1
|
Wang R, Liu C, Wei W, Lin Y, Zhou L, Chen J, Wu D. Increased bone mass but delayed mineralization: in vivo and in vitro study for zoledronate in bone regeneration. BMC Oral Health 2024; 24:1146. [PMID: 39334089 PMCID: PMC11438265 DOI: 10.1186/s12903-024-04906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are widely used to inhibit excessive osteoclast activity. However, the potential to compromise bone defect healing has limited their broader application. To better understand the influence of BPs on bone regeneration, we established a bone grafting model with Zoledronate administration, aiming to deepen the understanding of bone remodeling and mineralization processes. METHODS A bone grafting model was established in the distal femurs of male Sprague-Dawley rats. The experimental group received systemic administration of Zoledronate (ZOL, 0.2 mg/kg, administered twice). Histological analysis and immunohistochemistry (IHC) were employed to assess osteoblastic and macrophage activity, tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclastogenesis. Mineralization was assessed through Micro-CT analysis, Raman spectroscopy, and back-scatter scanning electron microscopy (BSE-SEM). Additionally, the in vitro effects of ZOL on osteoblast and osteoclast activity were investigated to further elucidate its impact on bone regeneration. RESULTS In vivo, the ZOL group showed increased bone mass, as observed in histological and radiological assessments. However, Micro-CT, Raman spectroscopy, and BSE-SEM detection revealed lower mineralization levels in ZOL group's regenerated bone. Acid-etched SEM analysis showed abnormal osteocyte characteristics in ZOL-group's regenerated bone. Simultaneously, elevated osteopontin (OPN), F4/80 expression along with reduced TRAP expressing was found in the grafting region of ZOL group. In vitro, ZOL did not negatively impact osteogenetic activity (ALP, BMP4, OCN expression) at the tested concentrations (0.02-0.5 g/ml) but significantly impaired mineralization and inhibited osteoclast formation, even at the lowest concentration. CONCLUSIONS This study highlights a less recognized negative effect of ZOL on bone mineralization during bone regeneration. More research is needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Rongchang Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Wenwei Wei
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Dong Wu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
- Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
| |
Collapse
|
2
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
3
|
Du Y, Yu W, Gou H, Lei Y, Zhang T, Tang W, Chen M, Li H, Cheng Q. Change in body temperature, not acute-phase reaction, predict anti-Osteoporosis efficacy after the first administration of Zoledronic acid: a prospective observational cohort study. BMC Musculoskelet Disord 2024; 25:694. [PMID: 39223504 PMCID: PMC11367990 DOI: 10.1186/s12891-024-07781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Acute-phase reactions (APRs) are common among people treated for the first time with zoledronate (ZOL). The current view is that both the APRs caused by ZOL and its efficacy are related to the mevalonic acid pathway. However, the relationship between APRs and ZOL efficacy remains unclear. METHODS This was a prospective observational cohort study involving postmenopausal women with osteoporosis in Shanghai, China, for 1 year. A total of 108 patients with an average age of 67.4 ± 5.8 years were treated with 5 mg intravenous ZOL for the first time. Data on demographic characteristics, APRs, blood counts, bone turnover markers, including C-telopeptide collagen crosslinks (CTX) and N-terminal propeptide of type 1 collagen (PINP), and bone mineral density (BMD) were collected. RESULTS (1) The results did not reveal a relationship between APRs and changes in bone turnover markers and BMD but showed that changes in body temperature (T) within 3 days after administration were positively correlated with changes in the BMD of the LS at Month 12 (β = 0.279 P = 0.034). (2) This effect was mediated mainly by changes in serum CTX (b = 0.046, 95% CI [0.0010-0.0091]). (3) The ROC curve revealed that when T increased by 1.95 °C, the sensitivity and specificity of identifying clinically important changes in LS BMD after 1 year were optimized. CONCLUSIONS In this study, we tested the hypothesis that people with elevated body T after initial ZOL treatment had greater improvements in BMD and better outcomes. TRIAL REGISTRATION NCT, NCT03158246. Registered 18/05/2017.
Collapse
Affiliation(s)
- Yanping Du
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Haixin Gou
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Tongkai Zhang
- Department of Massage, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Huilin Li
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, China.
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China.
| |
Collapse
|
4
|
Nakahara T, Miyazawa R, Iwabuchi Y, Tonda K, Narula N, Strauss HW, Narula J, Jinzaki M. Aortic Uptake of 18F-NaF and 18F-FDG and Calcification Predict the Development of Abdominal Aortic Aneurysms and Is Attenuated by Drug Therapy. Arterioscler Thromb Vasc Biol 2024; 44:1975-1985. [PMID: 39051097 DOI: 10.1161/atvbaha.124.321110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Abdominal aortic aneurysms expand over time and increase the risk of fatal ruptures. To predict expansion, the isolated assessment of 18F-fluorodeoxyglucose (FDG) and sodium fluoride (NaF) uptake or calcification volume in aneurysms has been investigated with variability in results. We systematically evaluated whether 18F-FDG and 18F-NaF uptake was predictive of abdominal aortic aneurysm expansion. METHODS Seventy-four male Sprague-Dawley rat abdominal aortic aneurysm models were imaged using positron emission tomography-computed tomography with 18F-FDG and 18F-NaF at 1, 2, 4, 6, and 8 weeks after CaCl2 or saline stimulation. In the 1-week cohort (n=25), the correlation between 18F-FDG or 18F-NaF uptake and pathological markers was investigated. In the time course cohort (n=49), animals received either atorvastatin, losartan, aldactone, or risedronate to assess the effect of these drugs, and the relationship between aortic size and sequential 18F-FDG and 18F-NaF uptake or calcification volume was examined. RESULTS In the 1-week cohort, the maximum standard unit value of 18F-FDG and 18F-NaF uptake correlated with CD68- (r=0.82; P=0.001) and von Kossa staining-positive areas (r=0.89; P<0.001), respectively. In the time course cohort, 18F-FDG and 18F-NaF uptake changed in a time-dependent manner and drugs attenuated this uptake. Specifically, 18F-FDG showed high uptake at weeks 1 and 2, whereas a high 18F-NaF uptake was noted throughout the study period. Atorvastatin and risedronate showed a decreased and increased aortic size, respectively. The final aortic area correlated well with 18F-FDG and 18F-NaF uptake and calcification volume, especially at 1 and 2 weeks (18F-NaF [1 week]: r=0.61, 18F-FDG [2 weeks]: r=0.51, calcification volume [1 week]: r=0.59; P<0.001). Multiple linear regression analysis showed that the combination of these factors predicted the final aortic size, with 18F-NaF uptake at 1 week being the strongest predictor. CONCLUSIONS The uptake of 18F-NaF and 18F-FDG and the calcification volume at appropriate times correlated with the development of abdominal aortic aneurysms, with 18F-NaF uptake being the strongest predictor.
Collapse
MESH Headings
- Animals
- Male
- Fluorodeoxyglucose F18/pharmacokinetics
- Sodium Fluoride
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/diagnostic imaging
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Rats, Sprague-Dawley
- Positron Emission Tomography Computed Tomography
- Radiopharmaceuticals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Disease Models, Animal
- Predictive Value of Tests
- Time Factors
- Fluorine Radioisotopes
- Disease Progression
- Rats
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Raita Miyazawa
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Kai Tonda
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| | - Nupoor Narula
- Division of Cardiology, Weill Cornell Medicine, New York, NY (N.N.)
| | - H William Strauss
- Molecular Imaging and Therapy Section, Memorial Sloan Kettering Cancer Center, New York, NY (H.W.S.)
| | - Jagat Narula
- Department of Medicine and Cardiology, McGovern Medical School, Houston, TX (J.N.)
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan (T.N., R.M., Y.I., K.T., M.J.)
| |
Collapse
|
5
|
Morikane S, Ishida K, Ashizawa N, Taniguchi T, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Lead Acetate-Injected Mice is an Animal Model for Extrapolation of Calcifying Response to Humans Due to Low Involvement of Bone Resorption. Calcif Tissue Int 2024; 115:315-327. [PMID: 38951181 DOI: 10.1007/s00223-024-01245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
Vascular calcification affects the prognosis of patients with renal failure. Bisphosphonates are regarded as candidate anti-calcifying drugs because of their inhibitory effects on both calcium-phosphate aggregation and bone resorption. However, calcification in well-known rodent models is dependent upon bone resorption accompanied by excessive bone turnover, making it difficult to estimate accurately the anti-calcifying potential of drugs. Therefore, models with low bone resorption are required to extrapolate anti-calcifying effects to humans. Three bisphosphonates (etidronate, alendronate, and FYB-931) were characterised for their inhibitory effects on bone resorption in vivo and calcium-phosphate aggregation estimated by calciprotein particle formation in vitro. Then, their effects were examined using two models inducing ectopic calcification: the site where lead acetate was subcutaneously injected into mice and the transplanted, aorta obtained from a donor rat. The inhibitory effects of bisphosphonates on bone resorption and calcium-phosphate aggregation were alendronate > FYB-931 > etidronate and FYB-931 > alendronate = etidronate, respectively. In the lead acetate-induced model, calcification was most potently suppressed by FYB-931, followed by alendronate and etidronate. In the aorta-transplanted model, only FYB-931 suppressed calcification at a high dose. In both the models, no correlation was observed between calcification and bone resorption marker, tartrate-resistant acid phosphatase (TRACP). Results from the lead acetate-induced model showed that inhibitory potency against calcium-phosphate aggregation contributed to calcification inhibition. The two calcification models, especially the lead acetate-induced model, may be ideal for the extrapolation of calcifying response to humans because of calcium-phosphate aggregation rather than bone resorption as its mechanism.
Collapse
Affiliation(s)
- Shota Morikane
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan.
| | - Koichi Ishida
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| | - Naoki Ashizawa
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| | - Tetsuya Taniguchi
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| | - Masaya Matsubayashi
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| | - Naoki Kurita
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| | - Seiichi Kobashi
- Research Laboratories 1, FUJI YAKUHIN CO., LTD., 3936-2 Sashiogi, Nishi-ku, Saitama, Saitama Prefecture, 331-0047, Japan
| | - Takashi Iwanaga
- Research Laboratories 2, FUJI YAKUHIN CO., LTD., 636-1 Iidashinden, Nishi-ku, Saitama, Saitama Prefecture, 331-0068, Japan
| |
Collapse
|
6
|
Rosenthal R, Schneider VS, Jones JA, Sibonga JD. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Cells 2024; 13:1337. [PMID: 39195227 DOI: 10.3390/cells13161337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Changes in the structure of bone can occur in space as an adaptive response to microgravity and on Earth due to the adaptive effects to exercise, to the aging of bone cells, or to prolonged disuse. Knowledge of cell-mediated bone remodeling on Earth informs our understanding of bone tissue changes in space and whether these skeletal changes might increase the risk for fractures or premature osteoporosis in astronauts. Comparisons of skeletal health between astronauts and aging humans, however, may be both informative and misleading. Astronauts are screened for a high level of physical fitness and health, are launched with high bone mineral densities, and perform exercise daily in space to combat skeletal atrophy as an adaptive response to reduced weight-bearing function, while the elderly display cellular and tissue pathology as a response to senescence and disuse. Current clinical testing for age-related bone change, applied to astronauts, may not be sufficient for fully understanding risks associated with rare and uniquely induced bone changes. This review aims to (i) highlight cellular analogies between spaceflight-induced and age-related bone loss, which could aid in predicting fractures, (ii) discuss why overreliance on terrestrial clinical approaches may miss potentially irreversible disruptions in trabecular bone microarchitecture induced by spaceflight, and (iii) detail how the cellular effects of the bisphosphonate class of drugs offer a prophylactic countermeasure for suppressing the elevated bone resorption characteristically observed during long-duration spaceflights. Thus the use of the bisphosphonate will help protect the bone from structural changes while in microgravity either along with exercise or alone when exercise is not performed, e.g. after an injury or illness.
Collapse
Affiliation(s)
- Reece Rosenthal
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Victor S Schneider
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Space Operations Mission Directorate, Human Research Program, NASA Mary W. Jackson Headquarters, Washington, DC 20546, USA
| | - Jeffrey A Jones
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean D Sibonga
- Human Health & Performance Directorate, NASA Johnson Space Center, 2101 NASA Parkway SK3, Houston, TX 77058, USA
| |
Collapse
|
7
|
Mohamed RH, Abdel Hay NH, Fawzy NM, Tamim YM, Doaa Karem MM, Yehia DAY, Abdel Maksoud OM, Abdelrahim DS. Targeting mevalonate pathway by zoledronate ameliorated pulmonary fibrosis in a rat model: Promising therapy against post-COVID-19 pulmonary fibrosis. Fundam Clin Pharmacol 2024; 38:703-717. [PMID: 38357833 DOI: 10.1111/fcp.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Rho kinase (ROCK) pathway plays a critical role in post-COVID-19 pulmonary fibrosis (PCPF) and its intervention with angiotensin-converting enzyme 2 (ACE2) and vascular endothelial growth factor (VEGF) will be a potential therapeutic target. OBJECTIVES The present study was conducted to investigate the efficacy of zoledronate (ZA) on carbon tetrachloride (CCl4) induced pulmonary fibrosis (PF) in rats through targeting ACE2, ROCK, and VEGF signaling pathways. METHODS Fifty male Wistar rats were divided into five groups: control, vehicle-treated, PF, PF-ZA 50, and PF-ZA 100 groups. ZA was given in two different doses 100 and 50 μg/kg/week intraperitoneally. After anesthesia, mean arterial blood pressure (MBP) was measured. After scarification, lung coefficient was calculated. Lung levels of ACE 2, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), VEGF, glutathione (GSH), and superoxide dismutase (SOD) were measured. Expression of ROCK, phosphorylated myosin phosphatase target subunit 1 (P-MYPT1), and matrix metalloproteinase (MMP-1), along with histopathological changes and immune-histochemical staining for lung α-smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNFα), and caspase-3, were evaluated. RESULTS ZA significantly prevented the decrease in MBP. ZA significantly increased ACE2, GSH, and SOD and significantly decreased IL-1β, TGF-β, and VEGF in lung in comparison to PF group. ZA prevented the histopathological changes induced by CCl4. ZA inhibited lung expression of ROCK, P-MYPT1, MMP-1, α-SMA, TNFα, and caspase-3 with significant differences favoring the high dose intervention. CONCLUSION ZA in a dose-dependent manner prevented the pathological effect of CCl4 in the lung by targeting mevalonate pathway. It could be promising therapy against PCPF.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - M M Doaa Karem
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M Abdel Maksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology and Information University, Cairo, Egypt
| |
Collapse
|
8
|
Palacios S, González SP, Sánchez-Prieto M, Fasero M. Clinical challenges and considerations in pharmacotherapy of osteoporosis due to menopause. Expert Opin Pharmacother 2024; 25:1359-1372. [PMID: 39039930 DOI: 10.1080/14656566.2024.2383639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Osteoporosis is a chronic systemic skeletal disorder characterized by compromised bone strength and an increased risk of fracture, with a high prevalence worldwide. It is associated with a negative quality of life and an increased morbidity and mortality. Postmenopausal women are more prone to develop osteoporosis, and many of them will suffer at least one fragility fracture along their lifetime. AREAS COVERED This review starts by summarizing the pathogenesis of postmenopausal osteoporosis (PMO), with focus on the estrogen deficiency-associated bone loss. It continues with the current PMO diagnostic and fracture risk prediction tools, and it finally addresses management of PMO. All the efficacy and safety profiles of the current and future osteoporosis medications are reviewed. Furthermore, strategies to optimize the long-term disease management are discussed. For this review, only publications in English language were selected. References were extracted from PubMed, Embase, and Medline. EXPERT OPINION PMO disease management is far from being ideal. Educational and communication programs with the goal of improving disease knowledge and awareness, as well as reducing the health-care gap, should be implemented. In addition, most effective sequential prevention and treatment strategies should be initiated from the early menopause.
Collapse
Affiliation(s)
- Santiago Palacios
- Department of Obstetrics and Gynecology, Institute Palacios of Woman's Health, Madrid, Spain
| | - Silvia P González
- Department of Obstetrics and Gynecology, HM Gabinete Velázquez. Menopause and Osteoporosis Unit, Madrid, Spain
| | | | - María Fasero
- Menopause Unit, Clínica Corofas, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
9
|
Rendina D, Falchetti A, Diacinti D, Bertoldo F, Merlotti D, Giannini S, Cianferotti L, Girasole G, Di Monaco M, Gonnelli S, Malavolta N, Minisola S, Vescini F, Rossini M, Frediani B, Chiodini I, Asciutti F, Gennari L. Diagnosis and treatment of Paget's disease of bone: position paper from the Italian Society of Osteoporosis, Mineral Metabolism and Skeletal Diseases (SIOMMMS). J Endocrinol Invest 2024; 47:1335-1360. [PMID: 38488978 PMCID: PMC11142991 DOI: 10.1007/s40618-024-02318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Paget's disease of bone is a focal skeletal disorder causing bone deformities and impairing bone quality. Despite the prevalence of asymptomatic cases is increasing, the progression of the disease can lead to invalidating complications that compromise the quality of life. Doubts on clinical and therapeutic management aspects exist, although beneficial effects of antiresorptive drugs, particularly bisphosphonates are known. However, limited information is available from randomized controlled trials on the prevention of disease complications so that somewhat contrasting positions about treatment indications between expert panels from the main scientific societies of metabolic bone diseases exist. This task force, composed by expert representatives appointed by the Italian Society of Osteoporosis, Mineral Metabolism and Skeletal Diseases and members of the Italian Association of Paget's disease of bone, felt the necessity for more specific and up to date indications for an early diagnosis and clinical management. METHODS Through selected key questions, we propose evidence-based recommendations for the diagnosis and treatment of the disease. In the lack of good evidence to support clear recommendations, available information from the literature together with expert opinion of the panel was used to provide suggestions for the clinical practice. RESULTS AND CONCLUSION Description of the evidence quality and support of the strength of the statements was provided on each of the selected key questions. The diagnosis of PDB should be mainly based on symptoms and the typical biochemical and radiological features. While treatment is mandatory to all the symptomatic cases at diagnosis, less evidence is available on treatment indications in asymptomatic as well as in previously treated patients in the presence of biochemical recurrence. However, given the safety and long-term efficacy of potent intravenous bisphosphonates such as zoledronate, a suggestion to treat most if not all cases at the time of diagnosis was released.
Collapse
Affiliation(s)
- D Rendina
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80138, Naples, Italy
| | - A Falchetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122, Milan, Italy
| | - D Diacinti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - F Bertoldo
- Emergency Medicine, Department of Medicine, University of Verona, 37129, Verona, Italy
| | - D Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - S Giannini
- Clinica Medica 1, Department of Medicine, University of Padova, 35122, Padua, Italy
| | - L Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, 50121, Florence, Italy
| | - G Girasole
- Rheumatology Department, La Colletta" Hospital, ASL 3 Genovese, 16011, Arenzano, Italy
| | - M Di Monaco
- Osteoporosis Research Center, Fondazione Opera San Camillo, Presidio Di Torino, 10131, Turin, Italy
| | - S Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - N Malavolta
- Casa Di Cura Madre Fortunata Toniolo, and Centri Medici Dyadea, 40141, Bologna, Italy
| | - S Minisola
- U.O.C. Medicina Interna A, Malattie Metaboliche Dell'Osso Ambulatorio Osteoporosi E Osteopatie Fragilizzanti, Sapienza University of Rome, 00185, Rome, Italy
| | - F Vescini
- Unit of Endocrinology and Metabolism, University-Hospital S. M. Misericordia, Udine, Italy
| | - M Rossini
- Rheumatology Unit, University of Verona, Policlinico GB Rossi, 37134, Verona, Italy
| | - B Frediani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - I Chiodini
- Department of Biotechnology and Translational Medicine, University of Milan, 20122, Milan, Italy
- Ospedale Niguarda Cà Granda, Piazza Ospedale Maggiore 3, 20161, Milan, Italy
| | - F Asciutti
- Associazione Italiana Malati Osteodistrofia Di Paget, Siena, Italy
| | - L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
10
|
Bhadouria N, Holguin N. Osteoporosis treatments for intervertebral disc degeneration and back pain: a perspective. JBMR Plus 2024; 8:ziae048. [PMID: 38706880 PMCID: PMC11066806 DOI: 10.1093/jbmrpl/ziae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.
Collapse
Affiliation(s)
- Neharika Bhadouria
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nilsson Holguin
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
11
|
Ferrante EA, Cudrici CD, Rashidi M, Fu YP, Huffstutler R, Carney K, Chen MY, St Hilaire C, Smith K, Bagheri H, Katz JD, Ferreira CR, Gahl WA, Boehm M, Brofferio A. Pilot study to evaluate the safety and effectiveness of etidronate treatment for arterial calcification due to deficiency of CD73 (ACDC). Vasc Med 2024; 29:245-255. [PMID: 38568107 DOI: 10.1177/1358863x241235669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).
Collapse
Affiliation(s)
- Elisa A Ferrante
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cornelia D Cudrici
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mahmood Rashidi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Huffstutler
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Carney
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia St Hilaire
- Departments of Medicine and Bioengineering, Vascular Medicine Institute, University of Pittsburg, PA, USA
| | - Kevin Smith
- Clinical Center Nursing Department, Hatfield Clinical Center at the National Institutes of Health, Bethesda, MD, USA
| | - Hadi Bagheri
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - James D Katz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alessandra Brofferio
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Henning P, Westerlund A, Movérare-Skrtic S, Lindholm C, Márquez-Méndez M, Nilsson S, Holmberg AR, Lerner UH. The novel cytotoxic polybisphosphonate osteodex decreases bone resorption by enhancing cell death of mature osteoclasts without affecting osteoclastogenesis of RANKL-stimulated mouse bone marrow macrophages. Invest New Drugs 2024; 42:207-220. [PMID: 38427117 PMCID: PMC10944397 DOI: 10.1007/s10637-024-01427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell cultures isolated from the calvarial bone and in vitamin D3-stimulated mouse crude bone marrow cell cultures. These data suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing osteoclast numbers through enhanced cell death of mature osteoclasts.
Collapse
Affiliation(s)
- Petra Henning
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at the University of Gothenburg, Vita Stråket 11, Gothenburg 41345, Sweden
| | - Anna Westerlund
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at the University of Gothenburg, Vita Stråket 11, Gothenburg 41345, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at the University of Gothenburg, Vita Stråket 11, Gothenburg 41345, Sweden
| | - Catharina Lindholm
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at the University of Gothenburg, Vita Stråket 11, Gothenburg 41345, Sweden
| | | | - Sten Nilsson
- Department of Oncology and Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden
| | - Anders R Holmberg
- Department of Oncology and Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at the University of Gothenburg, Vita Stråket 11, Gothenburg 41345, Sweden.
- Molecular Periodontology, Faculty of Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
13
|
Westbury LD, Laskou F, Patel HP, Cooper C, Dennison EM. Mortality, bone density and grip strength: lessons from the past and hope for the future? Rheumatol Adv Pract 2024; 8:rkae046. [PMID: 38690291 PMCID: PMC11057971 DOI: 10.1093/rap/rkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Objectives Therapeutic advances in the management of osteoporosis and sarcopenia have occurred at different rates over the last 2 decades. Here we examine associations between grip strength and BMD with subsequent all-cause and cause-specific mortality in a UK community-dwelling cohort. Methods Data from 495 men and 414 women from the Hertfordshire Cohort Study were analysed. Grip strength was assessed by grip dynamometry, femoral neck BMD was ascertained using DXA and deaths were recorded from baseline (1998-2004) until 31 December 2018. Grip strength and BMD in relation to mortality outcomes (all-cause, cardiovascular-related, cancer-related and mortality due to other causes) were examined using Cox regression with adjustment for age and sex. Results The mean baseline age of participants was 64.3 years (s.d. 2.5) and 65.9 years (s.d. 2.6) in men and women, respectively. Lower grip strength was associated with increased risk of all-cause mortality [hazard ratio (HR) 1.30 (95% CI 1.06, 1.58), P = 0.010] and cardiovascular-related mortality [HR 1.75 (95% CI 1.20, 2.55), P = 0.004]. In contrast, BMD was not associated with any of the mortality outcomes (P > 0.1 for all associations). Conclusion We report strong relationships between grip strength and mortality compared with BMD. We hypothesize that this may reflect better recognition and treatment of low BMD in this cohort.
Collapse
Affiliation(s)
- Leo D Westbury
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Faidra Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Harnish P Patel
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medicine for Older People, University Hospital Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
14
|
Strunz F, Gentil-Perret S, Siegrist M, Bohner M, Saulacic N, Hofstetter W. Bisphosphonates do not affect healing of a critical-size defect in estrogen-deficient mice. Bone Rep 2024; 20:101739. [PMID: 38304619 PMCID: PMC10831175 DOI: 10.1016/j.bonr.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, β-tri‑calcium-phosphate (βTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and βTCP-cylinders loaded with 0.25 μg or 2.5 μg BMP2, 2.5 μg L51P, and 0.25 μg BMP2/2.5 μg L51P, respectively, were inserted. Unloaded βTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 μg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 μg L51P, 0.25 μg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 μg BMP2/2.5 μg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the βTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 μg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.
Collapse
Affiliation(s)
- Franziska Strunz
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Saskia Gentil-Perret
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Cardiovascular Diseases Program, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Nikola Saulacic
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Liu Y, Lou J, Weng Y, Xu K, Huang W, Zhang J, Liu X, Tang L, Du C. Increased Expression of Mevalonate Pathway-Related Enzymes in Angiotensin II-Induced Abdominal Aortic Aneurysms. Int Heart J 2024; 65:758-769. [PMID: 39085115 DOI: 10.1536/ihj.23-623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Abdominal aortic aneurysm (AAA) is characterized by permanent luminal expansion and a high mortality rate due to aortic rupture. Despite the identification of abnormalities in the mevalonate pathway (MVA) in many diseases, including cardiovascular diseases, the potential impact of this pathway on AAA remains unclear. This study aims to investigate whether the expression of the MVA-related enzyme is altered during the progression of angiotensin II (Ang II) -induced AAA.Ang II 28D and Ang II 5D groups were continuously perfused with Ang II for 28 days and 5 days, respectively, and the Sham group was perfused with saline. The general and remodeling characteristics of AAA were determined by biochemical and histological analysis. Alteration of MVA-related enzyme expressions was revealed by western blot and single-cell RNA sequencing (scRNA-seq).The continuous Ang II infusion for 28 days showed significant aorta expansion and arterial remodeling. Although the arterial diameter slightly increased, the aneurysm formation was not found in Ang II induction for 5 days. MVA-related enzyme expression and activation of small GTP-binding proteins were significantly increased after Ang II-induced. As verified by scRNA-seq, the key enzyme gene expression was also higher in Ang II 28D. Similarly, it was detected that the expression levels of the above enzymes and the activity of small G proteins were elevated in the early stage of AAA as induced by Ang II infusion for 5 days.Continuous Ang II infusion-induced abdominal aortic expansion and arterial remodeling were accompanied by altered expression of key enzymes in the MVA.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | | | - Yingzheng Weng
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Kun Xu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Wenghao Huang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Jingyuan Zhang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | | | | | | |
Collapse
|
16
|
Park Y, Sato T, Lee J. Functional and analytical recapitulation of osteoclast biology on demineralized bone paper. Nat Commun 2023; 14:8092. [PMID: 38062034 PMCID: PMC10703810 DOI: 10.1038/s41467-023-44000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoclasts are the primary target for osteoporosis drug development. Recent animal studies revealed the crucial roles of osteoblasts in regulating osteoclastogenesis and the longer lifespans of osteoclasts than previously thought with fission and recycling. However, existing culture platforms are limited to replicating these newly identified cellular processes. We report a demineralized bone paper (DBP)-based osteoblast culture and osteoclast assay platform that replicates osteoclast fusion, fission, resorption, and apoptosis with high fidelity and analytical power. An osteoid-inspired DBP supports rapid and structural mineral deposition by osteoblasts. Coculture osteoblasts and bone marrow monocytes under biochemical stimulation recapitulate osteoclast differentiation and function. The DBP-based bone model allows longitudinal quantitative fluorescent monitoring of osteoclast responses to bisphosphonate drug, substantiating significantly reducing their number and lifespan. Finally, we demonstrate the feasibility of humanizing the bone model. The DBP-based osteo assay platforms are expected to advance bone remodeling-targeting drug development with improved prediction of clinical outcomes.
Collapse
Affiliation(s)
- Yongkuk Park
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Tadatoshi Sato
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jungwoo Lee
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
17
|
Huang F, Su Z, Yang J, Zhao X, Xu Y. Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J Orthop Surg Res 2023; 18:670. [PMID: 37691099 PMCID: PMC10494329 DOI: 10.1186/s13018-023-04147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), characterized by inflammation and articular cartilage degradation, is a prevalent arthritis among geriatric population. This paper was to scrutinize the novel mechanism of long noncoding RNA (lncRNA) NEAT1 in OA etiology. METHODS A total of 10 OA patients and 10 normal individuals was included in this study. Cell model of OA was built in human normal chondrocytes induced by lipopolysaccharide (LPS). An OA Wistar rat model was established through intra-articular injection of L-cysteine and papain mixtures (proportion at 1:2) into the right knee. Quantitative reverse transcription-polymerase chain reaction was employed to ascertain the expression levels of NEAT1, microRNA (miR)-374b-5p and post-GPI attachment to protein 1 (PGAP1), while dual-luciferase reporter experiments were used for the validation of target relationship among them. Cell cycle and apoptosis were calculated by flow cytometry analysis. CCK-8 assay was done to evaluate the proliferative potentials of chondrocytes. The levels of cell cycle-related proteins (Cyclin A1, Cyclin B1 and Cyclin D2) and pro-apoptotic proteins (Caspase3 and Caspase9) were measured by western blotting. Tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6 levels were determined via ELISA. Hematoxylin & eosin (HE) Staining was used for pathological examination in OA rats. RESULTS Pronounced downregulation of NEAT1 and PGAP1 and high amounts of miR-374b-5p were identified in OA patients, LPS-induced chondrocytes and OA rats. NEAT1 targeted miR-374b-5p to control PGAP1 expression. Loss of NEAT1 or upregulation of miR-374b-5p dramatically accelerated apoptosis, led to the G1/S arrest and promoted the secretion of inflammatory cytokines in LPS-induced chondrocytes, while ectopic expression of PGAP1 exhibited the opposite influences on chondrocytes. Additionally, we further indicated that upregulation of miR-374b-5p attenuated the effects of PGAP1 overexpression on LPS-induced chondrocytes. CONCLUSIONS Reduced NEAT1 induces the development of OA via miR-374b-5p/PGAP1 pathway. This suggests that the regulatory axis NEAT1/miR-374b-5p/PGAP1 is a novel and prospective target for OA treatment.
Collapse
Affiliation(s)
- Feiri Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhongliang Su
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Yang
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Xizhen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
18
|
Lu K, Wu YM, Shi Q, Gong YQ, Zhang T, Li C. The impact of acute-phase reaction on mortality and re-fracture after zoledronic acid in hospitalized elderly osteoporotic fracture patients. Osteoporos Int 2023; 34:1613-1623. [PMID: 37247006 DOI: 10.1007/s00198-023-06803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
This study involving 674 elderly osteoporotic fracture (OPF) patients undergoing orthopedic surgery investigated the long-term outcomes of acute phase reaction (APR) after initial zoledronic acid (ZOL). Those who had an APR had a 97% higher risk of mortality and a 73% lower rate of re-fracture than patients who did not. INTRODUCTION Annual infusion of ZOL efficiently decreases the risk of fracture. A temporary APR, consisting of flu-like symptoms, myalgia, and fever, is frequently observed within 3 days after the first dose. This work aimed to identify whether the occurrence of APR after initial ZOL infusion is a reliable indicator of drug efficacy for mortality and re-fracture in elderly OPF patients undergoing orthopedic surgery. METHODS This retrospectively observed work was constructed on a database prospectively collected from the Osteoporotic Fracture Registry System of a tertiary level A hospital in China. Six hundred seventy-four patients 50 years old or older with newly identified hip/morphological vertebral OPF who received ZOL for the first time after orthopedic surgery were included in the final analysis. APR was identified as a maximum axillary body temperature greater than 37.3 °C for the first 3 days after ZOL infusion. We utilized models of multivariate Cox proportional hazards to compare the risk of all-cause mortality in OPF patients with APR (APR+) and without APR (APR-). Competing risks regression analysis was used to examine the association between the occurrence of APR and re-fracture when mortality was taken into account. RESULTS In a fully adjusted Cox proportional hazards model, APR+ patients had a significantly higher risk of death than APR- patients with a hazard ratio [HR] 1.97 (95% CI, 1.09-3.56; P-value = 0.02). Furthermore, in an adjusted competing risk regression analysis, APR+ patients had a significantly reduced risk of re-fracture compared with APR- patients with a sub-distribution HR, 0.27 (95% CI, 0.11-0.70; P-value = 0.007). CONCLUSIONS Our findings suggested a potential association between the occurrence of APR and increased mortality risk. An initial dose of ZOL following orthopedic surgery was found to be protective against re-fracture in older patients with OPFs.
Collapse
Affiliation(s)
- K Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Y-M Wu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Q Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, Jiangsu, China
| | - Y-Q Gong
- Information Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - T Zhang
- Chronic Disease Department, Kunshan Center For Disease Control and Prevention, Suzhou, Jiangsu, China
| | - C Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
19
|
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, Lézot F, William Vargas-Franco J. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol 2023; 213:115584. [PMID: 37148979 DOI: 10.1016/j.bcp.2023.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous connective tissue disorder characterized by bone fragility and different extra-skeletal manifestations. The severity of these manifestations makes it possible to classify OI into different subtypes based on the main clinical features. This review aims to outline and describe the current pharmacological alternatives for treating OI, grounded on clinical and preclinical reports, such as antiresorptive agents, anabolic agents, growth hormone, and anti-TGFβ antibody, among other less used agents. The different options and their pharmacokinetic and pharmacodynamic properties will be reviewed and discussed, focusing on the variability of their response and the molecular mechanisms involved to attain the main clinical goals, which include decreasing fracture incidence, improving pain, and promoting growth, mobility, and functional independence.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Irina Giurgea
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marie Legendre
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Beatriz Castañeda
- Service d'Orthopédie Dento-Facial, Département d'Odontologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris F75013, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France.
| | | |
Collapse
|
20
|
Gheorghe AM, Stanescu LS, Petrova E, Carsote M, Nistor C, Ghemigian A. Paget's Disease of the Bone and Lynch Syndrome: An Exceptional Finding. Diagnostics (Basel) 2023; 13:2101. [PMID: 37370996 DOI: 10.3390/diagnostics13122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Our objective is to present an exceptional case of a patient diagnosed with Paget's disease of the bone (PDB) while being confirmed with Lynch syndrome (LS). A 44-year-old woman was admitted for progressive pain in the left forearm 2 years ago, and was partially relieved since admission by non-steroidal anti-inflammatory drugs. Suggestive imaging findings and increased blood bone turnover markers helped the diagnosis of PDB. She was offered zoledronate 5 mg. She had two more episodes of relapse, and a decision of new medication was taken within the following years (a second dose of zoledronate, as well as denosumab 60 mg). Her family history showed PDB (mother) and colorectal cancer (father). Whole exome sequencing was performed according to the manufacturer's standard procedure (Ion AmpliSeq™ Exome RDY S5 Kit). A heterozygous pathogenic variant in the SQSTM1 gene (c.1175C>T, p.Pro392Leu) was confirmed, consistent with the diagnosis of PDB. Additionally, a heterozygous pathogenic variant of MSH2 gene (c.2634+1G>T) was associated with LS. The patient's first-degree relatives (her brother, one of her two sisters, and her only daughter) underwent specific genetic screening and found negative results, except for her daughter, who tested positive for both pathogenic variants while being clinically asymptomatic. The phenotype influence of either mutation is still an open issue. To our current knowledge, no similar case has been published before. Both genetic defects that led to the two conditions appeared highly transmissible in the patient's family. The patient might have an increased risk of osteosarcoma and chondrosarcoma, both due to PDB and LS, and a review of the literature was introduced in this particular matter. The phenotypic expression of the daughter remains uncertain and is yet to be a lifelong follow-up as the second patient harbouring this unique combination of gene anomalies.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| | - Laura-Semonia Stanescu
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Eugenia Petrova
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mara Carsote
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy & Thoracic Surgery Department, Dr. Carol Davila Central Emergency University Military Hospital, 050474 Bucharest, Romania
| | - Adina Ghemigian
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
21
|
Merlotti D, Rendina D, Cavati G, Abate V, Falchetti A, Mingiano C, Nuti R, Gennari L. Drug treatment strategies for Paget's disease: relieving pain and preventing progression. Expert Opin Pharmacother 2023; 24:715-727. [PMID: 36961938 DOI: 10.1080/14656566.2023.2196011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
INTRODUCTION Paget's disease of bone (PDB) is a focal bone disorder caused by a marked dysregulation of osteoblasts and osteoclasts in basic multicellular units, leading to abnormal and disorganized deposition of collagen fibers (the so-called "woven bone"). Therefore, pagetic bones are increased in size, and at increased risk for bone pain, deformities, fractures, osteoarthritis, and, more rarely, neoplastic degeneration. AREAS COVERED In this review we revise the available information concerning the pharmacological treatment of PDB. EXPERT OPINION PDB progresses slowly within the affected skeletal sites and, if untreated, often leads to bone overgrowth, with bone pain, deformity and a likely increased risk of complications. Thus, the primary goal of treatment is the restoration of a normal bone turnover, in order to relieve bone pain or other symptoms and possibly prevent the complications. PDB long remained a poorly treatable disorder until the discovery of antiresorptive agents such as calcitonin first and bisphosphonates (BPs) later. With the recent development of potent intravenous BPs like zoledronate, allowing a better control of disease activity over the long term with a single infusion, has contributed to a marked improvement of the clinical management of this invalidating disorder.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences University of Siena ITALY
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milan, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences University of Siena ITALY
| | - Ranuccio Nuti
- Department of Medicine Surgery and Neurosciences University of Siena ITALY
| | - Luigi Gennari
- Department of Medicine Surgery and Neurosciences University of Siena ITALY
| |
Collapse
|
22
|
Ren J, Wang J, Yao X, Wu Y, Shi M, Shi X, Du X. Investigation of the Underlying Mechanism of Sclerosteosis Expression in Muscle Tissue in Multiple Myeloma with Sarcopenia. J Inflamm Res 2023; 16:563-578. [PMID: 36818195 PMCID: PMC9930682 DOI: 10.2147/jir.s391465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To explore the role of sclerosteosis (SOST) gene expression in the occurrence and development of multiple myeloma (MM) complicated with sarcopenia. Methods Analysis of the SOST expression in skeletal muscle tissue of patients with MM using high-throughput sequencing combined with transcriptomics; observation of morphological changes of the mouse C2C12 myoblasts co-cultured with SP2/0 myeloma cells in Transwell; observation of the SOST expression in the C2C12 myoblasts using the immunofluorescence labeling method; and assessment of the changes in exercise capacity of mice with MM using ethology; and the measurement of the SOST expression in muscles of mice using immunohistochemistry. Results The transcription level of the SOST gene in the muscle tissue was significantly higher in patients with MM and sarcopenia than in patients with MM without sarcopenia and elderly patients with sarcopenia; the area of C2C12 mouse myoblasts co-cultured with SP2/0 myeloma cells was 167,904 ± 8653.7 pix; this was significantly lower than the area of 402,994 ± 13,575.0 pix in the control group (CG); the fluorescence intensity of SOST in the cells of the experimental group (EG) was 159,389 ± 10,534 AU; this was significantly higher than the intensity of 26,338 ± 6059 AU in the CG; the differences in results of the coat-hanger test, the tail suspension test, the weight-bearing forced swimming test, and the grip strength test between the tumor-bearing mice in the EG and the CG were statistically significant; and the quantitative result of SOST expression in the muscle tissue of the EG mice was 11,515 ± 1573 pix; this was significantly higher than the result of 3399 ± 798.8 pix in the CG. Conclusion The SOST gene expression was significantly higher in muscle of mice in EG than in CG; and increased SOST gene expression might be a pathogenesis of MM complicated with sarcopenia.
Collapse
Affiliation(s)
- Jie Ren
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Jingzhou Wang
- Department of Orthopaedics, Beijing Daxing District People’s Hospital, Beijing, 102600, People’s Republic of China
| | - Xingchen Yao
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Yue Wu
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Ming Shi
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Xiangjun Shi
- Department of Hematology, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Xinru Du
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China,Correspondence: Xinru Du, Department of orthopaedics, Beijing Chao-yang Hospital, No. 8 of Gongti South Road, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86 13683156652, Email
| |
Collapse
|
23
|
Abstract
BACKGROUND Osteoporosis is a disorder of bone mineralisation occurring in about one third of adults with cystic fibrosis. Bisphosphonates can increase bone mineral density and decrease the risk of new fractures in post-menopausal women and people receiving long-term oral corticosteroids. This is an updated version of a previous review. OBJECTIVES To assess the effects of bisphosphonates on the frequency of fractures, bone mineral density, quality of life, adverse events, trial withdrawals, and survival in people with cystic fibrosis. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Trials Register of references (identified from electronic database searches and hand searches of journals and abstract books) on 5 May 2022. We performed additional searches of PubMed, clinicaltrials.gov and the WHO ICTRP (International Clinical Trials Registry Platform) on 5 May 2022. SELECTION CRITERIA Randomised controlled trials of at least six months duration studying bisphosphonates in people with cystic fibrosis. DATA COLLECTION AND ANALYSIS Authors independently selected trials, extracted data and assessed risk of bias in included studies. Trial investigators were contacted to obtain missing data. We judged the certainty of the evidence using GRADE. MAIN RESULTS We included nine trials with a total of 385 participants (272 adults and 113 children (aged five to 18 years)). Trial durations ranged from six months to two years. Only two of the studies were considered to have a low risk of bias for all the domains. Bisphosphonates compared to control in people with cystic fibrosis who have not had a lung transplant Seven trials included only adult participants without lung transplants, one trial included both adults and children without lung transplantation (total of 238 adults and 113 children). We analysed adults (n = 238) and children (n = 113) separately. Adults Three trials assessed intravenous bisphosphonates (one assessed pamidronate and two assessed zoledronate) and five trials assessed oral bisphosphonates (one assessed risedronate and four assessed alendronate). Bisphosphonates were compared to either placebo or calcium (with or without additional vitamin D). Data showed no difference between treatment or control groups in new vertebral fractures at 12 months (odds ratio (OR) 0.22, 95% confidence interval (CI) 0.02 to 2.09; 5 trials, 142 participants; very low-certainty evidence) and two trials (44 participants) reported no vertebral fractures at 24 months. There was no difference in non-vertebral fractures at 12 months (OR 2.11, 95% CI 0.18 to 25.35; 4 trials, 95 participants; very low-certainty evidence) and again two trials (44 participants) reported no non-vertebral fractures at 24 months. There was no difference in total fractures between groups at 12 months (OR 0.57, 95% CI 0.13 to 2.50; 5 trials, 142 participants) and no fractures were reported in two trials (44 participants) at 24 months. At 12 months, bisphosphonates may increase bone mineral density at the lumbar spine (mean difference (MD) 6.31, 95% CI 5.39 to 7.22; 6 trials, 171 participants; low-certainty evidence) and at the hip or femur (MD 4.41, 95% 3.44 to 5.37; 5 trials, 155 participants; low-certainty evidence). There was no clear difference in quality of life scores at 12 months (1 trial, 47 participants; low-certainty evidence), but bisphosphonates probably led to more adverse events (bone pain) at 12 months (OR 8.49, 95% CI 3.20 to 22.56; 7 trials, 206 participants; moderate-certainty evidence). Children The single trial in 113 children compared oral alendronate to placebo. We graded all evidence as low certainty. At 12 months we found no difference between treatment and placebo in new vertebral fractures (OR 0.32, 95% CI 0.03 to 3.13; 1 trial, 113 participants) and non-vertebral fractures (OR 0.19, 95% CI 0.01 to 4.04; 1 trial, 113 participants). There was also no difference in total fractures (OR 0.18, 95% CI 0.02 to 1.61; 1 trial, 113 participants). Bisphosphonates may increase bone mineral density at the lumbar spine at 12 months (MD 14.50, 95% CI 12.91 to 16.09). There was no difference in bone or muscle pain (MD 3.00, 95% CI 0.12 to 75.22), fever (MD 3.00, 95% CI 0.12 to 75.22) or gastrointestinal adverse events (OR 0.67, 95% CI 0.20 to 2.26). The trial did not measure bone mineral density at the hip/femur or report on quality of life. Bisphosphonates compared to control in people with cystic fibrosis who have had a lung transplant One trial of 34 adults who had undergone lung transplantation compared intravenous pamidronate to no bisphosphonate treatment. It did not report at 12 months and we report the 24-month data (not assessed by GRADE). There was no difference in the number of fractures, either vertebral or non-vertebral. However, bone mineral density increased with treatment at the lumbar spine (MD 6.20, 95% CI 4.28 to 8.12) and femur (MD 7.90, 95% CI 5.78 to 10.02). No participants in either group reported either bone pain or fever. The trial did not measure quality of life. AUTHORS' CONCLUSIONS Oral and intravenous bisphosphonates may increase bone mineral density in people with cystic fibrosis, but there are insufficient data to determine whether treatment reduces fractures. Severe bone pain and flu-like symptoms may occur with intravenous bisphosphonates. Before any firm conclusions can be drawn, trials in larger populations, including children, and of longer duration are needed to determine effects on fracture rate and survival. Additional trials are needed to determine if bone pain is more common or severe (or both) with the more potent zoledronate and if corticosteroids can ameliorate or prevent these adverse events. Future trials should also assess gastrointestinal adverse effects associated with oral bisphosphonates.
Collapse
Affiliation(s)
- Tomas C Jeffery
- Emergency Department, Queensland Health, Brisbane, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Louise S Conwell
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Australia
- Children's Health Queensland Clinical Unit, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
25
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
27
|
Vassaki M, Lazarou S, Turhanen P, Choquesillo-Lazarte D, Demadis KD. Drug-Inclusive Inorganic–Organic Hybrid Systems for the Controlled Release of the Osteoporosis Drug Zoledronate. Molecules 2022; 27:molecules27196212. [PMID: 36234745 PMCID: PMC9572319 DOI: 10.3390/molecules27196212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonates (BPs) are common pharmaceutical treatments used for calcium- and bone-related disorders, the principal one being osteoporosis. Their antiresorptive action is related to their high affinity for hydroxyapatite, the main inorganic substituent of bone. On the other hand, the phosphonate groups on their backbone make them excellent ligands for metal ions. The combination of these properties finds potential application in the utilization of such systems as controlled drug release systems (CRSs). In this work, the third generation BP drug zoledronate (ZOL) was combined with alkaline earth metal ions (e.g., Sr2+ and Ba2+) in an effort to synthesize new materials. These metal–ZOL compounds can operate as CRSs when exposed to appropriate experimental conditions, such as the low pH of the human stomach, thus releasing the active drug ZOL. CRS networks containing Sr2+ or Ba2 and ZOL were physicochemically and structurally characterized and were evaluated for their ability to release the free ZOL drug during an acid-driven hydrolysis process. Various release and kinetic parameters were determined, such as initial rates and release plateau values. Based on the drug release results of this study, there was an attempt to correlate the ZOL release efficiency with the structural features of these CRSs.
Collapse
Affiliation(s)
- Maria Vassaki
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Savvina Lazarou
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Petri Turhanen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Konstantinos D. Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| |
Collapse
|
28
|
Nguyen THV, Yekwa E, Selisko B, Canard B, Alvarez K, Ferron F. Inhibition of Arenaviridae nucleoprotein exonuclease by bisphosphonate. IUCRJ 2022; 9:468-479. [PMID: 35844481 PMCID: PMC9252148 DOI: 10.1107/s2052252522005061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Arenaviruses are emerging enveloped negative-sense RNA viruses that cause neurological and hemorrhagic diseases in humans. Currently, no FDA-approved vaccine or therapeutic agent is available except for ribavirin, which must be administered early during infection for optimum efficacy. A hallmark of arenavirus infection is rapid and efficient immune suppression mediated by the exonuclease domain encoded by the nucleoprotein. This exonuclease is therefore an attractive target for the design of novel antiviral drugs since exonuclease inhibitors might not only have a direct effect on the enzyme but could also boost viral clearance through stimulation of the innate immune system of the host cell. Here, in silico screening and an enzymatic assay were used to identify a novel, specific but weak inhibitor of the arenavirus exonuclease, with IC50 values of 65.9 and 68.6 µM for Mopeia virus and Lymphocytic choriomeningitis virus, respectively. This finding was further characterized using crystallographic and docking approaches. This study serves as a proof of concept and may have assigned a new therapeutic purpose for the bisphosphonate family, therefore paving the way for the development of inhibitors against Arenaviridae.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Elsie Yekwa
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Barbara Selisko
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
| | - François Ferron
- Aix-Marseille Université and Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS – UMR-7257, 13288 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
29
|
Significance of bisphosphonates on angiogenesis in vivo and their effect under geranyl-geraniol addition - could it alter the treatment of bisphosphonate-associated necrosis of the jaw? Oral Maxillofac Surg 2022:10.1007/s10006-022-01053-2. [PMID: 35397019 DOI: 10.1007/s10006-022-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of this study was to contribute to the understanding of the inhibitory effects of bisphosphonates on tissues, with a special focus on angiogenesis. Referring to bisphosphonate-associated osteonecrosis of the jaw (BP-ONJ), it should be shown that the local addition of the isoprenoid geranyl-geraniol (GGOH) prevents vascularization processes. METHODS A mouse model with n = 24 animals which received an injection of a collagen matrix was used. In 4 subgroups (n = 6), we examined the effect of zoledronate on the sprouting of capillary-like structures into the matrix, with and without the presence of geranyl-geraniol, as well as testing against control groups with PBS injections or collagen matrix containing PBS instead of GGOH. This was followed by a histological evaluation of the capillary-like structures. RESULTS Zoledronate inhibits the sprouting of blood vessels into a collagen matrix in vivo; in the presence of GGOH this effect is significantly weakened by a factor of 3.9 (p = 0.00068). CONCLUSION This work commits to the investigation of the pathophysiology of BP-ONJ and shows a possible causal therapeutic path via the topical application of GGOH.
Collapse
|
30
|
Arnaud MP, Talibi S, Lejeune-Cairon S. Knowledge and attitudes of French dentists on bone resorption inhibitors (bisphosphonates and denosumab): A cross-sectional study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:163-170. [PMID: 33930600 DOI: 10.1016/j.jormas.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION A cross-sectional study by questionnaire was performed to evaluate the knowledge of French dentists about bone resorption inhibitors (BRIs) and medication-related osteonecrosis of the jaw (MRONJ). MATERIALS AND METHODS 498 digital questionnaires were collected and 358 complete responses of French dental practionners in active practice except for orthodontists were analyzed. Descriptive analysis was computed and categorical variables were compared by Z test. The independence of the compared variables was tested by χ2 test. The scores obtained to the knowledge questions were compared by Mann-Whitney's tests depending on age, gender and year of graduation. RESULTS 84% of the respondents routinely record antiresorptive medication history in the medical chart. Therefore, almost all the practitioners know the importance to report in anamnesis the use of BRIs, but we noticed some contradictions: Less than half of the respondents recognized the brand names of BRIs and their indications. The combination of BRIs with other drugs like antiangiogenic or corticosteroid therapies is identified as a MRONJ systemic risk factor by respectively 46,3% and 29,7% of the respondents. Likewise, only 43,2% of the practitioners identified removable dentures as a local risk factor. We showed that practitioners under 30 years old and/or who graduated for less than 10 years reached a significantly higher score putting university as the main source of information on that subject. CONCLUSION According to our results, it is evident that there is a lack of knowledge about BRI, the risk of MRONJ, and the methods and means of preventing this complication.
Collapse
Affiliation(s)
- Marie-Pierre Arnaud
- Faculté d'odontologie de Rennes, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre de Soins Dentaires de Rennes, Centre Hospitalier Universitaire de Rennes, 2 Rue Henri le Guilloux, 35033 Rennes cedex 9, France
| | - Sarra Talibi
- Faculté d'odontologie de Rennes, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre de Soins Dentaires de Rennes, Centre Hospitalier Universitaire de Rennes, 2 Rue Henri le Guilloux, 35033 Rennes cedex 9, France
| | - Sophie Lejeune-Cairon
- Faculté d'odontologie de Rennes, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre de Soins Dentaires de Rennes, Centre Hospitalier Universitaire de Rennes, 2 Rue Henri le Guilloux, 35033 Rennes cedex 9, France.
| |
Collapse
|
31
|
Rajakumara E, Abhishek S, Nitin K, Saniya D, Bajaj P, Schwaneberg U, Davari MD. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chem Biol 2022; 17:266-280. [PMID: 35041385 DOI: 10.1021/acschembio.1c00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure-function relationship, cooperativity in binding of substrates, and dynamics of substrate-enzyme-cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure-activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes' structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Kulhar Nitin
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Priyanka Bajaj
- National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
32
|
Bullock G, Miller CA, McKechnie A, Hearnden V. A Review Into the Effects of Pamidronic Acid and Zoledronic Acid on the Oral Mucosa in Medication-Related Osteonecrosis of the Jaw. FRONTIERS IN ORAL HEALTH 2022; 2:822411. [PMID: 35224540 PMCID: PMC8865370 DOI: 10.3389/froh.2021.822411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a growing problem without an effective treatment, presenting as necrotic bone sections exposed via lesions in the overlying soft tissue. There is currently a lack of clarity on how the factors involved in MRONJ development and progression contribute to disease prognosis and outcomes. Bisphosphonates (BPs), the most common cause of MRONJ, affect bone remodeling, angiogenesis, infection, inflammation and soft tissue toxicity, all of which contribute to MRONJ development. This article reviews the cellular mechanisms through which BPs contribute to MRONJ pathology, with a focus on the effects on cells of the oral mucosa. BPs have been shown to reduce cell viability, reduce proliferation, and increase apoptosis in oral keratinocytes and fibroblasts. BPs have also been demonstrated to reduce epithelial thickness and prevent epithelial formation in three-dimensional tissue engineered models of the oral mucosa. This combination of factors demonstrates how BPs lead to the reduced wound healing seen in MRONJ and begins to uncover the mechanisms through which these effects occur. The evidence presented here supports identification of targets which can be used to develop novel treatment strategies to promote soft tissue wound healing and restore mucosal coverage of exposed bone in MRONJ.
Collapse
Affiliation(s)
- George Bullock
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Cheryl A. Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Cheryl A. Miller
| | | | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Lu K, Shi Q, Gong YQ, Li C. Association between vitamin D and zoledronate-induced acute-phase response fever risk in osteoporotic patients. Front Endocrinol (Lausanne) 2022; 13:991913. [PMID: 36299453 PMCID: PMC9589500 DOI: 10.3389/fendo.2022.991913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To elucidate the independent correlation between vitamin D content and zoledronate (ZOL)-triggered acute-phase response (APR) fever risk in osteoporotic (OP) patients, and to examine the potential threshold for optimal vitamin D concentrations that prevent the occurrence of ZOL-induced fever. METHODS This retrospective investigation was based on a prospectively documented database compiled at the Affiliated Kunshan Hospital of Jiangsu University between January 2015 and March 2022. In total, 2095 OP patients, who received ZOL during hospitalization, were selected for analysis. The primary endpoint was the presence (>37.3°C) or absence (≤37.3°C) of fever, quantified by the maximum body temperature, measured within 3 days of ZOL infusion. The exposure variable was the baseline serum 25-hydroxyvitamin D (25[OH]D) levels. RESULTS The OP patients with fever exhibited markedly reduced 25(OH)D content than those without fever. Upon adjusting for age, gender, order of infusion of ZOL, main diagnosis, season of blood collection, year of blood collection, calcitonin usage, and beta-C-terminal telopeptide of type I collagen (β-CTX) levels, a 10 ng/mL rise in serum 25(OH)D content was correlated with a 14% (OR, 0.86; 95% CI, 0.76 to 0.98, P-value = 0.0188) decrease in the odds of ZOL-induced fever. In addition, a non-linear relationship was also observed between 25(OH)D levels and fever risk, and the turning point of the adjusted smoothed curve was 35 ng/mL of serum 25(OH)D content. CONCLUSIONS Herein, we demonstrated the independent negative relationship between serum 25(OH)D content and ZOL-induced fever risk. According to our analysis, 25(OH)D above 35 ng/mL may be more effective in preventing ZOL-induced APR. If this is confirmed, a "vitamin D supplemental period" is warranted prior to ZOL infusion, particularly the first ZOL infusion, to ensure appropriate 25(OH)D levels that protect against ZOL-induced fever.
Collapse
Affiliation(s)
- Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
- Department of Orthopedics, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qin Shi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou, China
| | - Ya-qin Gong
- Information Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
- *Correspondence: Chong Li,
| |
Collapse
|
34
|
Kniha K, Buhl EM, Möhlhenrich SC, Bock A, Hölzle F, Hellwig E, Al-Ahmad A, Modabber A. In vivo and in vitro analysis in a rat model using zoledronate and alendronate medication: microbiological and scanning electron microscopy findings on peri-implant rat tissue. BMC Oral Health 2021; 21:672. [PMID: 34972519 PMCID: PMC8720220 DOI: 10.1186/s12903-021-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Background The aim of the present study was to assess the development of bacterial deposits and morphological parameters around dental zirconia and titanium implants compared with natural teeth during systemic bisphosphonate medication. Materials and methods Fifty-four rats were randomly allocated into one control group and two experimental groups (drug application of zoledronic and alendronic acid), with 18 animals in each group. After 4 weeks of drug delivery, either a zirconia or a titanium implant was immediately inserted. Microbiological analysis conducted 1 week, 8 weeks, and 12 weeks after surgery included total bacterial count and composition measurements. Samples were analyzed in a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). Bone cell morphology was analyzed by transmission electron microscopy (TEM). Results One week after surgery, titanium and zirconia implants of the alendronic acid and control group showed a significantly higher bacterial count when compared to natural teeth in rats with zoledronic acid administration (p < 0.01). Less significant differences were recorded after 3 months, at which time no inter-material differences were evaluated (p > 0.05). I
n the control group, TEM analysis showed that the osteoblasts had a strongly developed endoplasmic reticulum. In contrast, the endoplasmic reticulum of the osteoblasts in drug-treated animals was significantly less developed, indicating less activity. Conclusions Within the limits of this study, neither implant material was superior to the other at 3-month follow-up. With regard to the treatment and complications of patients with bisphosphonates, the implant material should not be an influencing factor. Bisphosphonates can be used in the rat model to reduce not only the activity of osteoclasts but also osteoblasts of the peri-implant bone.
Collapse
Affiliation(s)
- Kristian Kniha
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, University Hospital Aachen, Aachen, Germany
| | | | - Anna Bock
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs-University, 79106, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs-University, 79106, Freiburg, Germany
| | - Ali Modabber
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
35
|
Forsyth CM, Greenhill NB, Junk PC, Deacon GB. Elucidating structural patterns in hydrogen bond dense materials: a study of ammonium salts of (4‐aminium‐1‐hydroxybutylidine)‐1,1‐bisphosphonic acid. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Craig. M. Forsyth
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Neil B. Greenhill
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Peter C. Junk
- College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
| | - Glen B. Deacon
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
36
|
Wang Z, Zhuang C, Chen W, Li Z, Li J, Lin H, Dong J. The Effect of Daily Teriparatide versus One-Time Annually Zoledronic Acid Administration After Transforaminal Lumbar Interbody Fusion in Osteoporotic Patients. Clin Interv Aging 2021; 16:1789-1799. [PMID: 34934310 PMCID: PMC8678629 DOI: 10.2147/cia.s333207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose The research aimed to compare the therapeutic effect of teriparatide (TPTD) and zoledronic acid (ZOL) therapy on bone formation and spinal fusion in patients with osteoporosis (OP) who underwent transforaminal lumbar interbody fusion (TLIF). Methods On the basis of different anti-OP treatment options, the TPTD group was treated daily with TPTD (20 μg. ih. qd) for at least 6 months, while the ZOL group was treated with a single dose of ZOL (5 mg. ivgtt. st) postoperatively. The visual analogue scale (VAS), Oswestry Disability Index (ODI), bone mineral density (BMD), and concentration of bone turnover markers before, 6, and 12 months after surgery were evaluated. X-ray and three-dimensional computed tomography scans were performed at 6 and 12 months postoperatively to assess interbody fusion. Results The number of patients in the TPTD and ZOL groups was 29 and 38 patients, respectively. The VAS and ODI scores in both groups were significantly reduced at 6 and 12 months after TLIF. Compared with that of baseline, the lumbar spine BMD of TPTD patients increased significantly from 0.716±0.137 g/cm2 to 0.745±0.124 g/cm2 and 0.795±0.123 g/cm2 at 6 and 12 months, respectively, and was significantly higher than that of the ZOL group at 12 months (0.720±0.128 g/cm2). The bone formation marker, P1NP, in the TPTD group increased significantly (145.48±66.64 ng/mL and 119.55±88.27 ng/mL) compared with baseline (44.67±25.15 ng/mL) and in the ZOL group (28.82±19.76 ng/mL and 29.94±20.67 ng/mL) at 6 and 12 months, respectively. The fusion rates in the TPTD and ZOL groups were 57% and 45% at 6 months, without statistical significance. However, TPTD had a more statistically significant positive influence on fusion rate than ZOL at 12 months (86% vs 70%). Conclusion TPTD was more efficient than ZOL in bone formation and spinal fusion in OP patients who underwent TLIF.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chenyang Zhuang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weisin Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zefang Li
- Department of Orthopedics, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, People's Republic of China
| | - Juan Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Orthopedics, Shanghai Geriatrics Medical Center, Fudan University, Shanghai, 201100, People's Republic of China
| | - Hong Lin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Orthopedics, Shanghai Geriatrics Medical Center, Fudan University, Shanghai, 201100, People's Republic of China
| | - Jian Dong
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
37
|
Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021; 9:biomedicines9121895. [PMID: 34944710 PMCID: PMC8698611 DOI: 10.3390/biomedicines9121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.
Collapse
|
38
|
Aguirre JI, Castillo EJ, Kimmel DB. Preclinical models of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116184. [PMID: 34520898 PMCID: PMC8743993 DOI: 10.1016/j.bone.2021.116184] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). pARs, including nitrogen-containing bisphosphonates (N-BPs; e.g., zoledronic acid, alendronate) and anti-RANKL antibodies (e.g., denosumab), are used to manage bone metastases in patients with cancer or to prevent fragility fractures in patients with osteoporosis. Though significant advances have been made in understanding MRONJ, its pathophysiology is still not fully elucidated. Multiple species have been used in preclinical MRONJ research, including the rat, mouse, rice rat, rabbit, dog, sheep, and pig. Animal research has contributed immensely to advancing the MRONJ field, particularly, but not limited to, in developing models and investigating risk factors that were first observed in humans. MRONJ models have been developed using clinically relevant doses of systemic risk factors, like N-BPs, anti-RANKL antibodies, or AgIs. Specific local oral risk factors first noted in humans, including tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection, etc.), were then added. Research in rodents, particularly the rat, and, to some extent, the mouse, across multiple laboratories, has contributed to establishing multiple relevant and complementary preclinical models. Models in larger species produced accurate clinical and histopathologic outcomes suggesting a potential role for confirming specific crucial findings from rodent research. We view the current state of animal models for MRONJ as good. The rodent models are now reliable enough to produce large numbers of MRONJ cases that could be applied in experiments testing treatment modalities. The course of MRONJ, including stage 0 MRONJ, is characterized well enough that basic studies of the molecular or enzyme-level findings in different MRONJ stages are possible. This review provides a current overview of the existing models of MRONJ, their more significant features and findings, and important instances of their application in preclinical research.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
39
|
Zhou W, Chen B, Shang J, Li R. Ferulic acid attenuates osteoporosis induced by glucocorticoid through regulating the GSK-3β/Lrp-5/ERK signalling pathways. Physiol Int 2021; 108:317-341. [PMID: 34529586 DOI: 10.1556/2060.2021.00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Objective To evaluate in-vivo and in-vitro effects of ferulic acid (FA) on glucocorticoid-induced osteoarthritis (GIO) to establish its possible underlying mechanisms. Methods The effects of FA on cell proliferation, cell viability (MTT assay), ALP activity, and mineralization assay, and oxidative stress markers (ROS, SOD, GSH LDH and MDA levels) were investigated by MC3T3-E1 cell line. Wistar rats received standard saline (control group) or dexamethasone (GC, 2 mg-1 kg) or DEX+FA (50 and 100 mg-1 kg) orally for 8 weeks. Bone density, micro-architecture, bio-mechanics, bone turnover markers and histo-morphology were determined. The expression of OPG, RANKL, osteogenic markers, and other signalling proteins was assessed employing quantitative RT-PCR and Western blotting. Results The findings indicated the elevation of ALP mRNA expressions, osteogenic markers (Runx-2, OSX, Col-I, and OSN), and the β-Catenin, Lrp-5 and GSK-3β protein expressions. FA showed the potential to increase MC3T3-E1 cell differentiation, proliferation, and mineralization. FA increased oxidative stress markers (SOD, MDA, and GSH) while decreasing ROS levels and lactate dehydrogenase release in GIO rats. The OPG/RANKL mRNA expression ratio was increased by FA, followed by improved GSK-3β and ERK phosphorylation with enhanced mRNA expressions of Lrp-5 and β-catenin. Conclusion These findings showed that FA improved osteoblasts proliferation with oxidative stress suppression by controlling the Lrp-5/GSK-3β/ERK pathway in GIO, demonstrating the potential pathways involved in the mechanism of actions of FA in GIO therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Bo Chen
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Jingbo Shang
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | | |
Collapse
|
40
|
Barik D, Dash P, Uma PI, Kumari S, Dash M. A Review on Re-Packaging of Bisphosphonates Using Biomaterials. J Pharm Sci 2021; 110:3757-3772. [PMID: 34474062 DOI: 10.1016/j.xphs.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The need for bone repair and insight into new regeneration therapies as well as improvement of existing regeneration routes is constantly increasing as a direct consequence of the rise in the number of trauma victims, musculoskeletal disorders, and increased life expectancy. Bisphosphonates (BPs) have emerged as a class of drugs with proven efficacy against many bone disorders. The most recent ability of this class of drugs is being explored in its anti-cancer ability. However, despite the pharmacological success, there are certain shortcomings that have circumvented this class of the drug. The mediation of biomaterials in delivering bisphosphonates has greatly helped in overcoming some of these shortcomings. This article is focused on reviewing the benefits the bisphosphonates have provided upon getting delivered via the use of biomaterials. Furthermore, the role of bisphosphonates as a potent anticancer agent is also accounted. It is witnessed that employing engineering tools in combination with therapeutics has the potential to provide solutions to bone loss from degenerative, surgical, or traumatic processes, and also aid in accelerating the healing of large bone fractures and problematic non-union fractures. The role of nanotechnology in enhancing the efficacy of the bisphosphonates is also reviewed and innovative approaches are identified.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, 751024, Bhubaneswar, Odisha, India
| | - P I Uma
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Sneha Kumari
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
41
|
de Lima do Nascimento TC, Gerber JT, Verbicaro T, Arce RM, Elsalanty ME, Fontana JD, Muller Storrer CL, Scariot R. Biochemical and X-ray micro-computed tomographic analyses of critical size bone defects grafted with autogenous bone and mercerized bacterial cellulose membranes salified with alendronate. J Oral Biosci 2021; 63:408-415. [PMID: 34425239 DOI: 10.1016/j.job.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study aimed to evaluate the repair of critical-sized bone defects grafted with autogenous bone and mercerized bacterial cellulose membranes (BCm) salified with alendronate (ALN). METHODS Forty-eight male Wistar rats underwent surgery to create a 5 mm-diameter bone defect in the calvarium. The removed bone was particularized, regrafted into the defect, and covered by a BCm according to the group: control group (CG), simply mercerized BCm; group 1 (G1), negatively charged BCm (BCm-CM-) salified with ALN; and group 2 (G2), positively charged BCm (BCm-DEAE+) salified with ALN. Serum samples were collected preoperatively and before euthanasia to analyze osteoprotegerin (OPG), parathyroid hormone (PTH), sclerostin (SOST), and fibroblast growth factor 23 (FGF23) levels. The animals were euthanized after 15 or 60 d. Calvaria were analyzed using quantitative microtomography (μCT). RESULTS There was an increased level of PTH in the CG compared to the G2 group, at day 60 (p = 0.019). When analyzing the same group over time, G1 presented an increased FGF23 level on days 15 and 60 (p < 0.05). CG presented an increase in PTH (p = 0.037) at day 60. The μCT analysis detected increased trabecular separation on day 15 in G2 compared to G1 (p = 0.040). CONCLUSIONS Salification of ionized BCm with ALN had no direct effect on bone repair; however, BCm-CM- increased the levels of FGF23 over time. BCm-DEAE+ decreased PTH levels compared to mercerized BCm. BCm-CM-salified with ALN-induced superior bone quality, with respect to trabecular separation, compared to BCm-DEAE+.
Collapse
Affiliation(s)
- Tuanny C de Lima do Nascimento
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Jennifer Tsi Gerber
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Thalyta Verbicaro
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Roger M Arce
- Department of Periodontics and Oral Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX, USA, Zip code: 77054
| | - Mohammed E Elsalanty
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 615 E 3rd St Pomona, CA, USA, Zip code: 91766
| | - José Domingos Fontana
- Master Graduation on Urban and Industrial Environments, Polytechnic Center, Federal University of Paraná, 100 Cel. Francisco H. Dos Santos Avenue, Curitiba, PR, Brazil, Zip code: 81530-000
| | - Carmen Lucia Muller Storrer
- Department of Periodontics, IOA Boutique Curitiba, 6823 Sete de Setembro Avenue, Seminario, Curitiba, PR, Brazil, Zip code: 80240-001
| | - Rafaela Scariot
- Department of Stomatology, School of Dentistry, Federal University of Parana, 632 Prefeito Lothario Meissner Avenue, Curitiba, PR, Brazil, Zip code: 80210-170.
| |
Collapse
|
42
|
Wang CX, Ma T, Wang MY, Guo HZ, Ge XY, Zhang Y, Lin Y. Facile distribution of an alkaline microenvironment improves human bone marrow mesenchymal stem cell osteogenesis on a titanium surface through the ITG/FAK/ALP pathway. Int J Implant Dent 2021; 7:56. [PMID: 34180039 PMCID: PMC8236422 DOI: 10.1186/s40729-021-00341-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Osseointegration at the titanium surface-bone interface is one of the key factors affecting the success rate of dental implants. However, the titanium surface always forms a passive oxide layer and impacts bone marrow–derived mesenchymal stem cell (BMSC) osteogenic differentiation after exposure to the atmosphere, which further leads to poor osseointegration. Given that wet storage helps prevent titanium aging and that weakly alkaline conditions stimulate BMSC osteogenic differentiation, the aim of the present study was to explore whether sodium bicarbonate, a well-known hydrogen ion (pH) buffer, forms an alkaline microenvironment on titanium surfaces to promote BMSC osteogenic differentiation. Material and methods In this work, sand-blasted and acid-etched (SLA) titanium discs were soaked in 20 mM, 50 mM, 100 mM, and 200 mM sodium bicarbonate at room temperature for 5 min without rinsing. The influence of this surface modification on BMSC adhesion, proliferation, and osteogenic differentiation was measured. Additionally, cellular osteogenic differentiation–associated signaling pathways were evaluated. Results We showed that titanium discs treated with sodium bicarbonate created an extracellular environment with a higher pH for BMSCs than the normal physiological value for 5 days, strongly promoting BMSC osteogenic differentiation via the activation of integrin-focal adhesion kinase-alkaline phosphatase (Itg-FAK-ALP). In addition, the proliferation and adhesion of BMSCs were increased after alkaline treatment. These cellular effects were most significant with 100 mM sodium bicarbonate. Conclusion The results indicated that the titanium surface treated with sodium bicarbonate improved BMSC osteogenic differentiation mainly by creating an alkaline microenvironment, which further activated the Itg-FAK-ALP signaling pathway. Clinical relevance Surfaces modified with 100 mM sodium bicarbonate had the highest initial pH value and thus showed the greatest potential to improve BMSC performance on titanium surfaces, identifying a novel conservation method for dental implants.
Collapse
Affiliation(s)
- Chen-Xi Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Ting Ma
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Ming-Yue Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Hou-Zuo Guo
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yu Zhang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
43
|
Mbese Z, Aderibigbe BA. Bisphosphonate-Based Conjugates and Derivatives as Potential Therapeutic Agents in Osteoporosis, Bone Cancer and Metastatic Bone Cancer. Int J Mol Sci 2021; 22:6869. [PMID: 34206757 PMCID: PMC8268474 DOI: 10.3390/ijms22136869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Metastatic bone cancer occurs in every type of cancer but is prevalent in lung, breast, and prostate cancers. These metastases can cause extensive morbidity, including a range of skeletal-related events, often painful and linked with substantial hospital resource usage. The treatment used is a combination of chemotherapy and surgery. However, anticancer drugs are still limited due to severe side effects, drug resistance, poor blood supply, and non-specific drug uptake, necessitating high toxic doses. Bisphosphonates are the main class of drugs utilized to inhibit metastatic bone cancer. It is also used for the treatment of osteoporosis and other bone diseases. However, bisphosphonate also suffers from serious side effects. Thus, there is a serious need to develop bisphosphonate conjugates with promising therapeutic outcomes for treating metastatic bone cancer and osteoporosis. This review article focuses on the biological outcomes of designed bisphosphonate-based conjugates for the treatment of metastatic bone cancer and osteoporosis.
Collapse
Affiliation(s)
| | - Blessing A. Aderibigbe
- Department of Chemistry, Alice Campus, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
44
|
Rajakumar SA, Papp E, Lee KK, Grandal I, Merico D, Liu CC, Allo B, Zhang L, Grynpas MD, Minden MD, Hitzler JK, Guidos CJ, Danska JS. B cell acute lymphoblastic leukemia cells mediate RANK-RANKL-dependent bone destruction. Sci Transl Med 2021; 12:12/561/eaba5942. [PMID: 32938796 DOI: 10.1126/scitranslmed.aba5942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the p53 -/-; Rag2 -/-; Prkdcscid/scid triple mutant (TM) mice and p53 -/-; Prkdcscid/scid double mutant (DM) mouse models of spontaneous B-ALL. In contrast to DM animals, leukemic TM mice displayed brittle bones, and the TM leukemic cells overexpressed Rankl, encoding receptor activator of nuclear factor κB ligand. RANKL is a key regulator of osteoclast differentiation and bone loss. Transfer of TM leukemic cells into immunodeficient recipient mice caused trabecular bone loss. To determine whether human B-ALL can exert similar effects, we evaluated primary human B-ALL blasts isolated at diagnosis for RANKL expression and their impact on bone pathology after their transplantation into NOD.Prkdcscid/scidIl2rgtm1Wjl /SzJ (NSG) recipient mice. Primary B-ALL cells conferred bone destruction evident in increased multinucleated osteoclasts, trabecular bone loss, destruction of the metaphyseal growth plate, and reduction in adipocyte mass in these patient-derived xenografts (PDXs). Treating PDX mice with the RANKL antagonist recombinant osteoprotegerin-Fc (rOPG-Fc) protected the bone from B-ALL-induced destruction even under conditions of heavy tumor burden. Our data demonstrate a critical role of the RANK-RANKL axis in causing B-ALL-mediated bone pathology and provide preclinical support for RANKL-targeted therapy trials to reduce acute and long-term bone destruction in these patients.
Collapse
Affiliation(s)
- Sujeetha A Rajakumar
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eniko Papp
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kathy K Lee
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Daniele Merico
- Center for Applied Genomics, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Careesa C Liu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bedilu Allo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Lucia Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Pediatrics, Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Lu H, Pundole X, Lee HC. The role of bone-modifying agents in myeloma bone disease. JBMR Plus 2021; 5:e10518. [PMID: 34368608 PMCID: PMC8328802 DOI: 10.1002/jbm4.10518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Bone disease is common in patients with multiple myeloma (MM), which manifests as bone pain and skeletal-related events (SREs) such as pathological fractures and spinal cord compression. Myeloma bone disease (MBD) can adversely affect the quality of life of patients and have negative effects on morbidity and mortality. The pathogenesis of MBD is complex, and several factors are involved in the dysregulation of bone metabolism and uncoupling of bone remodeling, which result in net bone loss and devastating SREs. Broadly speaking, elevated osteoclast activity, suppressed osteoblast activity, and an aberrant marrow microenvironment play a role in MBD. Interaction of MM cells with the main bone cell osteocytes also promote further bone destruction. This review focuses on the role of bone-modifying agents in the prevention and treatment of MBD. The mainstay of MBD prevention are antiresorptive agents, bisphosphonates and denosumab. However, these agents do not play a direct role in bone formation and repair of existing MBD. Newer agents with anabolic effects such as anti-sclerostin antibodies, parathyroid hormone, anti-Dickkopf-1 antibodies, and others have shown potential in repair of MBD lesions. With the development of several new agents, the treatment landscape of MBD is likely to evolve in the coming years. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Huifang Lu
- Department of General Internal Medicine Section of Rheumatology and Clinical Immunology Houston Texas USA
| | - Xerxes Pundole
- Department of Health Services Research The University of Texas MD Anderson Cancer Center Houston Texas USA.,Present address: Amgen Inc. Thousand Oaks CA USA
| | - Hans C Lee
- Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
46
|
Mady MF, Rehman A, Kelland MA. Synthesis and Antiscaling Evaluation of Novel Hydroxybisphosphonates for Oilfield Applications. ACS OMEGA 2021; 6:6488-6497. [PMID: 33718740 PMCID: PMC7948439 DOI: 10.1021/acsomega.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
Organophosphorous compounds are still widely used as potential scale inhibitors in the upstream oil and gas industry, particularly in squeeze treatments as they have good adsorption properties on rock and are easily detectable. However, most phosphonate-based scale inhibitors have some drawbacks, such as poor biodegradability and various incompatibilities with the production system. The low toxicity of bisphosphonates motivated us to test a series of aliphatic and aromatic hydroxybisphosphonates as new oilfield scale inhibitors for calcium carbonate (calcite) and barium sulfate (barite) scales. Thus, the well-known bone-targeting drugs 3-amino-1-hydroxypropane-1,1-bisphosphonic acid (pamidronic acid, SI-1), 4-amino-1-hydroxybutane-1,1-bisphosphonic acid (alendronic acid, SI-2), 5-amino-1-hydroxypentane-1,1-bisphosphonic acid (SI-3), and hydroxyphenylmethylene-1,1-bisphosphonic acid (fenidronic acid, SI-6) are studied along with novel, specially designed bisphosphonates (1,4-dihydroxybutane-1,1,4,4-tetrayl)tetrakisphosphonic acid (SI-4), (1,6-dihydroxyhexane-1,1,6,6-tetrayl)tetrakisphosphonic acid (SI-5), and ((4- aminophenyl)(hydroxy)methylene)bisphosphonic acid (SI-7) in a dynamic tube-blocking scale rig at 100 °C and 80 bar according to typical North Sea conditions. The scale inhibition performance of the new SIs was compared to that of the commercial 1-hydroxyethylidene bisphosphonic acid (HEDP) and aminotrismethylenephosphonic acid (ATMP). The results indicate that all synthesized hydroxybisphosphonates provide reasonable inhibition performance against calcite scaling and show good thermal stability at 130 °C for 7 days under anaerobic conditions.
Collapse
Affiliation(s)
- Mohamed F. Mady
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Department
of Green Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdur Rehman
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Malcolm A. Kelland
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| |
Collapse
|
47
|
Keeping an Eye on Bisphosphonate Therapy in Myeloma: A Case Report of Ocular Inflammation Postzoledronic Acid Infusion. Case Rep Hematol 2021; 2021:6647277. [PMID: 33628538 PMCID: PMC7896864 DOI: 10.1155/2021/6647277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/03/2022] Open
Abstract
Bisphosphonates have evolved over the past decades from oral to more potent intravenous preparations. Along with significant paradigm shift in the management of myeloma over the past years, stronger nitrogen-containing bisphosphonates, due to their antiresorptive action on the bones, have found their way as a key and integral part in the management of bone disease in myeloma. Multiple randomized controlled trials have established efficacy of bisphosphonates in reducing skeletal-related events in myeloma. Some well-documented adverse events include acute-phase reactions, esophageal irritation, and osteonecrosis of the jaw. Across all clinical indications, the incidence of inflammatory eye reactions after bisphosphonate infusion ranges from 0.046% to 1%. However, data from myeloma patients are extrapolated from few reported cases in literature with varying management strategies including discontinuation, switching to different forms, and rechallenging with steroid cover. Inflammatory eye reactions can vary from self-limiting conjunctivitis and episcleritis to serious uveitis and vision-threatening orbital inflammation. We present a similar case of a patient with IgG kappa myeloma who developed flu-like symptoms followed by severe orbital inflammation within 48–72 hours after receiving zoledronic acid infusion. The patient was successfully managed with intravenous methyl prednisolone followed by oral tapering dose of steroids and discontinuation of further bisphosphonate therapy. A complete recovery was noted in a week's time.
Collapse
|
48
|
Cheviet T, Peyrottes S. Synthesis of Aminomethylene- gem-bisphosphonates Containing an Aziridine Motif: Studies of the Reaction Scope and Insight into the Mechanism. J Org Chem 2021; 86:3107-3119. [PMID: 33476157 DOI: 10.1021/acs.joc.0c02434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broad range of N-carbamoylaziridines were obtained and then treated by the diethyl phosphonate anion to afford α-methylene-gem-bisphosphonate aziridines. Study of the reaction's scope and additional experiments indicates that the transformation proceeds via a new mechanism involving the chelation of lithium ion. This last step is crucial for the reaction to occur and disfavors the aziridine ring-opening. A phosphonate-phosphate rearrangement from a α-hydroxybisphosphonate aziridine intermediate is also proposed for the first time. This reaction provides a simple and convenient method for the synthesis of a highly functionalized phosphonylated aziridine motif.
Collapse
Affiliation(s)
- Thomas Cheviet
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
49
|
Muniz FWMG, Silva BFD, Goulart CR, Silveira TMD, Martins TM. Effect of adjuvant bisphosphonates on treatment of periodontitis: Systematic review with meta-analyses. J Oral Biol Craniofac Res 2021; 11:158-168. [PMID: 33537188 DOI: 10.1016/j.jobcr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 01/29/2023] Open
Abstract
Background Previous systematic reviews showed additional benefit of adjuvant bisphosphonates (BP) in the treatment of periodontitis. In contrast, it is unclear the effect of BP in patients with diabetes and smokers, its pooled effect when administered locally or systemically is also unknown. Objectives This study aimed to systematically review the literature about the use of BP as adjuvant to nonsurgical scaling and root planning (SRP). Methodology This study followed the PRISMA guideline. This study included randomized clinical trials that administered locally or systemically BPs as adjuvant for periodontal treatment. Five databases were used. Meta-analyses were performed, using the pooled mean differences (MD) for clinical attachment level (CAL) and probing pocket depth (PPD). Standard mean difference (SMD) was used for radiographic assessment (RADIO). Subgroup analyses were performed for locally delivered meta-analyses, considering diabetes and smoking exposure. Results Thirteen studies were included. It was showed MD of 1.52 mm (95%CI: 0.97-2.07) and 1.44 mm (95%CI: 1.08-1.79) for PPD reduction and CAL gain, respectively, for locally delivered BP. BP was not able to provide significant improvements in smokers (subgroup analysis) when considering CAL (MD: 1.37; 95%CI: -0.17-2.91) and PPD (MD: 1.35; 95%CI: -0.13-2.83). Locally delivered BP also improved significantly the RADIO assessments (SMD: 4.34; 95%CI: 2.94-5.74). MD for systemically administered BP was 0.40 mm (95%CI: 0.21-0.60), 0.51 mm (95%CI: 0.19-0.83) and 1.05 (95%CI: 0.80-1.31) for PPD, CAL and RADIO, respectively. Conclusion The administration of BP in adjunct to SRP may result in additional clinical effects.
Collapse
Affiliation(s)
| | - Bernardo Franco da Silva
- School of Dentistry, Federal University Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| | - Conrado Richel Goulart
- School of Dentistry, Federal University Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| | | | - Thiago Marchi Martins
- Department of Periodontology, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil
| |
Collapse
|
50
|
Place DE, Malireddi RKS, Kim J, Vogel P, Yamamoto M, Kanneganti TD. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nat Commun 2021; 12:496. [PMID: 33479228 PMCID: PMC7820603 DOI: 10.1038/s41467-020-20807-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation during many diseases is associated with bone loss. While interferons (IFNs) are often inhibitory to osteoclast formation, the complex role that IFN and interferon-stimulated genes (ISGs) play in osteoimmunology during inflammatory diseases is still poorly understood. We show that mice deficient in IFN signaling components including IFN alpha and beta receptor 1 (IFNAR1), interferon regulatory factor 1 (IRF1), IRF9, and STAT1 each have reduced bone density and increased osteoclastogenesis compared to wild type mice. The IFN-inducible guanylate-binding proteins (GBPs) on mouse chromosome 3 (GBP1, GBP2, GBP3, GBP5, GBP7) are required to negatively regulate age-associated bone loss and osteoclastogenesis. Mechanistically, GBP2 and GBP5 both negatively regulate in vitro osteoclast differentiation, and loss of GBP5, but not GBP2, results in greater age-associated bone loss in mice. Moreover, mice deficient in GBP5 or chromosome 3 GBPs have greater LPS-mediated inflammatory bone loss compared to wild type mice. Overall, we find that GBP5 contributes to restricting age-associated and inflammation-induced bone loss by negatively regulating osteoclastogenesis.
Collapse
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|