1
|
Hou L, Meng Y, Gao J, Li M, Zhou R. Women with more severe premenstrual syndrome have an enhanced anticipatory reward processing: a magnetoencephalography study. Arch Womens Ment Health 2023; 26:803-817. [PMID: 37730923 DOI: 10.1007/s00737-023-01368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Laboratory studies reveal that young women with premenstrual syndrome (PMS) often exhibit decreased reward processing during the late luteal phase. However, studies based on the self-reports find opposite results (e.g., higher craving for high-sweet-fat food). These differences may lie in the difference between the stimulus used and measuring the different aspects of the reward. The present study was designed to expand previous work by using a classic monetary reward paradigm, simultaneously examining the motivational (i.e., reward anticipation, "wanting") and emotional (i.e., reward outcome, "liking") components of reward processing in women with high premenstrual symptoms (High PMS). College female students in their early twenties with High PMS (n = 20) and low premenstrual symptoms (Low PMS, n = 20) completed a monetary incentive delay task during their late luteal phase when the premenstrual symptoms typically peak. Brain activities in the reward anticipation phase and outcome phase were recorded using the magnetoencephalographic (MEG) imaging technique. No group differences were found in various behavioral measurements. For the MEG results, in the anticipation phase, when High PMS participants were presented with cues that predicted the upcoming monetary gains, they showed higher event-related magnetic fields (ERFs) than when they were presented with neutral non-reward cues. This pattern was reversed in Low PMS participants, as they showed lower reward cue-elicited ERFs than non-reward cue-elicited ones (cluster mass = 2560, cluster size = 891, p = .03, corrected for multiple comparisons), mainly in the right medial orbitofrontal and lateral orbitofrontal cortex (cluster mass = 375, cluster size = 140, p = .03, corrected for multiple comparisons). More importantly, women with High PMS had an overall significantly higher level of ERFs than women with Low PMS (cluster mass = 8039, cluster size = 2937, p = .0009, corrected for multiple comparisons) in the bilateral precentral gyrus, right postcentral gyrus, and left superior temporal gyrus (right: cluster mass = 410, cluster size = 128, p = .03; left: cluster mass = 352, cluster size = 98, p = .05; corrected for multiple comparisons). In the outcome phase, women with High PMS showed significantly lower theta power than the Low PMS ones for the expected non-reward feedback in the bilateral temporal-parietal regions (cluster mass = 47620, cluster size = 18308, p = .01, corrected for multiple comparisons). These findings reveal that the severity of PMS might alter reward anticipation. Specifically, women with High PMS displayed increased brain activities to reward-predicting cues and increased action preparation after the cues appear.
Collapse
Affiliation(s)
- Lulu Hou
- Department of Psychology, Nanjing University, Nanjing, 210023, China
- Department of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Meng
- Department of Psychology, Nanjing University, Nanjing, 210023, China
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing, 210023, China.
- Department of Radiology, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Media Convergence Production Technology and Systems, Beijing, 100803, China.
| |
Collapse
|
2
|
Veselic S, Jocham G, Gausterer C, Wagner B, Ernhoefer-Reßler M, Lanzenberger R, Eisenegger C, Lamm C, Losecaat Vermeer A. A causal role of estradiol in human reinforcement learning. Horm Behav 2021; 134:105022. [PMID: 34273676 DOI: 10.1016/j.yhbeh.2021.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The sex hormone estradiol is hypothesized to play a key role in human cognition, and reward processing specifically, via increased dopamine D1-receptor signalling. However, the effect of estradiol on reward processing in men has never been established. To fill this gap, we performed a double-blind placebo-controlled study in which men (N = 100) received either a single dose of estradiol (2 mg) or a placebo. Subjects performed a probabilistic reinforcement learning task where they had to choose between two options with varying reward probabilities to maximize monetary reward. Results showed that estradiol administration increased reward sensitivity compared to placebo. This effect was observed in subjects' choices, how much weight they assigned to their previous choices, and subjective reports about the reward probabilities. Furthermore, effects of estradiol were moderated by reward sensitivity, as measured through the BIS/BAS questionnaire. Using reinforcement learning models, we found that behavioral effects of estradiol were reflected in increased learning rates. These results demonstrate a causal role of estradiol within the framework of reinforcement learning, by enhancing reward sensitivity and learning. Furthermore, they provide preliminary evidence for dopamine-related genetic variants moderating the effect of estradiol on reward processing.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria; Department of Clinical and Movement Neurosciences, University College London, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Christian Gausterer
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Austria
| | - Bernhard Wagner
- Laboratory for Chromatographic & Spectrometric Analysis, FH JOANNEUM, Graz, Austria
| | | | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Eisenegger
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Claus Lamm
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Austria
| | - Annabel Losecaat Vermeer
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria; Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Ma R, Mikhail ME, Culbert KM, Johnson AW, Sisk CL, Klump KL. Ovarian Hormones and Reward Processes in Palatable Food Intake and Binge Eating. Physiology (Bethesda) 2021; 35:69-78. [PMID: 31799907 DOI: 10.1152/physiol.00013.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovarian hormones are associated with risk for binge eating in women. Recent animal and human studies suggest that food-related reward processing may be one set of neurobiological factors that contribute to these relationships, but additional studies are needed to confirm and extend findings.
Collapse
Affiliation(s)
- Ruofan Ma
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Megan E Mikhail
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Kristen M Culbert
- Department of Psychology, University of Nevada-Las Vegas, Las Vegas, Nevada
| | - Alex W Johnson
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Li YI, Woodberry R, Liu H, Guo G. Why are Women More Religious than Men? Do Risk Preferences and Genetic Risk Predispositions Explain the Gender Gap? JOURNAL FOR THE SCIENTIFIC STUDY OF RELIGION 2020; 59:289-310. [PMID: 33071306 PMCID: PMC7566885 DOI: 10.1111/jssr.12657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Risk preference theory argues that the gender gap in religiosity is caused by greater female risk aversion. Although widely debated, risk preference theory has been inadequately tested. Our study tests the theory directly with phenotypic and genetic risk preferences in three dimensions-general, impulsive, and sensation-seeking risk. Moreover, we examine whether the effect of different dimension of risk preference on the gender gap varies across different dimensions of religiosity. We find that general and impulsive risk preferences do not explain gender differences in religiosity, whereas sensation-seeking risk preference makes the gender gap in self-assessed religiousness and church attendance insignificant, but not belief in God, prayer, or importance of religion. Genetic risk preferences do not remove any of the gender gaps in religiosity, suggesting that the causal order is not from risk preference to religiosity. Evidence suggests that risk preferences are not a strong predictor for gender differences in religiosity.
Collapse
Affiliation(s)
- Y I Li
- Department of Sociology, University of Macau
| | | | - Hexuan Liu
- School of Criminal Justice, University of Cincinnati
| | - Guang Guo
- Department of Sociology, University of North Carolina, Chapel Hill
| |
Collapse
|
5
|
Kujawa A, Klein DN, Pegg S, Weinberg A. Developmental trajectories to reduced activation of positive valence systems: A review of biological and environmental contributions. Dev Cogn Neurosci 2020; 43:100791. [PMID: 32510349 PMCID: PMC7225621 DOI: 10.1016/j.dcn.2020.100791] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Reduced activation of positive valence systems (PVS), including blunted neural and physiological responses to pleasant stimuli and rewards, has been shown to prospectively predict the development of psychopathology. Yet, little is known about how reduced PVS activation emerges across development or what implications it has for prevention. We review genetic, temperament, parenting, and naturalistic and laboratory stress research on neural measures of PVS and outline developmentally-informed models of trajectories of PVS activation. PVS function is partly heritable and appears to reflect individual differences in early-emerging temperament traits. Although lab-induced stressors blunt PVS activation, effects of parenting and naturalistic stress on PVS are mixed and depend on the type of stressor, developmental timing, and interactions amongst risk factors. We propose that there may be multiple, dynamic developmental trajectories to reduced PVS activation in which combinations of genes, temperament, and exposure to severe, prolonged, or uncontrollable stress may exert direct and interactive effects on PVS function. Critically, these risk factors may alter PVS developmental trajectories and/or PVS sensitivity to proximal stressors. Distinct factors may converge such that PVS activation proceeds along a typical, accelerated, chronically low, or stress-reactive trajectory. Finally, we present directions for future research with translational implications.
Collapse
Affiliation(s)
- Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2500, United States.
| | - Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Anna Weinberg
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, Quebec, H3A 1G1, Canada.
| |
Collapse
|
6
|
Aponte EA, Schöbi D, Stephan KE, Heinzle J. Computational Dissociation of Dopaminergic and Cholinergic Effects on Action Selection and Inhibitory Control. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:364-372. [PMID: 31952937 DOI: 10.1016/j.bpsc.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patients with schizophrenia make more errors than healthy subjects in the antisaccade task. In this paradigm, participants are required to inhibit a reflexive saccade to a target and to select the correct action (a saccade in the opposite direction). While the precise origin of this deficit is not clear, it has been connected to aberrant dopaminergic and cholinergic neuromodulation. METHODS To study the impact of dopamine and acetylcholine on inhibitory control and action selection, we administered two selective drugs (levodopa 200 mg/galantamine 8 mg) to healthy volunteers (N = 100) performing the antisaccade task. The computational model SERIA (stochastic early reaction, inhibition, and late action) was employed to separate the contribution of inhibitory control and action selection to empirical reaction times and error rates. RESULTS Modeling suggested that levodopa improved action selection (at the cost of increased reaction times) but did not have a significant effect on inhibitory control. By contrast, according to our model, galantamine affected inhibitory control in a dose-dependent fashion, reducing inhibition failures at low doses and increasing them at higher levels. These effects were sufficiently specific that the computational analysis allowed for identifying the drug administered to an individual with 70% accuracy. CONCLUSIONS Our results do not support the hypothesis that elevated tonic dopamine strongly impairs inhibitory control. Rather, levodopa improved the ability to select correct actions. However, inhibitory control was modulated by cholinergic drugs. This approach may provide a starting point for future computational assays that differentiate neuromodulatory abnormalities in heterogeneous diseases like schizophrenia.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
8
|
Caldú X, Ottino-González J, Sánchez-Garre C, Hernan I, Tor E, Sender-Palacios MJ, Dreher JC, Garolera M, Jurado MÁ. Effect of the catechol-O-methyltransferase Val 158 Met polymorphism on theory of mind in obesity. EUROPEAN EATING DISORDERS REVIEW 2019; 27:401-409. [PMID: 30761671 DOI: 10.1002/erv.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Obesity is often accompanied with psychosocial adjustment problems, such as difficulties in social interactions and social withdrawal. A key aspect of social cognition is theory of mind, which allows inferring mental states, feelings, motivations, and beliefs of others and to use this information to predict their future behaviour. Theory of mind is highly dependent on prefrontal dopaminergic neurotransmission, which is regulated by catechol-O-methyltransferase (COMT) activity. We aimed at determining whether theory of mind is altered in obesity and if this ability is modulated by COMT. Fifty patients with obesity and 47 normal-weight individuals underwent the Reading the Mind in the Eyes Test, the Wisconsin Card Sorting Test, and the Vocabulary subscale of the Wechsler Adult Intelligence Scale. The genotype for the COMT Val 158 Met functional polymorphism was determined for all subjects. Patients with obesity obtained significantly lower scores in the negative items of the Reading the Mind in the Eyes Test than normal-weight subjects. Further, an interaction effect was observed between group and COMT genotype. Specifically, the presence of the Met allele was associated to a better identification of negative mental states only in patients with obesity. Our results indicate that obesity is accompanied with difficulties in theory of mind and that this ability is influenced by the COMT genotype.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jonatan Ottino-González
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genètica Molecular, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Encarnació Tor
- Centre d'atenció primària Terrassa Nord, Consorci Sanitari de Terrassa, Terrassa, Spain
| | | | - Jean-Claude Dreher
- Neuroeconomics, Reward and Decision Making Team, Cognitive Neuroscience Centre, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
9
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Killingsworth B, Xue Y, Liu Y. Factors influencing knowledge sharing among global virtual teams. TEAM PERFORMANCE MANAGEMENT 2016. [DOI: 10.1108/tpm-10-2015-0042] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to examine interrelations of the team environment factors of trust and affiliation and the motivation factors of perceived reciprocal benefits and importance of enjoyment to determine how they influence knowledge sharing within loose-linked global virtual teams.
Design/methodology/approach
The study involved 115 business students from three large universities located in the USA, China and Peru being assigned to global virtual teams of between three and four members in one phase and between four and seven members in a second phase. Students were required to work in virtual teams using telecommunication tools to complete assigned cases.
Findings
Trust, reciprocal benefits and enjoyment are significantly related to positive attitude toward knowledge sharing. Positive attitude, enjoyment, age, nationality and computer experience are positively related to knowledge sharing behavior. Affiliation is not found to significantly affect positive knowledge sharing attitude. Gender is not related to knowledge sharing behavior.
Practical implications
Understanding how trust, affiliation and motivation influence positive attitude and knowledge sharing behavior can assist managers in developing intervention strategies that improve team environments to support knowledge sharing behavior.
Originality/value
This paper contributes to the advancement of theory by extending the current knowledge sharing research to virtual team environments with diverse cultural backgrounds and by considering both extrinsic and intrinsic motivation factors, including the importance of enjoyment in loose-linked environments of global virtual teams.
Collapse
|
11
|
Prediction of alcohol drinking in adolescents: Personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity. Biol Psychol 2016; 118:79-87. [PMID: 27180911 DOI: 10.1016/j.biopsycho.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
Adolescence is a time that can set the course of alcohol abuse later in life. Sensitivity to reward on multiple levels is a major factor in this development. We examined 736 adolescents from the IMAGEN longitudinal study for alcohol drinking during early (mean age=14.37) and again later (mean age=16.45) adolescence. Conducting structural equation modeling we evaluated the contribution of reward-related personality traits, behavior, brain responses and candidate genes. Personality seems to be most important in explaining alcohol drinking in early adolescence. However, genetic variations in ANKK1 (rs1800497) and HOMER1 (rs7713917) play an equal role in predicting alcohol drinking two years later and are most important in predicting the increase in alcohol consumption. We hypothesize that the initiation of alcohol use may be driven more strongly by personality while the transition to increased alcohol use is more genetically influenced.
Collapse
|
12
|
Konova AB, Moeller SJ, Parvaz MA, Froböse MI, Alia-Klein N, Goldstein RZ. Converging effects of cocaine addiction and sex on neural responses to monetary rewards. Psychiatry Res 2016; 248:110-118. [PMID: 26809268 PMCID: PMC4752897 DOI: 10.1016/j.pscychresns.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/09/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022]
Abstract
There is some evidence that cocaine addiction manifests as more severe in women than men. Here, we examined whether these sex-specific differences in the clinical setting parallel differential neurobehavioral sensitivity to rewards in the laboratory setting. Twenty-eight (14 females/14 males) cocaine-dependent and 25 (11 females/14 males) healthy individuals completed a monetary reward task during fMRI. Results showed that the effects of cocaine dependence and sex overlapped in regions traditionally considered part of the mesocorticolimbic brain circuits including the hippocampus and posterior cingulate cortex (PCC), as well as those outside of this circuit (e.g., the middle temporal gyrus). The nature of this 'overlap' was such that both illness and female sex were associated with lower activations in these regions in response to money. Diagnosis-by-sex interactions instead emerged in the frontal cortex, such that cocaine-dependent females exhibited lower precentral gyrus and greater inferior frontal gyrus (IFG) activations relative to cocaine-dependent males and healthy females. Within these regions modulated both by diagnosis and sex, lower activation in the hippocampus and PCC, and higher IFG activations, correlated with increased subjective craving during the task. Results suggest sex-specific differences in addiction extend to monetary rewards and may contribute to core symptoms linked to relapse.
Collapse
Affiliation(s)
- Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Scott J Moeller
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Muhammad A Parvaz
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Monja I Froböse
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Nelly Alia-Klein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
13
|
Mesic I, Guzman YF, Guedea AL, Jovasevic V, Corcoran KA, Leaderbrand K, Nishimori K, Contractor A, Radulovic J. Double Dissociation of the Roles of Metabotropic Glutamate Receptor 5 and Oxytocin Receptor in Discrete Social Behaviors. Neuropsychopharmacology 2015; 40:2337-46. [PMID: 25824423 PMCID: PMC4538348 DOI: 10.1038/npp.2015.81] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Accepted: 03/15/2015] [Indexed: 11/09/2022]
Abstract
Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning.
Collapse
Affiliation(s)
- Ivana Mesic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yomayra F Guzman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Anis Contractor
- Department of Physiology and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 13-130, Chicago, IL 60611, USA, Tel: +1 312 503 4627, Fax: +1 312 503 0466, E-mail:
| |
Collapse
|
14
|
Gillies G, Virdee K, McArthur S, Dalley J. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis. Neuroscience 2014; 282:69-85. [PMID: 24943715 PMCID: PMC4245713 DOI: 10.1016/j.neuroscience.2014.05.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023]
Abstract
The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction.
Collapse
Affiliation(s)
- G.E. Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Corresponding author. Address: Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel: +44-(0)-20-7594-7050.
| | - K. Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - S. McArthur
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1 6BQ, UK
| | - J.W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hill’s Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
15
|
Reimers L, Büchel C, Diekhof EK. How to be patient. The ability to wait for a reward depends on menstrual cycle phase and feedback-related activity. Front Neurosci 2014; 8:401. [PMID: 25538555 PMCID: PMC4260677 DOI: 10.3389/fnins.2014.00401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/19/2014] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) plays a major role in reinforcement learning with increases promoting reward sensitivity (Go learning) while decreases facilitate the avoidance of negative outcomes (NoGo learning). This is also reflected in adaptations of response time: higher levels of DA enhance speeding up to get a reward, whereas lower levels favor slowing down. The steroid hormones estradiol and progesterone have been shown to modulate dopaminergic tone. Here, we tested 14 women twice during their menstrual cycle, during the follicular (FP) and the luteal phase (LP), applying functional magnetic resonance imaging while they performed a feedback learning task. Subsequent behavioral testing assessed response time preferences with a clock task, in which subjects had to explore the optimal response time (RT) to maximize reward. In the FP subjects displayed a greater learning-related change of their RT than during the LP, when they were required to slow down. Final RTs in the slow condition were also predicted by feedback-related brain activation, but only in the FP. Increased activation of the inferior frontal junction and rostral cingulate zone was thereby predictive of slower and thus better adapted final RTs. Conversely, final RT was faster and less optimal for reward maximization if activation in the ventromedial prefrontal cortex was enhanced. These findings show that hormonal shifts across the menstrual cycle affect adaptation of response speed during reward acquisition with higher RT adjustment in the FP in the condition that requires slowing down. Since high estradiol levels during the FP increase synaptic DA levels, this conforms well to our hypothesis that estradiol supports Go learning at the expense of NoGo learning. Brain-behavior correlations further indicated that the compensatory capacity to counteract the follicular Go bias may be linked to the ability to more effectively monitor action outcomes and suppress bottom-up reward desiring during feedback processing.
Collapse
Affiliation(s)
- Luise Reimers
- Neuroendocrinology Unit, Institute for Human Biology, Biocenter Grindel and Zoological Museum, University of Hamburg Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Esther K Diekhof
- Neuroendocrinology Unit, Institute for Human Biology, Biocenter Grindel and Zoological Museum, University of Hamburg Hamburg, Germany
| |
Collapse
|
16
|
Foxall GR. The marketing firm and consumer choice: implications of bilateral contingency for levels of analysis in organizational neuroscience. Front Hum Neurosci 2014; 8:472. [PMID: 25071506 PMCID: PMC4078247 DOI: 10.3389/fnhum.2014.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
The emergence of a conception of the marketing firm (Foxall, 1999a) conceived within behavioral psychology and based on a corresponding model of consumer choice, (Foxall, 1990/2004) permits an assessment of the levels of behavioral and organizational analysis amenable to neuroscientific examination. This paper explores the ways in which the bilateral contingencies that link the marketing firm with its consumerate allow appropriate levels of organizational neuroscientific analysis to be specified. Having described the concept of the marketing firm and the model of consumer behavior on which it is based, the paper analyzes bilateral contingencies at the levels of (i) market exchange, (ii) emotional reward, and (iii) neuroeconomics. Market exchange emerges as a level of analysis that lends itself predominantly to the explanation of firm-consumerate interactions in terms of the super-personal level of reinforcing and punishing contingencies: the marketing firm can be treated as a contextual or operant system in its own right. However, the emotional reward and neuroeconomic levels of analysis should be confined to the personal level of analysis represented by individual managers on the one hand and individual consumers on the other. This also entails a level of abstraction but it is one that can be satisfactorily handled in terms of the concept of bilateral contingency.
Collapse
|
17
|
Lübke KT, Croy I, Hoenen M, Gerber J, Pause BM, Hummel T. Does human body odor represent a significant and rewarding social signal to individuals high in social openness? PLoS One 2014; 9:e94314. [PMID: 24718308 PMCID: PMC3981800 DOI: 10.1371/journal.pone.0094314] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/15/2014] [Indexed: 01/31/2023] Open
Abstract
Across a wide variety of domains, experts differ from novices in their response to stimuli linked to their respective field of expertise. It is currently unknown whether similar patterns can be observed with regard to social expertise. The current study therefore focuses on social openness, a central social skill necessary to initiate social contact. Human body odors were used as social cues, as they inherently signal the presence of another human being. Using functional MRI, hemodynamic brain responses to body odors of women reporting a high (n = 14) or a low (n = 12) level of social openness were compared. Greater activation within the inferior frontal gyrus and the caudate nucleus was observed in high socially open individuals compared to individuals low in social openness. With the inferior frontal gyrus being a crucial part of the human mirror neuron system, and the caudate nucleus being implicated in social reward, it is discussed whether human body odor might constitute more of a significant and rewarding social signal to individuals high in social openness compared to individuals low in social openness process.
Collapse
Affiliation(s)
- Katrin T. Lübke
- Department of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Ilona Croy
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Matthias Hoenen
- Department of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Johannes Gerber
- Department of Neuroradiology, University of Dresden Medical School, Dresden, Germany
| | - Bettina M. Pause
- Department of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| |
Collapse
|
18
|
Colzato LS, Hommel B. Effects of estrogen on higher-order cognitive functions in unstressed human females may depend on individual variation in dopamine baseline levels. Front Neurosci 2014; 8:65. [PMID: 24778605 PMCID: PMC3985021 DOI: 10.3389/fnins.2014.00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lorenza S Colzato
- Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Bernhard Hommel
- Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| |
Collapse
|
19
|
Foxall GR. Cognitive requirements of competing neuro-behavioral decision systems: some implications of temporal horizon for managerial behavior in organizations. Front Hum Neurosci 2014; 8:184. [PMID: 24744719 PMCID: PMC3978328 DOI: 10.3389/fnhum.2014.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 01/15/2023] Open
Abstract
Interpretation of managerial activity in terms of neuroscience is typically concerned with extreme behaviors such as corporate fraud or reckless investment (Peterson, 2007; Wargo et al., 2010a). This paper is concerned to map out the neurophysiological and cognitive mechanisms at work across the spectrum of managerial behaviors encountered in more day-to-day contexts. It proposes that the competing neuro-behavioral decisions systems (CNBDS) hypothesis (Bickel et al., 2012b) captures well the range of managerial behaviors that can be characterized as hyper- or hypo-activity in either the limbically-based impulsive system or the frontal-cortically based executive system with the corresponding level of activity encountered in the alternative brain region. This pattern of neurophysiological responding also features in the Somatic Marker Hypothesis (Damasio, 1994) and in Reinforcement Sensitivity Theory (RST; Gray and McNaughton, 2000; McNaughton and Corr, 2004), which usefully extend the thesis, for example in the direction of personality. In discussing these theories, the paper has three purposes: to clarify the role of cognitive explanation in neuro-behavioral decision theory, to propose picoeconomics (Ainslie, 1992) as the cognitive component of competing neuro-behavioral decision systems theory and to suggest solutions to the problems of imbalanced neurophysiological activity in managerial behavior. The first is accomplished through discussion of the role of picoeconomics in neuro-behavioral decision theory; the second, by consideration of adaptive-innovative cognitive styles (Kirton, 2003) in the construction of managerial teams, a theme that can now be investigated by a dedicated research program that incorporates psychometric analysis of personality types and cognitive styles involved in managerial decision-making and the underlying neurophysiological bases of such decision-making.
Collapse
|
20
|
Brom M, Both S, Laan E, Everaerd W, Spinhoven P. The role of conditioning, learning and dopamine in sexual behavior: a narrative review of animal and human studies. Neurosci Biobehav Rev 2013; 38:38-59. [PMID: 24211372 DOI: 10.1016/j.neubiorev.2013.10.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Abstract
Many theories of human sexual behavior assume that sexual stimuli obtain arousing properties through associative learning processes. It is widely accepted that classical conditioning contributes to the etiology of both normal and maladaptive human behaviors. Despite the hypothesized importance of basic learning processes in sexual behavior, research on classical conditioning of the sexual response in humans is scarce. In the present paper, animal studies and studies in humans on the role of pavlovian conditioning on sexual responses are reviewed. Animal research shows robust, direct effects of conditioning processes on partner- and place preference. On the contrast, the empirical research with humans in this area is limited and earlier studies within this field are plagued by methodological confounds. Although recent experimental demonstrations of human sexual conditioning are neither numerous nor robust, sexual arousal showed to be conditionable in both men and women. The present paper serves to highlight the major empirical findings and to renew the insight in how stimuli can acquire sexually arousing value. Hereby also related neurobiological processes in reward learning are discussed. Finally, the connections between animal and human research on the conditionability of sexual responses are discussed, and suggestions for future directions in human research are given.
Collapse
Affiliation(s)
- Mirte Brom
- Institute of Psychology, Clinical, Health and Neuropsychology Unit, Leiden University, The Netherlands; Department of Psychosomatic Gynaecology and Sexology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Stephanie Both
- Department of Psychosomatic Gynaecology and Sexology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Laan
- Department of Sexology and Psychosomatic Obstetrics and Gynaecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Walter Everaerd
- Department Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Spinhoven
- Institute of Psychology, Clinical, Health and Neuropsychology Unit, Leiden University, The Netherlands; Department of Psychiatry, Leiden University Medical Center, The Netherlands
| |
Collapse
|
21
|
Kohls G, Perino MT, Taylor JM, Madva EN, Cayless SJ, Troiani V, Price E, Faja S, Herrington JD, Schultz RT. The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment. Neuropsychologia 2013; 51:2062-9. [PMID: 23911778 DOI: 10.1016/j.neuropsychologia.2013.07.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Human social motivation is characterized by the pursuit of social reward and the avoidance of social punishment. The ventral striatum/nucleus accumbens (VS/Nacc), in particular, has been implicated in the reward component of social motivation, i.e., the 'wanting' of social incentives like approval. However, it is unclear to what extent the VS/Nacc is involved in avoiding social punishment like disapproval, an intrinsically pleasant outcome. Thus, we conducted an event-related functional magnetic resonance imaging (fMRI) study using a social incentive delay task with dynamic video stimuli instead of static pictures as social incentives in order to examine participants' motivation for social reward gain and social punishment avoidance. As predicted, the anticipation of avoidable social punishment (i.e., disapproval) recruited the VS/Nacc in a manner that was similar to VS/Nacc activation observed during the anticipation of social reward gain (i.e., approval). Stronger VS/Nacc activity was accompanied by faster reaction times of the participants to obtain those desired outcomes. This data support the assumption that dynamic social incentives elicit robust VS/Nacc activity, which likely reflects motivation to obtain social reward and to avoid social punishment. Clinical implications regarding the involvement of the VS/Nacc in social motivation dysfunction in autism and social phobia are discussed.
Collapse
Affiliation(s)
- Gregor Kohls
- Center for Autism Research, The Children's Hospital of Philadelphia, PA, USA; Child Neuropsychology Section, Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Social modulation of learned behavior by dopamine in the basal ganglia: Insights from songbirds. ACTA ACUST UNITED AC 2013; 107:219-29. [DOI: 10.1016/j.jphysparis.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 01/25/2023]
|
23
|
Dreher JC. Neural coding of computational factors affecting decision making. PROGRESS IN BRAIN RESEARCH 2013; 202:289-320. [PMID: 23317838 DOI: 10.1016/b978-0-444-62604-2.00016-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We constantly need to make decisions that can result in rewards of different amounts with different probabilities and at different timing. To characterize the neural coding of such computational factors affecting value-based decision making, we have investigated how reward information processing is influenced by parameters such as reward magnitude, probability, delay, effort, and uncertainty using either fMRI in healthy humans or intracranial recordings in patients with epilepsy. We decomposed brain signals modulated by these computational factors, showing that prediction error (PE), salient PE, and uncertainty signals are computed in partially overlapping brain circuits and that both transient and sustained uncertainty signals coexist in the brain. When investigating the neural representation of primary and secondary rewards, we found both a common brain network, including the ventromedial prefrontal cortex and ventral striatum, and a functional organization of the orbitofrontal cortex according to reward type. Moreover, separate valuation systems were engaged for delay and effort costs when deciding between options. Finally, genetic variations in dopamine-related genes influenced the response of the reward system and may contribute to individual differences in reward-seeking behavior and in predisposition to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jean-Claude Dreher
- Reward and decision making group, Cognitive Neuroscience Center, CNRS, Lyon 1 University, Lyon, France.
| |
Collapse
|
24
|
Menne-Lothmann C, Jacobs N, Derom C, Thiery E, van Os J, Wichers M. Genetic and Environmental Causes of Individual Differences in Daily Life Positive Affect and Reward Experience and Its Overlap with Stress-Sensitivity. Behav Genet 2012; 42:778-86. [PMID: 22976548 DOI: 10.1007/s10519-012-9553-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Claudia Menne-Lothmann
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University, Vijverdal, Postbus 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Falk EB, Way BM, Jasinska AJ. An imaging genetics approach to understanding social influence. Front Hum Neurosci 2012; 6:168. [PMID: 22701416 PMCID: PMC3373206 DOI: 10.3389/fnhum.2012.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/23/2012] [Indexed: 12/19/2022] Open
Abstract
Normative social influences shape nearly every aspect of our lives, yet the biological processes mediating the impact of these social influences on behavior remain incompletely understood. In this Hypothesis, we outline a theoretical framework and an integrative research approach to the study of social influences on the brain and genetic moderators of such effects. First, we review neuroimaging evidence linking social influence and conformity to the brain's reward system. We next review neuroimaging evidence linking social punishment (exclusion) to brain systems involved in the experience of pain, as well as evidence linking exclusion to conformity. We suggest that genetic variants that increase sensitivity to social cues may predispose individuals to be more sensitive to either social rewards or punishments (or potentially both), which in turn increases conformity and susceptibility to normative social influences more broadly. To this end, we review evidence for genetic moderators of neurochemical responses in the brain, and suggest ways in which genes and pharmacology may modulate sensitivity to social influences. We conclude by proposing an integrative imaging genetics approach to the study of brain mediators and genetic modulators of a variety of social influences on human attitudes, beliefs, and actions.
Collapse
Affiliation(s)
- Emily B Falk
- Department of Communication Studies and Institute for Social Research, University of Michigan, Ann Arbor MI, USA
| | | | | |
Collapse
|
26
|
Enter D, Colzato LS, Roelofs K. Dopamine transporter polymorphisms affect social approach-avoidance tendencies. GENES BRAIN AND BEHAVIOR 2012; 11:671-6. [DOI: 10.1111/j.1601-183x.2012.00791.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2012; 6:1-17. [PMID: 22737180 DOI: 10.1111/j.1751-9004.2011.00415.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite widespread belief that moods are affected by the menstrual cycle, researchers on emotion and reward have not paid much attention to the menstrual cycle until recently. However, recent research has revealed different reactions to emotional stimuli and to rewarding stimuli across the different phases of the menstrual cycle. The current paper reviews the emerging literature on how ovarian hormone fluctuation during the menstrual cycle modulates reactions to emotional stimuli and to reward. Behavioral and neuroimaging studies in humans suggest that estrogen and progesterone have opposing influences. That is, it appears that estrogen enhances reactions to reward, but progesterone counters the facilitative effects of estrogen and decreases reactions to rewards. In contrast, reactions to emotionally arousing stimuli (particularly negative stimuli) appear to be decreased by estrogen but enhanced by progesterone. Potential factors that can modulate the effects of the ovarian hormones (e.g., an inverse quadratic function of hormones' effects; the structural changes of the hippocampus across the menstrual cycle) are also discussed.
Collapse
|
28
|
Delis F, Benveniste H, Xenos M, Grandy D, Wang GJ, Volkow ND, Thanos PK. Loss of dopamine D2 receptors induces atrophy in the temporal and parietal cortices and the caudal thalamus of ethanol-consuming mice. Alcohol Clin Exp Res 2011; 36:815-25. [PMID: 22017419 DOI: 10.1111/j.1530-0277.2011.01667.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The need of an animal model of alcoholism becomes apparent when we consider the genetic diversity of the human populations, an example being dopamine D2 receptor (DRD2) expression levels. Research suggests that low DRD2 availability is associated with alcohol abuse, while higher DRD2 levels may be protective against alcoholism. This study aims to establish whether (i) the ethanol-consuming mouse is a suitable model of alcohol-induced brain atrophy and (ii) DRD2 protect the brain against alcohol toxicity. METHODS Adult Drd2+/+ and Drd2-/- mice drank either water or 20% ethanol solution for 6 months. At the end of the treatment period, the mice underwent magnetic resonance (MR) imaging under anesthesia. MR images were registered to a common space, and regions of interest were manually segmented. RESULTS We found that chronic ethanol intake induced a decrease in the volume of the temporal and parietal cortices as well as the caudal thalamus in Drd2-/- mice. CONCLUSIONS The result suggests that (i) normal DRD2 expression has a protective role against alcohol-induced brain atrophy and (ii) in the absence of Drd2 expression, prolonged ethanol intake reproduces a distinct feature of human brain pathology in alcoholism, the atrophy of the temporal and parietal cortices.
Collapse
Affiliation(s)
- Foteini Delis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tzieropoulos H, de Peralta RG, Bossaerts P, Gonzalez Andino SL. The impact of disappointment in decision making: inter-individual differences and electrical neuroimaging. Front Hum Neurosci 2011; 4:235. [PMID: 21258645 PMCID: PMC3020567 DOI: 10.3389/fnhum.2010.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/16/2011] [Indexed: 11/13/2022] Open
Abstract
Disappointment, the emotion experienced when faced to reward prediction errors (RPEs), considerably impacts decision making (DM). Individuals tend to modify their behavior in an often unpredictable way just to avoid experiencing negative emotions. Despite its importance, disappointment remains much less studied than regret and its impact on upcoming decisions largely unexplored. Here, we adapted the Trust Game to effectively elicit, quantify, and isolate disappointment by relying on the formal definition provided by Bell's in economics. We evaluated the effects of experienced disappointment and elation on future cooperation and trust as well as the rationality and utility of the different behavioral and neural mechanisms used to cope with disappointment. All participants in our game trusted less and particularly expected less from unknown opponents as a result of disappointing outcomes in the previous trial but not necessarily after elation indicating that behavioral consequences of positive and negative RPEs are not the same. A large variance in the tolerance to disappointment was observed across subjects, with some participants needing only a small disappointment to impulsively bias their subsequent decisions. As revealed by high-density EEG recordings the most tolerant individuals - who thought twice before making a decision and earned more money - relied on different neural generators to contend with neutral and unexpected outcomes. This study thus provides some support to the idea that different neural systems underlie reflexive and reflective decisions within the same individuals as predicted by the dual-system theory of social judgment and DM.
Collapse
Affiliation(s)
- Hélène Tzieropoulos
- Electrical Neuroimaging Group and Geneva Neuroscience Center, Neurology Department, University of Geneva Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Sescousse G, Redouté J, Dreher JC. The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci 2010; 30:13095-104. [PMID: 20881127 PMCID: PMC6633499 DOI: 10.1523/jneurosci.3501-10.2010] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/19/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
To ensure their survival, animals exhibit a number of reward-directed behaviors, such as foraging for food or searching for mates. This suggests that a core set of brain regions may be shared by many species to process different types of rewards. Conversely, many new brain areas have emerged over the course of evolution, suggesting potential specialization of specific brain regions in the processing of more recent rewards such as money. Here, using functional magnetic resonance imaging in humans, we identified the common and distinct brain systems processing the value of erotic stimuli and monetary gains. First, we provide evidence that a set of neural structures, including the ventral striatum, anterior insula, anterior cingulate cortex, and midbrain, encodes the subjective value of rewards regardless of their type, consistent with a general hedonic representation. More importantly, our results reveal reward-specific representations in the orbitofrontal cortex (OFC): whereas the anterior lateral OFC, a phylogenetically recent structure, processes monetary gains, the posterior lateral OFC, phylogenetically and ontogenetically older, processes more basic erotic stimuli. This dissociation between OFC representations of primary and secondary rewards parallels current views on lateral prefrontal cortex organization in cognitive control, suggesting an increasing trend in complexity along a postero-anterior axis according to more abstract representations. Together, our results support a modular view of reward value coding in the brain and propose that a unifying principle of postero-anterior organization can be applied to the OFC.
Collapse
Affiliation(s)
- Guillaume Sescousse
- Center for Cognitive Neuroscience, Reward and Decision-Making Group, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5229, 69675 Bron, France
- Université Lyon 1, 69003 Lyon, France, and
| | - Jérôme Redouté
- Center for Cognitive Neuroscience, Reward and Decision-Making Group, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5229, 69675 Bron, France
- Université Lyon 1, 69003 Lyon, France, and
- CERMEP–Imagerie du Vivant, 69003 Lyon, France
| | - Jean-Claude Dreher
- Center for Cognitive Neuroscience, Reward and Decision-Making Group, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5229, 69675 Bron, France
- Université Lyon 1, 69003 Lyon, France, and
| |
Collapse
|
31
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
32
|
Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors. J Neurosci 2010; 30:5730-43. [PMID: 20410125 DOI: 10.1523/jneurosci.5974-09.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortico-basal ganglia (BG) circuits are thought to promote the acquisition of motor skills through reinforcement learning. In songbirds, a specialized portion of the BG is responsible for song learning and plasticity. This circuit generates song variability that underlies vocal experimentation in young birds and modulates song variability depending on the social context in adult birds. When male birds sing in the presence of a female, a social context associated with decreased BG-induced song variability, the extracellular dopamine (DA) level is increased in the avian BG nucleus Area X. These results suggest that DA could trigger song variability changes through its action in Area X. Consistent with this hypothesis, we report that DA delivered to Area X weakens the output signal of the avian cortico-BG circuit. Acting through D(1) receptors, DA reduced responses in Area X to song playback and to electrical stimulation of its afferent cortical nucleus HVC (used as a proper name). Specifically, DA reduced the response to direct excitatory input and decreased firing variability in Area X pallidal neurons, which provide the output to the thalamus. As a consequence, DA delivery in Area X also decreased responses to song playback in the cortical output nucleus of the BG loop, the lateral magnocellular nucleus of the anterior nidopallium. Further, interfering with D(1) receptor transmission in Area X abolished social context-related changes in song variability. In conclusion, we propose that DA acts on D(1) receptors in Area X to modulate the BG output signal and trigger changes in song variability.
Collapse
|
33
|
Coates JM, Gurnell M, Sarnyai Z. From molecule to market: steroid hormones and financial risk-taking. Philos Trans R Soc Lond B Biol Sci 2010; 365:331-43. [PMID: 20026470 DOI: 10.1098/rstb.2009.0193] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about the role of the endocrine system in financial decision-making. Here, we survey research on steroid hormones and their cognitive effects, and examine potential links to trader performance in the financial markets. Preliminary findings suggest that cortisol codes for risk and testosterone for reward. A key finding of this endocrine research is the different cognitive effects of acute versus chronic exposure to hormones: acutely elevated steroids may optimize performance on a range of tasks; but chronically elevated steroids may promote irrational risk-reward choices. We present a hypothesis suggesting that the irrational exuberance and pessimism observed during market bubbles and crashes may be mediated by steroid hormones. If hormones can exaggerate market moves, then perhaps the age and sex composition among traders and asset managers may affect the level of instability witnessed in the financial markets.
Collapse
Affiliation(s)
- John M Coates
- Judge Business School, University of Cambridge, Cambridge CB2 1AG, UK.
| | | | | |
Collapse
|
34
|
Worthman CM. Habits of the heart: life history and the developmental neuroendocrinology of emotion. Am J Hum Biol 2009; 21:772-81. [PMID: 19621433 PMCID: PMC3772087 DOI: 10.1002/ajhb.20966] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The centrality of emotion in cognition and social intelligence as well as its impact on health has intensified investigation into the causes and consequences of individual variation in emotion regulation. Central processing of experience directly informs regulation of endocrine axes, essentially forming a neuro-endocrine continuum integrating information intake, processing, and physiological and behavioral response. Two major elements of life history-resource allocation and niche partitioning-are served by linking cognitive-affective with physiologic and behavioral processes. Scarce cognitive resources (attention, memory, and time) are allocated under guidance from affective co-processing. Affective-cognitive processing, in turn, regulates physiologic activity through neuro-endocrine outflow and thereby orchestrates energetic resource allocation and trade-offs, both acutely and through time. Reciprocally, peripheral activity (e.g., immunologic, metabolic, or energetic markers) influences affective-cognitive processing. By guiding attention, memory, and behavior, affective-cognitive processing also informs individual stances toward, patterns of activity in, and relationships with the world. As such, it mediates processes of niche partitioning that adaptively exploit social and material resources. Developmental behavioral neurobiology has identified multiple factors that influence the ontogeny of emotion regulation to form affective and behavioral styles. Evidence is reviewed documenting roles for genetic, epigenetic, and experiential factors in the development of emotion regulation, social cognition, and behavior with important implications for understanding mechanisms that underlie life history construction and the sources of differential health. Overall, this dynamic arena for research promises to link the biological bases of life history theory with the psychobehavioral phenomena that figure so centrally in quotidian experience and adaptation, particularly, for humans.
Collapse
Affiliation(s)
- Carol M Worthman
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
35
|
Shane S. Introduction to the focused issue on the biological basis of business. ORGANIZATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES 2009. [DOI: 10.1016/j.obhdp.2009.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Abstract
Individuals vary in their willingness to take financial risks. Here we show that variants of two genes that regulate dopamine and serotonin neurotransmission and have been previously linked to emotional behavior, anxiety and addiction (5-HTTLPR and DRD4) are significant determinants of risk taking in investment decisions. We find that the 5-HTTLPR s/s allele carriers take 28% less risk than those carrying the s/l or l/l alleles of the gene. DRD4 7-repeat allele carriers take 25% more risk than individuals without the 7-repeat allele. These findings contribute to the emerging literature on the genetic determinants of economic behavior.
Collapse
Affiliation(s)
- Camelia M. Kuhnen
- Kellogg School of Management, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (CMK); (JYC)
| | - Joan Y. Chiao
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience Program, Evanston, Illinois, United States of America
- * E-mail: (CMK); (JYC)
| |
Collapse
|
37
|
Abstract
How can we use neuroscience to better understand economic behavior? By quelling concerns about the nascent field of neuroeconomics, the authors defend future integrations of the biological and social sciences.
Collapse
|
38
|
Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:454-67. [PMID: 19128203 PMCID: PMC2878195 DOI: 10.2174/187152708786927886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.
Collapse
Affiliation(s)
- E A Engleman
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
39
|
Social influence and vulnerability. Behav Brain Sci 2008. [DOI: 10.1017/s0140525x08004780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRedish et al. outline 10 vulnerabilities in the decision-making system that increase the risks of addiction. In this commentary I examine the potential role of social influence in exploiting at least one of these vulnerabilities, and argue that the needs satisfied by social interaction may play a role in decision-making with regard to substance use, increasing the risks of addiction.
Collapse
|
40
|
McGregor IS, Callaghan PD, Hunt GE. From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use? Br J Pharmacol 2008; 154:358-68. [PMID: 18475254 DOI: 10.1038/bjp.2008.132] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Addictive drugs can profoundly affect social behaviour both acutely and in the long-term. Effects range from the artificial sociability imbued by various intoxicating agents to the depressed and socially withdrawn state frequently observed in chronic drug users. Understanding such effects is of great potential significance in addiction neurobiology. In this review we focus on the 'social neuropeptide' oxytocin and its possible role in acute and long-term effects of commonly used drugs. Oxytocin regulates social affiliation and social recognition in many species and modulates anxiety, mood and aggression. Recent evidence suggests that popular party drugs such as MDMA and gamma-hydroxybutyrate (GHB) may preferentially activate brain oxytocin systems to produce their characteristic prosocial and prosexual effects. Oxytocin interacts with the mesolimbic dopamine system to facilitate sexual and social behaviour, and this oxytocin-dopamine interaction may also influence the acquisition and expression of drug-seeking behaviour. An increasing body of evidence from animal models suggests that even brief exposure to drugs such as MDMA, cannabinoids, methamphetamine and phencyclidine can cause long lasting deficits in social behaviour. We discuss preliminary evidence that these adverse effects may reflect long-term neuroadaptations in brain oxytocin systems. Laboratory studies and preliminary clinical studies also indicate that raising brain oxytocin levels may ameliorate acute drug withdrawal symptoms. It is concluded that oxytocin may play an important, yet largely unexplored, role in drug addiction. Greater understanding of this role may ultimately lead to novel therapeutics for addiction that can improve mood and facilitate the recovery of persons with drug use disorders.
Collapse
Affiliation(s)
- I S McGregor
- School of Psychology, University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|