 DOI: 10.1111/acel.13750] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Antiretroviral drugs have dramatically improved the prognosis of HIV-infected patients, with strikingly reduced morbidity and mortality. However, long-term use can be associated with signs of premature aging. Highly active antiretroviral therapy generally comprises two nucleoside reverse transcriptase inhibitors (NRTIs), with one of three additional antiretroviral drug classes, including protease inhibitors (PIs). One commonality between mitochondrial dysfunction (induced by NRTIs) and defects in lamin A (induced by PIs) is they can cause or accelerate cellular senescence, a state of essentially irreversible growth arrest, and the secretion of many bioactive molecules collectively known as the senescence-associated secretory phenotype (SASP). We hypothesized that senescent cells increase following treatment with certain HIV therapies. We compared the effects of two distinct HIV PIs: ritonavir-boosted atazanavir (ATV/r) and ritonavir-boosted darunavir (DRN/r), used in combination treatments for HIV infection. Upon ATV/r, but not DRN/r, treatment, cells arrested growth, displayed multiple features of senescence, and expressed significantly upregulated levels of many SASP factors. Furthermore, mice receiving sustained ATV/r treatment showed an increase in senescent cells and age-related decline in physiological function. However, removing treatment reversed the features of senescence observed in vivo and cell culture. Given how these features disappeared with drug removal, certain features of senescence may not be prognostic as defined by an irreversible growth arrest. Importantly, for patients that are treated or have been treated with ATV/r, our data suggest that switching to another PI that does not promote premature aging conditions (DRN/r) may improve the associated age-related complications.
Collapse
Affiliation(s)
- Chisaka Kuehnemann
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- University of Southern CaliforniaLos AngelesCaliforniaUSA
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | | | - Pierre‐Yves Desprez
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
| | - Simon Melov
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Christopher D. Wiley
- Buck Institute for Research on AgingNovatoCaliforniaUSA
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | | |
Collapse
|
8
|
Liu L, Yue X, Sun Z, Hambright WS, Wei J, Li Y, Matre P, Cui Y, Wang Z, Rodney G, Huard J, Robbins PD, Mu X. Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells. J Cachexia Sarcopenia Muscle 2022; 13:3137-3148. [PMID: 36218080 PMCID: PMC9745459 DOI: 10.1002/jcsm.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fibro-adipogenic progenitors (FAPs) in the muscles have been found to interact closely with muscle progenitor/stem cells (MPCs) and facilitate muscle regeneration at normal conditions. However, it is not clear how FAPs may interact with MPCs in aged muscles. Senolytics have been demonstrated to selectively eliminate senescent cells and generate therapeutic benefits on ageing and multiple age-related disease models. METHODS By studying the muscles and primary cells of age matched WT mice and Zmpste24-/- (Z24-/- ) mice, an accelerated ageing model for Hutchinson-Gilford progeria syndrome (HGPS), we examined the interaction between FAPs and MPCs in progeria-aged muscle, and the potential effect of senolytic drug fisetin in removing senescent FAPs and improving the function of MPCs. RESULTS We observed that, compared with muscles of WT mice, muscles of Z24-/- mice contained a significantly increased number of FAPs (2.4-fold; n > =6, P < 0.05) and decreased number of MPCs (2.8-fold; n > =6, P < 0.05). FAPs isolated from Z24-/- muscle contained about 44% SA-β-gal+ senescent cells, in contrast to about 3.5% senescent cells in FAPs isolated from WT muscle (n > =6, P < 0.001). The co-culture of Z24-/- FAPs with WT MPCs resulted in impaired proliferation and myogenesis potential of WT MPCs, with the number of BrdU positive proliferative cells being reduced for 3.3 times (n > =6, P < 0.001) and the number of myosin heavy chain (MHC)-positive myotubes being reduced for 4.5 times (n > =6, P < 0.001). The treatment of the in vitro co-culture system of Z24-/- FAPs and WT MPCs with the senolytic drug fisetin led to increased apoptosis of Z24-/- FAPs (14.5-fold; n > =6, P < 0.001) and rescued the impaired function of MPCs by increasing the number of MHC-positive myotubes for 3.1 times (n > =6, P < 0.001). Treatment of Z24-/- mice with fisetin in vivo was effective in reducing the number of senescent FAPs (2.2-fold, n > =6, P < 0.05) and restoring the number of muscle stem cells (2.6-fold, n > =6, P < 0.05), leading to improved muscle pathology in Z24-/- mice. CONCLUSIONS These results indicate that the application of senolytics in the progeria-aged muscles can be an efficient strategy to remove senescent cells, including senescent FAPs, which results in improved function of muscle progenitor/stem cells. The senescent FAPs can be a potential novel target for therapeutic treatment of progeria ageing related muscle diseases.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xianlin Yue
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zewei Sun
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - William S. Hambright
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailCOUSA
| | - Jianming Wei
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Ying Li
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Polina Matre
- University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Yan Cui
- University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Zhihui Wang
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - George Rodney
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonTXUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailCOUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMNUSA
| | - Xiaodong Mu
- School of Pharmacy and Pharmaceutical ScienceShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailCOUSA
| |
Collapse
|
9
|
Lin H, Mensch J, Haschke M, Jäger K, Köttgen B, Dernedde J, Orsó E, Walter M. Establishment and Characterization of hTERT Immortalized Hutchinson–Gilford Progeria Fibroblast Cell Lines. Cells 2022; 11:cells11182784. [PMID: 36139359 PMCID: PMC9497314 DOI: 10.3390/cells11182784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare premature aging syndrome caused by a dominant mutation in the LMNA gene. Previous research has shown that the ectopic expression of the catalytic subunit of telomerase (hTERT) can elongate the telomeres of the patients’ fibroblasts. Here, we established five immortalized HGP fibroblast cell lines using retroviral infection with the catalytic subunit of hTERT. Immortalization enhanced the proliferative life span by at least 50 population doublings (PDs). The number of cells with typical senescence signs was reduced by 63 + 17%. Furthermore, the growth increase and phenotype improvement occurred with a lag phase of 50–100 days and was not dependent on the degree of telomere elongation. The initial telomeric stabilization after hTERT infection and relatively low amounts of hTERT mRNA were sufficient for the phenotype improvement but the retroviral infection procedure was associated with transient cell stress. Our data have implications for therapeutic strategies in HGP and other premature aging syndromes.
Collapse
Affiliation(s)
- Haihuan Lin
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
| | - Juliane Mensch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Haschke
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kathrin Jäger
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Köttgen
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
| | - Jens Dernedde
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
| | - Evelyn Orsó
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Walter
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, 13353 Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
10
|
Zheng M, Jin G, Zhou Z. Post-Translational Modification of Lamins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:864191. [PMID: 35656549 PMCID: PMC9152177 DOI: 10.3389/fcell.2022.864191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Lamins are the ancient type V intermediate filament proteins contributing to diverse biological functions, such as the maintenance of nuclear morphology, stabilization of chromatin architecture, regulation of cell cycle progression, regulation of spatial-temporal gene expressions, and transduction of mechano-signaling. Deregulation of lamins is associated with abnormal nuclear morphology and chromatin disorganization, leading to a variety of diseases such as laminopathy and premature aging, and might also play a role in cancer. Accumulating evidence indicates that lamins are functionally regulated by post-translational modifications (PTMs) including farnesylation, phosphorylation, acetylation, SUMOylation, methylation, ubiquitination, and O-GlcNAcylation that affect protein stabilization and the association with chromatin or associated proteins. The mechanisms by which these PTMs are modified and the relevant functionality become increasingly appreciated as understanding of these changes provides new insights into the molecular mechanisms underlying the laminopathies concerned and novel strategies for the management. In this review, we discussed a range of lamin PTMs and their roles in both physiological and pathological processes, as well as potential therapeutic strategies by targeting lamin PTMs.
Collapse
Affiliation(s)
- Mingyue Zheng
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Cui C, Yang F, Li Q. Post-Translational Modification of GPX4 is a Promising Target for Treating Ferroptosis-Related Diseases. Front Mol Biosci 2022; 9:901565. [PMID: 35647032 PMCID: PMC9133406 DOI: 10.3389/fmolb.2022.901565] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) is one of the most important antioxidant enzymes. As the key regulator of ferroptosis, GPX4 has attracted considerable attention in the fields of cancer, cardiovascular, and neuroscience research in the past 10 years. How to regulate GPX4 activity has become a hot topic nowadays. GPX4 protein level is regulated transcriptionally by transcription factor SP2 or Nrf2. GPX4 activity can be upregulated by supplementing intracellular selenium or glutathione, and also be inhibited by ferroptosis inducers such as ML162 and RSL3. These regulatory mechanisms of GPX4 level/activity have already shown a great potential for treating ferroptosis-related diseases in preclinical studies, especially in cancer cells. Until recently, research show that GPX4 can undergo post-translational modifications (PTMs), such as ubiquitination, succination, phosphorylation, and glycosylation. PTMs of GPX4 affect the protein level/activity of GPX4, indicating that modifying these processes can be a potential therapy for treating ferroptosis-related diseases. This article summarizes the protein characteristics, enzyme properties, and PTMs of GPX4. It also provides a hypothetical idea for treating ferroptosis-related diseases by targeting the PTMs of GPX4.
Collapse
Affiliation(s)
- Can Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
- *Correspondence: Qian Li,
| |
Collapse
|
12
|
Talukder P, Saha A, Roy S, Ghosh G, Dutta Roy D, Barua S. Progeria-a Rare Genetic Condition with Accelerated Ageing Process. Appl Biochem Biotechnol 2022; 195:2587-2596. [PMID: 35445924 DOI: 10.1007/s12010-021-03514-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 11/26/2022]
Abstract
Progeria is a rare genetic disease which is characterised by accelerated ageing and reduced life span. There are differing types of progeria, but the classic type is Hutchinson-Gilford progeria syndrome (HGPS). Within a year of birth, people suffering from it start showing several features such as very low weight, scleroderma, osteoporosis and loss of hair. Their life expectancy is highly reduced and the average life span is around 14.6 years. Research is going on to understand the genetic and molecular level causes of this disease. Apart from that, several studies are also going on to discover therapeutic techniques and drugs to treat this disease but the success rate is very low. To gain a better understanding about research developments of progeria more experimental models, drugs and molecular technologies are under trial. Different important aspects and recent developments in epidemiology, genetic causes, symptoms, diagnosis and treatment options of progeria are discussed in this review.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India.
| | - Arunima Saha
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Sohini Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Gargi Ghosh
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Debshikha Dutta Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Snejuti Barua
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| |
Collapse
|
13
|
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Horníková L, Bruštíková K, Huérfano S, Forstová J. Nuclear Cytoskeleton in Virus Infection. Int J Mol Sci 2022; 23:ijms23010578. [PMID: 35009004 PMCID: PMC8745530 DOI: 10.3390/ijms23010578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The nuclear lamina is the main component of the nuclear cytoskeleton that maintains the integrity of the nucleus. However, it represents a natural barrier for viruses replicating in the cell nucleus. The lamina blocks viruses from being trafficked to the nucleus for replication, but it also impedes the nuclear egress of the progeny of viral particles. Thus, viruses have evolved mechanisms to overcome this obstacle. Large viruses induce the assembly of multiprotein complexes that are anchored to the inner nuclear membrane. Important components of these complexes are the viral and cellular kinases phosphorylating the lamina and promoting its disaggregation, therefore allowing virus egress. Small viruses also use cellular kinases to induce lamina phosphorylation and the subsequent disruption in order to facilitate the import of viral particles during the early stages of infection or during their nuclear egress. Another component of the nuclear cytoskeleton, nuclear actin, is exploited by viruses for the intranuclear movement of their particles from the replication sites to the nuclear periphery. This study focuses on exploitation of the nuclear cytoskeleton by viruses, although this is just the beginning for many viruses, and promises to reveal the mechanisms and dynamic of physiological and pathological processes in the nucleus.
Collapse
|
15
|
Kim PH, Chen NY, Heizer PJ, Tu Y, Weston TA, Fong JLC, Gill NK, Rowat AC, Young SG, Fong LG. Nuclear membrane ruptures underlie the vascular pathology in a mouse model of Hutchinson-Gilford progeria syndrome. JCI Insight 2021; 6:151515. [PMID: 34423791 PMCID: PMC8409987 DOI: 10.1172/jci.insight.151515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The mutant nuclear lamin protein (progerin) produced in Hutchinson-Gilford progeria syndrome (HGPS) results in loss of arterial smooth muscle cells (SMCs), but the mechanism has been unclear. We found that progerin induces repetitive nuclear membrane (NM) ruptures, DNA damage, and cell death in cultured SMCs. Reducing lamin B1 expression and exposing cells to mechanical stress - to mirror conditions in the aorta - triggered more frequent NM ruptures. Increasing lamin B1 protein levels had the opposite effect, reducing NM ruptures and improving cell survival. Remarkably, raising lamin B1 levels increased nuclear compliance in cells and was able to offset the increased nuclear stiffness caused by progerin. In mice, lamin B1 expression in aortic SMCs is normally very low, and in mice with a targeted HGPS mutation (LmnaG609G), levels of lamin B1 decrease further with age while progerin levels increase. Those observations suggest that NM ruptures might occur in aortic SMCs in vivo. Indeed, studies in LmnaG609G mice identified NM ruptures in aortic SMCs, along with ultrastructural abnormalities in the cell nucleus that preceded SMC loss. Our studies identify NM ruptures in SMCs as likely causes of vascular pathology in HGPS.
Collapse
Affiliation(s)
- Paul H. Kim
- Department of Medicine
- Department of Bioengineering
| | - Natalie Y. Chen
- Department of Medicine
- Department of Integrative Biology and Physiology, and
| | | | | | | | | | | | - Amy C. Rowat
- Department of Bioengineering
- Department of Integrative Biology and Physiology, and
| | - Stephen G. Young
- Department of Medicine
- Department of Human Genetics, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
16
|
Hwang BH, Kim E, Park EH, Kim CW, Lee KY, Kim JJ, Choo EH, Lim S, Choi IJ, Kim CJ, Ihm SH, Chang K. AIMP3 induces laminopathy and senescence of vascular smooth muscle cells by reducing lamin A expression and leads to vascular aging in vivo. Exp Gerontol 2021; 153:111483. [PMID: 34274427 DOI: 10.1016/j.exger.2021.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein 3 (AIMP3), a tumor suppressor, mediates a progeroid phenotype in mice by downregulating lamin A. We investigated whether AIMP3 induces laminopathy and senescence of human aortic smooth muscle cells (HASMCs) and is associated with vascular aging in mice and humans in line with decreased lamin A expression. Cellular senescence was evaluated after transfecting HASMCs with AIMP3. Molecular analyses of genes encoding AIMP3, lamin A, chemokine (C-C motif) ligand 2 (CCL2), and C-C chemokine receptor type 2 (CCR2) and histological comparisons of aortas were performed with mice at various ages (7 weeks, 5 months, 12 months, 24 months, and 32 months), AIMP3-transgenic mice, and human femoral arteries of cadavers. AIMP3-transfected HASMCs exhibited increased AIMP3 and senescence marker p16 protein expression and decreased lamin A protein expression in accordance with their disrupted nuclear morphology in histological analyses. AIMP3-transgenic mice displayed increased AIMP3 protein expression and decreased lamin A protein expression in aortas together with typical aging pathologies. Similar changes were observed in wild-type aging (24-month-old) mice but not in wild-type young (7-week-old) mice. In humans, AIMP3 and lamin A protein expression was higher and lower, respectively, in femoral arteries of elderly individuals than in those of their younger counterparts. This study found that AIMP3 overexpression in vitro decreased lamin A expression and induced nuclear laminopathy and cellular senescence. Similar findings were made in the vasculature of aging mice and elderly humans.
Collapse
Affiliation(s)
- Byung Hee Hwang
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunmin Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Hye Park
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Woo Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwan-Yong Lee
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Jin Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Ho Choo
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungmin Lim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Ik Jun Choi
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Chan Joon Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Sang-Hyun Ihm
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Kiyuk Chang
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
18
|
Patil S, Sengupta K. Role of A- and B-type lamins in nuclear structure-function relationships. Biol Cell 2021; 113:295-310. [PMID: 33638183 DOI: 10.1111/boc.202000160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Nuclear lamins are type V intermediate filament proteins that form a filamentous meshwork beneath the inner nuclear membrane. Additionally, a sub-population of A- and B-type lamins localizes in the nuclear interior. The nuclear lamina protects the nucleus from mechanical stress and mediates nucleo-cytoskeletal coupling. Lamins form a scaffold that partially tethers chromatin at the nuclear envelope. The nuclear lamina also stabilises protein-protein interactions involved in gene regulation and DNA repair. The lamin-based protein sub-complexes are implicated in both nuclear and cytoskeletal organisation, the mechanical stability of the nucleus, genome organisation, transcriptional regulation, genome stability and cellular differentiation. Here, we review recent research on nuclear lamins and unique roles of A- and B-type lamins in modulating various nuclear processes and their impact on cell function.
Collapse
Affiliation(s)
- Shalaka Patil
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kundan Sengupta
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
19
|
Chen X, Yao H, Kashif M, Revêchon G, Eriksson M, Hu J, Wang T, Liu Y, Tüksammel E, Strömblad S, Ahearn IM, Philips MR, Wiel C, Ibrahim MX, Bergo MO. A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells. eLife 2021; 10:63284. [PMID: 33526168 PMCID: PMC7853716 DOI: 10.7554/elife.63284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
A farnesylated and methylated form of prelamin A called progerin causes Hutchinson-Gilford progeria syndrome (HGPS). Inhibiting progerin methylation by inactivating the isoprenylcysteine carboxylmethyltransferase (ICMT) gene stimulates proliferation of HGPS cells and improves survival of Zmpste24-deficient mice. However, we don't know whether Icmt inactivation improves phenotypes in an authentic HGPS mouse model. Moreover, it is unknown whether pharmacologic targeting of ICMT would be tolerated by cells and produce similar cellular effects as genetic inactivation. Here, we show that knockout of Icmt improves survival of HGPS mice and restores vascular smooth muscle cell numbers in the aorta. We also synthesized a potent ICMT inhibitor called C75 and found that it delays senescence and stimulates proliferation of late-passage HGPS cells and Zmpste24-deficient mouse fibroblasts. Importantly, C75 did not influence proliferation of wild-type human cells or Zmpste24-deficient mouse cells lacking Icmt, indicating drug specificity. These results raise hopes that ICMT inhibitors could be useful for treating children with HGPS.
Collapse
Affiliation(s)
- Xue Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Muhammad Kashif
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ting Wang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yiran Liu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elin Tüksammel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ian M Ahearn
- Department of Dermatology, New York University Grossman School of Medicine, New York, United States
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, United States
| | - Clotilde Wiel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mohamed X Ibrahim
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Sahlgrenska Center for Cancer Research, Gothenburg, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
20
|
Röhrl JM, Arnold R, Djabali K. Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence. Cells 2021; 10:cells10010153. [PMID: 33466669 PMCID: PMC7828780 DOI: 10.3390/cells10010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a mutation in LMNA. A G608G mutation in exon 11 of LMNA is responsible for most HGPS cases, generating a truncated protein called “progerin”. Progerin is permanently farnesylated and accumulates in HGPS cells, causing multiple cellular defects such as nuclear dysmorphism, a thickened lamina, loss of heterochromatin, premature senescence, and clustering of Nuclear Pore Complexes (NPC). To identify the mechanism of NPC clustering in HGPS cells, we evaluated post-mitotic NPC assembly in control and HGPS cells and found no defects. Next, we examined the occurrence of NPC clustering in control and HGPS cells during replicative senescence. We reported that NPC clustering occurs solely in the dysmorphic nuclei of control and HGPS cells. Hence, NPC clustering occurred at a higher frequency in HGPS cells compared to control cells at early passages; however, in late cultures with similar senescence index, NPCs clustering occurred at a similar rate in both control and HGPS. Our results show that progerin does not disrupt post-mitotic reassembly of NPCs. However, NPCs frequently cluster in dysmorphic nuclei with a high progerin content. Additionally, nuclear envelope defects that arise during replicative senescence cause NPC clustering in senescent cells with dysmorphic nuclei.
Collapse
|
21
|
Using nuclear envelope mutations to explore age-related skeletal muscle weakness. Clin Sci (Lond) 2020; 134:2177-2187. [PMID: 32844998 PMCID: PMC7450176 DOI: 10.1042/cs20190066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle weakness is an important determinant of age-related declines in independence and quality of life but its causes remain unclear. Accelerated ageing syndromes such as Hutchinson-Gilford Progerin Syndrome, caused by mutations in genes encoding nuclear envelope proteins, have been extensively studied to aid our understanding of the normal biological ageing process. Like several other pathologies associated with genetic defects to nuclear envelope proteins including Emery-Dreifuss muscular dystrophy, Limb-Girdle muscular dystrophy and congenital muscular dystrophy, these disorders can lead to severe muscle dysfunction. Here, we first describe the structure and function of nuclear envelope proteins, and then review the mechanisms by which mutations in genes encoding nuclear envelope proteins induce premature ageing diseases and muscle pathologies. In doing so, we highlight the potential importance of such genes in processes leading to skeletal muscle weakness in old age.
Collapse
|
22
|
Chen NY, Kim PH, Fong LG, Young SG. Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Nucleus 2020; 11:237-249. [PMID: 32910721 PMCID: PMC7529418 DOI: 10.1080/19491034.2020.1815410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear membranes function as a barrier to separate the cell nucleus from the cytoplasm, but this barrier can be compromised by nuclear membrane ruptures, leading to intermixing of nuclear and cytoplasmic contents. Spontaneous nuclear membrane ruptures (i.e., ruptures occurring in the absence of mechanical stress) have been observed in cultured cells, but they are more frequent in the setting of defects or deficiencies in nuclear lamins and when cells are subjected to mechanical stress. Nuclear membrane ruptures in cultured cells have been linked to DNA damage, but the relevance of ruptures to developmental or physiologic processes in vivo has received little attention. Recently, we addressed that issue by examining neuronal migration in the cerebral cortex, a developmental process that subjects the cell nucleus to mechanical stress. In the setting of lamin B1 deficiency, we observed frequent nuclear membrane ruptures in migrating neurons in the developing cerebral cortex and showed that those ruptures are likely the cause of observed DNA damage, neuronal cell death, and profound neuropathology. In this review, we discuss the physiologic relevance of nuclear membrane ruptures, with a focus on migrating neurons in cell culture and in the cerebral cortex of genetically modified mice.
Collapse
Affiliation(s)
- Natalie Y. Chen
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paul H. Kim
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Yao H, Chen X, Kashif M, Wang T, Ibrahim MX, Tüksammel E, Revêchon G, Eriksson M, Wiel C, Bergo MO. Targeting RAS-converting enzyme 1 overcomes senescence and improves progeria-like phenotypes of ZMPSTE24 deficiency. Aging Cell 2020; 19:e13200. [PMID: 32910507 PMCID: PMC7431821 DOI: 10.1111/acel.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Several progeroid disorders are caused by deficiency in the endoprotease ZMPSTE24 which leads to accumulation of prelamin A at the nuclear envelope. ZMPSTE24 cleaves prelamin A twice: at the third carboxyl-terminal amino acid following farnesylation of a -CSIM motif; and 15 residues upstream to produce mature lamin A. The carboxyl-terminal cleavage can also be performed by RAS-converting enzyme 1 (RCE1) but little is known about the importance of this cleavage for the ability of prelamin A to cause disease. Here, we found that knockout of RCE1 delayed senescence and increased proliferation of ZMPSTE24-deficient fibroblasts from a patient with non-classical Hutchinson-Gilford progeria syndrome (HGPS), but did not influence proliferation of classical LMNA-mutant HGPS cells. Knockout of Rce1 in Zmpste24-deficient mice at postnatal week 4-5 increased body weight and doubled the median survival time. The absence of Rce1 in Zmpste24-deficient fibroblasts did not influence nuclear shape but reduced an interaction between prelamin A and AKT which activated AKT-mTOR signaling and was required for the increased proliferation. Prelamin A levels increased in Rce1-deficient cells due to a slower turnover rate but its localization at the nuclear rim was unaffected. These results strengthen the idea that the presence of misshapen nuclei does not prevent phenotype improvement and suggest that targeting RCE1 might be useful for treating the rare progeroid disorders associated with ZMPSTE24 deficiency.
Collapse
Affiliation(s)
- Haidong Yao
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Xue Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Muhammad Kashif
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Ting Wang
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Mohamed X. Ibrahim
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Elin Tüksammel
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Gwladys Revêchon
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Maria Eriksson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Clotilde Wiel
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Martin O. Bergo
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
24
|
Mu X, Tseng C, Hambright WS, Matre P, Lin C, Chanda P, Chen W, Gu J, Ravuri S, Cui Y, Zhong L, Cooke JP, Niedernhofer LJ, Robbins PD, Huard J. Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome. Aging Cell 2020; 19:e13152. [PMID: 32710480 PMCID: PMC7431831 DOI: 10.1111/acel.13152] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle-derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24-/- (Z24-/- ) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin-induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F-actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei-induced cGAS-Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24-/- mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.
Collapse
Affiliation(s)
- Xiaodong Mu
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonTexas
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
- Shandong First Medical University & Shandong Academy of Medical SciencesJi'nanChina
| | - Chieh Tseng
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - William S. Hambright
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColorado
| | - Polina Matre
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTexas
| | - Chih‐Yi Lin
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - Palas Chanda
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTexas
| | - Wanqun Chen
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
- Shandong First Medical University & Shandong Academy of Medical SciencesJi'nanChina
| | - Jianhua Gu
- Electron Microscopy CoreHouston Methodist Research InstituteHoustonTexas
| | - Sudheer Ravuri
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColorado
| | - Yan Cui
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - Ling Zhong
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - John P. Cooke
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTexas
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesota
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesota
| | - Johnny Huard
- Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexas
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColorado
| |
Collapse
|
25
|
Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020; 11:761. [PMID: 32719615 PMCID: PMC7349320 DOI: 10.3389/fphys.2020.00761] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Lamin A/C gene (LMNA) cause laminopathies, a group of disorders associated with a wide spectrum of clinically distinct phenotypes, affecting different tissues and organs. Heart involvement is frequent and leads to cardiolaminopathy LMNA-dependent cardiomyopathy (LMNA-CMP), a form of dilated cardiomyopathy (DCM) typically associated with conduction disorders and arrhythmias, that can manifest either as an isolated event or as part of a multisystem phenotype. Despite the recent clinical and molecular developments in the field, there is still lack of knowledge linking specific LMNA gene mutations to the distinct clinical manifestations. Indeed, the severity and progression of the disease have marked interindividual variability, even amongst members of the same family. Studies conducted so far have described Lamin A/C proteins involved in diverse biological processes, that span from a structural role in the nucleus to the regulation of response to mechanical stress and gene expression, proposing various mechanistic hypotheses. However, none of those is per se able to fully justify functional and clinical phenotypes of LMNA-CMP; therefore, the role of Lamin A/C in cardiac pathophysiology still represents an open question. In this review we provide an update on the state-of-the-art studies on cardiolaminopathy, in the attempt to draw a line connecting molecular mechanisms to clinical manifestations. While investigators in this field still wonder about a clear genotype/phenotype correlation in LMNA-CMP, our intent here is to recapitulate common mechanistic hypotheses that link different mutations to similar clinical presentations.
Collapse
Affiliation(s)
- Silvia Crasto
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| | - Ilaria My
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
26
|
Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Biochem Soc Trans 2020; 48:981-991. [PMID: 32539085 PMCID: PMC7329345 DOI: 10.1042/bst20190882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
The metazoan nucleus is equipped with a meshwork of intermediate filament proteins called the A- and B-type lamins. Lamins lie beneath the inner nuclear membrane and serve as a nexus to maintain the architectural integrity of the nucleus, chromatin organization, DNA repair and replication and to regulate nucleocytoplasmic transport. Perturbations or mutations in various components of the nuclear lamina result in a large spectrum of human diseases collectively called laminopathies. One of the most well-characterized laminopathies is Hutchinson-Gilford progeria (HGPS), a rare segmental premature aging syndrome that resembles many features of normal human aging. HGPS patients exhibit alopecia, skin abnormalities, osteoporosis and succumb to cardiovascular complications in their teens. HGPS is caused by a mutation in LMNA, resulting in a mutated form of lamin A, termed progerin. Progerin expression results in a myriad of cellular phenotypes including abnormal nuclear morphology, loss of peripheral heterochromatin, transcriptional changes, DNA replication defects, DNA damage and premature cellular senescence. A key challenge is to elucidate how these different phenotypes are causally and mechanistically linked. In this mini-review, we highlight some key findings and present a model on how progerin-induced phenotypes may be temporally and mechanistically linked.
Collapse
|
27
|
Heizer PJ, Yang Y, Tu Y, Kim PH, Chen NY, Hu Y, Yoshinaga Y, de Jong PJ, Vergnes L, Morales JE, Li RL, Jackson N, Reue K, Young SG, Fong LG. Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores. J Lipid Res 2020; 61:413-421. [PMID: 31941672 DOI: 10.1194/jlr.ra119000593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24 -/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.
Collapse
Affiliation(s)
- Patrick J Heizer
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Ye Yang
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Paul H Kim
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Natalie Y Chen
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yan Hu
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Laurent Vergnes
- Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jazmin E Morales
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert L Li
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Nicholas Jackson
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| | - Karen Reue
- Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095 .,Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Loren G Fong
- Departments of Medicine University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
28
|
Casciaro F, Beretti F, Zavatti M, McCubrey JA, Ratti S, Marmiroli S, Follo MY, Maraldi T. Nuclear Nox4 interaction with prelamin A is associated with nuclear redox control of stem cell aging. Aging (Albany NY) 2019; 10:2911-2934. [PMID: 30362963 PMCID: PMC6224265 DOI: 10.18632/aging.101599] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells in vitro prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during in vitro expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age. The analysis of 21 AFSC samples allowed to classify them in groups with different levels of stemness properties. In summary, the expression of pluripotency genes and the proliferation rate were inversely correlated with the content of reactive oxygen species (ROS), DNA damage signs and the onset premature aging markers, including accumulation of prelamin A, the lamin A immature form. Interestingly, a specific source of ROS, the NADPH oxidase isoform 4 (Nox4), can localize into PML nuclear bodies (PML-NB), where it associates to prelamin A. Besides, Nox4 post translational modification, involved in PML-NB localization, is linked to its degradation pathway, as it is also for prelamin A, thus possibly modulating the premature aging phenotype occurrence.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy.,Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - Manuela Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Sandra Marmiroli
- Cellular Signaling Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| |
Collapse
|
29
|
Goblirsch BR, Pryor EE, Wiener MC. The tripartite architecture of the eukaryotic integral membrane protein zinc metalloprotease Ste24. Proteins 2019; 88:604-615. [PMID: 31644822 PMCID: PMC7168092 DOI: 10.1002/prot.25841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as “CAAX proteases” targeting prenylated substrates, including a‐factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique “α‐barrel” structure consisting of seven transmembrane (TM) α‐helices encircling a large intramembranous cavity (~14 000 Å3). The catalytic zinc, coordinated via a HExxH…E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long‐studied class of soluble ZMPs, and as a novel cavity‐containing integral membrane protein protease has been minimally explored to date. Informed by homology to well‐characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc‐containing “ZMP Core” module surrounded by a “ZMP Accessory” module, both capped by a TM helical “α‐barrel” module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α‐barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Edward E Pryor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
30
|
Sun S, Deng Y, Cai E, Yan M, Li L, Chen B, Chang C, Jiang Z. The Farnesyltransferase β-Subunit Ram1 Regulates Sporisorium scitamineum Mating, Pathogenicity and Cell Wall Integrity. Front Microbiol 2019; 10:976. [PMID: 31134021 PMCID: PMC6517510 DOI: 10.3389/fmicb.2019.00976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The basidiomycetous fungus Sporisorium scitamineum causes a serious sugarcane smut disease in major sugarcane growing areas. Sexual mating is essential for infection to the host; however, its underlying molecular mechanism has not been fully studied. In this study, we identified a conserved farnesyltransferase (FTase) β subunit Ram1 in S. scitamineum. The ram1Δ mutant displayed significantly reduced mating/filamentation, thus of weak pathogenicity to the host cane. The ram1Δ mutant sporidia showed more tolerant toward cell wall stressor Congo red compared to that of the wild-type. Transcriptional profiling showed that Congo red treatment resulted in notable up-regulation of the core genes involving in cell wall integrity pathway in ram1Δ sporidia compared with that of WT, indicating that Ram1 may be involved in cell wall integrity regulation. In yeast the heterodimeric FTase is responsible for post-translational modification of Ras (small G protein) and a-factor (pheromone). We also identified and characterized two conserved Ras proteins, Ras1 and Ras2, respectively, and a MAT-1 pheromone precursor Mfa1. The ras1Δ, ras2Δ and mfa1Δ mutants all displayed reduced mating/filamentation similar as the ram1Δ mutant. However, both ras1Δ and ras2Δ mutants were hypersensitive to Congo red while the mfa1Δ mutant was the same as wild-type. Overall our study displayed that RAM1 plays an essential role in S. scitamineum mating/filamentation, pathogenicity, and cell wall stability.
Collapse
Affiliation(s)
- Shuquan Sun
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Enping Cai
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lingyu Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Baoshan Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Changqing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Kölbel H, Abicht A, Schwartz O, Katona I, Paulus W, Neuen-Jacob E, Weis J, Schara U. Characteristic clinical and ultrastructural findings in nesprinopathies. Eur J Paediatr Neurol 2019; 23:254-261. [PMID: 30626539 DOI: 10.1016/j.ejpn.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/27/2023]
Abstract
AIMS To define the neurological and neuropathological alterations caused by SYNE1 mutations. METHODS We describe 5 patients (3 males, 2 females; age 3-24 years) from 3 families. The diagnostic work-up included three muscle biopsies and two nerve biopsies in three of the cases. RESULTS Three different phenotypes were discerned. Two patients showed progressive ataxia, mental retardation, neuropathy and radially deviated thumbs (spinocerebellar ataxia, SCAR, type 8 phenotype). Two patients had mild congenital myopathy with restrictive lung disease, clubfeet and thumb anomalies (myopathic arthrogryposis). One patient had congenital myopathy with dilated cardiomyopathy and adducted thumbs (Emery-Dreifuss Muscular Dystrophy, EDMD, type 4). Light microscopy of the three muscle biopsies revealed chronic non-necrotizing myopathy without rimmed vacuoles in all cases combined with neurogenic atrophy in one case. The two nerve biopsies showed predominantly axonal neuropathy with demyelinating features. Nuclear alterations, most notably lobulation and focal widening of the space between inner and outer leaflet of the nuclear envelope, were a prominent consistent feature of myonuclei and Schwann cell nuclei in each of the three muscle specimens and one nerve specimen that could be examined by electron microscopy. CONCLUSION Thumb abnormalities and nuclear envelope alterations are characteristic for SYNE 1 mutations. Schwann cell nuclei are affected, indicating that such nuclear envelope changes in glial cells contribute to the neurodegenerative phenotype in human nesprinopathies.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany.
| | - Angela Abicht
- Medical Genetics Center, Munich and Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany
| | - Oliver Schwartz
- Department of Pediatric Neurology, University of Münster, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, University of Düsseldorf, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| |
Collapse
|
32
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
33
|
Spear ED, Alford RF, Babatz TD, Wood KM, Mossberg OW, Odinammadu K, Shilagardi K, Gray JJ, Michaelis S. A humanized yeast system to analyze cleavage of prelamin A by ZMPSTE24. Methods 2019; 157:47-55. [PMID: 30625386 DOI: 10.1016/j.ymeth.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamins A, B, and C are intermediate filament proteins that form a nuclear scaffold adjacent to the inner nuclear membrane in higher eukaryotes, providing structural support for the nucleus. In the past two decades it has become evident that the final step in the biogenesis of the mature lamin A from its precursor prelamin A by the zinc metalloprotease ZMPSTE24 plays a critical role in human health. Defects in prelamin A processing by ZMPSTE24 result in premature aging disorders including Hutchinson Gilford Progeria Syndrome (HGPS) and related progeroid diseases. Additional evidence suggests that defects in prelamin A processing, due to diminished ZMPSTE24 expression or activity, may also drive normal physiological aging. Because of the important connection between prelamin A processing and human aging, there is increasing interest in how ZMPSTE24 specifically recognizes and cleaves its substrate prelamin A, encoded by LMNA. Here, we describe two humanized yeast systems we have recently developed to examine ZMPSTE24 processing of prelamin A. These systems differ from one another slightly. Version 1.0 is optimized to analyze ZMPSTE24 mutations, including disease alleles that may affect the function or stability of the protease. Using this system, we previously showed that some ZMPSTE24 disease alleles that affect stability can be rescued by the proteasome inhibitor bortezomib, which may have therapeutic implications. Version 2.0 is designed to analyze LMNA mutations at or near the ZMPSTE24 processing site to assess whether they permit or impede prelamin A processing. Together these systems offer powerful methodology to study ZMPSTE24 disease alleles and to dissect the specific residues and features of the lamin A tail that are required for recognition and cleavage by the ZMPSTE24 protease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Tim D Babatz
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaitlin M Wood
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Otto W Mossberg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Khurts Shilagardi
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
34
|
Crasto S, Di Pasquale E. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front Cell Dev Biol 2018; 6:172. [PMID: 30619852 PMCID: PMC6306496 DOI: 10.3389/fcell.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Laminopathies are a group of rare degenerative disorders that manifest with a wide spectrum of clinical phenotypes, including both systemic multi-organ disorders, such as the Hutchinson-Gilford Progeria Syndrome (HGPS), and tissue-restricted diseases, such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and lipodystrophies, often overlapping. Despite their clinical heterogeneity, which remains an open question, laminopathies are commonly caused by mutations in the LMNA gene, encoding the nuclear proteins Lamin A and C. These two proteins are main components of the nuclear lamina and are involved in several biological processes. Besides the well-known structural function in the nucleus, their role in regulating chromatin organization and transcription has emerged in the last decade, supporting the hypothesis that the disruption of this layer of regulation may be mechanism underlying the disease. Indeed, recent studies that show various epigenetic defects in cells carrying LMNA mutations, such as loss of heterochromatin, changes in gene expression and chromatin remodeling, strongly support this view. However, those findings are restricted to few cell types in humans, mainly because of the limited accessibility of primary cells and the difficulties to culture them ex-vivo. On the other hand, animal models might fail to recapitulate phenotypic hallmarks of the disease as of humans. To fill this gap, models based on induced pluripotent stem cell (iPSCs) technology have been recently generated that allowed investigations on diverse cells types, such as mesenchymal stem cells (MSCs), vascular and smooth muscle cells and cardiomyocytes, and provided a platform for investigating mechanisms underlying the pathogenesis of laminopathies in a cell-type specific human context. Nevertheless, studies on iPSC-based models of laminopathy have expanded only in the last few years and, with the advancement of reprogramming and differentiation protocols, their number is expecting to further increase over time. This review will give an overview of models developed thus far, with a focus on the novel insights on epigenetic mechanisms underlying the disease in different human cellular contexts. Perspectives and future directions of the field will be also given, highlighting the potential of those models for preclinical studies for identifying molecular targets and their translational impact on patients' cure.
Collapse
Affiliation(s)
- Silvia Crasto
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
35
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
36
|
Ho R, Hegele RA. Complex effects of laminopathy mutations on nuclear structure and function. Clin Genet 2018; 95:199-209. [DOI: 10.1111/cge.13455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rosettia Ho
- Departments of Biochemistry and Medicine, and Robarts Research Institute; Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| | - Robert A. Hegele
- Departments of Biochemistry and Medicine, and Robarts Research Institute; Schulich School of Medicine and Dentistry, Western University; London Ontario Canada
| |
Collapse
|
37
|
Matralis AN, Xanthopoulos D, Huot G, Lopes-Paciencia S, Cole C, de Vries H, Ferbeyre G, Tsantrizos YS. Molecular tools that block maturation of the nuclear lamin A and decelerate cancer cell migration. Bioorg Med Chem 2018; 26:5547-5554. [PMID: 30309670 DOI: 10.1016/j.bmc.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.
Collapse
Affiliation(s)
- Alexios N Matralis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Dimitrios Xanthopoulos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Geneviève Huot
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Lopes-Paciencia
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Charles Cole
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hugo de Vries
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie et medicine moléculaire, CRCHUM, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
38
|
Levy Y, Ross JA, Niglas M, Snetkov VA, Lynham S, Liao CY, Puckelwartz MJ, Hsu YM, McNally EM, Alsheimer M, Harridge SD, Young SG, Fong LG, Español Y, Lopez-Otin C, Kennedy BK, Lowe DA, Ochala J. Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight 2018; 3:120920. [PMID: 30282816 PMCID: PMC6237469 DOI: 10.1172/jci.insight.120920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023] Open
Abstract
Physiological and premature aging are frequently associated with an accumulation of prelamin A, a precursor of lamin A, in the nuclear envelope of various cell types. Here, we aimed to underpin the hitherto unknown mechanisms by which prelamin A alters myonuclear organization and muscle fiber function. By experimentally studying membrane-permeabilized myofibers from various transgenic mouse lines, our results indicate that, in the presence of prelamin A, the abundance of nuclei and myosin content is markedly reduced within muscle fibers. This leads to a concept by which the remaining myonuclei are very distant from each other and are pushed to function beyond their maximum cytoplasmic capacity, ultimately inducing muscle fiber weakness.
Collapse
Affiliation(s)
- Yotam Levy
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Marili Niglas
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Vladimir A Snetkov
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, United Kingdom
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yueh-Mei Hsu
- Buck Institute for Research on Aging, Novato, California, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Stephen Dr Harridge
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Stephen G Young
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Loren G Fong
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yaiza Español
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California, USA.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Ageing, National University Health System, Singapore.,Singapore Institute for Clinical Sciences, Singapore
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| |
Collapse
|
39
|
Kim PH, Luu J, Heizer P, Tu Y, Weston TA, Chen N, Lim C, Li RL, Lin PY, Dunn JCY, Hodzic D, Young SG, Fong LG. Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Sci Transl Med 2018; 10:eaat7163. [PMID: 30257952 PMCID: PMC6166472 DOI: 10.1126/scitranslmed.aat7163] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Hutchinson-Gilford progeria syndrome is a disorder of premature aging in children caused by de novo mutations in LMNA that lead to the synthesis of an internally truncated form of prelamin A (commonly called progerin). The production of progerin causes multiple disease phenotypes, including an unusual vascular phenotype characterized by the loss of smooth muscle cells in the arterial media and fibrosis of the adventitia. We show that progerin expression, combined with mechanical stress, promotes smooth muscle cell death. Disrupting the linker of the nucleoskeleton and cytoskeleton (LINC) complex in smooth muscle cells ameliorates the toxic effects of progerin on smooth muscle cells and limits the accompanying adventitial fibrosis.
Collapse
Affiliation(s)
- Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennings Luu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Heizer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie Chen
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Lim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Li
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Po-Yu Lin
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - James C Y Dunn
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Lacbay CM, Waller DD, Park J, Gómez Palou M, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M, Tsantrizos YS. Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. J Med Chem 2018; 61:6904-6917. [PMID: 30016091 DOI: 10.1021/acs.jmedchem.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-translational prenylation of the small GTP-binding proteins (GTPases) is vital to a plethora of biological processes, including cellular proliferation. We have identified a new class of thienopyrimidine-based bisphosphonate (ThP-BP) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) that block protein prenylation in multiple myeloma (MM) cells leading to cellular apoptosis. These inhibitors are also effective in blocking the proliferation of other types of cancer cells. We confirmed intracellular target engagement, demonstrated the mechanism of action leading to apoptosis, and determined a direct correlation between apoptosis and intracellular inhibition of hGGPPS. Administration of a ThP-BP inhibitor to a MM mouse model confirmed in vivo downregulation of Rap1A geranylgeranylation and reduction of monoclonal immunoglobulins (M-protein, a biomarker of disease burden) in the serum. These results provide the first proof-of-principle that hGGPPS is a valuable therapeutic target in oncology and more specifically for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Daniel D Waller
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Jaeok Park
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Mònica Gómez Palou
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Félix Vincent
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Xian Fang Huang
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Viviane Ta
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Michael Sebag
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada.,Division of Hematology , McGill University Health Center , Montreal , QC H4A 3J1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada.,Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| |
Collapse
|
41
|
Spear ED, Hsu ET, Nie L, Carpenter EP, Hrycyna CA, Michaelis S. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech 2018; 11:dmm.033670. [PMID: 29794150 PMCID: PMC6078402 DOI: 10.1242/dmm.033670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA. After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a ‘humanized yeast system’ to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability. Summary: The zinc metalloprotease ZMPSTE24 performs the final step of prelamin A processing. Here, a yeast-based system shows differences in protein stability and activity for alleles of ZMPSTE24 that cause progeria disease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Messner M, Ghadge SK, Goetsch V, Wimmer A, Dörler J, Pölzl G, Zaruba MM. Upregulation of the aging related LMNA splice variant progerin in dilated cardiomyopathy. PLoS One 2018; 13:e0196739. [PMID: 29702688 PMCID: PMC5922532 DOI: 10.1371/journal.pone.0196739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Background Mutations in the LMNA gene are a common cause (6–8%) of dilated cardiomyopathy (DCM) leading to heart failure, a growing health care problem worldwide. The premature aging disease Hutchinson-Gilford syndrome (HGPS) is also caused by defined mutations in the LMNA gene resulting in activation of a cryptic splice donor site leading to a defective truncated prelamin A protein called progerin. Low levels of progerin are expressed in healthy individuals associated with ageing. Here, we aimed to address the role of progerin in dilated cardiomyopathy. Methods and results mRNA expression of progerin was analyzed in heart tissue of DCM (n = 15) and non-failing hearts (n = 10) as control and in blood samples from patients with DCM (n = 56) and healthy controls (n = 10). Sequencing confirmed the expression of progerin mRNA in the human heart. Progerin mRNA levels derived from DCM hearts were significantly upregulated compared to controls (1.27 ± 0.42 vs. 0.81 ± 0.24; p = 0.005). In contrast, progerin mRNA levels in whole blood cells were not significantly different in DCM patients compared to controls. Linear regression analyses revealed that progerin mRNA in the heart is significantly negatively correlated to ejection fraction (r = -0.567, p = 0.003) and positively correlated to left ventricular enddiastolic diameter (r = 0.551, p = 0.004) but not with age of the heart per se. Progerin mRNA levels were not influenced by inflammation in DCM hearts. Immunohistochemistry and Immunofluorescence analysis confirmed increased expression of progerin protein in cell nuclei of DCM hearts associated with increased TUNEL+ apoptotic cells. Conclusion Our data suggest that progerin is upregulated in human DCM hearts and strongly correlates with left ventricular remodeling. Progerin might be involved in progression of heart failure and myocardial aging.
Collapse
Affiliation(s)
- Moritz Messner
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Santhosh Kumar Ghadge
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Valentina Goetsch
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Andreas Wimmer
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Jakob Dörler
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Gerhard Pölzl
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
| | - Marc-Michael Zaruba
- Medical University Innsbruck, Department of Internal Medicine III, Cardiology and Angiology, Innsbruck, Tirol, Austria
- * E-mail:
| |
Collapse
|
43
|
Infante A, Rodríguez CI. Secretome analysis of in vitro aged human mesenchymal stem cells reveals IGFBP7 as a putative factor for promoting osteogenesis. Sci Rep 2018; 8:4632. [PMID: 29545581 PMCID: PMC5854613 DOI: 10.1038/s41598-018-22855-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is a complex biological process, which involves multiple mechanisms with different levels of regulation. Senescent cells are known to secrete senescence-associated proteins, which exert negative influences on surrounding cells. Mesenchymal stem cells (MSCs), the common progenitors for bone, cartilage and adipose tissue (which are especially affected tissues in aging), are known to secrete a broad spectrum of biologically active proteins with both paracrine and autocrine functions in many biological processes. In this report, we have studied the secreted factors (secretome) from human MSCs (hMSCs) and hMSCs-derived adipocytes which were induced to accumulate prelamin A, the immature form of the nuclear lamina protein called Lamin A, known to induce premature aging syndromes in humans and in murine models. Proteomic analysis from two different techniques, antibody arrays and LS-MS, showed that prelamin A accumulation in hMSCs promotes the differential secretion of factors previously identified as secreted by hMSCs undergoing osteogenesis. Moreover, this secretome was able to modulate osteogenesis of normal hMSCs in vitro. Finally, we found that one of the overexpressed secreted factors of this human aging in vitro stem cell model, IGFBP-7, is an osteogenic factor, essential for the viability of hMSCs during osteogenesis.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain.
| |
Collapse
|
44
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
45
|
Ray A, Jatana N, Thukral L. Lipidated proteins: Spotlight on protein-membrane binding interfaces. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:74-84. [DOI: 10.1016/j.pbiomolbio.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/21/2023]
|
46
|
Cohen J, Torres C. HIV-associated cellular senescence: A contributor to accelerated aging. Ageing Res Rev 2017; 36:117-124. [PMID: 28017881 DOI: 10.1016/j.arr.2016.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023]
Abstract
Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities.
Collapse
|
47
|
Tu Y, Sánchez-Iglesias S, Araújo-Vilar D, Fong LG, Young SG. LMNA missense mutations causing familial partial lipodystrophy do not lead to an accumulation of prelamin A. Nucleus 2017; 7:512-521. [PMID: 27841971 DOI: 10.1080/19491034.2016.1242542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A variety of missense mutations in LMNA (the gene for lamin C and prelamin A) cause familial partial lipodystrophy (FPLD), a disease associated with reduced adipose tissue, particularly in the limbs. Several studies have reported that fibroblasts from FPLD subjects have an accumulation of prelamin A. Those findings were intriguing but also perplexing because many of the LMNA missense mutations associated with lipodystrophy are located in sequences distant from the sequences required for the farnesylation of prelamin A and ZMPSTE24-mediated conversion of prelamin A to mature lamin A. Here, we revisited the issue of prelamin A accumulation in the setting of FPLD mutations. We used western blots with lamin A/C antibodies and prelamin A-specific monoclonal antibodies to assess prelamin A levels in wild-type fibroblasts and fibroblasts carrying LMNA mutations associated with lipodystrophy (R482W, I299V, C591F, T528M). None of the mutant fibroblasts exhibited an accumulation of prelamin A. Also, the amount of prelamin A accumulation in response to lopinavir (an inhibitor of ZMPSTE24) was similar in wild-type and mutant fibroblasts. Thus, the LMNA lipodystrophy mutations that we examined did not lead to prelamin A accumulation, nor did they render those cells more susceptible to prelamin A accumulation when ZMPSTE24 was inhibited by lopinavir.
Collapse
Affiliation(s)
- Yiping Tu
- a Department of Medicine , David Geffen School of Medicine, University of California , Los Angeles , CA , USA
| | - Sofía Sánchez-Iglesias
- c UETeM-Molecular Pathology Group , IDIS-CIMUS, University of Santiago de Compostela , Galicia , Spain
| | - David Araújo-Vilar
- c UETeM-Molecular Pathology Group , IDIS-CIMUS, University of Santiago de Compostela , Galicia , Spain
| | - Loren G Fong
- a Department of Medicine , David Geffen School of Medicine, University of California , Los Angeles , CA , USA
| | - Stephen G Young
- a Department of Medicine , David Geffen School of Medicine, University of California , Los Angeles , CA , USA.,b Human Genetics , David Geffen School of Medicine, University of California , Los Angeles , CA , USA
| |
Collapse
|
48
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
49
|
Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV. Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 2016; 8:1152-1158. [PMID: 27874871 PMCID: PMC5123592 DOI: 10.1038/nchem.2591] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or non-specific binding to unintended membrane protein targets. However, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here, we use high-resolution mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloprotease ZMPSTE24. This intramembrane protease plays a major role in converting prelamin A to mature lamin A. We monitored the proteolysis of farnesylated prelamin A peptide by ZMPSTE24 and unexpectedly found retention of the C-terminal peptide product with the enzyme. We also resolved binding of zinc, lipids and HIV protease inhibitors and showed that drug binding blocked prelamin A peptide cleavage and conferred stability to ZMPSTE24. Our results not only have relevance for the progeria-like side effects of certain HIV protease inhibitor drugs, but also highlight new approaches for documenting off-target drug binding.
Collapse
Affiliation(s)
- Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Andrew Quigley
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Stephen G Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
50
|
Porter LJ, Holt MR, Soong D, Shanahan CM, Warren DT. Prelamin A Accumulation Attenuates Rac1 Activity and Increases the Intrinsic Migrational Persistence of Aged Vascular Smooth Muscle Cells. Cells 2016; 5:E41. [PMID: 27854297 PMCID: PMC5187525 DOI: 10.3390/cells5040041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) motility is essential during both physiological and pathological vessel remodeling. Although ageing has emerged as a major risk factor in the development of cardiovascular disease, our understanding of the impact of ageing on VSMC motility remains limited. Prelamin A accumulation is known to drive VSMC ageing and we show that presenescent VSMCs, that have accumulated prelamin A, display increased focal adhesion dynamics, augmented migrational velocity/persistence and attenuated Rac1 activity. Importantly, prelamin A accumulation in proliferative VSMCs, induced by depletion of the prelamin A processing enzyme FACE1, recapitulated the focal adhesion, migrational persistence and Rac1 phenotypes observed in presenescent VSMCs. Moreover, lamin A/C-depleted VSMCs also display reduced Rac1 activity, suggesting that prelamin A influences Rac1 activity by interfering with lamin A/C function at the nuclear envelope. Taken together, these data demonstrate that lamin A/C maintains Rac1 activity in VSMCs and prelamin A disrupts lamin A/C function to reduce Rac1 activity and induce migrational persistence during VSMC ageing.
Collapse
Affiliation(s)
- Lauren J Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Mark R Holt
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London SE1 1UL, UK.
| | - Daniel Soong
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
| | - Derek T Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London SE5 9NU, UK.
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|