1
|
Zhao Y, Fent K. Endogenous hormones matters in evaluation of endocrine disruptive effects mediated by nuclear receptors. ECO-ENVIRONMENT & HEALTH 2024; 3:257-259. [PMID: 39220231 PMCID: PMC11364016 DOI: 10.1016/j.eehl.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024]
Abstract
Image 1.
Collapse
Affiliation(s)
- Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland
| |
Collapse
|
2
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
3
|
Shaw K, Lu C, Liu X, Trudeau VL. Arginine vasopressin injection rescues delayed oviposition in cyp19a1b-/- mutant female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1308675. [PMID: 38144569 PMCID: PMC10739748 DOI: 10.3389/fendo.2023.1308675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
In zebrafish, estrogens produced in the ovaries via Cyp19a1a activity are required for both sexual differentiation of the ovary during early development as well as maintenance of the ovarian state during adulthood. The importance of Cyp19a1b that is highly expressed in the brain for female reproduction is still under study. We previously reported that female cyp19a1b -/- mutant zebrafish have significantly lower brain estradiol levels and impaired spawning behavior characterized by an increased latency to oviposition during dyadic sexual behavior encounters. In the current study, we provide evidence that the delayed oviposition in female cyp19a1b -/- mutants is linked to impaired arginine vasopressin (Avp) signaling. Droplet digital PCR experiments revealed that levels of the estrogen receptors, avp, and oxytocin (oxt) are lower in the hypothalamus of mutant females compared to wildtype fish. We then used acute intraperitoneal injections of Avp and Oxt, along with mixtures of their respective receptor antagonists, to determine that Avp can uniquely rescue the delayed oviposition in female cyp19a1b -/- mutants. Using immunohistochemistry, we demonstrated that Cyp19a1b-expressing radial glial cell (RGC) fibers surround and are in contact with Avp-immunopositive neurons in the preoptic areas of the brain. This could provide the neuroanatomical proximity for RGC-derived estrogens to diffuse to and activate estrogen receptors and regulate avp expression levels. Together these findings identify a positive link between Cyp19a1b and Avp for female zebrafish sexual behavior. They also suggest that the female cyp19a1b -/- mutant behavioral phenotype is likely a consequence of impaired processing of Avp-dependent social cues important for mate identification and assessment.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
4
|
Sullivan O, Ciernia AV. Work hard, play hard: how sexually differentiated microglia work to shape social play and reproductive behavior. Front Behav Neurosci 2022; 16:989011. [PMID: 36172465 PMCID: PMC9510374 DOI: 10.3389/fnbeh.2022.989011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Microglia are brain-resident immune cells that play a critical role in synaptic pruning and circuit fine-tuning during development. In the adult brain, microglia actively survey their local environment and mobilize inflammatory responses to signs of damage or infection. Sex differences in microglial gene expression and function across the lifespan have been identified, which play a key role in shaping brain function and behavior. The levels of sex hormones such as androgens, estrogens, and progesterone vary in an age-dependent and sex-dependent manner. Microglia respond both directly and indirectly to changes in hormone levels, altering transcriptional gene expression, morphology, and function. Of particular interest is the microglial function in brain regions that are highly sexually differentiated in development such as the amygdala as well as the pre-optic and ventromedial hypothalamic regions. With a focus on hormone-sensitive developmental windows, this review compares male and female microglia in the embryonic, developing, and adult brain with a particular interest in the influence of sex hormones on microglial wiring of social, reproductive, and disordered behavior circuits in the brain.
Collapse
Affiliation(s)
- Olivia Sullivan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
6
|
Adult Neural Plasticity in Naked Mole-Rats: Implications of Fossoriality, Longevity and Sociality on the Brain's Capacity for Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:105-135. [PMID: 34424514 DOI: 10.1007/978-3-030-65943-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) are small African rodents that have many unique behavioral and physiological adaptations well-suited for testing hypotheses about mammalian neural plasticity. In this chapter, we focus on three features of naked mole-rat biology and how they impact neural plasticity in this species: (1) their fossorial lifestyle, (2) their extreme longevity with a lack of demonstrable senescence, and (3) their unusual social structure. Critically, each of these features requires some degree of biological flexibility. First, their fossorial habitat situates them in an environment with characteristics to which the central nervous system is particularly sensitive (e.g., oxygen content, photoperiod, spatial complexity). Second, their long lifespan requires adaptations to combat senescence and declines in neural functioning. Finally, their extreme reproductive skew and sustained ability for release from reproductive suppression indicates remarkable neural sensitivity to the sociosexual environment that is distinct from chronological age. These three features of naked mole-rat life are not mutually exclusive, but they do each offer unique considerations for the possibilities, constraints, and mechanisms associated with adult neural plasticity.
Collapse
|
7
|
Estradiol Increases Microglial Response to Lipopolysaccharide in the Ventromedial Hypothalamus during the Peripubertal Sensitive Period in Female Mice. eNeuro 2020; 7:ENEURO.0505-19.2020. [PMID: 32554430 PMCID: PMC7333979 DOI: 10.1523/eneuro.0505-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Sensitive periods are times of development during which the effects of experience are unusually strong and long lasting. The peripubertal period has emerged as one such sensitive period, and a single administration of lipopolysaccharide (LPS) during this time reduces hormone-induced sexual behavior in adult female mice. During periods of high synaptic turnover, maturation, and elimination, as occurs during this sensitive period, microglia are particularly active. Estradiol also regulates microglial numbers, morphology, and activation. In addition, a good deal of evidence suggests that estradiol may confer this vulnerability to the effects of a stressor during the peripubertal period. Therefore, we investigated the effects of estradiol on microglial morphology, cytokine levels, and the sickness response to LPS. Estradiol levels were manipulated by implanting an estradiol-filled SILASTIC capsule (or oil-filled control) in ovariectomized mice or by administering the aromatase inhibitor, formestane (or oil control), to ovary-intact mice. We found that (1) estradiol elevates basal microglial Iba1 immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), (2) LPS induces higher levels of proinflammatory cytokines in the presence of estradiol, and (3) LPS causes hypothermia in the presence of estradiol. Taken together, these data suggest that estradiol enhances the effect of LPS during the pubertal sensitive period.
Collapse
|
8
|
Wang Y, Wu H, Sun ZS. The biological basis of sexual orientation: How hormonal, genetic, and environmental factors influence to whom we are sexually attracted. Front Neuroendocrinol 2019; 55:100798. [PMID: 31593707 DOI: 10.1016/j.yfrne.2019.100798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Humans develop relatively stable attractions to sexual partners during maturation and present a spectrum of sexual orientation from homosexuality to heterosexuality encompassing varying degrees of bisexuality, with some individuals also displaying asexuality. Sexual orientation represents a basic life phenomenon for humans. However, the molecular mechanisms underlying these diverse traits of sexual orientation remain highly controversial. In this review, we systematically discuss recent advancements in sexual orientation research, including those related to measurements and associated brain regions. Current findings regarding sexual orientation modulation by hormonal, genetic, maternal immune system, and environmental factors are summarized in both human and model systems. We also emphasize that future studies should recognize the differences between males and females and pay more attention to minor traits and the epigenetic regulation of sexual orientation. A comprehensive view of sexual orientation may promote our understanding of the biological basis of sex, and that of human reproduction, and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoda Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Dodd LD, Nowak E, Lange D, Parker CG, DeAngelis R, Gonzalez JA, Rhodes JS. Active feminization of the preoptic area occurs independently of the gonads in Amphiprion ocellaris. Horm Behav 2019; 112:65-76. [PMID: 30959023 DOI: 10.1016/j.yhbeh.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
Sex differences in the anatomy and physiology of the vertebrate preoptic area (POA) arise during development, and influence sex-specific reproductive functions later in life. Relative to masculinization, mechanisms for feminization of the POA are not well understood. The purpose of this study was to induce sex change from male to female in the anemonefish Amphiprion ocellaris, and track the timing of changes in POA cytoarchitecture, composition of the gonads and circulating sex steroid levels. Reproductive males were paired together and then sampled after 3 weeks, 6 months, 1 year and 3 years. Results show that as males change sex into females, number of medium cells in the anterior POA (parvocellular region) approximately double to female levels over the course of several months to 1 year. Feminization of gonads, and plasma sex steroids occur independently, on a variable timescale, up to years after POA sex change has completed. Findings suggest the process of POA feminization is orchestrated by factors originating from within the brain as opposed to being cued from the gonads, consistent with the dominant hypothesis in mammals. Anemonefish provide an opportunity to explore active mechanisms responsible for female brain development in an individual with male gonads and circulating sex steroid levels.
Collapse
Affiliation(s)
- Logan D Dodd
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Ewelina Nowak
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Dominica Lange
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Coltan G Parker
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Ross DeAngelis
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Jose A Gonzalez
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Matsuzaki T, Munkhzaya M, Iwasa T, Tungalagsuvd A, Yano K, Mayila Y, Yanagihara R, Tokui T, Kato T, Kuwahara A, Matsui S, Irahara M. Prenatal undernutrition suppresses sexual behavior in female rats. Gen Comp Endocrinol 2018; 269:46-52. [PMID: 30099033 DOI: 10.1016/j.ygcen.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
Infectious, psychological and metabolic stresses in the prenatal and early neonatal period induce long-lasting effects in physiological function and increase the risk of metabolic disorders later in life. We examined the sexual behavior of female rats that were subjected to undernutrition in the prenatal period. Eight pregnant rats were divided into two groups: a maternal normal nutrition group (mNN; n = 4) and a maternal undernutrition group (mUN; n = 4), which received 50% of the daily food intake amount of the mNN group from gestation day 13 to delivery. Nine and seven female offspring were randomly selected from the mNN and mUN groups, respectively. Vaginal opening (VO), estrous cycle length, sexual behavior and mRNA expression levels of the factors that regulate sexual behavior were observed. In the mUN group, VO day was later, the estrous cycle was longer, and the lordosis quotient and lordosis rating were lower than in the mNN group; such differences were not seen in other sexual performances, such as ear wiggles, darts, kick bouts and box. The hypothalamic mRNA expression level of progesterone receptor (PR) A + B and oxytocin (OT) were significantly lower in the mUN group than in the mNN group. These findings indicated that prenatal undernutrition disrupted puberty onset, the estrous cycle, sexual behavior and hypothalamic mRNA expression of PR and OT in female rat pups.
Collapse
Affiliation(s)
- Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan; Department of Gynecology, The First Maternity Hospital of Mongolia, Peace Avenue, 1st khoroo, Sukhbaatar District, Ulaanbaatar 14210, Mongolia
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan; Division of Obstetrics and Gynecology, National Center for Maternal and Child Health, Khuvisgalchid Street, Bayangol District, Ulaanbaatar 160660, Mongolia
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takako Tokui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Sumika Matsui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15. Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
11
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
McCarthy MM, Herold K, Stockman SL. Fast, furious and enduring: Sensitive versus critical periods in sexual differentiation of the brain. Physiol Behav 2018; 187:13-19. [PMID: 29101011 PMCID: PMC5844806 DOI: 10.1016/j.physbeh.2017.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022]
Abstract
Understanding critical periods in brain development and how they impact adult functioning is a primary goal of neuroscience. The sexual differentiation of the brain is a unique critical period in that it is initiated by endogenous production of a critical signaling molecule in only one sex, testosterone in fetal males. Females, by contrast, do not produce testosterone but are highly responsive to it and remain sensitive to its masculinizing effects well past the close of the critical period in males. Compared to other well characterized critical periods, such as those for the visual system or barrel cortex, the masculinization of the brain is telescoped into a few short days and initiated prenatally. The slightly longer and postnatal sensitive period in females provides a valuable tool for understanding this challenging but fundamental developmental process.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States.
| | - Kevin Herold
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States
| | - Sara L Stockman
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore ST, Baltimore, MD 21201, United States
| |
Collapse
|
13
|
Abstract
Social interactions are often powerful drivers of learning. In female mice, mating creates a long-lasting sensory memory for the pheromones of the stud male that alters neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates of pheromonal learning, however, remain unclear. We examined local circuit changes in the accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness, suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed in the MC ensembles activated by the stud male, consistent with formation of memories for specific individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may act to filter sustained or repetitive sensory signals. DOI:http://dx.doi.org/10.7554/eLife.25421.001 To navigate social situations, humans and other animals need to remember who they have interacted with and how it went, and adjust their behavior in future encounters accordingly. For example, your physical actions, and even your body’s physiological responses, will be very different when you encounter the last person you kissed instead of the last person you fought with (assuming this is not the same person!). Memories of social interactions can have dramatic consequences. For instance, male mice often kill the offspring of other males. Female mice appear to have adopted a countermeasure to avoid losing a litter of pups to such aggression: they will spontaneously abort a pregnancy when exposed to chemicals called pheromones from unfamiliar males. However, when the female mouse is exposed to the pheromones of the male she mated with she maintains her pregnancy. Exactly how the memories of previous social interactions with the males affect the female’s pheromone responses is not fully understood. To investigate how the female is able to respond differently to different males, Gao et al. recorded the activity of individual neurons taken from the brain tissue of female mice who had recently mated. The recordings showed that previous social experiences produce learning-related changes in the brain of the female mouse that reduce how sensitively pheromone-detecting neurons respond to the chemical cues of the male mate. This suppresses the signals that the neurons would otherwise send to trigger an abortion in response to male pheromones. Gao et al. also used fluorescent tags to identify which neurons in the female’s brain had been activated during mating. This revealed that only those neurons that had been activated by the mate become unresponsive when the cells again encountered his pheromones. This suggests that a set of neurons in the female’s brain records the chemical ‘fingerprint’ of the mate, and can then selectively filter out that mate’s pheromone signals. Many other social interactions, such as parenting, are also strongly shaped by experience. The results presented by Gao et al. may therefore offer wider lessons for understanding how the brain targets different behaviors toward specific individuals. It will also be important to investigate how highly arousing experiences cause such powerful memories to form. This could ultimately help us to better understand – and potentially treat – conditions like post-traumatic stress disorder. DOI:http://dx.doi.org/10.7554/eLife.25421.002
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biology, Boston University, Boston, United States
| | - Carl Budlong
- Department of Biology, Boston University, Boston, United States
| | - Emily Durlacher
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, United States
| | - Ian G Davison
- Department of Biology, Boston University, Boston, United States
| |
Collapse
|
14
|
Meerts SH, Anderson KS, Farry-Thorn ME, Johnson EG, Taxier L. Prepubertal ovariectomy modulates paced mating behavior but not sexual preference or conditioned place preference for mating in female rats. Physiol Behav 2017; 171:142-148. [PMID: 28082246 DOI: 10.1016/j.physbeh.2017.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/07/2017] [Indexed: 11/24/2022]
Abstract
The present study investigated whether the presence or absence of peripubertal ovarian hormones affects sexual preference and conditioned place preference for paced mating in adult female rats primed with 10μg estradiol benzoate and 1mg progesterone. Ovariectomy (OVX) occurred either before or after pubertal development, and 4weeks later rats began a series of behavioral tests. Rats with ovaries removed before the pubertal timeframe (Prepubertal OVX) were more active, more likely to withdrawal from the male compartment, and did not discriminate between mounts and intromissions during paced mating relative to rats with ovaries during puberty (Adult OVX). Both Adult OVX and Prepubertal OVX rats showed a higher preference for the male when hormone primed vs. oil treated and a conditioned place preference for paced mating behavior. The results of the present study demonstrate that some, but not all, aspects of female sexual behavior require ovarian hormones during puberty.
Collapse
Affiliation(s)
- Sarah H Meerts
- Department of Psychology, Carleton College, Northfield, MN 55057, United States.
| | - Kelly S Anderson
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Molly E Farry-Thorn
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Elliott G Johnson
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| | - Lisa Taxier
- Department of Psychology, Carleton College, Northfield, MN 55057, United States
| |
Collapse
|
15
|
Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation. Sex Med Rev 2017; 5:5-19. [DOI: 10.1016/j.sxmr.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 01/14/2023]
|
16
|
Brus M, Trouillet AC, Hellier V, Bakker J. Estradiol-induced neurogenesis in the female accessory olfactory bulb is required for the learning of the male odor. J Neurochem 2016; 138:457-68. [PMID: 27216894 DOI: 10.1111/jnc.13677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/20/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023]
Abstract
Odors processed by the main and accessory olfactory bulbs (MOB, AOB) are important for sexual behavior. Interestingly, both structures continue to receive new neurons during adulthood. A role for olfactory neurogenesis in sexual behavior in female mice has recently been shown and gonadal hormones such as estradiol can modulate adult neurogenesis. Therefore, we wanted to determine the role of estradiol in learning the odors of sexual partners and in the adult neurogenesis of female aromatase knockout mice (ArKO), unable to produce estradiol. Female wild-type (WT) and ArKO mice were exposed to male odors during 7 days, and olfactory preferences, cell proliferation, cell survival and functional involvement of newborn neurons were analyzed, using BrdU injections, in combination with a marker of cell activation (Zif268) and neuronal fate (doublecortin, NeuN). Behavioral tasks indicated that both WT and ArKO females were able to discriminate between the odors of two different males, but ArKO mice failed to learn the familiar male odor. Proliferation of newborn cells was reduced in ArKO mice only in the dentate gyrus of the hippocampus. Olfactory exposure decreased cell survival in the AOB in WT females, suggesting a role for estradiol in a structure involved in sexual behavior. Finally, newborn neurons do not seem to be functionally involved in the AOB of ArKO mice compared with WT, when females were exposed to the odor of a familiar male, suggesting that estradiol-induced neurogenesis in the AOB is required for the learning of the male odor in female mice. Aromatase knockout mice (ArKO) presented deficits in olfactory preferences without affecting their olfactory discrimination abilities, and showed no functional involvement of newborn neurons in the accessory olfactory bulb (AOB) in response to the odor of a familiar male. These results suggest that estradiol-induced neurogenesis in the female AOB is required for the learning of the male odor.
Collapse
Affiliation(s)
- Maïna Brus
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Anne-Charlotte Trouillet
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Vincent Hellier
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Bayless DW, Shah NM. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150109. [PMID: 26833830 DOI: 10.1098/rstb.2015.0109] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/12/2022] Open
Abstract
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Swift-Gallant A, Mo K, Peragine DE, Monks DA, Holmes MM. Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber. Biol Sex Differ 2015; 6:31. [PMID: 26693002 PMCID: PMC4676092 DOI: 10.1186/s13293-015-0050-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Naked mole-rats are eusocial mammals, living in large colonies with a single breeding female and 1-3 breeding males. Breeders are socially dominant, and only the breeders exhibit traditional sex differences in circulating gonadal steroid hormones and reproductive behaviors. Non-reproductive subordinates also fail to show sex differences in overall body size, external genital morphology, and non-reproductive behaviors. However, subordinates can transition to breeding status if removed from their colony and housed with an opposite-sex conspecific, suggesting the presence of latent sex differences. Here, we assessed the expression of steroid hormone receptor and aromatase messenger RNA (mRNA) in the brains of males and females as they transitioned in social and reproductive status. METHODS We compared in-colony subordinates to opposite-sex subordinate pairs that were removed from their colony for either 1 day, 1 week, 1 month, or until they became breeders (i.e., produced a litter). Diencephalic tissue was collected and mRNA of androgen receptor (Ar), estrogen receptor alpha (Esr1), progesterone receptor (Pgr), and aromatase (Cyp19a1) was measured using qPCR. Testosterone, 17β-estradiol, and progesterone from serum were also measured. RESULTS As early as 1 week post-removal, males exhibited increased diencephalic Ar mRNA and circulating testosterone, whereas females had increased Cyp19a1 mRNA in the diencephalon. At 1 month post-removal, females exhibited increased 17β-estradiol and progesterone. The largest changes in steroid hormone receptors were observed in breeders. Breeding females had a threefold increase in Cyp19a1 and fivefold increases in Esr1 and Pgr, whereas breeding males had reduced Pgr and increased Ar. CONCLUSIONS These data demonstrate that sex differences in circulating gonadal steroids and hypothalamic gene expression emerge weeks to months after subordinate animals are removed from reproductive suppression in their home colony.
Collapse
Affiliation(s)
- Ashlyn Swift-Gallant
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Kaiguo Mo
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Deane E Peragine
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - D Ashley Monks
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada ; Department of Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3 Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada ; Department of Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3 Canada ; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| |
Collapse
|
19
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
20
|
Takeuchi A, Okubo K. Post-proliferative immature radial glial cells female-specifically express aromatase in the medaka optic tectum. PLoS One 2013; 8:e73663. [PMID: 24019933 PMCID: PMC3760802 DOI: 10.1371/journal.pone.0073663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/21/2013] [Indexed: 11/24/2022] Open
Abstract
Aromatase, the key enzyme responsible for estrogen biosynthesis, is present in the brain of all vertebrates. Much evidence has accumulated that aromatase is highly and exclusively expressed in proliferating mature radial glial cells in the brain of teleost fish even in adulthood, unlike in other vertebrates. However, the physiological significance of this expression remains unknown. We recently found that aromatase is female-specifically expressed in the optic tectum of adult medaka fish. In the present study, we demonstrated that, contrary to the accepted view of the teleost brain, female-specific aromatase-expressing cells in the medaka optic tectum represent a transient subset of post-proliferative immature radial glial cells in the neural stem cell lineage. This finding led us to hypothesize that female-specific aromatase expression and consequent estrogen production causes some sex difference in the life cycle of tectal cells. As expected, the female tectum exhibited higher expression of genes indicative of cell proliferation and radial glial maturation and lower expression of an anti-apoptotic gene than did the male tectum, suggesting a female-biased acceleration of the cell life cycle. Complicating the interpretation of this result, however, is the additional observation that estrogen administration masculinized the expression of these genes in the optic tectum, while simultaneously stimulating aromatase expression. Taken together, these results provide evidence that a unique subpopulation of neural stem cells female-specifically express aromatase in the optic tectum and suggest that this aromatase expression and resultant estrogen synthesis have an impact on the life cycle of tectal cells, whether stimulatory or inhibitory.
Collapse
Affiliation(s)
- Akio Takeuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Cunningham RL, Lumia AR, McGinnis MY. Androgenic anabolic steroid exposure during adolescence: ramifications for brain development and behavior. Horm Behav 2013; 64:350-6. [PMID: 23274699 PMCID: PMC3633688 DOI: 10.1016/j.yhbeh.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Puberty is a critical period for brain maturation that is highly dependent on gonadal sex hormones. Modifications in the gonadal steroid environment, via the use of anabolic androgenic steroids (AAS), have been shown to affect brain development and behavior. Studies in both humans and animal models indicate that AAS exposure during adolescence alters normal brain remodeling, including structural changes and neurotransmitter function. The most commonly reported behavioral effect is an increase in aggression. Evidence has been presented to identify factors that influence the effect of AAS on the expression of aggression. The chemical composition of the AAS plays a major role in determining whether aggression is displayed, with testosterone being the most effective. The hormonal context, the environmental context, physical provocation and the perceived threat during the social encounter have all been found to influence the expression of aggression and sexual behavior. All of these factors point toward an altered behavioral state that includes an increased readiness to respond to a social encounter with heightened vigilance and enhanced motivation. This AAS-induced state may be defined as emboldenment. The evidence suggests that the use of AAS during this critical period of development may increase the risk for maladaptive behaviors along with neurological disorders.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107 USA.
| | | | | |
Collapse
|
22
|
McCarthy MM. Sexual differentiation of the brain in man and animals: of relevance to Klinefelter syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:3-15. [PMID: 23335108 DOI: 10.1002/ajmg.c.31351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing brain is highly sensitive to the organizing effects of steroids of gonadal origin in a process referred to as sexual differentiation. Early hormone effects prime the brain for adult sensitivity to the appropriate hormonal milieu, maximizing reproductive fitness via coordinated physiology and behavior. Animal models, in particular rodents, have provided insight into general principles and the cellular and molecular mechanisms of brain differentiation. Cellular endpoints influenced by steroids in the developing brain include neurogenesis, migration, apoptosis, dendritic growth, and synaptic patterning. Important roles for prostaglandins, endocanabinoids, and epigenetics are among the many cellular mediators of hormonal organization. Transference of general principles of brain sexual differentiation to humans relies on observations of individuals with genetic anomalies that either increase or decrease hormone exposure and sensitivity. The physiology and behavior of individuals with XXY (Klinefelter syndrome) has not been considered in the context of sexual differentiation of the brain, most likely due to the delay in diagnoses and highly variable presentation. The behavioral phenotype and impairments in the domains of speech and language that are characteristic of individuals with XXY is consistent with the reduced androgen production associated with the syndrome. Hormone replacement appears effective in restoring some deficits and impact may be further improved by increased understanding of the hormonally mediated sexual differentiation of the brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
23
|
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33:425-46. [PMID: 22983088 PMCID: PMC3496013 DOI: 10.1016/j.yfrne.2012.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, Belgium.
| | | | | |
Collapse
|
24
|
Abstract
Neural steroids, as well as the enzymes that produce these hormones, are important for sexual differentiation of the brain during development. Aromatase converts testosterone into oestradiol. 5α-reductase converts testosterone to 5α-dihydrotestosterone and occurs in two isozymes: type 1 (5αR1) and type 2 (5αR2). Each of these enzymes is present in the developing brain in many species, although no work has been carried out examining the expression of all three enzymes in non-avian reptiles with genetic sex determination. In the present study, we evaluated mRNA expression of neural aromatase, 5αR1 and 5αR2, on the day of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymes throughout the brain and the quantification of mRNA expression in three regions that control adult sexual behaviours: the preoptic area (POA) and ventromedial amygdala (AMY), which are involved in male displays, as well as the ventromedial hypothalamus, which regulates female receptivity. Younger animals had a greater number (POA) and density (AMY) of 5αR1 mRNA expressing cells. We detected no effects of sex or age on aromatase or 5αR2. In comparison with data from adults, the present results support the idea that the green anole forebrain has not completely differentiated by 50 days after hatching and that 5αR1 may play a role in the early development of regions important for masculine function.
Collapse
Affiliation(s)
- R E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
25
|
Noschang C, Krolow R, Arcego DM, Laureano D, Fitarelli LD, Huffell AP, Ferreira AGK, da Cunha AA, Machado FR, Wyse ATS, Dalmaz C. The Influence of Early Life Interventions on Olfactory Memory Related to Palatable Food, and on Oxidative Stress Parameters and Na+/K+-ATPase Activity in the Hippocampus and Olfactory Bulb of Female Adult Rats. Neurochem Res 2012; 37:1801-10. [DOI: 10.1007/s11064-012-0793-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/17/2012] [Accepted: 04/27/2012] [Indexed: 01/17/2023]
|
26
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Brockman R, Bunick D, Mahoney MM. Estradiol deficiency during development modulates the expression of circadian and daily rhythms in male and female aromatase knockout mice. Horm Behav 2011; 60:439-47. [PMID: 21816154 DOI: 10.1016/j.yhbeh.2011.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022]
Abstract
Gonadal steroids modify the phase, amplitude and period of circadian rhythms. To further resolve the role of estradiol, we examined daily patterns of activity, circadian free running period and behavioral responses to light pulses using aromatase deficient (ArKO) mice. These animals lack the enzyme necessary to produce estradiol. We hypothesized that circulating estrogens during development and adulthood modulate the amount of activity, the temporal relationship of activity patterns relative to a light:dark cycle, and the free running period. Intact and gonadectomized male and female ArKO and wildtype (WT) littermates were used. WT males, but not ArKO males, retained the ability to respond to steroid hormones; the time of activity onset, free running period in constant darkness, and total daily activity were significantly different in gonadectomized compared to intact males. In contrast, gonadectomy did not alter the expression of these variables in ArKO males. ArKO females had a longer free running period in constant darkness compared to WT females regardless of gonadal state. Ovariectomized ArKO females had a significantly delayed activity onset when compared to intact ArKO females and ovariectomized WT females, despite all 3 groups being estrogen deficient. Phase shifts in response to light pulses given at different times of the day revealed an interaction between genotype, sex, and circulating steroids. These results from ArKO animals strongly suggest an organizational effect of estradiol during a critical period of development on the expression of biological rhythms.
Collapse
Affiliation(s)
- Rebecca Brockman
- University of Illinois, Department of Comparative Biosciences, Urbana, IL 61802, USA
| | | | | |
Collapse
|
28
|
Yilmaz MB, Wolfe A, Zhao H, Brooks DC, Bulun SE. Aromatase promoter I.f is regulated by progesterone receptor in mouse hypothalamic neuronal cell lines. J Mol Endocrinol 2011; 47:69-80. [PMID: 21628418 PMCID: PMC4130222 DOI: 10.1530/jme-10-0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aromatase catalyzes the conversion of C(19) steroids to estrogens. Aromatase and progesterone, both of which function at different steps of steroidogenesis, are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The aromatase gene (Cyp19a1) is selectively expressed in distinct neurons of the mouse hypothalamus through a distal brain-specific promoter, I.f, located ∼40 kb upstream of the coding region. However, the regulation of aromatase expression in the brain is not well understood. In this study, we investigated a short feedback effect of progesterone analogues on aromatase mRNA expression and enzyme activity in estrogen receptor α (Esr1)-positive or -negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. In a hypothalamic neuronal cell line that highly expresses aromatase, progesterone receptor (Pgr), and Esr1, a progesterone agonist, R5020, inhibited aromatase mRNA level and enzyme activity. The inhibitory effect of R5020 was reversed by its antagonist, RU486. Deletion mutants of promoter I.f suggested that inhibition of aromatase expression by progesterone is conferred by the nt -1000/-500 region, and R5020 enhanced binding of Pgr to the nt -800/-600 region of promoter I.f. Small interfering RNA knockdown of Pgr eliminated progesterone-dependent inhibition of aromatase mRNA and enzyme activity. Taken together, progesterone enhances recruitment of Pgr to specific regions of the promoter I.f of Cyp19a1 and regulates aromatase expression in hypothalamic neurons.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
29
|
Frye CA, Paris JJ. Progesterone turnover to its 5α-reduced metabolites in the ventral tegmental area of the midbrain is essential for initiating social and affective behavior and progesterone metabolism in female rats. J Endocrinol Invest 2011; 34:e188-99. [PMID: 21060252 PMCID: PMC3376830 DOI: 10.3275/7334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Among women and female rodents, progesterone (P) influences social affiliation and affect. These effects may be partly due to formation of its 5α-reduced, 3α- hydroxylated metabolite, 5α-pregnan-3α-ol-20-one (3α,5α- THP). AIM To elucidate whether actions of 3α,5α-THP in the midbrain ventral tegmental area (VTA) are both necessary and sufficient to enhance non-sexual and sexual social behaviors, affect, and central 3α,5α-THP metabolism. MATERIALS AND METHODS P and 3α,5α-THP formation were unperturbed or blocked in VTA via infusions of vehicle, PK11195 (400 ng), and/or indomethacin (10 μg). Rats then received subsequent infusions of vehicle or 3α,5α-THP (100 ng) and were assessed in a battery of tasks that included open field (exploration), elevated plus maze (anxiety behavior), social interaction (social affiliation), and paced mating (sexual behavior) or were not tested. Metabolic turnover of P to its 5α-reduced metabolites was assessed in plasma, midbrain, hippocampus, frontal cortex, diencephalon, and remaining subcortical tissues (control interbrain). RESULTS Infusions of any combination of inhibitors significantly reduced social and affective behavior in all tasks compared to vehicle, concomitant with reduced turnover of P to its 5α-reduced metabolites, in midbrain only. Subsequent infusions of 3α,5α-THP significantly reinstated/enhanced anti- anxiety behavior, lordosis, and P turnover to its 5α-reduced metabolites in midbrain, as well as hippocampus, cortex, and diencephalon (but not plasma or interbrain). CONCLUSIONS These data are the first to provide direct evidence that actions of 3α,5α-THP in the VTA are both necessary and sufficient for social and affective behavior, as well as initiation of central 5α-reduction.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, USA.
| | | |
Collapse
|
30
|
Chavez C, Gogos A, Hill R, Van Sinderen M, Simpson E, Boon WC, van den Buuse M. Differential effect of amphetamine on c-fos expression in female aromatase knockout (ArKO) mice compared to wildtype controls. Psychoneuroendocrinology 2011; 36:761-8. [PMID: 21093158 DOI: 10.1016/j.psyneuen.2010.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
Estrogen may be involved in psychosis by an interaction with central dopaminergic activity. Aromatase knockout mice are unable to produce estrogen and have been shown to display altered behavioural responses and effects of the dopamine releaser, amphetamine. This study investigates the effect of gonadal status on amphetamine-induced c-fos expression in the brains of female aromatase knockout and wildtype mice. Six groups of mice were treated intraperitoneally with saline or 5mg/kg amphetamine. Fos immunoreactivity was assessed in the cingulate cortex, caudate putamen and nucleus accumbens. Aromatase knockout mice showed markedly reduced amphetamine-induced Fos immunoreactivity compared to wildtype mice. However, the amphetamine response was restored in aromatase-knockout mice after ovariectomy, which reduced this effect in wildtype controls. Estrogen supplementation reversed the effect of ovariectomy in wildtype mice but had no additional significant effect in aromatase-knockout mice. These results indicate that mechanisms involved in amphetamine-induced c-fos expression are altered in aromatase knockout mice and that the primary hormone involved in this effect is not estrogen, but may be another factor released from the ovaries, such as an androgen. These results provide new insight into the effect of gonadal hormones on amphetamine induced c-fos expression in this mouse model of estrogen deficiency. These results could be important for our understanding of the role of sex steroid hormones in psychosis.
Collapse
Affiliation(s)
- Carolina Chavez
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, Parkville, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In the twentieth century, the dominant model of sexual differentiation stated that genetic sex (XX versus XY) causes differentiation of the gonads, which then secrete gonadal hormones that act directly on tissues to induce sex differences in function. This serial model of sexual differentiation was simple, unifying and seductive. Recent evidence, however, indicates that the linear model is incorrect and that sex differences arise in response to diverse sex-specific signals originating from inherent differences in the genome and involve cellular mechanisms that are specific to individual tissues or brain regions. Moreover, sex-specific effects of the environment reciprocally affect biology, sometimes profoundly, and must therefore be integrated into a realistic model of sexual differentiation. A more appropriate model is a parallel-interactive model that encompasses the roles of multiple molecular signals and pathways that differentiate males and females, including synergistic and compensatory interactions among pathways and an important role for the environment.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Departments of Physiology and Psychiatry and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
32
|
Majdic G, Tobet S. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front Neuroendocrinol 2011; 32:137-45. [PMID: 21338619 PMCID: PMC3085655 DOI: 10.1016/j.yfrne.2011.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 02/04/2023]
Abstract
There is little debate that mammalian sexual differentiation starts from the perspective of two primary sexes that correspond to differential sex chromosomes (X versus Y) that lead to individuals with sex typical characteristics. Sex steroid hormones account for most aspects of brain sexual differentiation, however, a growing literature has raised important questions about the role of sex chromosomal genes separate from sex steroid actions. Several important model animals are being used to address these issues and, in particular, they are taking advantage of molecular genetic approaches using different mouse strains. The current review examines the cooperation of genetic and endocrine influences from the perspective of behavioral and morphological hypothalamic sexual differentiation, first in adults and then in development. In the final analysis, there is an ongoing need to account for the influence of hormones in the context of underlying genetic circumstances and null hormone conditions.
Collapse
Affiliation(s)
- Gregor Majdic
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia and Medical Faculty, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
33
|
|
34
|
Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E. Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Front Neuroendocrinol 2010; 31:341-58. [PMID: 20457175 PMCID: PMC2910167 DOI: 10.1016/j.yfrne.2010.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022]
Abstract
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions.
Collapse
Affiliation(s)
- P.J. Bonthuis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - K.H. Cox
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - B.T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - P. Kumar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - E.F. Rissman
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
35
|
Mono-(2-ethylhexyl) phthalate induces NR4A subfamily and GIOT-1 gene expression, and suppresses CYP19 expression in human granulosa-like tumor cell line KGN. Toxicol Lett 2009; 191:353-9. [DOI: 10.1016/j.toxlet.2009.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022]
|
36
|
Yilmaz MB, Wolfe A, Cheng YH, Glidewell-Kenney C, Jameson JL, Bulun SE. Aromatase promoter I.f is regulated by estrogen receptor alpha (ESR1) in mouse hypothalamic neuronal cell lines. Biol Reprod 2009; 81:956-65. [PMID: 19605792 DOI: 10.1095/biolreprod.109.077206] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aromatase (CYP19A1) catalyzes the conversion of C(19) steroids to estrogens. Aromatase and its product estradiol (E(2)) are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The regulation of aromatase expression in the brain is not well understood. The aromatase (Cyp19a1) gene is selectively expressed in distinct neurons of the hypothalamus through a distal brain-specific promoter I.f located approximately 36 kb upstream of the coding region. Here, we investigated a short feedback effect of E(2) on aromatase mRNA expression and enzyme activity using estrogen receptor alpha (ESR1; also known as ER alpha)-positive or ESR1-negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. Estradiol regulated aromatase mRNA expression and enzyme activity in a time- and dose-dependent manner, whereas an E(2) antagonist reversed these effects. The nucleotide -200/-1 region of promoter I.f conferred E(2) responsiveness. Two activator protein 1 (AP-1) elements in this region were essential for induction of promoter activity by E(2). ESR1 and JUN (c-Jun) bound to these AP-1 motifs in intact cells and under cell-free conditions. The addition of an ESR1 mutant that interacts with JUN but not directly with DNA enhanced E(2)-dependent promoter I.f activity. Independently, we demonstrated an interaction between ESR1 and JUN in hypothalamic cells. Knockdown of ESR1 abolished E(2)-induced aromatase mRNA and enzyme activity. Taken together, E(2) regulates Cyp19a1 expression via promoter I.f by enhanced binding of an ESR1/JUN complex to distinct AP-1 motifs in hypothalamic cells. We speculate that this mechanism may, in part, regulate gonadotropin secretion and sexual activity.
Collapse
Affiliation(s)
- M Bertan Yilmaz
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
37
|
Corbin CJ, Berger T, Ford JJ, Roselli CE, Sienkiewicz W, Trainor BC, Roser JF, Vidal JD, Harada N, Conley AJ. Porcine hypothalamic aromatase cytochrome P450: isoform characterization, sex-dependent activity, regional expression, and regulation by enzyme inhibition in neonatal boars. Biol Reprod 2009; 81:388-95. [PMID: 19403926 DOI: 10.1095/biolreprod.109.076331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta, and preimplantation blastocyst. All catalyze estrogen synthesis, but the gonadal-type enzyme is unique in also synthesizing a nonaromatizable biopotent testosterone metabolite, 1OH-testosterone (1OH-T). P450arom is expressed in the vertebrate brain, is higher in males than females, but has not been investigated in pigs, to our knowledge. Therefore, these studies defined which of the porcine CYP19 genes was expressed, and at what level, in adult male and female hypothalamus. Regional expression was examined in mature boars, and regulation of P450arom expression in neonatal boars was investigated by inhibition of P450arom with letrozole, which is known to reprogram testicular expression. Pig hypothalami expressed the gonadal form of P450arom (redesignated the "gonadal/hypothalamic" porcine CYP19 gene and paralogue) based on functional analysis confirmed by cloning and sequencing transcripts. Hypothalamic tissue synthesized 1OH-T and was sensitive to the selective P450arom inhibitor etomidate. Levels were 4-fold higher in male than female hypothalami, with expression in the medial preoptic area and lateral borders of the ventromedial hypothalamus of boars. In vivo, letrozole-treated neonates had increased aromatase activity in hypothalami but decreased activity in testes. Therefore, although the same CYP19 gene is expressed in both tissues, expression is regulated differently in the hypothalamus than testis. These investigations, the first such studies in pig brain to our knowledge, demonstrate unusual aspects of P450arom expression and regulation in the hypothalamus, offering promise of gaining better insight into roles of P450arom in reproductive function.
Collapse
Affiliation(s)
- C J Corbin
- Department of Population Health & Reproduction, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Burri AV, Cherkas LM, Spector TD. The Genetics and Epidemiology of Female Sexual Dysfunction: A Review. J Sex Med 2009; 6:646-57. [DOI: 10.1111/j.1743-6109.2008.01144.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Kudwa AE, Harada N, Honda SI, Rissman EF. Regulation of progestin receptors in medial amygdala: estradiol, phytoestrogens and sex. Physiol Behav 2009; 97:146-50. [PMID: 19258019 DOI: 10.1016/j.physbeh.2009.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/02/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Exposure to estrogens during critical developmental periods and in adulthood affects sex differences in the brain. We examined the roles of estradiol (E2) and phytoestrogens, and their interactions, on potential sex differences in brain. We used aromatase knockout (ArKO) mice, which cannot produce endogenous estrogens, along with wild type (WT) littermates. Mice were gestated, raised and maintained on a diet either rich in phytoestrogens or a diet virtually void of soy-derived phytoestrogens. Adult males and females were gonadectomized and received implants filled with 17-beta-estradiol to induce progestin receptors (PR), while controls received empty implants. Mice were sacrificed five days later and brain sections containing the posterodorsal medial amygdala (MePD) were processed for PR immunoreactivity. Activation of sex differences in PR required adult E2 treatment. A diet high in phytoestrogens was required for expression of sex differences in PR after E2 treatment. Our data underscore the important contribution of dietary phytoestrogens for the development of sex differences in PR-ir in the adult mouse medial amygdala. We hypothesize that both aromatization of androgens to estrogens and dietary sources of additional estrogens are part of the normal requirement for sex differences in the rodent brain.
Collapse
Affiliation(s)
- A E Kudwa
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
40
|
Arnold AP, Chen X. What does the "four core genotypes" mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 2009; 30:1-9. [PMID: 19028515 PMCID: PMC3282561 DOI: 10.1016/j.yfrne.2008.11.001] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
Abstract
The "four core genotypes" (FCG) model comprises mice in which sex chromosome complement (XX vs. XY) is unrelated to the animal's gonadal sex. The four genotypes are XX gonadal males or females, and XY gonadal males or females. The model allows one to measure (1) the differences in phenotypes caused by sex chromosome complement (XX vs. XY), (2) the differential effects of ovarian and testicular secretions, and (3) the interactive effects of (1) and (2). Thus, the FCG model provides new information regarding the origins of sex differences in phenotype that has not been available from studies that manipulate gonadal hormone levels in normal XY males and XX females. Studies of the FCG model have uncovered XX vs. XY differences in behaviors (aggression, parenting, habit formation, nociception, social interactions), gene expression (septal vasopressin), and susceptibility to disease (neural tube closure and autoimmune disease) not mediated by gonadal hormones. Some sex chromosome effects are mediated by sex differences in dose of X genes or their parental imprint. Future studies will identify the genes involved and their mechanisms of action.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
41
|
Shehu A, Mao J, Gibori GB, Halperin J, Le J, Devi YS, Merrill B, Kiyokawa H, Gibori G. Prolactin receptor-associated protein/17beta-hydroxysteroid dehydrogenase type 7 gene (Hsd17b7) plays a crucial role in embryonic development and fetal survival. Mol Endocrinol 2008; 22:2268-77. [PMID: 18669642 DOI: 10.1210/me.2008-0165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our laboratory has previously cloned and purified a protein named PRAP (prolactin receptor-associated protein) that was shown to be a novel 17beta-hydroxysteroid dehydrogenase (HSD) enzyme with dual activity. This enzyme, renamed HSD17B7 or PRAP/17beta-HSD7, converts estrone to estradiol and is also involved in cholesterol biosynthesis. The major site of its expression is the corpus luteum of a great number of species including rodents and humans. To examine the functional significance of HSD17B7 in pregnancy, we generated a knockout mouse model with targeted deletions of exons 1-4 of this gene. We anticipated a mouse with a severe fertility defect due to its inability to regulate estrogen levels during pregnancy. The heterozygous mutant mice are normal in their development and gross anatomy. The females cycle normally, and both male and female are fertile with normal litter size. To our surprise, the breeding of heterozygous mice yielded no viable HSD17B7 null mice. However, we found HSD17B7 null embryo alive in utero on d 8.5 and d 9.5. By d 10.5, the fetuses grow and suffer from severe brain malformation and heart defect. Because the brain depends on in situ cholesterol biosynthesis for its development beginning at d 10, the major cause of fetal death appears to be due to the cholesterol synthetic activity of this enzyme. By ablating HSD17B7 function, we have uncovered, in vivo, an important requirement for this enzyme during fetal development.
Collapse
Affiliation(s)
- Aurora Shehu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The brain has been known to be a sensitive target organ for the permanent organisational effects of gonadal steroids for close to 50 years. Recent advances have revealed a variety of unexpected cellular mechanisms by which steroids impact on the synaptic profile of hypothalamic nuclei critical to the control of reproduction. This review focuses on three in particular: 1) prostaglandins in the masculinisation of the preoptic area and control of male sexual behaviour; 2) GABA in the arcuate nucleus and potential control of the anterior pituitary; and 3) non-genomic activation of phosphotydolinositol 3 (PI3) kinase and glutamate in the ventromedial nucleus, which is relevant to the control of female reproductive behaviour. The importance of cell-to-cell communication, be it between neurones or between neurones and astrocytes, is highlighted as an essential principle for expanding the impact of steroids beyond those cells that express nuclear receptors.
Collapse
Affiliation(s)
- M M McCarthy
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
43
|
Meltser I, Tahera Y, Simpson E, Hultcrantz M, Charitidi K, Gustafsson JA, Canlon B. Estrogen receptor beta protects against acoustic trauma in mice. J Clin Invest 2008; 118:1563-70. [PMID: 18317592 DOI: 10.1172/jci32796] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 01/09/2008] [Indexed: 11/17/2022] Open
Abstract
The hormone estradiol affects the auditory system both by itself and by its interaction with neuroprotective factors. In this study, we examined the role of estrogen receptors (ERs) in response to auditory trauma. We found a ligand-dependent protective role for ERbeta in the auditory system by investigating mice deficient in ERalpha (ERKO mice), ERbeta (BERKO mice), and aromatase (ARKO mice). Basal auditory brainstem response (ABR) thresholds were similar in all animals. An acoustic trauma causing a temporary hearing loss raised ABR thresholds in male and female BERKO and ARKO mice compared with WT and ERKO mice. The ERalpha-selective agonist, propyl(1H) pyrazole-1,3,5-triyl-trisphenol (PPT), partially protected ARKO mice from trauma, while the ERbeta-selective agonist, 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN), protected WT and ARKO mice. Immunohistochemistry and western blotting confirmed the expression of ERbeta in cochlea of WT males and females. Levels of brain-derived neurotrophic factor (BDNF), a neuroprotective peptide that can be induced by estrogen, was lower in BERKO and ARKO mice compared with WT. DPN treatment increased BDNF expression in ARKO mice. These data indicate ERbeta-mediated neuroprotection involving BDNF in the auditory system of males and females.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Estradiol is the most potent and ubiquitous member of a class of steroid hormones called estrogens. Fetuses and newborns are exposed to estradiol derived from their mother, their own gonads, and synthesized locally in their brains. Receptors for estradiol are nuclear transcription factors that regulate gene expression but also have actions at the membrane, including activation of signal transduction pathways. The developing brain expresses high levels of receptors for estradiol. The actions of estradiol on developing brain are generally permanent and range from establishment of sex differences to pervasive trophic and neuroprotective effects. Cellular end points mediated by estradiol include the following: 1) apoptosis, with estradiol preventing it in some regions but promoting it in others; 2) synaptogenesis, again estradiol promotes in some regions and inhibits in others; and 3) morphometry of neurons and astrocytes. Estradiol also impacts cellular physiology by modulating calcium handling, immediate-early-gene expression, and kinase activity. The specific mechanisms of estradiol action permanently impacting the brain are regionally specific and often involve neuronal/glial cross-talk. The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target. Prostaglandins, glutamate, GABA, granulin, and focal adhesion kinase are among the signaling molecules co-opted by estradiol to differentiate male from female brains, but much remains to be learned. Only by understanding completely the mechanisms and impact of estradiol action on the developing brain can we also understand when these processes go awry.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
45
|
Morale MC, L'Episcopo F, Tirolo C, Giaquinta G, Caniglia S, Testa N, Arcieri P, Serra PA, Lupo G, Alberghina M, Harada N, Honda S, Panzica GC, Marchetti B. Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease? ACTA ACUST UNITED AC 2007; 57:431-43. [PMID: 18063054 DOI: 10.1016/j.brainresrev.2007.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/21/2022]
Abstract
The final step in the physiological synthesis of 17beta estradiol (E(2)) is aromatization of precursor testosterone by a CYP19 gene product, cytochrome P450 estrogen aromatase in the C19 steroid metabolic pathway. Within the central nervous system (CNS) the presence, distribution, and activity of aromatase have been well characterized. Developmental stage and injury are known modulators of brain enzyme activity, where both neurons and glial cells reportedly have the capability to synthesize this key estrogenic enzyme. The gonadal steroid E(2) is a critical survival, neurotrophic and neuroprotective factor for dopaminergic neurons of the substantia nigra pars compacta (SNpc), the cells that degenerate in Parkinson's disease (PD). In previous studies we underlined a crucial role for the estrogenic status at the time of injury in dictating vulnerability to the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our ongoing studies address the contribution of brain aromatase and extragonadal E(2) as vulnerability factors for PD pathology in female brain, by exposing aromatase knockout (ArKO, -/-) female mice which are unable to synthesize estrogens to MPTP. Our initial results indicate that aromatase deficiency from early embryonic life significantly impairs the functional integrity of SNpc tyrosine hydroxylase-positive neurons and dopamine transporter innervation of the caudate-putamen in adulthood. In addition, ArKO females exhibited a far greater vulnerability to MPTP-induced nigrostriatal damage as compared to their Wt type gonadally intact and gonadectomized counterparts. Characterization of this novel implication of P450 aromatase as determining factor for PD vulnerability may unravel new avenues for the understanding and development of novel therapeutic approaches for Parkinson's disease.
Collapse
Affiliation(s)
- M C Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, 94018 Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maerkel K, Durrer S, Henseler M, Schlumpf M, Lichtensteiger W. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: developmental exposure of rats to 4-methylbenzylidene camphor. Toxicol Appl Pharmacol 2006; 218:152-65. [PMID: 17188730 DOI: 10.1016/j.taap.2006.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/02/2006] [Accepted: 10/29/2006] [Indexed: 11/21/2022]
Abstract
The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 microg/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.
Collapse
Affiliation(s)
- Kirsten Maerkel
- Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Moniz AC, Cruz-Casallas PE, Salzgeber SA, Varoli FMF, Spinosa HS, Bernardi MM. Behavioral and endocrine changes induced by perinatal fenvalerate exposure in female rats. Neurotoxicol Teratol 2005; 27:609-14. [PMID: 16005607 DOI: 10.1016/j.ntt.2005.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/30/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
Pyrethroid insecticides have recently been linked to endocrine disruption. Endocrine disrupting chemicals have been defined as exogenous agents that interfere with the synthesis, secretion, binding, action, or elimination of natural hormones in the body. Previous research conducted in our laboratory suggests that perinatal exposure to fenvalerate, a type-II pyrethroid, interferes with brain sexual organization in male pups, probably acting on a critical perinatal hormone-related period. In the present study we investigate the effects of maternal exposure to fenvalerate (FV) during the prenatal and postnatal periods of sexual brain organization of female offspring. Behavioral (open-field, stereotyped and sexual behaviors), physical (sexual maturation, body and uterine weights), and neuroendocrine (estrous cycle and gonadal hormone levels ) parameters were assessed. Results show that 1) sexual maturation was delayed, albeit body weight was unchanged until adulthood; 2) there was a reduction in sexual behavior; 3) the estrous cycle was abnormal, and the uterine weight at different phases of the estrous cycle was modified; 4) gonadal hormone levels in the plasma were not affected, neither was stereotypy nor open-field behaviors. These results were attributed to an anti-estrogenic effect of perinatal exposure to FV during the critical periods of female brain sexual organization.
Collapse
Affiliation(s)
- A C Moniz
- Faculty of Biological, Exact and Experimental Sciences, Presbiterian Mackenzie University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Rhen T, Sakata JT, Crews D. Effects of gonadal sex and incubation temperature on the ontogeny of gonadal steroid concentrations and secondary sex structures in leopard geckos, Eublepharis macularius. Gen Comp Endocrinol 2005; 142:289-96. [PMID: 15935155 DOI: 10.1016/j.ygcen.2005.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/14/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Incubation temperature during embryonic development determines gonadal sex in the leopard gecko (Eublepharis macularius). Incubation temperature and gonadal sex jointly influence the display of sexual and agonistic behavior in adult leopard geckos. These differences in adult behavior are organized prior to sexual maturity, and it is plausible that post-natal hormones influence neural and behavioral differentiation. Here we assessed incubation temperature and sex effects on sex steroid levels in leopard geckos at 2, 10, and 25 weeks of age and monitored the development of male secondary sex structures. Males had significantly higher androgen concentrations at all time points, whereas females had significantly higher 17beta-estradiol (E2) concentrations only at 10 and 25 weeks. Within males, age but not incubation temperature affected steroid levels and morphological development. Male androgen levels increased modestly by 10 and dramatically by 25 weeks of age, whereas E2 levels remained unchanged over this period. Most males had signs of hemipenes at 10 weeks of age, and all males had hemipenes and open preanal pores by 25 weeks of age. In females, age and incubation temperature affected E2 and dihydrotestosterone (DHT) but not T concentrations. Controlling for age, females from 34 degrees C have higher DHT and lower E2 levels than females from 30 degrees C. Further, E2 concentrations increased significantly from 2 to 10 weeks, after which E2 levels remained steady. Together, these results indicate that sexually dimorphic levels of steroids play a major role in the development of leopard gecko behavior and morphology. Furthermore, these data suggest that the organizational effects of incubation temperature on adult female phenotype could be, in part, mediated by incubation temperature effects on steroid hormone levels during juvenile development.
Collapse
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, 58202, USA.
| | | | | |
Collapse
|