1
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2024; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
3
|
Macis D, Bellerba F, Aristarco V, Johansson H, Guerrieri-Gonzaga A, Lazzeroni M, Sestak I, Cuzick J, DeCensi A, Bonanni B, Gandini S. A Mediation Analysis of Obesity and Adiponectin Association with Postmenopausal Breast Cancer Risk: A Nested Cohort Study in the International Breast Cancer Intervention Study II (IBIS-II) Prevention Trial. Nutrients 2024; 16:2098. [PMID: 38999846 PMCID: PMC11242930 DOI: 10.3390/nu16132098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a risk factor for postmenopausal breast cancer (BC), and evidence suggests a role for adiponectin in the relationship between obesity and BC. We investigated whether adiponectin or other biomarkers mediate the effect of body mass index (BMI) on postmenopausal BC risk in a cohort study nested in the IBIS-II Prevention Trial. We measured adiponectin, leptin, IGF-I, IGFBP-1, high-sensitivity C-reactive protein, glycemia, insulin, HOMA-IR index, and SHBG in baseline and 12-month serum samples from 123 cases and 302 matched controls in the placebo arm of the IBIS-II Prevention trial. We conducted the main mediation analysis considering baseline BMI as an exposure and the 12-month adiponectin increase as a mediator after adjustment for the Tyrer-Cuzick score and the lipid-lowering medications/supplements use. In the multivariable Cox model, both the 12-month adiponectin increase (HR, 0.60; 95%CI, 0.36-1.00) and BMI were associated with BC risk (HR, 1.05; 95%CI, 1.00-1.09), with a 40% reduction in women with a 12-month increase in adiponectin. A significantly higher cumulative hazard of BC events was observed in obese women (BMI > 30) with decreased adiponectin (p = 0.0087). No mediating effect of the adiponectin increase on the total effect of BMI on BC risk was observed (natural indirect effect: HR, 1.00; 95%CI, 0.98-1.02). Raising adiponectin levels might be an attractive target for postmenopausal BC prevention.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Federica Bellerba
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20139 Milan, Italy; (F.B.); (S.G.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Ivana Sestak
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Jack Cuzick
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Andrea DeCensi
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK; (I.S.); (J.C.); (A.D.)
- Division of Medical Oncology, Ente Ospedaliero Galliera, 16128 Genoa, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20139 Milan, Italy; (F.B.); (S.G.)
| |
Collapse
|
4
|
Ruscica M, Macchi C, Gandini S, Macis D, Guerrieri-Gonzaga A, Aristarco V, Serrano D, Lazzeroni M, Rizzuto AS, Gaeta A, Corsini A, Gulisano M, Johansson H, Bonanni B. Prognostic Value of PCSK9 Levels in Premenopausal Women at Risk of Breast Cancer-Evidence from a 17-Year Follow-Up Study. Cancers (Basel) 2024; 16:1411. [PMID: 38611089 PMCID: PMC11011028 DOI: 10.3390/cancers16071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND AIM The involvement of cholesterol in cancer development remains a topic of debate, and its association with breast cancer has yet to be consistently demonstrated. Considering that circulating cholesterol levels depend on several concomitant processes, we tested the liability of plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of cholesterol levels, as a prognostic biomarker in the context of breast neoplastic events. METHODS Within a prospective randomized breast cancer prevention trial we measured baseline plasma levels of PCSK9. A total of 235 at-risk premenopausal women were randomized and followed up for 17 years. Participants enrolled in this placebo-controlled, phase II, double-blind trial were randomly assigned to receive either tamoxifen 5 mg/d or fenretinide 200 mg/d, both agents, or placebo for 2 years. The associations with breast cancer events were evaluated through competing risk and Cox regression survival models, adjusted for randomization strata (5-year Gail risk ≥ 1.3% vs. intraepithelial neoplasia or small invasive breast cancer of favorable prognosis), age, and treatment allocation. PCSK9 associations with biomarkers linked to breast cancer risk were assessed on blood samples collected at baseline. RESULTS The plasmatic PCSK9 median and interquartile range were 207 ng/mL and 170-252 ng/mL, respectively. Over a median follow-up period of 17 years and 89 breast neoplastic events, disease-free survival curves showed a hazard ratio of 1.002 (95% CI: 0.999-1.005, p = 0.22) for women with PCSK9 plasma levels ≥ 207 ng/mL compared to women with levels below 207 ng/mL. No differences between randomization strata were observed. We found a negative correlation between PCSK9 and estradiol (r = -0.305), maintained even after partial adjustment for BMI and age (r = -0.287). Cholesterol (r = 0.266), LDL-C (r = 0.207), non-HDL-C (r = 0.246), remnant cholesterol (r = 0.233), and triglycerides (r = 0.233) also correlated with PCSK9. CONCLUSIONS In premenopausal women at risk of early-stage breast cancer, PCSK9 did not appear to have a role as a prognostic biomarker of breast neoplastic events. Larger studies are warranted investigating patients in different settings.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
| | - Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | | | - Aurora Gaeta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, 20126 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | | | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| |
Collapse
|
5
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
6
|
Serrano D, Bellerba F, Johansson H, Macis D, Aristarco V, Accornero CA, Guerrieri-Gonzaga A, Trovato CM, Zampino MG, Salè EO, Bonanni B, Gandini S, Gnagnarella P. Vitamin D Supplementation and Adherence to World Cancer Research Fund (WCRF) Diet Recommendations for Colorectal Cancer Prevention: A Nested Prospective Cohort Study of a Phase II Randomized Trial. Biomedicines 2023; 11:1766. [PMID: 37371861 DOI: 10.3390/biomedicines11061766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin D and a healthy diet, based on World Cancer Research Fund (WCRF) recommendations, are considered key elements for colorectal cancer (CRC) prevention. In a CRC case-control study, we observed that CRC cases were often significantly Vitamin D deficient while subjects following WCRF recommendations significantly decreased their risk of developing CRC. We conducted a randomized phase-II trial (EudraCT number-2015-000467-14) where 74 CRC patients showed differences in response to Vitamin D supplementation, 2000 IU in average per day, according to gender and microbiota. The aim of this nested study is to correlate Vitamin D (supplementation, serum level and receptor polymorphisms), circulating biomarkers, and events (polyp/adenoma, CRC relapse and other cancers) in concomitant to WCRF recommendation adherence. Vitamin D supplementation did not modulate circulating biomarkers or follow-up events. FokI and TaqI VDR were associated with 25-hydroxyvitamin D (25OHD) levels. Patients following the WCRF recommendations had significantly lower leptin, significantly lower IL-6 (only in females), and significantly lower risk of events (HR = 0.41, 95%CI: 0.18-0.92; p = 0.03; median follow-up 2.6 years). Interestingly, no WCRF adherents had significantly more events if they were in the placebo (p < 0.0001), whereas no influence of WCRF was observed in the Vitamin D arm. While one-year Vitamin D supplementation might be too short to show significant preventive activity, a healthy diet and lifestyle should be the first step for preventive programs.
Collapse
Affiliation(s)
- Davide Serrano
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Chiara A Accornero
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Cristina M Trovato
- Division of Endoscopy, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Maria Giulia Zampino
- Division of Medical Oncology Gastrointestinal and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Emanuela Omodeo Salè
- Division of Pharmacy, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
| |
Collapse
|
7
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Tsankof A, Tziomalos K. Adiponectin: A player in the pathogenesis of hormone-dependent cancers. Front Endocrinol (Lausanne) 2022; 13:1018515. [PMID: 36277714 PMCID: PMC9582436 DOI: 10.3389/fendo.2022.1018515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hormone-dependent cancers are a major cause of morbidity and mortality in both genders. Accumulating evidence suggest that adiponectin, an adipokine with multifaceted functions, is implicated in the pathogenesis of several malignancies. In the present review, we discuss the existing data regarding this relationship. Several observational studies showed that low adiponectin levels are associated with higher risk for breast, cervical, endometrial, ovarian and prostate cancer. A relationship between adiponectin and the aggressiveness of some of these tumors has also been reported. In vitro studies reported that adiponectin inhibits the proliferation and induces apoptosis of breast, cervical, endometrial, ovarian and prostate cancer cells. Given the high prevalence of these cancers and the substantial associated morbidity and mortality, the role of agents that increase adiponectin levels and/or stimulate its activity should be evaluated for the prevention and management of these common tumors.
Collapse
Affiliation(s)
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
9
|
Pal P, Atilla-Gokcumen GE, Frasor J. Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. Int J Mol Sci 2022; 23:ijms231911178. [PMID: 36232480 PMCID: PMC9569866 DOI: 10.3390/ijms231911178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids, such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate, is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, migration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes. Here, we review how the current literature shapes our understanding of how ceramide synthesis and turnover are altered in breast cancer and how these changes offer potential strategies to improve breast cancer therapy.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (G.E.A.-G.); (J.F.)
| |
Collapse
|
10
|
Fontvieille E, His M, Biessy C, Navionis AS, Torres-Mejía G, Ángeles-Llerenas A, Alvarado-Cabrero I, Sánchez GI, Navarro E, Cortes YR, Porras C, Rodriguez AC, Garmendia ML, Soto JL, Moyano L, Porter PL, Lin MG, Guenthoer J, Romieu I, Rinaldi S. Inflammatory biomarkers and risk of breast cancer among young women in Latin America: a case-control study. BMC Cancer 2022; 22:877. [PMID: 35948877 PMCID: PMC9367082 DOI: 10.1186/s12885-022-09975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Breast cancer incidence is increasing rapidly in Latin America, with a higher proportion of cases among young women than in developed countries. Studies have linked inflammation to breast cancer development, but data is limited in premenopausal women, especially in Latin America. METHODS We investigated the associations between serum biomarkers of chronic inflammation (interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), leptin, adiponectin) and risk of premenopausal breast cancer among 453 cases and 453 matched, population-based controls from Chile, Colombia, Costa Rica, and Mexico. Odds ratios (OR) were estimated using conditional logistic regression models. Analyses were stratified by size and hormonal receptor status of the tumors. RESULTS IL-6 (ORper standard deviation (SD) = 1.33 (1.11-1.60)) and TNF-α (ORper SD = 1.32 (1.11-1.58)) were positively associated with breast cancer risk in fully adjusted models. Evidence of heterogeneity by estrogen receptor (ER) status was observed for IL-8 (P-homogeneity = 0.05), with a positive association in ER-negative tumors only. IL-8 (P-homogeneity = 0.06) and TNF-α (P-homogeneity = 0.003) were positively associated with risk in the largest tumors, while for leptin (P-homogeneity = 0.003) a positive association was observed for the smallest tumors only. CONCLUSIONS The results of this study support the implication of chronic inflammation in breast cancer risk in young women in Latin America. Largest studies of prospective design are needed to confirm these findings in premenopausal women.
Collapse
Affiliation(s)
- Emma Fontvieille
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mathilde His
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Anne-Sophie Navionis
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Gabriela Torres-Mejía
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Isabel Alvarado-Cabrero
- Servicio de Patología, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gloria Inés Sánchez
- Group Infection and Cancer, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Edgar Navarro
- Grupo Proyecto UNI-Barranquilla, Universidad del Norte, Barranquilla, Colombia
| | | | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Ana Cecilia Rodriguez
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Maria Luisa Garmendia
- Instituto de Nutrición y de Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | | | - Peggy L Porter
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Gang Lin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Isabelle Romieu
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, Georgia, USA
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France.
| |
Collapse
|
11
|
Naaman SC, Shen S, Zeytinoglu M, Iyengar NM. Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. J Clin Endocrinol Metab 2022; 107:2154-2166. [PMID: 35453151 PMCID: PMC9282365 DOI: 10.1210/clinem/dgac241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/18/2022]
Abstract
CONTEXT Breast cancer is increasing in prevalence in parallel with rising rates of obesity worldwide. Obesity is recognized as a leading modifiable risk factor for the development of breast cancer; however, this association varies considerably by clinicopathologic features, and the underlying mechanisms are complex. EVIDENCE ACQUISITION Pubmed literature search using combinations of "obesity," "breast cancer risk," "diet," "exercise," "weight gain," "weight loss," "adipose tissue inflammation," "crown-like structure," "immune markers," "metformin," "gliflozins," "SGLT-2i," "GLP1-RA," and related terms. EVIDENCE SYNTHESIS Elevated body mass index and weight gain are associated with increased risk of postmenopausal, hormone receptor-positive breast cancer. Emerging evidence suggests that adverse measures of body composition in individuals of any weight can also confer increased breast cancer risk. Mechanistically, various factors including altered adipokine balance, dysfunctional adipose tissue, dysregulated insulin signaling, and chronic inflammation contribute to tumorigenesis. Weight loss and more specifically fat mass loss through lifestyle and pharmacologic interventions improve serum metabolic and inflammatory markers, sex hormone levels, and measures of breast density, suggesting a link to decreased breast cancer risk. CONCLUSION Incorporating markers of metabolic health and body composition measures with body mass index can capture breast cancer risk more comprehensively. Further studies of interventions targeting body fat levels are needed to curb the growing prevalence of obesity-related cancer.
Collapse
Affiliation(s)
| | - Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Neil M Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Cairat M, Rinaldi S, Navionis AS, Romieu I, Biessy C, Viallon V, Olsen A, Tjønneland A, Fournier A, Severi G, Kvaskoff M, Fortner RT, Kaaks R, Aleksandrova K, Schulze MB, Masala G, Tumino R, Sieri S, Grasso C, Mattiello A, Gram IT, Olsen KS, Agudo A, Etxezarreta PA, Sánchez MJ, Santiuste C, Barricarte A, Monninkhof E, Hiensch AE, Muller D, Merritt MA, Travis RC, Weiderpass E, Gunter MJ, Dossus L. Circulating inflammatory biomarkers, adipokines and breast cancer risk-a case-control study nested within the EPIC cohort. BMC Med 2022; 20:118. [PMID: 35430795 PMCID: PMC9014562 DOI: 10.1186/s12916-022-02319-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Inflammation has been hypothesized to play a role in the development and progression of breast cancer and might differently impact breast cancer risk among pre and postmenopausal women. We performed a nested case-control study to examine whether pre-diagnostic circulating concentrations of adiponectin, leptin, c-reactive protein (CRP), tumour necrosis factor-α, interferon-γ and 6 interleukins were associated with breast cancer risk, overall and by menopausal status. METHODS Pre-diagnostic levels of inflammatory biomarkers were measured in plasma from 1558 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. We used conditional logistic regression to estimate the odds ratios (ORs) of breast cancer at blood collection, per one standard deviation increase in biomarker concentration. RESULTS Cases were diagnosed at a mean age of 61.4 years on average 8.6 years after blood collection. No statistically significant association was observed between inflammatory markers and breast cancer risk overall. In premenopausal women, borderline significant inverse associations were observed for leptin, leptin-to-adiponectin ratio and CRP [OR= 0.89 (0.77-1.03), OR= 0.88 (0.76-1.01) and OR= 0.87 (0.75-1.01), respectively] while positive associations were observed among postmenopausal women [OR= 1.16 (1.05-1.29), OR= 1.11 (1.01-1.23), OR= 1.10 (0.99-1.22), respectively]. Adjustment for BMI strengthened the estimates in premenopausal women [leptin: OR = 0.83 (0.68-1.00), leptin-to-adiponectin ratio: OR = 0.80 (0.66-0.97), CRP: OR = 0.85 (0.72-1.00)] but attenuated the estimates in postmenopausal women [leptin: OR = 1.09 (0.96-1.24), leptin-to-adiponectin ratio: OR = 1.02 (0.89-1.16), CRP: OR = 1.04 (0.92-1.16)]. CONCLUSIONS Associations between CRP, leptin and leptin-to-adiponectin ratio with breast cancer risk may represent the dual effect of obesity by menopausal status although this deserves further investigation.
Collapse
Affiliation(s)
- Manon Cairat
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Anne-Sophie Navionis
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Isabelle Romieu
- National Institute of Public Health, Centre for Population Health Research, Cuernavaca, Morelos, Mexico City, Mexico
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Aarhus, Aarhus, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnès Fournier
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Équipe "Exposome Et Hérédité", CESP UMR1018, 94805, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Équipe "Exposome Et Hérédité", CESP UMR1018, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Marina Kvaskoff
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Équipe "Exposome Et Hérédité", CESP UMR1018, 94805, Villejuif, France
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Krasimira Aleksandrova
- Department Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE -ONLUS, Ragusa, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian, Milano, Italy
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Mattiello
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy
| | - Inger T Gram
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Pilar Amiano Etxezarreta
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
- Centro De Investigación Biomédica En Red De Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Jose Sánchez
- Centro De Investigación Biomédica En Red De Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza De Salud Pública (EASP), Granada, Spain
- Instituto De Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Carmen Santiuste
- Centro De Investigación Biomédica En Red De Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Aurelio Barricarte
- Centro De Investigación Biomédica En Red De Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Evelyn Monninkhof
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - David Muller
- Department Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Melissa A Merritt
- Department Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- University of Hawaii Cancer Center, Cancer Epidemiology Program, 701 Ilalo St., Honolulu, HI, 96813, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 0NR, UK
| | - Elisabete Weiderpass
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 cours Albert Thomas, 69372, Lyon, CEDEX 08, France.
| |
Collapse
|
13
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
14
|
Fabian CJ, Befort CA, Phillips TA, Nydegger JL, Kreutzjans AL, Powers KR, Metheny T, Klemp JR, Carlson SE, Sullivan DK, Zalles CM, Giles ED, Hursting SD, Hu J, Kimler BF. Change in Blood and Benign Breast Biomarkers in Women Undergoing a Weight-Loss Intervention Randomized to High-Dose ω-3 Fatty Acids versus Placebo. Cancer Prev Res (Phila) 2021; 14:893-904. [PMID: 34244155 DOI: 10.1158/1940-6207.capr-20-0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
The inflammation-resolving and insulin-sensitizing properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids have potential to augment effects of weight loss on breast cancer risk. In a feasibility study, 46 peri/postmenopausal women at increased risk for breast cancer with a body mass index (BMI) of 28 kg/m2 or greater were randomized to 3.25 g/day combined EPA and DHA (ω-3-FA) or placebo concomitantly with initiation of a weight-loss intervention. Forty-five women started the intervention. Study discontinuation for women randomized to ω-3-FA and initiating the weight-loss intervention was 9% at 6 months and thus satisfied our main endpoint, which was feasibility. Between baseline and 6 months significant change (P < 0.05) was observed in 12 of 25 serum metabolic markers associated with breast cancer risk for women randomized to ω-3-FA, but only four for those randomized to placebo. Weight loss (median of 10% for trial initiators and 12% for the 42 completing 6 months) had a significant impact on biomarker modulation. Median loss was similar for placebo (-11%) and ω-3-FA (-13%). No significant change between ω-3-FA and placebo was observed for individual biomarkers, likely due to sample size and effect of weight loss. Women randomized to ω-3-FA exhibiting more than 10% weight loss at 6 months showed greatest biomarker improvement including 6- and 12-month serum adiponectin, insulin, omentin, and C-reactive protein (CRP), and 12-month tissue adiponectin. Given the importance of a favorable adipokine profile in countering the prooncogenic effects of obesity, further evaluation of high-dose ω-3-FA during a weight-loss intervention in obese high-risk women should be considered. PREVENTION RELEVANCE: This study examines biomarkers of response that may be modulated by omega-3 fatty acids when combined with a weight-loss intervention. While focused on obese, postmenopausal women at high risk for development of breast cancer, the findings are applicable to other cancers studied in clinical prevention trials.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| | - Christie A Befort
- Department of Population Health, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Nydegger
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer R Klemp
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Carola M Zalles
- Department of Pathology, Boca Raton Regional Hospital, Boca Raton, Florida
| | - Erin D Giles
- Department of Nutrition, Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Stephen D Hursting
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
15
|
Macis D, Aristarco V, Johansson H, Guerrieri-Gonzaga A, Raimondi S, Lazzeroni M, Sestak I, Cuzick J, DeCensi A, Bonanni B, Gandini S. A Novel Automated Immunoassay Platform to Evaluate the Association of Adiponectin and Leptin Levels with Breast Cancer Risk. Cancers (Basel) 2021; 13:cancers13133303. [PMID: 34209441 PMCID: PMC8268385 DOI: 10.3390/cancers13133303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Adiponectin and leptin are adipokines secreted by the adipose tissue that have been associated with several chronic diseases including cancer. We compared two methods for their measurement and investigated their association with breast cancer. We measured adiponectin and leptin with the automated ELLA platform and a manual commercially available enzyme-linked immunosorbent assay (ELISA) kit on serum samples of women enrolled in two international breast cancer prevention trials. We found a good concordance between the two methods and our results support the association of low adiponectin levels with breast cancer, irrespective of the method used. The take-home message is that ELLA is a very robust platform that represents a step forward for the future use of adipokines, along with other biomarkers, in clinical cancer risk assessment and prevention. Its use should be taken into account whenever biomarkers should be measured in a large cohort of patients for clinical validation or cancer association studies. Abstract Adiponectin and leptin are adipokines secreted by the adipose tissue that are associated with several chronic diseases including cancer. We aimed to compare the immunoassay platform ELLA with an enzyme-linked immunosorbent assay (ELISA) kit and to assess whether the results of the association analyses with breast cancer risk were dependent on the assay used. We measured adiponectin and leptin with ELLA and ELISA on baseline serum samples of 116 Italian postmenopausal women enrolled in two international breast cancer prevention trials. Results were compared with Deming, Passing–Bablok regression and Bland–Altman plots. Disease-free survival was analyzed with the Cox model. There was a good correlation between the methods for adiponectin and leptin (r > 0.96). We found an increased breast cancer risk for very low adiponectin levels (HR for ELLA = 3.75; 95% CI: 1.37;10.25, p = 0.01), whereas no significant association was found for leptin levels. The disease-free survival curves were almost identical for values obtained with the two methods, for both biomarkers. The ELLA platform showed a good concordance with ELISA for adiponectin and leptin measurements. Our results support the association of very low adiponectin levels with postmenopausal breast cancer risk, irrespective of the method used. The ELLA platform is a time-saving system with high reproducibility, therefore we recommend its use for biomarker assessment.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
- Correspondence:
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.R.); (S.G.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Ivana Sestak
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
| | - Andrea DeCensi
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M-6BQ, UK; (I.S.); (J.C.); (A.D.)
- Division of Medical Oncology, Ente Ospedaliero Ospedali Galliera, 16128 Genoa, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.A.); (H.J.); (A.G.-G.); (M.L.); (B.B.)
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.R.); (S.G.)
| |
Collapse
|
16
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
17
|
Jones VC, Dietze EC, Jovanovic-Talisman T, McCune JS, Seewaldt VL. Metformin and Chemoprevention: Potential for Heart-Healthy Targeting of Biologically Aggressive Breast Cancer. Front Public Health 2020; 8:509714. [PMID: 33194937 PMCID: PMC7658387 DOI: 10.3389/fpubh.2020.509714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, tamoxifen is the only drug approved for reduction of breast cancer risk in premenopausal women. The significant cardiovascular side effects of tamoxifen, coupled with lack of a survival benefit, potential for genotoxicity, and failure to provide a significant risk-reduction for estrogen receptor-negative breast cancer, all contribute to the low acceptance of tamoxifen chemoprevention in premenopausal women at high-risk for breast cancer. While other prevention options exist for postmenopausal women, there is a search for well-tolerated prevention agents that can simultaneously reduce risk of breast cancers, cardiovascular disease, and type-2 diabetes. Metformin is a well-tolerated oral biguanide hypoglycemic agent that is prescribed worldwide to over 120 million individuals with type-2 diabetes. Metformin is inexpensive, safe during pregnancy, and the combination of metformin, healthy lifestyle, and exercise has been shown to be effective in preventing diabetes. There is a growing awareness that prevention drugs and interventions should make the “whole woman healthy.” To this end, current efforts have focused on finding low toxicity alternatives, particularly repurposed drugs for chemoprevention of breast cancer, including metformin. Metformin's mechanisms of actions are complex but clearly involve secondary lowering of circulating insulin. Signaling pathways activated by insulin also drive biologically aggressive breast cancer and predict poor survival in women with breast cancer. The mechanistic rationale for metformin chemoprevention is well-supported by the scientific literature. Metformin is cheap, safe during pregnancy, and has the potential to provide heart-healthy breast cancer prevention. On-going primary and secondary prevention trials will provide evidence whether metformin is effective in preventing breast cancer.
Collapse
Affiliation(s)
- Veronica C Jones
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Eric C Dietze
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | | | | | |
Collapse
|
18
|
Andò S, Naimo GD, Gelsomino L, Catalano S, Mauro L. Novel insights into adiponectin action in breast cancer: Evidence of its mechanistic effects mediated by ERα expression. Obes Rev 2020; 21:e13004. [PMID: 32067339 DOI: 10.1111/obr.13004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
This review describes the multifaceted effects of adiponectin on breast cancer cell signalling, tumour metabolism, and microenvironment. It is largely documented that low adiponectin levels are associated with an increased risk of breast cancer. However, it needs to be still clarified what are the extents of the decrease of local/intra-tumoural adiponectin concentrations, which promote breast tumour malignancy. Most of the anti-proliferative and pro-apoptotic effects induced by adiponectin have been obtained in breast cancer cells not expressing estrogen receptor alpha (ERα). Here, we will highlight recent findings demonstrating the mechanistic effects through which adiponectin is able to fuel genomic and non-genomic estrogen signalling, inhibiting LKB1/AMPK/mTOR/S6K pathway and switching energy balance. Therefore, it emerges that the reduced adiponectin levels in patients with obesity work to sustain tumour growth and progression in ERα-positive breast cancer cells. All this may contribute to remove the misleading paradigm that adiponectin univocally inhibits breast cancer cell growth and progression independently on ERα status. The latter concept, here clearly provided by pre-clinical studies, may have translational relevance adopting adiponectin as a potential therapeutic tool. Indeed, the interfering role of ERα on adiponectin action addresses how a separate assessment of adiponectin treatment needs to be considered in novel therapeutic strategies for ERα-positive and ERα-negative breast cancer.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
19
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
20
|
Tumminia A, Vinciguerra F, Parisi M, Graziano M, Sciacca L, Baratta R, Frittitta L. Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk. Int J Mol Sci 2019; 20:ijms20122863. [PMID: 31212761 PMCID: PMC6628240 DOI: 10.3390/ijms20122863] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue has been recognized as a complex organ with endocrine and metabolic roles. The excess of fat mass, as occurs during overweight and obesity states, alters the regulation of adipose tissue, contributing to the development of obesity-related disorders. In this regard, many epidemiological studies shown an association between obesity and numerous types of malignancies, comprising those linked to the endocrine system (e.g., breast, endometrial, ovarian, thyroid and prostate cancers). Multiple factors may contribute to this phenomenon, such as hyperinsulinemia, dyslipidemia, oxidative stress, inflammation, abnormal adipokines secretion and metabolism. Among adipokines, growing interest has been placed in recent years on adiponectin (APN) and on its role in carcinogenesis. APN is secreted by adipose tissue and exerts both anti-inflammatory and anti-proliferative actions. It has been demonstrated that APN is drastically decreased in obese individuals and that it can play a crucial role in tumor growth. Although literature data on the impact of APN on carcinogenesis are sometimes conflicting, the most accredited hypothesis is that it has a protective action, preventing cancer development and progression. The aim of the present review is to summarize the currently available evidence on the involvement of APN and its signaling in the etiology of cancer, focusing on endocrine malignancies.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Miriam Parisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Marco Graziano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Roberto Baratta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy.
| |
Collapse
|
21
|
Amin MN, Hussain MS, Sarwar MS, Rahman Moghal MM, Das A, Hossain MZ, Chowdhury JA, Millat MS, Islam MS. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab Syndr 2019; 13:1213-1224. [PMID: 31336467 DOI: 10.1016/j.dsx.2019.01.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Obesity is associated with metabolic dysfunction and over nutrition. Increased body mass index and obesity are strongly amalgamated with changes in the physiological function of adipose tissue, leading to altered secretion of adipocytokines, inflammatory mediators release as well as chronic inflammation and insulin resistance. The purposes of this study were to review the evidence of how obesity and inflammation may lead to insulin resistance and cancer. SUMMARY Recent findings suggested that increased level of inflammatory mediators in obesity, plays an introductory and cabalistic role in the development of different types of inflammatory disorders including type 2 diabetes mellitus. Link between elevated body mass index and type 2 diabetes mellitus (T2DM). Several of the factors-such as increased levels of leptin, plasminogen activator inhibitor-1, decreased levels of adiponectin, insulin resistance, chronic inflammation etc. consequently result in carcinogenesis and carcinogenic progression too. CONCLUSION This review summarizes how cytokine production in adipose tissue of obese subject creates a chronic inflammatory environment that favors tumor cell motility and invasion to enhance the metastatic potential of tumor cells. High levels of cytokine in the circulation of affected individuals have been associated with a significantly worse outcome. This article also reconnoiters the mechanisms that link obesity to numerous disorders such as inflammation, diabetes, cancers and most specifically combine these processes in a single image. Understanding these mechanisms may assist to understand the consequences of obesity.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh; Department of Pharmacy, Atish Dipankar University of Science and Technology, Sonapur, Uttara, Dhaka, Bangladesh
| | - Md Saddam Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Md Mizanur Rahman Moghal
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, 1902, Tangail, Bangladesh
| | - Abhijit Das
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Zahid Hossain
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, 1206, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh.
| |
Collapse
|
22
|
Li J, Han X. Adipocytokines and breast cancer. Curr Probl Cancer 2018; 42:208-214. [PMID: 29433827 DOI: 10.1016/j.currproblcancer.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
A substantial number of studies have revealed that a growing list of cancers might be influenced by obesity. In this regard, one of the most prominent and well-characterized cancers is breast cancer, the leading cause of cancer death among women. Obesity is associated with an increased risk for the occurrence and development of breast cancer particular in postmenopausal women. Moreover, the relationship between adiposity and breast cancer risk is complex, with associations that differ depending on when body size is assessed (eg, premenopausal vs postmenopausal obesity) and when breast cancer is diagnosed (ie, premenopausal vs postmenopausal disease). Obesity is mainly due to excessive fat accumulation in the regional tissue. Adipocytes in obese individuals produce endocrine, inflammatory, and angiogenic factors to affect adjacent breast cancer cells. Adipocytokines, are biologically active polypeptides that are produced either exclusively or substantially by adipocytes, play a critical and complex role, and act by endocrine, paracrine, and autocrine pathways in the malignant progression of breast cancer. Furthermore, the increased levels of leptin, resistin, and decreased adiponectin secretion are directly associated with breast cancer development. And there are also many studies indicating that adipocytokines could mediate the survival, growth, invasion, and metastasis of breast cancer cells by different cellular and molecular mechanisms to reduce the survival time and prompt the malignancy. In present review, we discuss the correlations between several adipocytokines and breast cancer cells in obesity as well as the underlying signaling pathways to provide the novel ideas for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Jiajia Li
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
23
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
24
|
Boura P, Grapsa D, Loukides S, Angelidou M, Tsakanika K, Syrigos N, Gkiozos I. The prognostic value of serum and bronchoalveolar lavage levels of adiponectin in advanced non-small-cell lung cancer. Lung Cancer Manag 2017; 6:55-65. [PMID: 30643571 DOI: 10.2217/lmt-2016-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/10/2017] [Indexed: 01/09/2023] Open
Abstract
Aim We aimed to explore the prognostic implications of adiponectin (APN) levels in the serum and bronchoalveolar lavage (BAL) of patients with advanced NSCLC. Materials & methods 29 newly diagnosed patients with stage IV NSCLC were prospectively enrolled. Baseline serum and BAL levels of APN were assayed by ELISA and correlated with various clinicopathological parameters, including overall survival. Results No statistically significant correlations were observed between the serum or BAL levels of APN and the clinicopathological parameters evaluated. The only prognostic factor identified, both by univariate and multivariate survival analyses, was performance status. Conclusion The results of our cohort failed to reveal any prognostic significance of serum and BAL levels of APN in stage IV NSCLC.
Collapse
Affiliation(s)
- Paraskevi Boura
- Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece.,Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece
| | - Dimitra Grapsa
- Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece.,Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece
| | - Stylianos Loukides
- Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece.,Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece
| | - Maria Angelidou
- 3rd Pulmonary Department, Sismanoglio General Hospital, 15126, Athens, Greece.,3rd Pulmonary Department, Sismanoglio General Hospital, 15126, Athens, Greece
| | - Konstantina Tsakanika
- Flow Cytometry Unit, Sismanoglio General Hospital,15126, Athens, Greece.,Flow Cytometry Unit, Sismanoglio General Hospital,15126, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece.,Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece
| | - Ioannis Gkiozos
- Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece.,Oncology Unit GPP, 'Sotiria' General Hospital, Medical School, University of Athens, 11527, Athens, Greece
| |
Collapse
|
25
|
Dossus L, Rinaldi S, Biessy C, Hernandez M, Lajous M, Monge A, Ortiz-Panozo E, Yunes E, Lopez-Ridaura R, Torres-Mejía G, Romieu I. Circulating leptin and adiponectin, and breast density in premenopausal Mexican women: the Mexican Teachers' Cohort. Cancer Causes Control 2017; 28:939-946. [PMID: 28677026 DOI: 10.1007/s10552-017-0917-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Leptin and adiponectin are produced by the adipose tissue. Mammographic density (MD) is one of the strongest predictors of breast cancer (BC) and is highly influenced by adiposity. How the interplay between MD, obesity, and obesity-related biomarkers influences BC risk, however, is still unknown, especially in premenopausal women, where adiposity seems to be protective for BC. The aim of the present study was to explore the association between circulating leptin, adiponectin, and their ratio, with MD in Mexican premenopausal women who are part of the large Mexican Teachers' Cohort (MTC). METHODS A subsample of 2,084 women from the MTC participated in a clinical evaluation. Of them, 574 premenopausal women were randomly selected, from four MD strata. Serum leptin and adiponectin concentrations were measured by immunoassays. Multivariate regression analyses were performed to compare means of MD by quartiles of adipokines and their ratio. RESULTS High leptin and leptin/adiponectin ratio levels were significantly associated with lower percentage MD and higher absolute and non-absolute dense tissue areas. High adiponectin levels were significantly associated with lower absolute dense and non-dense tissue areas, but not with percentage MD. After adjustment for BMI, only the associations between percentage MD and absolute non-dense tissue area with leptin remained statistically significant. CONCLUSIONS Leptin, adiponectin, and their ratio were associated with MD; however, only the positive association with leptin seemed to be independent from overall obesity.
Collapse
Affiliation(s)
- L Dossus
- International Agency for Research on Cancer [IARC], Lyon, France
| | - S Rinaldi
- International Agency for Research on Cancer [IARC], Lyon, France
| | - C Biessy
- International Agency for Research on Cancer [IARC], Lyon, France
| | - M Hernandez
- International Agency for Research on Cancer [IARC], Lyon, France
| | - M Lajous
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico.
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
| | - A Monge
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| | - E Ortiz-Panozo
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| | - E Yunes
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| | - R Lopez-Ridaura
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| | - G Torres-Mejía
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| | - I Romieu
- International Agency for Research on Cancer [IARC], Lyon, France
- Center for Research on Population Health, National Institute of Public Health, 7ª Cerrada Fray Pedro de Gante # 50, Mexico, 14000, Mexico
| |
Collapse
|
26
|
Sadim M, Xu Y, Selig K, Paulus J, Uthe R, Agarwl S, Dubin I, Oikonomopoulou P, Zaichenko L, McCandlish SA, Van Horn L, Mantzoros C, Ankerst DP, Kaklamani VG. A prospective evaluation of clinical and genetic predictors of weight changes in breast cancer survivors. Cancer 2017; 123:2413-2421. [PMID: 28195643 DOI: 10.1002/cncr.30628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/28/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Postdiagnosis weight gain in patients with breast cancer has been associated with increased cancer recurrence and mortality. This study was designed to identify risk factors for weight gain and create a predictive model to identify a high-risk population for targeted interventions. METHODS The weight of 393 patients with breast cancer from the Northwestern Robert H. Lurie Cancer Center was measured over a 2-year period from diagnosis, with body mass index (BMI) change over 18 months as the primary endpoint. Demographics, clinical factors, treatment methods, as well as tumor characteristics were also recorded; and a lifestyle questionnaire was conducted. Blood samples were genotyped for 16 single nucleotide polymorphisms in FTO, adiponectin pathway genes (ADIPOQ, ADIPOR1), and FNDC5. Serum leptin, adiponectin, and irisin levels also were measured. RESULTS Mean ± standard deviation 18-month BMI changes were 0.68 ± 1.42, 0.98 ± 1.62, 0.79 ± 1.74, and -0.44 ± 1.58 kg/m2 for patients ages <40, 40 to 49, 50 to 59, and ≥60 years, respectively. The optimal multivariable model for 18-month BMI change contained the predictors age, height, and endocrine therapy, but only age was statistically significant, with a 0.04 kg/m2 increase in 18-month BMI change per younger year of age. Single nucleotide polymorphisms in ADIPOR1, FTO, and FNDC5 were associated with 18-month BMI change, and the first 2 remained significant after adjusting for the optimal clinical model (all P < .05). CONCLUSIONS Women age 60 years and younger at the time of breast cancer diagnosis who have an obesity genetic risk model are at increased risk for weight gain after treatment and should be targeted for weight-maintenance interventions. Cancer 2017;123:2413-21. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Maureen Sadim
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Yanfei Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Katharina Selig
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Julie Paulus
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Regina Uthe
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Surbhi Agarwl
- Rush University Medical Center School of Medicine, Chicago, Illinois
| | - Iram Dubin
- University of California-Los Angeles Medical Center, Los Angeles, California
| | | | - Lesya Zaichenko
- Division of Endocrinology, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christos Mantzoros
- Division of Endocrinology, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Virginia G Kaklamani
- Cancer Treatment Research Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
27
|
Surmacz E, Otvos L. Molecular targeting of obesity pathways in cancer. Horm Mol Biol Clin Investig 2016; 22:53-62. [PMID: 25879324 DOI: 10.1515/hmbci-2015-0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022]
Abstract
Obesity is a significant risk factor for the development of different cancer types and has been associated with poorer response to oncotherapies and linked to earlier recurrence of the neoplastic disease. While molecular mechanisms of these associations are still under investigation, functional dysregulation of two major fat tissue-derived adipokines, leptin and adiponectin, appears to play an important role. Leptin is known to activate carcinogenic pathways, while adiponectin appears to exert antineoplastic activities and interfere with leptin-induced processes. Because excess body fat is associated with increased leptin expression and adiponectin downregulation, therapeutic rebalancing of these pathways may benefit cancer patients, especially the obese subpopulations. This review focuses on our novel leptin receptor antagonists and adiponectin receptor agonists designed for therapeutic modulation of obesity-associated pathways in cancer.
Collapse
|
28
|
Falk Libby E, Liu J, Li YI, Lewis MJ, Demark-Wahnefried W, Hurst DR. Globular adiponectin enhances invasion in human breast cancer cells. Oncol Lett 2015; 11:633-641. [PMID: 26870258 PMCID: PMC4726973 DOI: 10.3892/ol.2015.3965] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
Every year, a large number of women succumb to metastatic breast cancer due to a lack of curative approaches for this disease. Adiponectin (AdipoQ) is the most abundant of the adipocyte-secreted adipokines. In recent years, there has been an interest in the use of AdipoQ and AdipoQ receptor agonists as therapeutic agents for the treatment of breast cancer. However, while multiple epidemiological studies have previously indicated that low levels of circulating plasma AdipoQ portend poor prognosis in patients with breast cancer, recent studies have reported that elevated expression levels of AdipoQ in breast tissue are correlated with advanced stages of the disease. Thus, the aim of the present study was to clarify the mechanism by which AdipoQ in breast tissue acts directly on tumor cells to regulate the early steps of breast cancer metastasis. In the present study, the effects of different AdipoQ isoforms on the metastatic potential of human breast cancer cells were investigated. The results revealed that globular adiponectin (gAd) promoted invasive cell morphology and significantly increased the migration and invasion abilities of breast cancer cells, whereas full-length adiponectin (fAd) had no effect on these cells. Additionally, gAd, but not fAd, increased the expression levels of microtubule-associated protein 1 light chain 3 beta (LC3B)-II and intracellular LC3B puncta, which are indicators of autophagosome formation, thus suggesting autophagic induction by gAd. Furthermore, the inhibition of autophagic function by autophagy-related protein 7 knockdown attenuated the gAd-induced increase in invasiveness in breast cancer cells. Therefore, the results of the present study suggested that a specific AdipoQ isoform may enhance breast cancer invasion, possibly via autophagic induction. Understanding the roles of the different AdipoQ isoforms as microenvironmental regulatory molecules may aid the development of effective AdipoQ-based treatments for breast cancer.
Collapse
Affiliation(s)
- Emily Falk Libby
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianzhong Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Y I Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Monica J Lewis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
29
|
Akyol M, Demir L, Alacacioglu A, Ellidokuz H, Kucukzeybek Y, Yildiz Y, Gumus Z, Bayoglu V, Yildiz I, Salman T, Varol U, Kucukzeybek B, Demir L, Dirican A, Sutcu R, Tarhan MO. The Effects of Adjuvant Endocrine Treatment on Serum Leptin, Serum Adiponectin and Body Composition in Patients with Breast Cancer: The Izmir Oncology Group (IZOG) Study. Chemotherapy 2015; 61:57-64. [DOI: 10.1159/000440944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
Abstract
Background: A limited number of studies have been conducted on the effects of hormonal therapy with tamoxifen (TMX) or aromatase inhibitors (AIs) on plasma levels of leptin and adiponectin, as well as body composition in breast cancer (BC) patients. Therefore, we aimed to analyze the relationship between adipocytokines and body composition as well as the effects of TMX and AIs on plasma adiponectin, leptin, leptin/adiponectin ratio (LAR) and body composition. Methods: Patients were treated with either TMX or AI according to their menopausal status after adjuvant radiotherapy. Changes in body composition and serum leptin and adiponectin levels were evaluated. We recorded the type of hormonal therapy, BMI, waist/hip ratio (WHR), leptin and adiponectin levels at study entry, and after 6 and 12 months. Results: From baseline to the 6- and 12-month follow-ups, there were statistically significant increases in WHR (p = 0.003), fat mass (p = 0.041), and serum leptin (p < 0.001) and adiponectin levels (p < 0.001). The changes in body composition and serum leptin and adiponectin levels were similar in TMX and AI groups. A statistically significant decrease was found in total body water and LAR (p < 0.001). Although weight and body fat percentage increased, such increases were not statistically significant. A positive correlation was found between baseline BMI and serum leptin levels. This correlation was maintained at 6 and 12 months. The negative correlation found between serum adiponectin levels at baseline and baseline BMI did not last throughout the study. Conclusion: In this study, increased leptin and adiponectin levels and a decreased LAR were found in both AI and TMX groups. These changes might have occurred through both mechanisms of hormonal therapy and body composition changes. Therefore, AIs and TMX may exert their protective effects for BC patients by decreasing LAR rather than affecting leptin or adiponectin alone.
Collapse
|
30
|
Boura P, Loukides S, Grapsa D, Achimastos A, Syrigos K. The diverse roles of adiponectin in non-small-cell lung cancer: current data and future perspectives. Future Oncol 2015; 11:2193-203. [DOI: 10.2217/fon.15.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, there is growing research interest for the biological role of adipose tissue-derived bioactive factors, mainly including adipokines, in various forms of cancer. Adiponectin (APN) is the most abundant circulating adipokine, and a key mediator of several cancer-related processes, such as cell proliferation, apoptosis, regulation of tumor cell invasion and angiogenesis. In this review we summarize and critically discuss the published literature on the diverse roles of APN in non-small-cell lung cancer, including its implication in lung cancer development, its use as a diagnostic and prognostic biomarker, and its correlation with cancer-related cachexia. The main challenges and future perspectives, mainly with regard to the potential development of APN-targeted therapeutic agents in cancer therapeutics, are also briefly presented and discussed.
Collapse
Affiliation(s)
- Paraskevi Boura
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Stylianos Loukides
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Dimitra Grapsa
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Apostolos Achimastos
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Konstantinos Syrigos
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| |
Collapse
|
31
|
Lee CH, Woo YC, Wang Y, Yeung CY, Xu A, Lam KSL. Obesity, adipokines and cancer: an update. Clin Endocrinol (Oxf) 2015; 83:147-56. [PMID: 25393563 DOI: 10.1111/cen.12667] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/17/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023]
Abstract
Obesity causes dysfunction of adipose tissue, with resultant chronic inflammation and adverse interplay of various adipokines, sex steroids and endocrine hormones. All these drive tumourigenesis and explain the epidemiological link between obesity and cancer. Over the past decade, the associations among obesity, adipokines and cancer have been increasingly recognized. Adipokines and their respective signalling pathways have drawn much research attention in the field of oncology and cancer therapeutics. This review will discuss the recent advances in the understanding of the association of several adipokines with common obesity-related cancers and the clinical therapeutic implications.
Collapse
Affiliation(s)
- C H Lee
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Y C Woo
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Y Wang
- Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| | - C Y Yeung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - A Xu
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
- Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| | - K S L Lam
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Thompson HJ, Sedlacek SM, Wolfe P, Paul D, Lakoski SG, Playdon MC, McGinley JN, Matthews SB. Impact of Weight Loss on Plasma Leptin and Adiponectin in Overweight-to-Obese Post Menopausal Breast Cancer Survivors. Nutrients 2015; 7:5156-76. [PMID: 26132992 PMCID: PMC4516992 DOI: 10.3390/nu7075156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Women who are obese at the time of breast cancer diagnosis have higher overall mortality than normal weight women and some evidence implicates adiponectin and leptin as contributing to prognostic disadvantage. While intentional weight loss is thought to improve prognosis, its impact on these adipokines is unclear. This study compared the pattern of change in plasma leptin and adiponectin in overweight-to-obese post-menopausal breast cancer survivors during weight loss. Given the controversies about what dietary pattern is most appropriate for breast cancer control and regulation of adipokine metabolism, the effect of a low fat versus a low carbohydrate pattern was evaluated using a non-randomized, controlled study design. Anthropometric data and fasted plasma were obtained monthly during the six-month weight loss intervention. While leptin was associated with fat mass, adiponectin was not, and the lack of correlation between leptin and adiponectin concentrations throughout weight loss implies independent mechanisms of regulation. The temporal pattern of change in leptin but not adiponectin was affected by magnitude of weight loss. Dietary pattern was without effect on either adipokine. Mechanisms not directly related to dietary pattern, weight loss, or fat mass appear to play dominant roles in the regulation of circulating levels of these adipokines.
Collapse
Affiliation(s)
- Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| | - Scot M Sedlacek
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
- Rocky Mountain Cancer Centers, Denver, CO 80220, USA.
| | - Pamela Wolfe
- Colorado Biostatistics Consortium, University of Colorado, Denver, CO 80045, USA.
| | - Devchand Paul
- Rocky Mountain Cancer Centers, Denver, CO 80220, USA.
| | - Susan G Lakoski
- Department of Internal Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Mary C Playdon
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT 06520, USA.
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| | - Shawna B Matthews
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| |
Collapse
|
33
|
Katira A, Tan PH. Adiponectin and its receptor signaling: an anti-cancer therapeutic target and its implications for anti-tumor immunity. Expert Opin Ther Targets 2015; 19:1105-25. [DOI: 10.1517/14728222.2015.1035710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Vargas-Hernández VM, Vargas-Aguilar V, Moreno-Eutimio MA, Acosta-Altamirano G, Tovar-Rodriguez J. Metabolic syndrome in breast cancer. Gland Surg 2014; 2:80-90. [PMID: 25083463 DOI: 10.3978/j.issn.2227-684x.2013.04.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/20/2013] [Indexed: 12/13/2022]
Abstract
Breast Cancer is a heterogeneous disease, progressive, currently, are classified according to in pattern of gene expression luminal A, luminal B, basal and HER-2neu + and Triple-negative, 75% to 80% have receptors positive hormonal and 15% to 20% are positive for hER-2neu and 10% to 20% are triple negative, with hormone receptor negative and HER2-neu and their diagnostic is made by exclusion, the Metabolic Syndrome is related to a higher incidence of these cancers where the insulin-leptin axis-adiponectin are implicated in carcinogenesis.
Collapse
Affiliation(s)
| | - Vm Vargas-Aguilar
- Investigations Division, Hospital Juárez de México, México city, México
| | | | | | | |
Collapse
|
35
|
Genkinger JM, Terry MB. Commentary: towards a definite coherent heterogeneity in meta-analyses. Int J Epidemiol 2014; 43:1236-9. [PMID: 24997208 PMCID: PMC4258788 DOI: 10.1093/ije/dyu136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jeanine M Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA and Herbert Irving Comprehensive Cancer Center, New York, USADepartment of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA and Herbert Irving Comprehensive Cancer Center, New York, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA and Herbert Irving Comprehensive Cancer Center, New York, USADepartment of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA and Herbert Irving Comprehensive Cancer Center, New York, USA
| |
Collapse
|
36
|
Linking adiponectin and autophagy in the regulation of breast cancer metastasis. J Mol Med (Berl) 2014; 92:1015-23. [PMID: 24903246 DOI: 10.1007/s00109-014-1179-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
Abstract
Adipokines within the tumor microenvironment may play important roles in regulating the early steps of breast cancer metastasis. Adiponectin (AdipoQ) is the most abundant adipokine and exists in multiple forms: full-length multimers (fAd) and a cleaved, globular isoform (gAd). While these isoforms are observed as having distinct biological properties, nearly all investigation into AdipoQ in breast cancer has focused on the antitumor roles of fAd, while mostly ignoring gAd. However, evidence from other disease settings suggests that gAd is linked to processes known to promote metastasis. Here, we discuss key areas in which knowledge about AdipoQ in breast cancer is lacking, expressly focusing on data suggesting that gAd is elevated in the microenvironment and may act directly on invasive breast cancer cells to support their initial metastatic progression. We discuss autophagy as a potential mechanism of action for this effect. Overall, given that AdipoQ and AdipoQ receptor agonists have been proposed as therapeutic strategies, it is necessary to better understand the various functions of these regulatory molecules in metastatic breast cancer. Doing so will help ensure the most effective approaches to treating this disease, for which there remain no curative options.
Collapse
|
37
|
Macis D, Guerrieri-Gonzaga A, Gandini S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. Int J Epidemiol 2014; 43:1226-36. [PMID: 24737805 DOI: 10.1093/ije/dyu088] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We conducted a meta-analysis in order to investigate whether circulating adiponectin, an insulin-sensitizing hormone produced by adipocytes, is associated with breast cancer risk. METHODS A systematic literature search was performed in PubMed, Medline, EMBASE, ISI Web of Knowledge and the Cochrane Library. The summary relative risk (SRR) was calculated by pooling the different study-specific estimates using the random effect models. Meta-regression, subgroup and sensitivity analyses were carried out to investigate between-study heterogeneity and to test publication bias. RESULTS Data from 15 observational studies, published between 2003 and April 2013 for a total of 4249 breast cancer cases, were analysed. The SRR for the 'highest' vs 'lowest' adiponectin levels indicated a 34% reduction in breast cancer risk [95% confidence interval (CI): 13%-50%]. Between-study heterogeneity was not substantial (I(2)=53%). Ten studies were included in the dose-response analysis: the SRR for an increase of 3 µg/ml of adiponectin corresponded to a 5% risk reduction (95% CI: 1%-9%). The comparison between 'highest' and 'lowest' levels of adiponectin showed an inverse association in postmenopausal women (SRR=0.80; 95% CI: 0.63-1.01) and an indication of an inverse relationship in premenopausal women (SRR=0.72, 95% CI: 0.30-1.72). No evidence of publication bias was found. CONCLUSIONS Low circulating adiponectin levels are associated with an increased breast cancer risk. However, properly designed studies are needed to confirm the role of adiponectin as breast cancer biomarker, and clinical trials should be performed to identify those interventions that may be effective in modulating adiponectin levels and reducing breast cancer risk.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Sara Gandini
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
38
|
Surmacz E. Leptin and adiponectin: emerging therapeutic targets in breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:321-32. [PMID: 24136336 DOI: 10.1007/s10911-013-9302-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity is a recognized risk factor for breast cancer development and poorer response to therapy. Two major fat tissue-derived adipokines, leptin and adiponectin have been implicated in mammary carcinogenesis. Leptin appears to promote breast cancer progression through activation of mitogenic, antiapoptotic, and metastatic pathways, while adiponectin may restrict tumorigenic processes primarily by inhibiting cell metabolism. Furthermore, adiponectin is known to counteract detrimental leptin effects in breast cancer models. Thus, therapeutic inhibition of pro-neoplastic leptin pathways and reactivation of anti-neoplastic adiponectin signaling may benefit breast cancer patients, especially the obese subpopulation. This review focuses on current experimental strategies aiming at leptin and adiponectin pathways in breast cancer models. Novel leptin receptor antagonists and adiponectin receptor agonists as well as other compounds for therapeutic modulation of adipokine pathways are discussed in detail, including potential pharmacological advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, 1900 N12th Street, BioLife Bldg. Rm 425, Philadelphia, PA, 19122, USA,
| |
Collapse
|
39
|
Association of serum adiponectin, leptin, and resistin concentrations with the severity of liver dysfunction and the disease complications in alcoholic liver disease. Mediators Inflamm 2013; 2013:148526. [PMID: 24259947 PMCID: PMC3821915 DOI: 10.1155/2013/148526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background and aims. There is growing evidence that white adipose tissue is an important contributor in the pathogenesis of alcoholic liver disease (ALD). We investigated serum concentrations of total adiponectin (Acrp30), leptin, and resistin in patients with chronic alcohol abuse and different grades of liver dysfunction, as well as ALD complications. Materials and Methods. One hundred forty-seven consecutive inpatients with ALD were prospectively recruited. The evaluation of plasma adipokine levels was performed using immunoenzymatic ELISA tests. Multivariable logistic regression was applied in order to select independent predictors of advanced liver dysfunction and the disease complications. Results. Acrp30 and resistin levels were significantly higher in patients with ALD than in controls. Lower leptin levels in females with ALD compared to controls, but no significant differences in leptin concentrations in males, were found. High serum Acrp30 level revealed an independent association with advanced liver dysfunction, as well as the development of ALD complications, that is, ascites and hepatic encephalopathy. Conclusion. Gender-related differences in serum leptin concentrations may influence the ALD course, different in females compared with males. Serum Acrp30 level may serve as a potential prognostic indicator for patients with ALD.
Collapse
|
40
|
Biomarker Endpoints for Early-Phase Cancer-Prevention Studies. CURRENT BREAST CANCER REPORTS 2013. [DOI: 10.1007/s12609-013-0116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Dalamaga M. Obesity, insulin resistance, adipocytokines and breast cancer: New biomarkers and attractive therapeutic targets. World J Exp Med 2013; 3:34-42. [PMID: 24520544 PMCID: PMC3905595 DOI: 10.5493/wjem.v3.i3.34] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/08/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Worldwide, breast cancer (BC) represents the most common type of non-skin human malignancy and the second leading cause of cancer-related deaths amid women in Western countries. Obesity and its metabolic complications have rapidly become major global health issues and are associated with increased risk for cancer, especially BC in postmenopausal women. Adipose tissue is considered as a genuine endocrine organ secreting a variety of bioactive adipokines, such as leptin, adiponectin, resistin and nicotinamide phosphoribosyl-transferase/visfatin. Recent evidence has indicated that the constellation of obesity, insulin resistance and adipokines is associated with the risk and prognosis of postmenopausal BC. Direct evidence is growing rapidly supporting the stimulating and/or inhibiting role of adipokines in the process of development and progression of BC. Adipokines could exert their effects on the normal and neoplastic mammary tissue by endocrine, paracrine and autocrine mechanisms. Recent studies support a role of adipokines as novel risk factors and potential diagnostic and prognostic biomarkers in BC. This editorial aims at providing important insights into the potential pathophysiological mechanisms linking adipokines to the etiopathogenesis of BC in the context of a dysfunctional adipose tissue and insulin resistance in obesity. A better understanding of these mechanisms may be important for the development of attractive preventive and therapeutic strategies against obesity-related breast malignancy.
Collapse
|
42
|
Dalamaga M. Interplay of adipokines and myokines in cancer pathophysiology: Emerging therapeutic implications. World J Exp Med 2013; 3:26-33. [PMID: 24520543 PMCID: PMC3905596 DOI: 10.5493/wjem.v3.i3.26] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/19/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Excess body weight constitutes a worldwide health problem with epidemic proportions impacting on the risk and prognosis of several disease states including malignancies. It is believed that the metabolic changes associated with weight gain, particularly visceral obesity, and physical inactivity could lead to dysfunctional adipose and muscle tissues causing insulin resistance, low-grade chronic inflammation and abnormal secretion of adipokines and myokines. The complex paracrine and endocrine interconnection between adipokines and myokines reflects a yin-yang balance with important implications in processes such as lipolysis control, insulin sensitivity and prevention from obesity-driven chronic low-grade inflammation and cancer promotion through anti-inflammatory adipokines and myokines. Furthermore, the complex pathophysiology of cancer cachexia is based on the interplay between muscle and adipose tissue mediated by free fatty acids, various adipokines and myokines. The purpose of this editorial is to explore the role of the adipose and muscle tissue interplay in carcinogenesis, cancer progression and cachexia, and to examine the mechanisms underpinning their association with malignancy. Understanding of the mechanisms connecting the interplay of adipokines and myokines with cancer pathophysiology is expected to be of importance in the development of therapeutic strategies against cancer cachexia. Advances in the field of translational investigation may lead to tangible benefits to obese and inactive persons who are at increased risk of cancer as well as to cancer patients with cachexia.
Collapse
|
43
|
Genetic analysis of ADIPOQ variants and gastric cancer risk: a hospital-based case–control study in China. Med Oncol 2013; 30:658. [DOI: 10.1007/s12032-013-0658-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/28/2013] [Indexed: 12/11/2022]
|
44
|
Obeid S, Hebbard L. Role of adiponectin and its receptors in cancer. Cancer Biol Med 2013; 9:213-20. [PMID: 23691481 PMCID: PMC3643674 DOI: 10.7497/j.issn.2095-3941.2012.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Adiponectin (APN), a novel hormone/cytokine derived from adipocyte tissue, is involved in various physiological functions. Genetics, nutrition, and adiposity are factors contributing to circulating plasma concentrations of APN. Clinical correlation studies have shown that lower levels of serum APN are associated with increased malignancy of various cancers, such as breast and colon cancers, suggesting that APN has a role in tumorigenesis. APN affects insulin resistance, thus further influencing cancer development. Tumor cells may express receptors for APN. Cellular signaling is the mechanism by which APN exerts its host-protective responses. These factors suggest that serum APN levels and downstream signaling targets of APN may serve as potential diagnostic markers for malignancies. Further research is necessary to clarify the exact role of APN in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Stephanie Obeid
- Storr Liver Unit, Westmead Millennium Institute, PO Box 412, Darcy Road, Westmead, NSW 2145, Australia
| | | |
Collapse
|
45
|
Woolcott CG, Courneya KS, Boyd NF, Yaffe MJ, McTiernan A, Brant R, Jones CA, Stanczyk FZ, Terry T, Cook LS, Wang Q, Friedenreich CM. Association between sex hormones, glucose homeostasis, adipokines, and inflammatory markers and mammographic density among postmenopausal women. Breast Cancer Res Treat 2013; 139:255-65. [DOI: 10.1007/s10549-013-2534-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
|
46
|
Mizuno NK, Rogozina OP, Seppanen CM, Liao DJ, Cleary MP, Grossmann ME. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors. Cancer Prev Res (Phila) 2013; 6:540-7. [PMID: 23550153 DOI: 10.1158/1940-6207.capr-13-0033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are a number of dietary interventions capable of inhibiting mammary tumorigenesis; however, the effectiveness of dietary combinations is largely unexplored. Here, we combined 2 interventions previously shown individually to inhibit mammary tumor development. The first was the use of the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the second was the implementation of calorie restriction. MMTV-Her2/neu mice were used as a model for human breast cancers, which overexpress Her2/neu. Six groups of mice were enrolled. Half were fed a control (Con) diet with 10.1% fat calories from soy oil, whereas the other half consumed a diet with 72% fat calories from EPA. Within each diet, mice were further divided into ad libitum (AL), chronic calorie-restricted (CCR), or intermittent calorie-restricted (ICR) groups. Mammary tumor incidence was lowest in ICR-EPA (15%) and highest in AL-Con mice (87%), whereas AL-EPA, CCR-Con, CCR-EPA, and ICR-Con groups had mammary tumor incidence rates of 63%, 47%, 40%, and 59%, respectively. Survival was effected similarly by the interventions. Consumption of EPA dramatically reduced serum leptin (P < 0.02) and increased serum adiponectin in the AL-EPA mice compared with AL-Con mice (P < 0.001). Both CCR and ICR decreased serum leptin and insulin-like growth factor I (IGF-I) compared with AL mice but not compared with each other. These results illustrate that mammary tumor inhibition is significantly increased when ICR and EPA are combined as compared with either intervention alone. This response may be related to alterations in the balance of serum growth factors and adipokines.
Collapse
Affiliation(s)
- Nancy K Mizuno
- University of Minnesota, Hormel Institute, 801 16th Ave. NE, Austin, MN 55912, USA
| | | | | | | | | | | |
Collapse
|
47
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2013; 20:156-60. [PMID: 23434800 DOI: 10.1097/med.0b013e32835f8a71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Abstract
Sphingolipid-metabolizing enzymes are becoming targets for chemotherapeutic development with an increasing interest in the recent years. In this chapter we introduce the sphingolipid family of lipids, and the role of individual species in cell homeostasis. We also discuss their roles in several rare diseases and overall, in cancer transformation. We follow the biosynthesis pathway of the sphingolipid tree, focusing on the enzymes in order to understand how using small molecule inhibitors makes it possible to modulate cancer progression. Finally, we describe the most used and historically significant inhibitors employed in cancer research, their relationships to sphingolipid metabolism, and some promising results found in this field.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, University of Stony Brook, Stony Brook, New York 11794
| | - Yusuf A. Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L-4, 178, Stony Brook, NY 11794, USA
| |
Collapse
|
49
|
van Londen G, Beckjord EB, Dew MA, Cuijpers P, Tadic S, Brufsky A. Breast cancer survivorship symptom management: current perspective and future development. BREAST CANCER MANAGEMENT 2013; 2:71-81. [PMID: 23814614 PMCID: PMC3693468 DOI: 10.2217/bmt.12.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing numbers and longevity of cancer survivors has furthered our insight into the factors affecting their health outcomes, suggesting that multiple factors play a role (e.g., effects of cancer treatments and health behaviors). Emotional and physical symptoms may not always receive sufficient attention. In this short narrative review highlighting recent literature, we describe the most common physical and emotional symptoms of breast cancer survivors aged 50 years and older and outline a multidisciplinary symptom management approach, regardless of symptom etiology.
Collapse
Affiliation(s)
- G van Londen
- University of Pittsburgh, Department of Medicine (Hematology–Oncology, Geriatric Medicine) & Clinical & Translational Science Institute, Pittsburgh, PA, USA
| | - EB Beckjord
- University of Pittsburgh, Department of Psychiatry, Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - MA Dew
- University of Pittsburgh, Departments of Psychiatry, Psychology, Epidemiology & Biostatistics, Pittsburgh, PA, USA
| | - P Cuijpers
- VU University, Department of Clinical Psychology, Amsterdam, The Netherlands
| | - S Tadic
- University of Pittsburgh, Department of Medicine (Geriatric Medicine) & Clinical & Translational Science Institute, Pittsburgh, PA, USA
| | - A Brufsky
- University of Pittsburgh, Department of Medicine (Hematology–Oncology), Pittsburgh, PA, USA
| |
Collapse
|
50
|
Abstract
Simple prevention messages based on understandable biologic principles are likely to be adopted. The long-held premise that postmenopausal obesity elevates, but premenopausal obesity reduces, risk for breast cancer is confusing to the public. Furthermore, decades of positive energy balance may be difficult to suddenly reverse at the time of the menopause. In this issue (beginning on page 583), Cecchini et al. suggest that obesity may also be a risk factor for pre-menopausal women 35 and older who have additional risk factors for breast cancer. Although the relative impact of dysregulated energy metabolism depends on many factors including age, hormonal milieu, and competing risk factors, as well as how it is measured, avoiding weight gain after age 30 is increasingly being recognized as a simple way to reduce risk of breast cancer.
Collapse
Affiliation(s)
- Carol J Fabian
- University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 1102, Westwood, KS 66205, USA.
| |
Collapse
|