1
|
Hasanpour-Segherlou Z, Butler AA, Candelario-Jalil E, Hoh BL. Role of the Unique Secreted Peptide Adropin in Various Physiological and Disease States. Biomolecules 2024; 14:1613. [PMID: 39766320 PMCID: PMC11674490 DOI: 10.3390/biom14121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy. In cerebrovascular diseases, adropin demonstrates protective effects by reducing blood-brain barrier permeability, brain edema, and infarct size while improving cognitive and sensorimotor functions in ischemic stroke models. The protective effects of adropin extend to preventing endothelial damage, promoting angiogenesis, and mitigating inflammation, making it a promising therapeutic target for cardiovascular and neurodegenerative diseases. This review provides a comprehensive overview of adropin's multifaceted roles in physiological and pathological conditions, as well as our recent work demonstrating adropin's role in subarachnoid hemorrhage-mediated neural injury and delayed cerebral infarction.
Collapse
Affiliation(s)
| | - Andrew A. Butler
- Department of Pharmacology and Physiological Sciences, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brian L. Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Gugliucci A. Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies. J Clin Med 2024; 13:5229. [PMID: 39274442 PMCID: PMC11396212 DOI: 10.3390/jcm13175229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis. These remnants increase when lipoprotein lipase (LPL) activity is inhibited. ApoCIII has been thoroughly studied as a chief inhibitor and therapeutic options to curb its effect are available. On top of apoCIII regulation of LPL activity, there is a more precise control of LPL in various tissues, which makes it easier to physiologically divide the TRL burden according to the body's requirements. In general, oxidative tissues such as skeletal and cardiac muscle preferentially take up lipids during fasting. Conversely, LPL activity in adipocytes increases significantly after feeding, while its activity in oxidative tissues decreases concurrently. This perspective addresses the recent improvements in our understanding of circadian LPL regulations and their therapeutic implications. Three major tissue-specific lipolysis regulators have been identified: ANGPTL3, ANGPTL4, and ANGPTL8. Briefly, during the postprandial phase, liver ANGPTL8 acts on ANGPTL3 (which is released continuously from the liver) to inhibit LPL in the heart and muscle through an endocrine mechanism. On the other hand, when fasting, ANGPTL4, which is released by adipocytes, inhibits lipoprotein lipase in adipose tissue in a paracrine manner. ANGPTL3 inhibitors may play a therapeutic role in the treatment of hypertriglyceridemia. Several approaches are under development. We look forward to future studies to clarify (a) the nature of hormonal and nutritional factors that determine ANGPTL3, 4, and 8 activities, along with what long-term impacts may be expected if their regulation is impaired pharmacologically; (b) the understanding of the quantitative hierarchy and interaction of the regulatory actions of apoCIII, apoAV, and ANGPTL on LPL activity; (c) strategies for the safe and proper treatment of postprandial lipemia; and (d) the effect of fructose restriction on ANGPTL3, ANGPTL4, and ANGPTL8.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
3
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
4
|
Watts GF, Schwabe C, Scott R, Gladding PA, Sullivan D, Baker J, Clifton P, Hamilton J, Given B, Melquist S, Zhou R, Chang T, San Martin J, Gaudet D, Goldberg IJ, Knowles JW, Hegele RA, Ballantyne CM. RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: phase 1 basket trial cohorts. Nat Med 2023; 29:2216-2223. [PMID: 37626170 PMCID: PMC10504078 DOI: 10.1038/s41591-023-02494-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/10/2023] [Indexed: 08/27/2023]
Abstract
Elevated triglycerides and non-high-density lipoprotein cholesterol (HDL-C) are risk factors for atherosclerotic cardiovascular disease (ASCVD). ARO-ANG3 is an RNA interference therapy that targets angiopoietin-like protein 3 (ANGPTL3), a regulator of lipoprotein metabolism. This first-in-human, phase 1, randomized, placebo-controlled, open-label trial investigated single and repeat ARO-ANG3 doses in four cohorts of fifty-two healthy participants and one cohort of nine participants with hepatic steatosis, part of a basket trial. Safety (primary objective) and pharmacokinetics (in healthy participants) and pharmacodynamics (secondary objectives) of ARO-ANG3 were evaluated. ARO-ANG3 was generally well tolerated, with similar frequencies of treatment-emergent adverse events in active and placebo groups. Systemic absorption of ARO-ANG3 in healthy participants was rapid and sustained, with a mean Tmax of 6.0-10.5 h and clearance from plasma within 24-48 h after dosing with a mean t½ of 3.9-6.6 h. In healthy participants, ARO-ANG3 treatment reduced ANGPTL3 (mean -45% to -78%) 85 days after dose. Reductions in triglyceride (median -34% to -54%) and non-HDL-C (mean -18% to -29%) (exploratory endpoints) concentrations occurred with the three highest doses. These early-phase data support ANGPTL3 as a potential therapeutic target for ASCVD treatment. ClinicalTrials.gov identifier: NCT03747224.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.
| | | | - Russell Scott
- New Zealand Clinical Research Christchurch, Christchurch, New Zealand
| | | | - David Sullivan
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - John Baker
- Middlemore Hospital, Auckland, New Zealand
| | - Peter Clifton
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Bruce Given
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, USA
| | | | - Rong Zhou
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, USA
| | - Ting Chang
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA, USA
| | | | - Daniel Gaudet
- Department of Medicine, Université de Montréal and ECOGENE 21 Clinical Research Center, Chicoutimi, Quebec, Canada
| | - Ira J Goldberg
- NYU School of Medicine, NYU Langone Health, New York City, NY, USA
| | - Joshua W Knowles
- Stanford Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
5
|
Damaiyanti DW, Tsai ZY, Masbuchin AN, Huang CY, Liu PY. Interplay between fish oil, obesity and cardiometabolic diabetes. J Formos Med Assoc 2023:S0929-6646(23)00098-0. [DOI: 10.1016/j.jfma.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
|
6
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
7
|
Ward NC, Chan DC, Watts GF. A Tale of Two New Targets for Hypertriglyceridaemia: Which Choice of Therapy? BioDrugs 2022; 36:121-135. [PMID: 35286660 PMCID: PMC8986672 DOI: 10.1007/s40259-022-00520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are novel metabolic targets for correcting hypertriglyceridaemia (HTG). As a background to their potential clinical use, we review the metabolic aetiology of HTG, particular abnormalities in triglyceride-rich lipoproteins (TRLs) and their role in atherosclerotic cardiovascular disease (ASCVD) and acute pancreatitis. Molecular and cardiometabolic aspects of ANGPTL3 and apoC-III, as well as inhibition of these targets with monoclonal antibody and nucleic acid therapies, are summarized as background information to descriptions and analyses of recent clinical trials. These studies suggest that ANGPTL3 and apoC-III inhibitors are equally potent in lowering elevated plasma triglycerides and TRLs across a wide range of concentrations, with possibly greater efficacy with inhibition of apoC-III. ANGPTL3 inhibition may, however, have the advantage of greater lowering of plasma LDL cholesterol and could specifically address elevated LDL cholesterol in familial hypercholesterolaemia refractory to standard drug therapies. Large clinical outcome trials in relevant populations are still required to confirm the long-term efficacy, safety and cost effectiveness of these potent agents for mitigating the complications of HTG. Beyond targeting severe chylomicronaemia in the prevention of acute pancreatitis, both agents could be useful in addressing residual risk of ASCVD due to TRLs in patients receiving best standard of care, including behavioural modifications, statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 inhibitors.
Collapse
Affiliation(s)
- Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia.,Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia. .,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, WA, Australia.
| |
Collapse
|
8
|
Hu B, Li B, Li K, Liu Y, Li C, Zheng L, Zhang M, Yang T, Guo S, Dong X, Zhang T, Liu Q, Hussain A, Weng Y, Peng L, Zhao Y, Liang XJ, Huang Y. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. SCIENCE ADVANCES 2022; 8:eabm1418. [PMID: 35171673 PMCID: PMC8849333 DOI: 10.1126/sciadv.abm1418] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/22/2021] [Indexed: 05/19/2023]
Abstract
Small interfering RNA (siRNA) therapeutic is considered to be a promising modality for the treatment of hyperlipidemia. Establishment of a thermostable clinically applicable delivery system remains a most challenging issue for siRNA drug development. Here, a series of ionizable lipid-like materials were rationally designed; 4 panels of lipid formulations were fabricated and evaluated on the basis of four representative structures. The lead lipid (A1-D1-5) was stable at 40°C, and the optimized formulation (iLAND) showed dose and time dual-dependent gene silencing pattern with median effective dose of 0.18 mg/kg. In addition, potent and durable reduction of serum cholesterol and triglyceride were achieved by administering siRNAs targeting angiopoietin-like 3 or apolipoprotein C3 (APOC3) in high-fat diet-fed mice, db/db mice, and human APOC3 transgenic mice, respectively, accompanied by displaying ideal safety profiles. Therefore, siRNA@iLAND prepared with thermostable A1-D1-5 demonstrates substantial value for siRNA delivery, hyperlipidemia therapy, and prevention of subsequent metabolic diseases.
Collapse
Affiliation(s)
- Bo Hu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyuan Liu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chunhui Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lulu Zheng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tongren Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiyu Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tian Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Peng
- Aix-Marseille Université, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, CNRS, Marseille, France
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, 530021 Guangxi, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
10
|
Butler AA, Havel PJ. Adropin and insulin resistance: Integration of endocrine, circadian, and stress signals regulating glucose metabolism. Obesity (Silver Spring) 2021; 29:1799-1801. [PMID: 34549523 PMCID: PMC8570992 DOI: 10.1002/oby.23249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of hepatic glucose production (HGP) and glucose disposal leads to hyperglycemia and type 2 diabetes. Hyperglycemia results from the declining ability of insulin to reduce HGP and increase glucose disposal, as well as inadequate ß-cell compensation for insulin resistance. Hyperglucagonemia resulting from reduced suppression of glucagon secretion by insulin contributes to hyperglycemia by stimulating HGP. The actions of pancreatic hormones are normally complemented by peptides secreted by cells distributed throughout the body. This regulatory network has provided new therapeutics for obesity and type 2 diabetes (e.g., glucagon-like peptide 1). Other peptide hormones under investigation show promise in preclinical studies. Recent experiments using mice and nonhuman primates indicate the small secreted peptide hormone adropin regulates glucose metabolism. Here, recent expression profiling data indicating hepatic adropin expression increases with oxidative stress and declines with fasting or in the presence of hepatic insulin resistance and how adropin interacts with the pancreatic hormones, insulin, and glucagon to modulate glycemic control are discussed.
Collapse
Affiliation(s)
- Andrew A. Butler
- Department of Pharmacology & Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Ling P, Zheng X, Luo S, Ge J, Xu S, Weng J. Targeting angiopoietin-like 3 in atherosclerosis: From bench to bedside. Diabetes Obes Metab 2021; 23:2020-2034. [PMID: 34047441 DOI: 10.1111/dom.14450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the largest cause of morbidity and mortality worldwide. Lipid-lowering therapies are the current major cornerstone of ASCVD management. Statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors effectively reduce the plasma low-density lipoprotein cholesterol (LDL-C) level in most individuals at risk of atherosclerosis. Still, some patients (such as those with homozygous familial hypercholesterolaemia), who do not respond to standard therapies, and other patients who cannot take these agents, remain at a high risk of ASCVD. In recent years there has been tremendous progress in understanding the mechanism and efficacy of lipid-lowering strategies. Apart from the recently approved PCSK9 and ATP citrate lyase inhibitors, angiopoietin-like 3 (ANGPTL3) is another potential target for the treatment of dyslipidaemia and its clinical sequalae of atherosclerosis. ANGPTL3 is a pivotal modulator of plasma triglycerides (TG), LDL-C and high-density lipoprotein cholesterol (HDL-C) levels, achieved by inhibiting the activities of lipoprotein lipase and endothelial lipase. Familial combined hypolipidaemia is derived from the Angptl3 loss-of-function mutations, which leads to low levels of LDL-C, HDL-C and TG, and has a 34% decreased risk of ASCVD compared with non-carriers. To date, monoclonal antibodies (evinacumab) and antisense oligonucleotides against ANGPTL3 have been investigated in clinical trials for dyslipidaemia therapy. Herein, we review the biology and function of ANGPTL3, as well as the latest developments of ANGPTL3-targeted therapies. We also summarize evidence from basic research to clinical trials, with the aim of providing novel insights into the biological functions of ANGPTL3 and related targeted therapies.
Collapse
Affiliation(s)
- Ping Ling
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junbo Ge
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Cardiology, Zhong Shan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Gutierrez JA, Liu W, Perez S, Xing G, Sonnenberg G, Kou K, Blatnik M, Allen R, Weng Y, Vera NB, Chidsey K, Bergman A, Somayaji V, Crowley C, Clasquin MF, Nigam A, Fulham MA, Erion DM, Ross TT, Esler WP, Magee TV, Pfefferkorn JA, Bence KK, Birnbaum MJ, Tesz GJ. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol Metab 2021; 48:101196. [PMID: 33667726 PMCID: PMC8050029 DOI: 10.1016/j.molmet.2021.101196] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Recent studies suggest that excess dietary fructose contributes to metabolic dysfunction by promoting insulin resistance, de novo lipogenesis (DNL), and hepatic steatosis, thereby increasing the risk of obesity, type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH), and related comorbidities. Whether this metabolic dysfunction is driven by the excess dietary calories contained in fructose or whether fructose catabolism itself is uniquely pathogenic remains controversial. We sought to test whether a small molecule inhibitor of the primary fructose metabolizing enzyme ketohexokinase (KHK) can ameliorate the metabolic effects of fructose. Methods The KHK inhibitor PF-06835919 was used to block fructose metabolism in primary hepatocytes and Sprague Dawley rats fed either a high-fructose diet (30% fructose kcal/g) or a diet reflecting the average macronutrient dietary content of an American diet (AD) (7.5% fructose kcal/g). The effects of fructose consumption and KHK inhibition on hepatic steatosis, insulin resistance, and hyperlipidemia were evaluated, along with the activation of DNL and the enzymes that regulate lipid synthesis. A metabolomic analysis was performed to confirm KHK inhibition and understand metabolite changes in response to fructose metabolism in vitro and in vivo. Additionally, the effects of administering a single ascending dose of PF-06835919 on fructose metabolism markers in healthy human study participants were assessed in a randomized placebo-controlled phase 1 study. Results Inhibition of KHK in rats prevented hyperinsulinemia and hypertriglyceridemia from fructose feeding. Supraphysiologic levels of dietary fructose were not necessary to cause metabolic dysfunction as rats fed the American diet developed hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis, which were all reversed by KHK inhibition. Reversal of the metabolic effects of fructose coincided with reductions in DNL and inactivation of the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP). We report that administering single oral doses of PF-06835919 was safe and well tolerated in healthy study participants and dose-dependently increased plasma fructose indicative of KHK inhibition. Conclusions Fructose consumption in rats promoted features of metabolic dysfunction seen in metabolic diseases such as T2D and NASH, including insulin resistance, hypertriglyceridemia, and hepatic steatosis, which were reversed by KHK inhibition. PF-06835919 is a potent inhibitor of fructose metabolism in rats and humans. Rats fed fructose at levels consistent with the typical American diet develop hyperinsulinemia, hyperlipidemia and steatosis. KHK inhibition reverses fructose-induced metabolic dysfunction by blocking ChREBP activation. Due to the global dietary prevalence of fructose, KHK inhibition is a potential pharmacotherapy for metabolic diseases.
Collapse
Affiliation(s)
- Jemy A Gutierrez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Wei Liu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Sylvie Perez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gang Xing
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gabriele Sonnenberg
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kou Kou
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Matt Blatnik
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340 USA
| | - Richard Allen
- Quantitative Systems Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Yan Weng
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kristin Chidsey
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Arthur Bergman
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Veena Somayaji
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Collin Crowley
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Michelle F Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Anu Nigam
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Melissa A Fulham
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Derek M Erion
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Thomas V Magee
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gregory J Tesz
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA.
| |
Collapse
|
13
|
Ruhanen H, Haridas PAN, Jauhiainen M, Olkkonen VM. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158791. [PMID: 32777482 DOI: 10.1016/j.bbalip.2020.158791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
14
|
Banerjee S, Ghoshal S, Stevens JR, McCommis KS, Gao S, Castro-Sepulveda M, Mizgier ML, Girardet C, Kumar KG, Galgani JE, Niehoff ML, Farr SA, Zhang J, Butler AA. Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. J Biol Chem 2020; 295:13753-13768. [PMID: 32727846 DOI: 10.1074/jbc.ra120.014381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.
Collapse
Affiliation(s)
- Subhashis Banerjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarbani Ghoshal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Joseph R Stevens
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri USA
| | - Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Mauricio Castro-Sepulveda
- Laboratorio de Ciencias del Ejercicio. Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Maria L Mizgier
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - K Ganesh Kumar
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Jose E Galgani
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael L Niehoff
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Susan A Farr
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|