1
|
Bayle A, Belcaid L, Cousin S, Trin K, Alame M, Rouleau E, Soubeyran I, Lacroix L, Blouin L, Vasseur D, Crombe A, Mathoulin-Pelissier S, Soria JC, Bellera C, Italiano A. Tumor fraction-based prognostic tool for cancer patients referred to early phase clinical trials. NPJ Precis Oncol 2024; 8:227. [PMID: 39375508 PMCID: PMC11458866 DOI: 10.1038/s41698-024-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Selecting patients for phase I cancer trials is crucial to ensure a sufficient life expectancy. Frail patients, better suited for palliative care, should not be exposed to new drugs with minimal benefit. Enrolling patients at high risk of early death can jeopardize the study. Our analysis of two large precision medicine studies used tumor fraction from ctDNA to develop a predictive model, demonstrating notable predictive accuracy and aiding in patient selection.
Collapse
Affiliation(s)
| | - Laila Belcaid
- Faculty of Medicine, University of Denmark, Copenhague, Denmark
| | - Sophie Cousin
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Kilian Trin
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Epicene team, Bordeaux, France
- INSERM CIC1401, Clinical and Epidemiological Research Unit, Bergonie Institute, Bordeaux, France
| | - Melissa Alame
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Etienne Rouleau
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | | | - Ludovic Lacroix
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | - Laura Blouin
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Damien Vasseur
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | - Amandine Crombe
- Department of Imaging, University Hospital Centre of Bordeaux, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Simone Mathoulin-Pelissier
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Epicene team, Bordeaux, France
- INSERM CIC1401, Clinical and Epidemiological Research Unit, Bergonie Institute, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | - Carine Bellera
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Epicene team, Bordeaux, France
- INSERM CIC1401, Clinical and Epidemiological Research Unit, Bergonie Institute, Bordeaux, France
| | - Antoine Italiano
- DITEP, Gustave Roussy, Villejuif, France.
- Department of Medicine, Institut Bergonié, Bordeaux, France.
- University of Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Mazzeo R, Sears J, Palmero L, Bolzonello S, Davis AA, Gerratana L, Puglisi F. Liquid biopsy in triple-negative breast cancer: unlocking the potential of precision oncology. ESMO Open 2024; 9:103700. [PMID: 39288656 PMCID: PMC11421323 DOI: 10.1016/j.esmoop.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
In the era of precision oncology, the management of triple-negative breast cancer (TNBC) is rapidly changing and becoming more complicated with a variety of chemotherapy, immunotherapy, and targeted treatment options. Currently, TNBC treatment is based on prognostic and predictive factors including immunohistochemical biomarkers [e.g. programmed death-ligand 1 (PD-L1)] and germline BRCA mutations. Given the current limitation of existing biomarkers, liquid biopsies may serve as clinically useful tools to determine treatment efficacy and response in both the (neo)adjuvant and metastatic settings, for detecting early relapse, and for monitoring clonal evolution during treatment. In this review, we comprehensively summarize current and future liquid biopsy applications. Specifically, we highlight the role of circulating tumor cell characterization, circulating tumor DNA, and other preclinical liquid biopsy technologies including circulating exosomes, RNA liquid biopsy, and circulating immune-based biomarkers. In the near future, these biomarkers may serve to identify early disease relapse, therapeutic targets, and disease clonality for patients with TNBC in the clinical setting.
Collapse
Affiliation(s)
- R Mazzeo
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - J Sears
- Department of Medicine, Washington University in St. Louis, St. Louis
| | - L Palmero
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| | - S Bolzonello
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano
| | - A A Davis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, USA
| | - L Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy.
| | - F Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
3
|
Choi Y, Dharia NV, Jun T, Chang J, Royer-Joo S, Yau KK, Assaf ZJ, Aimi J, Sivakumar S, Montesion M, Sacher A, LoRusso P, Desai J, Schutzman JL, Shi Z. Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors. Clin Cancer Res 2024; 30:3788-3797. [PMID: 38995268 PMCID: PMC11369623 DOI: 10.1158/1078-0432.ccr-24-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE To inform prognosis, treatment response, disease biology, and KRAS G12C mutation heterogeneity, we conducted exploratory circulating tumor DNA (ctDNA) profiling on 134 patients with solid tumors harboring a KRAS G12C mutation treated with single-agent divarasib (GDC-6036) in a phase 1 study. EXPERIMENTAL DESIGN Plasma samples were collected for serial ctDNA profiling at baseline (cycle 1 day 1 prior to treatment) and multiple on-treatment time points (cycle 1 day 15 and cycle 3 day 1). RESULTS KRAS G12C ctDNA was detectable from plasma samples in 72.9% (43/59) and 92.6% (50/54) of patients with non-small cell lung cancer and colorectal cancer, respectively, the majority of whom were eligible for study participation based on a local test detecting the KRAS G12C mutation in tumor tissue. Baseline ctDNA tumor fraction was associated with tumor type, disease burden, and metastatic sites. A decline in ctDNA level was observed as early as cycle 1 day 15. Serial assessment showed a decline in ctDNA tumor fraction associated with response and progression-free survival. Except for a few cases of KRAS G12C sub-clonality, on-treatment changes in KRAS G12C variant allele frequency mirrored changes in the overall ctDNA tumor fraction. CONCLUSIONS Across tumor types, the KRAS G12C mutation likely represents a truncal mutation in the majority of patients. Rapid and deep decline in ctDNA tumor fraction was observed in patients responding to divarasib treatment. Early on-treatment dynamics of ctDNA were associated with patient outcomes and tumor response to divarasib treatment.
Collapse
Affiliation(s)
- Yoonha Choi
- Genentech, Inc., South San Francisco, California.
| | | | - Tomi Jun
- Genentech, Inc., South San Francisco, California.
| | - Julie Chang
- Genentech, Inc., South San Francisco, California.
| | | | | | - Zoe J. Assaf
- Genentech, Inc., South San Francisco, California.
| | - Junko Aimi
- Genentech, Inc., South San Francisco, California.
| | | | | | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Immunology, University of Toronto, Toronto, Canada.
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| | | | - Zhen Shi
- Genentech, Inc., South San Francisco, California.
| | | |
Collapse
|
4
|
Megquier K, Husted C, Rhoades J, White ME, Genereux DP, Chen FL, Xiong K, Kwon E, Swofford R, Painter C, Adalsteinsson V, London CA, Gardner HL, Karlsson EK. Impact of preanalytical factors on liquid biopsy in the canine cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605605. [PMID: 39131379 PMCID: PMC11312437 DOI: 10.1101/2024.07.29.605605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
While liquid biopsy has potential to transform cancer diagnostics through minimally-invasive detection and monitoring of tumors, the impact of preanalytical factors such as the timing and anatomical location of blood draw is not well understood. To address this gap, we leveraged pet dogs with spontaneous cancer as a model system, as their compressed disease timeline facilitates rapid diagnostic benchmarking. Key liquid biopsy metrics from dogs were consistent with existing reports from human patients. The tumor content of samples was higher from venipuncture sites closer to the tumor and from a central vein. Metrics also differed between lymphoma and non-hematopoietic cancers, urging cancer-type-specific interpretation. Liquid biopsy was highly sensitive to disease status, with changes identified soon after post chemotherapy administration, and trends of increased tumor fraction and other metrics observed prior to clinical relapse in dogs with lymphoma or osteosarcoma. These data support the utility of pet dogs with cancer as a relevant system for advancing liquid biopsy platforms.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Husted
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | | | | | | | - Frances L. Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Euijin Kwon
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Ross Swofford
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
| | | | | | - Cheryl A. London
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Rosenberg SM, Zheng Y, Ruddy K, Poorvu PD, Snow C, Kirkner GJ, Meyer ME, Tamimi RM, Schapira L, Peppercorn J, Come S, Borges VF, Warner E, Gelber S, Collins L, Winer EP, Partridge AH. Helping ourselves, helping others: the Young Women's Breast Cancer Study (YWS) - a multisite prospective cohort study to advance the understanding of breast cancer diagnosed in women aged 40 years and younger. BMJ Open 2024; 14:e081157. [PMID: 38951008 PMCID: PMC11218027 DOI: 10.1136/bmjopen-2023-081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE Compared with older women diagnosed with breast cancer, younger women are more likely to die of breast cancer and more likely to suffer psychosocially in both the short-term and long term. The Young Women's Breast Cancer Study (YWS) is a multisite prospective cohort study established to address gaps in our knowledge about this vulnerable and understudied population. PARTICIPANTS The YWS enrolled 1302 women newly diagnosed with stages 0-IV breast cancer at age 40 years or younger at 13 academic and community sites in North America between 2006 and 2016. Longitudinal patient-reported outcome data are complemented by clinical data abstraction and biospecimen collection at multiple timepoints. FINDINGS TO DATE Key findings related to fertility include that nearly 40% of participants were interested in pregnancy following diagnosis; of those who reported interest, 10% pursued fertility preservation. Overall, approximately 10% of YWS participants became pregnant in the first 5 years after diagnosis; follow-up is ongoing for pregnancies after 5 years. Studies focused on psychosocial outcomes have characterised quality of life, post-traumatic stress and fear of recurrence, with findings detailing the factors associated with the substantial psychosocial burden many young women face during and following active treatment. Multiple studies have leveraged YWS biospecimens, including whole-exome sequencing of tumour analyses that revealed that select somatic alterations occur at different frequencies in young (age≤35) versus older women with luminal A breast cancer, and a study that explored clonal hematopoiesis of indeterminate potential found it to be rare in young survivors. FUTURE PLANS With a median follow-up of approximately 10 years, the cohort is just maturing for many relevant long-term outcomes and provides outstanding opportunities to further study and build collaborations to address gaps in our knowledge, with the ultimate objective to improve care and outcomes for young women with breast cancer. TRIAL REGISTRATION NUMBER NCT01468246.
Collapse
Affiliation(s)
- Shoshana M Rosenberg
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Yue Zheng
- Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathryn Ruddy
- Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip D Poorvu
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Craig Snow
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory J Kirkner
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Meghan E Meyer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rulla M Tamimi
- Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Lidia Schapira
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, California, USA
| | - Jeffrey Peppercorn
- Department of Medicine, Division of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven Come
- Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Virginia F Borges
- Medical Oncology, University of Colorado Denver, Denver, Colorado, USA
| | - Ellen Warner
- Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Shari Gelber
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Laura Collins
- Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eric P Winer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Ann H Partridge
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lian S, Lu C, Li F, Yu X, Ai L, Wu B, Gong X, Zhou W, Liang X, Zhan J, Yuan Y, Fang F, Liu Z, Ji M, Zheng Z. Monitoring Hepatocellular Carcinoma Using Tumor Content in Circulating Cell-Free DNA. Clin Cancer Res 2024; 30:2772-2779. [PMID: 38630548 DOI: 10.1158/1078-0432.ccr-23-3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE The objective of the study was to evaluate the use of tumor content in circulating cell-free DNA (ccfDNA) for monitoring hepatocellular carcinoma (HCC) throughout its natural history. EXPERIMENTAL DESIGN We included 67 patients with hepatitis B virus-related HCC, of whom 17 had paired pre- and posttreatment samples, and 90 controls. Additionally, in a prospective cohort with hepatitis B virus surface antigen-positive participants recruited in 2012 and followed up biannually with blood sample collections until 2019, we included 270 repeated samples before diagnosis from 63 participants who later developed HCC (pre-HCC samples). Shallow whole-genome sequencing and the ichorCNA method were used to analyze genome-wide copy number and tumor content in ccfDNA. RESULTS High tumor content was associated with advanced tumor stage (P < 0.001) and poor survival after HCC diagnosis [HR = 12.35; 95% confidence interval (CI) = 1.413-107.9; P = 0.023]. Tumor content turned negative after surgery (P = 0.027), whereas it remained positive after transarterial chemoembolization treatment (P = 0.578). In non-HCC samples, the mean tumor content (±SD) was 0.011 (±0.007) and had a specificity of 97.8% (95% CI = 92.2%-99.7%). In pre-HCC samples, the tumor content increased from 0.014 at 4 years before diagnosis to 0.026 at 1 year before diagnosis. The sensitivity of tumor content in detecting HCC increased from 22.7% (95% CI = 11.5%-37.8%) within 1 year before diagnosis to 30.4% (95% CI = 13.2%-52.9%) at the Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 81.8% (95% CI = 59.7%-94.8%) at stage B, and 95.5% (95% CI = 77.2%-99.9%) at stage C. CONCLUSIONS The tumor content in ccfDNA is correlated with tumor burden and may help in monitoring HCC 1 yearearlier than clinical diagnosis and in predicting patient prognosis.
Collapse
Affiliation(s)
- Shifeng Lian
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Chenyu Lu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Limei Ai
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Xueyi Gong
- Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Wenjing Zhou
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xuejun Liang
- Xiaolan Public Health Service Center, Zhongshan, People's Republic of China
| | - Jiyun Zhan
- Xiaolan Public Health Service Center, Zhongshan, People's Republic of China
| | - Yong Yuan
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Rolfo CD, Madison RW, Pasquina LW, Brown DW, Huang Y, Hughes JD, Graf RP, Oxnard GR, Husain H. Measurement of ctDNA Tumor Fraction Identifies Informative Negative Liquid Biopsy Results and Informs Value of Tissue Confirmation. Clin Cancer Res 2024; 30:2452-2460. [PMID: 38526394 PMCID: PMC11145175 DOI: 10.1158/1078-0432.ccr-23-3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Liquid biopsy (LBx) for tumor profiling is increasingly used, but concerns remain regarding negative results. A lack of results may truly reflect tumor genomics, or it may be a false negative that would be clarified by tissue testing. A method of distinguishing between these scenarios could help clarify when follow-on tissue testing is valuable. EXPERIMENTAL DESIGN Here we evaluate circulating tumor DNA (ctDNA) tumor fraction (TF), a quantification of ctDNA in LBx samples, for utility in identifying true negative results. We assessed concordance between LBx and tissue-based results, stratified by ctDNA TF, in a real-world genomic dataset of paired samples across multiple disease types. We also evaluated the frequency of tissue results identifying driver alterations in patients with lung cancer after negative LBx in a real-world clinicogenomic database. RESULTS The positive percent agreement and negative predictive value between liquid and tissue samples for driver alterations increased from 63% and 66% for all samples to 98% and 97% in samples with ctDNA TF ≥1%. Among 505 patients with lung cancer with no targetable driver alterations found by LBx who had subsequent tissue-based profiling, 37% had a driver, all of which had ctDNA TF <1%. CONCLUSIONS Patients with lung cancer with negative LBx and ctDNA TF ≥1% are unlikely to have a driver detected on confirmatory tissue testing; such informative negative results may benefit instead from prompt treatment initiation. Conversely, negative LBx with ctDNA TF <1% will commonly have a driver identified by follow-up tissue testing and should be prioritized for reflex testing.
Collapse
Affiliation(s)
- Christian D. Rolfo
- Center of Thoracic Oncology at The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Yanmei Huang
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | - Hatim Husain
- Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| |
Collapse
|
8
|
Takahashi N, Pongor L, Agrawal SP, Shtumpf M, Rajapakse VN, Shafiei A, Schultz CW, Kim S, Roame D, Carter P, Vilimas R, Nichols S, Desai P, Figg WD, Bagheri M, Teif VB, Thomas A. Genomic alterations and transcriptional phenotypes in circulating tumor DNA and matched metastatic tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597054. [PMID: 38895436 PMCID: PMC11185519 DOI: 10.1101/2024.06.02.597054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), a cancer whose aggressive clinical course making it exceedingly challenging to obtain tumor biopsies. Methods Here, a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC, we study cfDNA low pass whole genome (0.1X coverage) and exome (130X) sequencing in comparison with time-point matched tumor, characterized using exome and transcriptome sequencing. Results Direct comparison of cfDNA versus tumor biopsy reveals that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not found in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Genomic sequencing coverage of plasma DNA fragments around transcription start sites shows distinct treatment-related changes and captures the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors, allowing prediction of SCLC neuroendocrine phenotypes and treatment responses. Conclusions These findings have important implications for non-invasive stratification and subtype-specific therapies for patients with SCLC, now treated as a single disease.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
- Medical Oncology Branch, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center East Hospital, Kashiwa, Japan
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Colchester, UK
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ahmad Shafiei
- Department of Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Diana Roame
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Paula Carter
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - William Douglas Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Mohammad Bagheri
- Department of Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Colchester, UK
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| |
Collapse
|
9
|
Rickles-Young M, Tinoco G, Tsuji J, Pollock S, Haynam M, Lefebvre H, Glover K, Owen DH, Collier KA, Ha G, Adalsteinsson VA, Cibulskis C, Lennon NJ, Stover DG. Assay Validation of Cell-Free DNA Shallow Whole-Genome Sequencing to Determine Tumor Fraction in Advanced Cancers. J Mol Diagn 2024; 26:413-422. [PMID: 38490303 PMCID: PMC11090203 DOI: 10.1016/j.jmoldx.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024] Open
Abstract
Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.
Collapse
Affiliation(s)
- Micah Rickles-Young
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Junko Tsuji
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sam Pollock
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marcy Haynam
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Stefanie Spielman Comprehensive Breast Center, Columbus, Ohio
| | - Heather Lefebvre
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Stefanie Spielman Comprehensive Breast Center, Columbus, Ohio
| | - Kristyn Glover
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Stefanie Spielman Comprehensive Breast Center, Columbus, Ohio
| | - Dwight H Owen
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Katharine A Collier
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Viktor A Adalsteinsson
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Carrie Cibulskis
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niall J Lennon
- Genomics Platform, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Daniel G Stover
- Division of Medical Oncology, The Ohio State University College of Medicine, Columbus, Ohio; Ohio State University Comprehensive Cancer Center, Columbus, Ohio; Stefanie Spielman Comprehensive Breast Center, Columbus, Ohio.
| |
Collapse
|
10
|
Sogbe M, Bilbao I, Marchese FP, Zazpe J, De Vito A, Pozuelo M, D’Avola D, Iñarrairaegui M, Berasain C, Arechederra M, Argemi J, Sangro B. Prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma under systemic treatment. Clin Mol Hepatol 2024; 30:177-190. [PMID: 38163441 PMCID: PMC11016491 DOI: 10.3350/cmh.2023.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND/AIMS New prognostic markers are needed to identify patients with hepatocellular carcinoma (HCC) who carry a worse prognosis. Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess both circulating tumor DNA (ctDNA) fraction and large structural genomic alterations. Here, we studied the performance of ULP-WGS of plasma cfDNA to infer prognosis in patients with HCC. METHODS Plasma samples were obtained from patients with HCC prior to surgery, locoregional or systemic therapy, and were analyzed by ULP-WGS of cfDNA to an average genome-wide fold coverage of 0.3x. ctDNA and copy number alterations (CNA) were estimated using the software package ichorCNA. RESULTS Samples were obtained from 73 HCC patients at different BCLC stages (BCLC 0/A: n=37, 50.7%; BCLC B/C: n=36, 49.3%). ctDNA was detected in 18 out of 31 patients who received systemic treatment. Patients with detectable ctDNA showed significantly worse overall survival (median, 13.96 months vs not reached). ctDNA remained an independent predictor of prognosis after adjustment by clinical-pathologic features and type of systemic treatment (hazard ratio 7.69; 95%, CI 2.09-28.27). Among ctDNA-positive patients under systemic treatments, the loss of large genomic regions in 5q and 16q arms was associated with worse prognosis after multivariate analysis. CONCLUSION ULP-WGS of cfDNA provides clinically relevant information about the tumor biology. The presence of ctDNA and the loss of 5q and 16q arms in ctDNA-positive patients are independent predictors of worse prognosis in patients with advanced HCC receiving systemic therapy.
Collapse
Affiliation(s)
- Miguel Sogbe
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Idoia Bilbao
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Francesco P. Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jon Zazpe
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Annarosaria De Vito
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Pozuelo
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Delia D’Avola
- Clinica Universidad de Navarra, Internal Medicine Department, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Carmen Berasain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Maria Arechederra
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Josepmaria Argemi
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Bruno Sangro
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clinica Universidad de Navarra, Liver Unit, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| |
Collapse
|
11
|
Efthymiou V, Queenan N, Haas M, Naegele S, Goss D, Faden DL. Circulating Tumor DNA in the Immediate Postoperative Setting. Ann Surg Oncol 2024; 31:2319-2325. [PMID: 38190058 DOI: 10.1245/s10434-023-14860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as an accurate real-time biomarker of disease status across many solid tumor types. Most studies evaluating the utility of ctDNA have focused on time points weeks to months after surgery, which, for many cancer types, is significantly later than decision-making time points for adjuvant treatment. In this systematic review, we summarize the state of the literature on the feasibility of using ctDNA as a biomarker in the immediate postoperative period. METHODS We performed a systematic review evaluating the early kinetics, defined here as 3 days of ctDNA in patients who underwent curative-intent surgery. RESULTS Among the 2057 studies identified, eight cohort studies met the criteria for evaluation. Across six different cancer types, all studies showed an increased risk of cancer recurrence in patients with detectable ctDNA in the immediate postoperative period. CONCLUSION While ctDNA clearance kinetics appear to vary based on tumor type, across all studies detectable ctDNA after surgery was predictive of recurrence, suggesting early postoperative time points could be feasibly used for determining minimal residual disease. However, larger studies need to be performed to better understand the precise kinetics of ctDNA clearance across different cancer types as well as to determine optimal postoperative time points.
Collapse
Affiliation(s)
- Vasileios Efthymiou
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Natalia Queenan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Markus Haas
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Saskia Naegele
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Deborah Goss
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Daniel L Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Han JE, Cho HJ. Exploring the prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma. Clin Mol Hepatol 2024; 30:160-163. [PMID: 38414374 PMCID: PMC11016494 DOI: 10.3350/cmh.2024.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Affiliation(s)
- Ji Eun Han
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
13
|
Mei T, Wang T, Zhou Q. Multi-omics and artificial intelligence predict clinical outcomes of immunotherapy in non-small cell lung cancer patients. Clin Exp Med 2024; 24:60. [PMID: 38554212 PMCID: PMC10981593 DOI: 10.1007/s10238-024-01324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024]
Abstract
In recent years, various types of immunotherapy, particularly the use of immune checkpoint inhibitors targeting programmed cell death 1 or programmed death ligand 1 (PD-L1), have revolutionized the management and prognosis of non-small cell lung cancer. PD-L1 is frequently used as a biomarker for predicting the likely benefit of immunotherapy for patients. However, some patients receiving immunotherapy have high response rates despite having low levels of PD-L1. Therefore, the identification of this group of patients is extremely important to improve prognosis. The tumor microenvironment contains tumor, stromal, and infiltrating immune cells with its composition differing significantly within tumors, between tumors, and between individuals. The omics approach aims to provide a comprehensive assessment of each patient through high-throughput extracted features, promising a more comprehensive characterization of this complex ecosystem. However, features identified by high-throughput methods are complex and present analytical challenges to clinicians and data scientists. It is thus feasible that artificial intelligence could assist in the identification of features that are beyond human discernment as well as in the performance of repetitive tasks. In this paper, we review the prediction of immunotherapy efficacy by different biomarkers (genomic, transcriptomic, proteomic, microbiomic, and radiomic), together with the use of artificial intelligence and the challenges and future directions of these fields.
Collapse
Affiliation(s)
- Ting Mei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ting Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
14
|
Amato O, Giannopoulou N, Ignatiadis M. Circulating tumor DNA validity and potential uses in metastatic breast cancer. NPJ Breast Cancer 2024; 10:21. [PMID: 38472216 DOI: 10.1038/s41523-024-00626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Following the first characterization of circulating tumor DNA (ctDNA) in the 1990s, recent advances led to its introduction in the clinics. At present, the European Society Of Medical Oncology (ESMO) recommendations endorse ctDNA testing in routine clinical practice for tumor genotyping to direct molecularly targeted therapies in patients with metastatic cancer. In studies on metastatic breast cancer, ctDNA has been utilized for treatment tailoring, tracking mechanisms of drug resistance, and for predicting disease response before imaging. We review the available evidence regarding ctDNA applications in metastatic breast cancer.
Collapse
Affiliation(s)
- Ottavia Amato
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Michail Ignatiadis
- Breast Medical Oncology Clinic, Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
15
|
Moldovan N, van der Pol Y, van den Ende T, Boers D, Verkuijlen S, Creemers A, Ramaker J, Vu T, Bootsma S, Lenos KJ, Vermeulen L, Fransen MF, Pegtel M, Bahce I, van Laarhoven H, Mouliere F. Multi-modal cell-free DNA genomic and fragmentomic patterns enhance cancer survival and recurrence analysis. Cell Rep Med 2024; 5:101349. [PMID: 38128532 PMCID: PMC10829758 DOI: 10.1016/j.xcrm.2023.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The structure of cell-free DNA (cfDNA) is altered in the blood of patients with cancer. From whole-genome sequencing, we retrieve the cfDNA fragment-end composition using a new software (FrEIA [fragment end integrated analysis]), as well as the cfDNA size and tumor fraction in three independent cohorts (n = 925 cancer from >10 types and 321 control samples). At 95% specificity, we detect 72% cancer samples using at least one cfDNA measure, including 64% early-stage cancer (n = 220). cfDNA detection correlates with a shorter overall (p = 0.0086) and recurrence-free (p = 0.017) survival in patients with resectable esophageal adenocarcinoma. Integrating cfDNA measures with machine learning in an independent test set (n = 396 cancer, 90 controls) achieve a detection accuracy of 82% and area under the receiver operating characteristic curve of 0.96. In conclusion, harnessing the biological features of cfDNA can improve, at no extra cost, the diagnostic performance of liquid biopsies.
Collapse
Affiliation(s)
- Norbert Moldovan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Dries Boers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Sandra Verkuijlen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Aafke Creemers
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jip Ramaker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Trang Vu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Idris Bahce
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Hanneke van Laarhoven
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Iams WT, Mackay M, Ben-Shachar R, Drews J, Manghnani K, Hockenberry AJ, Cristofanilli M, Nimeiri H, Guinney J, Benson AB. Concurrent Tissue and Circulating Tumor DNA Molecular Profiling to Detect Guideline-Based Targeted Mutations in a Multicancer Cohort. JAMA Netw Open 2024; 7:e2351700. [PMID: 38252441 PMCID: PMC10804266 DOI: 10.1001/jamanetworkopen.2023.51700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024] Open
Abstract
Importance Tissue-based next-generation sequencing (NGS) of solid tumors is the criterion standard for identifying somatic mutations that can be treated with National Comprehensive Cancer Network guideline-recommended targeted therapies. Sequencing of circulating tumor DNA (ctDNA) can also identify tumor-derived mutations, and there is increasing clinical evidence supporting ctDNA testing as a diagnostic tool. The clinical value of concurrent tissue and ctDNA profiling has not been formally assessed in a large, multicancer cohort from heterogeneous clinical settings. Objective To evaluate whether patients concurrently tested with both tissue and ctDNA NGS testing have a higher rate of detection of guideline-based targeted mutations compared with tissue testing alone. Design, Setting, and Participants This cohort study comprised 3209 patients who underwent sequencing between May 2020, and December 2022, within the deidentified, Tempus multimodal database, consisting of linked molecular and clinical data. Included patients had stage IV disease (non-small cell lung cancer, breast cancer, prostate cancer, or colorectal cancer) with sufficient tissue and blood sample quantities for analysis. Exposures Received results from tissue and plasma ctDNA genomic profiling, with biopsies and blood draws occurring within 30 days of one another. Main Outcomes and Measures Detection rates of guideline-based variants found uniquely by ctDNA and tissue profiling. Results The cohort of 3209 patients (median age at diagnosis of stage IV disease, 65.3 years [2.5%-97.5% range, 43.3-83.3 years]) who underwent concurrent tissue and ctDNA testing included 1693 women (52.8%). Overall, 1448 patients (45.1%) had a guideline-based variant detected. Of these patients, 9.3% (135 of 1448) had variants uniquely detected by ctDNA profiling, and 24.2% (351 of 1448) had variants uniquely detected by solid-tissue testing. Although largely concordant with one another, differences in the identification of actionable variants by either assay varied according to cancer type, gene, variant, and ctDNA burden. Of 352 patients with breast cancer, 20.2% (71 of 352) with actionable variants had unique findings in ctDNA profiling results. Most of these unique, actionable variants (55.0% [55 of 100]) were found in ESR1, resulting in a 24.7% increase (23 of 93) in the identification of patients harboring an ESR1 mutation relative to tissue testing alone. Conclusions and Relevance This study suggests that unique actionable biomarkers are detected by both concurrent tissue and ctDNA testing, with higher ctDNA identification among patients with breast cancer. Integration of concurrent NGS testing into the routine management of advanced solid cancers may expand the delivery of molecularly guided therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Wade T. Iams
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Massimo Cristofanilli
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| | | | | | - Al B. Benson
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
17
|
Sato T, Montazeri K, Gragoudas ES, Lane AM, Aronow MB, Cohen JV, Boland GM, Banks E, Kachulis C, Fleharty M, Cibulskis C, Lawless A, Adalsteinsson VA, Sullivan RJ, Kim IK. Detection of Copy-Number Variation in Circulating Cell-Free DNA in Patients With Uveal Melanoma. JCO Precis Oncol 2024; 8:e2300368. [PMID: 38237100 DOI: 10.1200/po.23.00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 01/23/2024] Open
Abstract
PURPOSE Somatic chromosomal alterations, particularly monosomy 3 and 8q gains, have been associated with metastatic risk in uveal melanoma (UM). Whole genome-scale evaluation of detectable alterations in cell-free DNA (cfDNA) in UM could provide valuable prognostic information. Our pilot study evaluates the correlation between genomic information using ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA in UM and associated clinical outcomes. MATERIALS AND METHODS ULP-WGS of cfDNA was performed on 29 plasma samples from 16 patients, 14 metastatic UM (mUM) and two non-metastatic, including pre- and post-treatment mUM samples from 10 patients treated with immunotherapy and one with liver-directed therapy. We estimated tumor fraction (TFx) and detected copy-number alterations (CNAs) using ichorCNA. Presence of 8q amplification was further analyzed using the likelihood ratio test (LRT). RESULTS Eleven patients with mUM (17 samples) of 14 had detectable circulating tumor DNA (ctDNA). 8q gain was detected in all 17, whereas monosomy 3 was detectable in 10 of 17 samples. TFx generally correlated with disease status, showing an increase at the time of disease progression (PD). 8q gain detection sensitivity appeared greater with the LRT than with ichorCNA at lower TFxs. The only patient with mUM with partial response on treatment had a high pretreatment TFx and undetectable on-treatment ctDNA, correlating with her profound response and durable survival. CONCLUSION ctDNA can be detected in mUM using ULP-WGS, and the TFx correlates with DS. 8q gain was consistently detectable in mUM, in line with previous studies indicating 8q gains early in primary UM and higher amplification with PD. Our work suggests that detection of CNAs by ULP-WGS, particularly focusing on 8q gain, could be a valuable blood biomarker to monitor PD in UM.
Collapse
Affiliation(s)
- Takuto Sato
- Broad Institute of MIT and Harvard, Boston, MA
| | - Kamaneh Montazeri
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Evangelos S Gragoudas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Anne Marie Lane
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | | | | | - Genevieve M Boland
- Department of Surgery MD, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Boston, MA
| | | | | | | | - Aleigha Lawless
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Ivana K Kim
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Chen L, Ma R, Luo C, Xie Q, Ning X, Sun K, Meng F, Zhou M, Sun J. Noninvasive early differential diagnosis and progression monitoring of ovarian cancer using the copy number alterations of plasma cell-free DNA. Transl Res 2023; 262:12-24. [PMID: 37499745 DOI: 10.1016/j.trsl.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Ovarian cancer (OV) is the most lethal gynecological malignancy and requires improved early detection methods and more effective intervention to achieve a better prognosis. The lack of sensitive and noninvasive biomarkers with clinical utility remains a challenge. Here, we conducted a genome-wide copy number variation (CNV) profiling analysis using low-coverage whole genome sequencing (LC-WGS) of plasma cfDNA in patients with nonmalignant and malignant ovarian tumors and identified 10 malignancy-specific and 12 late-stage-specific CNV markers from plasma cfDNA LC-WGS data. Concordance analysis indicated a significant correlation of identified CNV markers between CNV profiles of plasma cfDNA and tissue DNA (Pearson's r = 0.64, P = 0.006 for the TCGA cohort and r = 0.51, P = 0.04 for the Dariush cohort). By leveraging these specific CNV markers and machine learning algorithms, we developed robust predictive models showing excellent performance in distinguishing between malignant and nonmalignant ovarian tumors with F1-scores of 0.90 and ranging from 0.75 to 0.99, and prediction accuracy of 0.89 and ranging from 0.66 to 0.98, respectively, as well as between early- and late-stage ovarian tumors with F1-scores of 0.84 and ranging from 0.61 to 1.00, and prediction accuracy of 0.82 and ranging from 0.63 to 0.96 in our institute cohort and other external validation cohorts. Furthermore, we also discovered and validated certain CNV features associated with survival outcomes and platinum-based chemotherapy response in multicenter cohorts. In conclusion, our study demonstrated the clinical utility of CNV profiling in plasma cfDNA using LC-WGS as a cost-effective and accessible liquid biopsy for OV.
Collapse
Affiliation(s)
- Lu Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China; School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou P. R. China
| | - Rong Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Chang Luo
- Department of Birth Control, Red Cross Central Hospital of Harbin, Harbin, P. R. China
| | - Qin Xie
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Xin Ning
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Kaidi Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Fanling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, P. R. China.
| | - Meng Zhou
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou P. R. China.
| | - Jie Sun
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou P. R. China.
| |
Collapse
|
19
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
20
|
Chi Y, Su M, Zhou D, Zheng F, Zhang B, Qiang L, Ren G, Song L, Bu B, Fang S, Yu B, Zhou J, Yu J, Li H. Dynamic analysis of circulating tumor DNA to predict the prognosis and monitor the treatment response of patients with metastatic triple-negative breast cancer: A prospective study. eLife 2023; 12:e90198. [PMID: 37929934 PMCID: PMC10627511 DOI: 10.7554/elife.90198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Limited data are available on applying circulating tumor DNA (ctDNA) in metastatic triple-negative breast cancer (mTNBC) patients. Here, we investigated the value of ctDNA for predicting the prognosis and monitoring the treatment response in mTNBC patients. Methods We prospectively enrolled 70 Chinese patients with mTNBC who had progressed after ≤2 lines of chemotherapy and collected blood samples to extract ctDNA for 457-gene targeted panel sequencing. Results Patients with ctDNA+, defined by 12 prognosis-relevant mutated genes, had a shorter progression-free survival (PFS) than ctDNA- patients (5.16 months vs. 9.05 months, p=0.001), and ctDNA +was independently associated with a shorter PFS (HR, 95% CI: 2.67, 1.2-5.96; p=0.016) by multivariable analyses. Patients with a higher mutant-allele tumor heterogeneity (MATH) score (≥6.316) or a higher ctDNA fraction (ctDNA%≥0.05) had a significantly shorter PFS than patients with a lower MATH score (5.67 months vs.11.27 months, p=0.007) and patients with a lower ctDNA% (5.45 months vs. 12.17 months, p<0.001), respectively. Positive correlations with treatment response were observed for MATH score (R=0.24, p=0.014) and ctDNA% (R=0.3, p=0.002), but not the CEA, CA125, or CA153. Moreover, patients who remained ctDNA +during dynamic monitoring tended to have a shorter PFS than those who did not (3.90 months vs. 6.10 months, p=0.135). Conclusions ctDNA profiling provides insight into the mutational landscape of mTNBC and may reliably predict the prognosis and treatment response of mTNBC patients. Funding This work was supported by the National Natural Science Foundation of China (Grant No. 81902713), Natural Science Foundation of Shandong Province (Grant No. ZR2019LZL018), Breast Disease Research Fund of Shandong Provincial Medical Association (Grant No. YXH2020ZX066), the Start-up Fund of Shandong Cancer Hospital (Grant No. 2020-PYB10), Beijing Science and Technology Innovation Fund (Grant No. KC2021-ZZ-0010-1).
Collapse
Affiliation(s)
- Yajing Chi
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- School of Medicine, Nankai UniversityTianjinChina
| | - Mu Su
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Dongdong Zhou
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Fangchao Zheng
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Baoxuan Zhang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ling Qiang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Guohua Ren
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Lihua Song
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Bing Bu
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Shu Fang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Bo Yu
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Jinxing Zhou
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
21
|
Efthymiou V, Queenan N, Haas M, Naegele S, Goss D, Faden DL. circulating tumor DNA in the immediate post-operative setting. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296390. [PMID: 37873394 PMCID: PMC10593016 DOI: 10.1101/2023.09.30.23296390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Circulating tumor DNA (ctDNA) has emerged as an accurate real-time biomarker of disease status across most solid tumor types. Most studies evaluating the utility of ctDNA have focused on time points weeks to months after surgery, which for many cancer types, is significantly later than decision-making time points for adjuvant treatment. In this systematic review, we summarize the state of the literature on the feasibility of using ctDNA as a biomarker in the immediate postoperative period. Methods We performed a systematic review evaluating the early kinetics, defined here as three days, of ctDNA in patients who underwent curative-intent surgery across several cancer types. Results Among the 2057 studies identified, we evaluated eight cohort studies with ctDNA levels measured within the first three days after surgery. Across six different cancer types, all studies showed an increased risk of cancer recurrence in patients with a positive early postoperative ctDNA level. Discussion While ctDNA clearance kinetics appear to vary based on tumor type, across all studies- detectable ctDNA after surgery was predictive of recurrence, suggesting early postoperative timepoints could be feasibly used for determining minimal residual disease. However, larger studies need to be performed to better understand the precise kinetics of ctDNA clearance across different cancer types as well as to determine optimal postoperative time points. Synopsis This systematic review analyzed the use of ctDNA as a biomarker for minimal residual disease detection in the early postoperative setting and found that ctDNA detection within three days after surgery is associated with an increased risk of recurrence.
Collapse
Affiliation(s)
- Vasileios Efthymiou
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
| | - Natalia Queenan
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
| | - Markus Haas
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
| | - Saskia Naegele
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
| | - Deborah Goss
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
22
|
Kim MH, Kim GM, Ahn JM, Ryu WJ, Kim SG, Kim JH, Kim TY, Han HJ, Kim JY, Park HS, Park S, Park BW, Kim SI, Jeong J, Lee J, Paik S, Kim S, Jung KH, Cho EH, Sohn J. Copy number aberrations in circulating tumor DNA enables prognosis prediction and molecular characterization of breast cancer. J Natl Cancer Inst 2023; 115:1036-1049. [PMID: 37166557 PMCID: PMC10483335 DOI: 10.1093/jnci/djad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Low-pass whole-genome sequencing (LP-WGS)-based circulating tumor DNA (ctDNA) analysis is a versatile tool for somatic copy number aberration (CNA) detection, and this study aims to explore its clinical implication in breast cancer. METHODS We analyzed LP-WGS ctDNA data from 207 metastatic breast cancer (MBC) patients to explore prognostic value of ctDNA CNA burden and validated it in 465 stage II-III triple-negative breast cancer (TNBC) patients who received neoadjuvant chemotherapy in phase III PEARLY trial (NCT02441933). The clinical implication of locus level LP-WGS ctDNA profiling was further evaluated. RESULTS We found that a high baseline ctDNA CNA burden predicts poor overall survival and progression-free survival of MBC patients. The post hoc analysis of the PEARLY trial showed that a high baseline ctDNA CNA burden predicted poor disease-free survival independent from pathologic complete response (pCR), validating its robust prognostic significance. The 24-month disease-free survival rate was 96.9% and 55.9% in [pCR(+) and low I-score] and [non-pCR and high I-score] patients, respectively. The locus-level ctDNA CNA profile classified MBC patients into 5 molecular clusters and revealed targetable oncogenic CNAs. LP-WGS ctDNA and in vitro analysis identified the BCL6 amplification as a resistance factor for CDK4/6 inhibitors. We estimated ctDNA-based homologous recombination deficiency status of patients by shallowHRD algorithm, which was highest in the TNBC and correlated with platinum-based chemotherapy response. CONCLUSIONS These results demonstrate LP-WGS ctDNA CNA analysis as an essential tool for prognosis prediction and molecular profiling. Particularly, ctDNA CNA burden can serve as a useful determinant for escalating or de-escalating (neo)adjuvant strategy in TNBC patients.
Collapse
Affiliation(s)
- Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gun Min Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Mo Ahn
- Green Cross Genome, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul-Gi Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Yeong Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Ye Kim
- Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Seok Park
- Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seho Park
- Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong Woo Park
- Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Il Kim
- Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Jeong
- Division of Breast Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soonmyung Paik
- Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hae Cho
- Green Cross Genome, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Liu Y, Zhang H, Liu Y, Zhang S, Su P, Wang L, Li Y, Liang Y, Wang X, Zhao W, Chen B, Luo D, Zhang N, Yang Q. Hypoxia-induced GPCPD1 depalmitoylation triggers mitophagy via regulating PRKN-mediated ubiquitination of VDAC1. Autophagy 2023; 19:2443-2463. [PMID: 36803235 PMCID: PMC10392732 DOI: 10.1080/15548627.2023.2182482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Mitophagy, which selectively eliminates the dysfunctional and excess mitochondria by autophagy, is crucial for cellular homeostasis under stresses such as hypoxia. Dysregulation of mitophagy has been increasingly linked to many disorders including neurodegenerative disease and cancer. Triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype, is reported to be characterized by hypoxia. However, the role of mitophagy in hypoxic TNBC as well as the underlying molecular mechanism is largely unexplored. Here, we identified GPCPD1 (glycerophosphocholine phosphodiesterase 1), a key enzyme in choline metabolism, as an essential mediator in hypoxia-induced mitophagy. Under the hypoxic condition, we found that GPCPD1 was depalmitoylated by LYPLA1, which facilitated the relocating of GPCPD1 to the outer mitochondrial membrane (OMM). Mitochondria-localized GPCPD1 could bind to VDAC1, the substrate for PRKN/PARKIN-dependent ubiquitination, thus interfering with the oligomerization of VDAC1. The increased monomer of VDAC1 provided more anchor sites to recruit PRKN-mediated polyubiquitination, which consequently triggered mitophagy. In addition, we found that GPCPD1-mediated mitophagy exerted a promotive effect on tumor growth and metastasis in TNBC both in vitro and in vivo. We further determined that GPCPD1 could serve as an independent prognostic indicator in TNBC. In conclusion, our study provides important insights into a mechanistic understanding of hypoxia-induced mitophagy and elucidates that GPCPD1 could act as a potential target for the future development of novel therapy for TNBC patients.Abbreviations: ACTB: actin beta; 5-aza: 5-azacytidine; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; ChIP: chromatin immunoprecipitation; co-IP: co-immunoprecipitation; CQ: chloroquine; CsA: cyclosporine; DOX: doxorubicin; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GPCPD1: glycerophosphocholine phosphodiesterase 1; HAM: hydroxylamine; HIF1A: hypoxia inducible factor 1 subunit alpha; HRE: hypoxia response element; IF: immunofluorescence; LB: lysis buffer; LC3B/MAP1LC3B: microtubule associated protein 1 light chain 3 beta; LC-MS: liquid chromatography-mass spectrometry; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; MDA231: MDA-MB-231; MDA468: MDA-MB-468; MFN1: mitofusin 1; MFN2: mitofusin 2; MKI67: marker of proliferation Ki-67; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; OS: overall survival; PalmB: palmostatin B; PBS: phosphate-buffered saline; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; SDS: sodium dodecyl sulfate; TOMM20: translocase of outer mitochondrial membrane 20; TNBC: triple-negative breast cancer; VBIT-4: VDAC inhibitor; VDAC1: voltage dependent anion channel 1; WT: wild type.
Collapse
Affiliation(s)
- Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yiwei Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Siyue Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Weijing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Research Institute of Breast Cancer, Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
24
|
Sisodiya S, Kasherwal V, Khan A, Roy B, Goel A, Kumar S, Arif N, Tanwar P, Hussain S. Liquid Biopsies: Emerging role and clinical applications in solid tumours. Transl Oncol 2023; 35:101716. [PMID: 37327582 PMCID: PMC10285278 DOI: 10.1016/j.tranon.2023.101716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Late detection and lack of precision diagnostics are the major challenges in cancer prevention and management. Biomarker discovery in specific cancers, especially at the pre-invasive stage, is vital for early diagnosis, positive treatment response, and good disease prognosis. Traditional diagnostic measures require invasive procedures such as tissue excision using a needle, an endoscope, and/or surgical resection which can be unsafe, expensive, and painful. Additionally, the presence of comorbid conditions in individuals might render them ineligible for undertaking a tissue biopsy, and in some cases, it is difficult to access tumours depending on the site of occurrence. In this context, liquid biopsies are being explored for their clinical significance in solid malignancies management. These non-invasive or minimally invasive methods are being developed primarily for identification of biomarkers for early diagnosis and targeted therapeutics. In this review, we have summarised the use and importance of liquid biopsy as significant tool in diagnosis, prognosis prediction, and therapeutic development. We have also discussed the challenges that are encountered and future perspective.
Collapse
Affiliation(s)
- Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Vishakha Kasherwal
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kumar
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Nazneen Arif
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
25
|
Nagahashi M, Ling Y, Toshikawa C, Hayashida T, Kitagawa Y, Futamura M, Kuwayama T, Nakamura S, Yamauchi H, Yamauchi T, Kaneko K, Kanbayashi C, Sato N, Tsuchida J, Moro K, Nakajima M, Shimada Y, Ichikawa H, Lyle S, Miyoshi Y, Takabe K, Okuda S, Wakai T. Copy number alteration is an independent prognostic biomarker in triple-negative breast cancer patients. Breast Cancer 2023; 30:584-595. [PMID: 36930419 DOI: 10.1007/s12282-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Next-generation sequencing (NGS) has enabled comprehensive genomic profiling to identify gene alterations that play important roles in cancer biology. However, the clinical significance of these genomic alterations in triple-negative breast cancer (TNBC) patients has not yet been fully elucidated. The aim of this study was to clarify the clinical significance of genomic profiling data, including copy number alterations (CNA) and tumor mutation burden (TMB), in TNBC patients. METHODS A total of 47 patients with Stage I-III TNBC with genomic profiling of 435 known cancer genes by NGS were enrolled in this study. Disease-free survival (DFS) and overall survival (OS) were evaluated for their association to gene profiling data. RESULTS CNA-high patients showed significantly worse DFS and OS than CNA-low patients (p = 0.0009, p = 0.0041, respectively). TMB was not associated with DFS or OS in TNBC patients. Patients with TP53 alterations showed a tendency of worse DFS (p = 0.0953) and significantly worse OS (p = 0.0338) compared with patients without TP53 alterations. Multivariable analysis including CNA and other clinicopathological parameters revealed that CNA was an independent prognostic factor for DFS (p = 0.0104) and OS (p = 0.0306). Finally, multivariable analysis also revealed the combination of CNA-high and TP53 alterations is an independent prognostic factor for DFS (p = 0.0005) and OS (p = 0.0023). CONCLUSIONS We revealed that CNA, but not TMB, is significantly associated with DFS and OS in TNBC patients. The combination of CNA-high and TP53 alterations may be a promising biomarker that can inform beyond standard clinicopathologic factors to identify a subgroup of TNBC patients with significantly worse prognosis.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - YiWei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Chie Toshikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Teruo Yamauchi
- Division of Medical Oncology, Department of Internal Medicine, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Koji Kaneko
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Chizuko Kanbayashi
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Nobuaki Sato
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Stephen Lyle
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biosciences, The State University of New York, Buffalo, NY, 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
26
|
Singh H, Klempner SJ, Melnitchouk N, Chander DP, Negrea OG, Patel AK, Schlechter BL, Rubinson DA, Huffman BM, Nambiar C, Remland J, Andrews E, Leahy ME, Brais LK, Enzinger PC, Mamon HJ, Giannakis M, Meyerhardt JA, Ng K, Perez KJ, Aguirre AJ, Clark JW, Cleary JM, Wolpin BM. Highly Sensitive Circulating Tumor DNA Assay Aids Clinical Management of Radiographically Occult Isolated Peritoneal Metastases in Patients With GI Cancer. JCO Precis Oncol 2023; 7:e2200572. [PMID: 37343200 DOI: 10.1200/po.22.00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE GI cancers commonly spread to the peritoneal cavity, particularly from primary adenocarcinomas of the stomach and appendix. Peritoneal metastases are difficult to visualize on cross-sectional imaging and cause substantial morbidity and mortality. The purpose of this study was to determine whether serial highly sensitive tumor-informed circulating tumor DNA (ctDNA) measurements could longitudinally track changes in disease burden and inform clinical care. METHODS This was a retrospective case series of patients with gastric or appendiceal adenocarcinoma and isolated peritoneal disease that was radiographically occult. Patients underwent quantitative tumor-informed ctDNA testing (Signatera) as part of routine clinical care. No interventions were prespecified based on ctDNA results. RESULTS Of 13 patients studied, the median age was 65 (range, 45-75) years, with 7 (54%) women, 5 (38%) patients with gastric, and 8 (62%) patients with appendiceal adenocarcinoma. Eight (62%) patients had detectable ctDNA at baseline measurement, with median value 0.13 MTM/mL (range, 0.06-11.68), and assay was technically unsuccessful in two cases with appendiceal cancer because of limited tumor tissue. Five (100%) patients with gastric cancer and 3 (50%) patients with appendiceal cancer had detectable ctDNA at baseline. Although baseline levels of ctDNA were low, longitudinal assessment tracked with changes in disease burden among patients undergoing chemotherapy for metastatic disease. In two patients undergoing surveillance after definitive surgical management of gastric adenocarcinoma, detection of ctDNA prompted diagnosis of isolated peritoneal disease. CONCLUSION Quantitative tumor-informed serial ctDNA testing aids clinical management of patients with isolated peritoneal disease. Low levels of baseline ctDNA suggest a role for highly sensitive ctDNA approaches over panel-based testing. Further exploration of this approach should be considered in patients with isolated peritoneal malignant disease.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Samuel J Klempner
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Nelya Melnitchouk
- Harvard Medical School, Boston, MA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA
| | - Deepak P Chander
- Dana-Farber Cancer Institute at South Shore Hospital, Weymouth, MA
| | | | - Anuj K Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Benjamin L Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Chetan Nambiar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Megan E Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter C Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Harvey J Mamon
- Harvard Medical School, Boston, MA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kimberly J Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeffrey W Clark
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Sun Y, Zhu C, Xu F, Cui S, Guan X. Circulating Tumor DNA as a Novel Biomarker Optimizing Treatment for Triple Negative Breast Cancer. Clin Breast Cancer 2023; 23:339-349. [PMID: 36966079 DOI: 10.1016/j.clbc.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/23/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Triple-negative breast cancer is a sub-type of clinically and molecularly heterogeneous malignant disease with a worse prognosis and earlier recurrence than HER2-amplified or hormone-receptor positive breast cancer. Because of the lack of personalized therapy, genetic information is essential to early diagnosing, identifying the high risk of recurrence, guiding therapeutic management, and monitoring treatment efficiency. Circulating tumor DNA (ctDNA) is a novel noninvasive, timely, and tumor specified biomarker that reliably reflects the comprehensive tumor genetic profiles. Thus, it holds significant expectations in personalized therapy, including accurate diagnosis, treatment monitoring, and early detection of recurrence of TNBC. In this review, we summarize the results from recent and ongoing ctDNA-based biomarker-driven clinical trials, with respect to ctDNA analysis' predictive role, in adjuvant, neo-adjuvant, and metastatic settings. Collectively, we anticipate that ctDNA will ultimately be integrated into the management of TNBC to foster precise treatment.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Carbonell C, Frigola J, Pardo N, Callejo A, Iranzo P, Valdivia A, Priano I, Cedrés S, Martinez-Marti A, Navarro A, Lenza L, Soleda M, Gonzalo-Ruiz J, Vivancos A, Sansó M, Carcereny E, Morán T, Amat R, Felip E. Dynamic changes in circulating tumor DNA assessed by shallow whole-genome sequencing associate with clinical efficacy of checkpoint inhibitors in NSCLC. Mol Oncol 2023; 17:779-791. [PMID: 36852704 PMCID: PMC10158763 DOI: 10.1002/1878-0261.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis are the main therapeutic option for patients with advanced non-small cell lung cancer (NSCLC) without a druggable oncogenic alteration. Nevertheless, only a portion of patients benefit from this type of treatment. Here, we assessed the value of shallow whole-genome sequencing (sWGS) on plasma samples to monitor ICI benefit. We applied sWGS on cell-free DNA (cfDNA) extracted from plasma samples of 45 patients with metastatic NSCLC treated with ICIs. Over 150 samples were obtained before ICI treatment initiation and at several time points throughout treatment. From sWGS data, we computed the tumor fraction (TFx) and somatic copy number alteration (SCNA) burden and associated them with ICI benefit and clinical features. TFx at baseline correlated with metastatic lesions at the bone and the liver, and high TFx (≥ 10%) associated with ICI benefit. Moreover, its assessment in on-treatment samples was able to better predict clinical efficacy, regardless of the TFx levels at baseline. Finally, for a subset of patients for whom SCNA burden could be computed, increased burden correlated with diminished benefit following ICI treatment. Thus, our data indicate that the analysis of cfDNA by sWGS enables the monitoring of two potential biomarkers-TFx and SCNA burden-of ICI benefit in a cost-effective manner, facilitating multiple serial-sample analyses. Larger cohorts will be needed to establish its clinical potential.
Collapse
Affiliation(s)
- Caterina Carbonell
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Joan Frigola
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Nuria Pardo
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Ana Callejo
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Patricia Iranzo
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Augusto Valdivia
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Ilaria Priano
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Susana Cedrés
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Alex Martinez-Marti
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Alejandro Navarro
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| | - Laura Lenza
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Mireia Soleda
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Javier Gonzalo-Ruiz
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Laboratory, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Miriam Sansó
- Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | - Enric Carcereny
- Medical Oncology Department, Catalan Institute of Oncology Badalona, Hospital Universitari Germans Trias i Pujol, Badalona Applied Research Group in Oncology, Institut Germans Trias i Pujol, Barcelona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology Badalona, Hospital Universitari Germans Trias i Pujol, Badalona Applied Research Group in Oncology, Institut Germans Trias i Pujol, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Spain
| | - Ramon Amat
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Enriqueta Felip
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Clinical Research Department, Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
- Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Spain
| |
Collapse
|
29
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
30
|
Youssef SS, El-Araby RE, Abbas EAER, Hassany M, Elbaz T. Prognostic and survival impact of BCL9 and RPS6KB1 copy number variation detected from circulating free DNA in hepatocellular carcinoma. Expert Rev Mol Diagn 2023; 23:267-278. [PMID: 36803362 DOI: 10.1080/14737159.2023.2182191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a noninvasive substitute to liver biopsy for hepatocellular carcinoma (HCC) molecular profiling. This study aimed to use cfDNA to investigate copy number variation (CNV) in the BCL9 and RPS6KB1 genes and its impact on prognosis in HCC. METHODS Real-Time Polymerase Chain Reaction was used to determine the CNV and cfDNA integrity index in 100 HCC patients. RESULTS CNV gain in BCL9 and RPS6KB1 genes was detected in 14% and 24% of patients, respectively. Gain in CNV of BCL9 associated with risk of HCC in alcohol drinkers and hepatitis C seropositivity. In patients with RPS6KB1 gain, HCC risk increased with a high body mass index, smoking, schistosomiasis, and Barcelona clinical liver cancer stage (BCLC) A. Gain in both genes showed a high risk of HCC with elevated liver enzymes, Schistosomiasis, BCLC C, and PS > 1. The integrity of cfDNA was higher in patients with CNV gain in RPS6KB1 than those harboring CNV gain in BCL9. Lastly, BCL9 gain and BCL9 + RPS6KB1 gain led to higher mortality rates and reduced survival times. CONCLUSION cfDNA was used to detect BCL9 and RPS6KB1 CNVs, which influence prognosis and can be used as independent predictors of HCC patient survival.
Collapse
Affiliation(s)
| | - Rady Eid El-Araby
- Division of Oral Biology, Department of Periodontology, Tufts University School of Medicine, Boston, MA, USA.,Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Giza, Egypt
| | | | - Mohamed Hassany
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Tamer Elbaz
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Liao YY, Cao WM. The progress in our understanding of CIN in breast cancer research. Front Oncol 2023; 13:1067735. [PMID: 36874134 PMCID: PMC9978327 DOI: 10.3389/fonc.2023.1067735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosomal instability (CIN) is an important marker of cancer, which is closely related to tumorigenesis, disease progression, treatment efficacy, and patient prognosis. However, due to the limitations of the currently available detection methods, its exact clinical significance remains unknown. Previous studies have demonstrated that 89% of invasive breast cancer cases possess CIN, suggesting that it has potential application in breast cancer diagnosis and treatment. In this review, we describe the two main types of CIN and discuss the associated detection methods. Subsequently, we highlight the impact of CIN in breast cancer development and progression and describe how it can influence treatment and prognosis. The goal of this review is to provide a reference on its mechanism for researchers and clinicians.
Collapse
Affiliation(s)
- Yu-Yang Liao
- Wenzhou Medical University, Wenzhou, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
32
|
An Overview of Circulating Cell-Free Nucleic Acids in Diagnosis and Prognosis of Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24021799. [PMID: 36675313 PMCID: PMC9864244 DOI: 10.3390/ijms24021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.
Collapse
|
33
|
Balkrishna A, Mittal R, Arya V. Tumor Suppressive Role of MicroRNAs in Triple Negative Breast Cancer. Curr Pharm Des 2023; 29:3357-3367. [PMID: 38037837 DOI: 10.2174/0113816128272489231124095922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Triple-negative breast cancers are highly aggressive, a heterogeneous form of breast cancer with a high re-occurrence rate that further lacks an efficient treatment strategy and prognostic marker. The tumor microenvironment of the disease comprises cancer-associated fibroblasts, cancer stem cells, immunological molecules, epithelial-mesenchymal transition, and a metastatic microenvironment that contributes to disease progression and metastasis to distant sites. Emerging evidence indicated that miRNA clusters would be of clinical utility as they exert an oncogenic or tumor suppressor role in TNBC. The present review article aims to highlight the therapeutic significance of miRNA in targeting the above-mentioned signaling cascades and modulating the intracellular crosstalk in the tumor microenvironment of TNBC. Prognostic implications of miRNAs to depict disease-free survival, distant metastasis-free survival, relapse-free survival, and overall survival outcome were also unveiled.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
34
|
Reichert ZR, Morgan TM, Li G, Castellanos E, Snow T, Dall'Olio FG, Madison RW, Fine AD, Oxnard GR, Graf RP, Stover DG. Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: a real-world outcomes study. Ann Oncol 2023; 34:111-120. [PMID: 36208697 PMCID: PMC9805517 DOI: 10.1016/j.annonc.2022.09.163] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Genomic analysis of circulating tumor DNA (ctDNA) is increasingly incorporated into the clinical management of patients with advanced cancer. Beyond tumor profiling, ctDNA analysis also can enable calculation of circulating tumor fraction (TF), which has previously been found to be prognostic. While most prognostic models in metastatic cancer are tumor type specific and require significant patient-level data, quantification of TF in ctDNA has the potential to serve as a pragmatic, tumor-agnostic prognostic tool. PATIENTS AND METHODS This study utilized a cohort of patients in a nationwide de-identified clinico-genomic database with metastatic castration-resistant prostate cancer (mCRPC), metastatic breast cancer (mBC), advanced non-small-cell lung cancer (aNSCLC), or metastatic colorectal cancer (mCRC) undergoing liquid biopsy testing as part of routine care. TF was calculated based on single-nucleotide polymorphism aneuploidy across the genome. Clinical, disease, laboratory, and treatment data were captured from the electronic health record. Overall survival (OS) was evaluated by TF level while controlling for relevant covariables. RESULTS A total of 1725 patients were included: 198 mCRPC, 402 mBC, 902 aNSCLC, and 223 mCRC. TF ≥10% was highly correlated with OS in univariable analyses for all cancer types: mCRPC [hazard ratio (HR) 3.3, 95% confidence interval (CI) 2.04-5.34, P < 0.001], mBC (HR 2.4, 95% CI 1.71-3.37, P < 0.001), aNSCLC (HR 1.68, 95% CI 1.34-2.1, P < 0.001), and mCRC (HR 2.11, 95% CI 1.39-3.2, P < 0.001). Multivariable assessments of TF had similar point estimates and CIs, suggesting a consistent and independent association with survival. Exploratory analysis showed that TF remained consistently prognostic across a wide range of cutpoints. CONCLUSIONS Plasma ctDNA TF is a pragmatic, independent prognostic biomarker across four advanced cancers with potential to guide clinical conversations around expected treatment outcomes. With further prospective validation, ctDNA TF could be incorporated into care paradigms to enable precision escalation and de-escalation of cancer therapy based on patient-level tumor biology.
Collapse
Affiliation(s)
| | | | - G Li
- Foundation Medicine, Cambridge, USA
| | | | - T Snow
- Flatiron Health, New York, USA
| | - F G Dall'Olio
- Gustave Roussy, Villejuif, France; University of Bologna, Bologna, Italy
| | | | - A D Fine
- Foundation Medicine, Cambridge, USA
| | | | - R P Graf
- Foundation Medicine, Cambridge, USA
| | - D G Stover
- The Ohio State University, Columbus, USA.
| |
Collapse
|
35
|
Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, Gross S, Melton C, Fields AP, Liu Q, Zhang N, Fung ET, Kurtzman KN, Amini H, Betts C, Civello D, Freese P, Calef R, Davydov K, Fayzullina S, Hou C, Jiang R, Jung B, Tang S, Demas V, Newman J, Sakarya O, Scott E, Shenoy A, Shojaee S, Steffen KK, Nicula V, Chien TC, Bagaria S, Hunkapiller N, Desai M, Dong Z, Richards DA, Yeatman TJ, Cohn AL, Thiel DD, Berry DA, Tummala MK, McIntyre K, Sekeres MA, Bryce A, Aravanis AM, Seiden MV, Swanton C. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 2022; 40:1537-1549.e12. [PMID: 36400018 DOI: 10.1016/j.ccell.2022.10.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.
Collapse
Affiliation(s)
| | - Minetta C Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | - Nan Zhang
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhao Dong
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | - Timothy J Yeatman
- Gibbs Cancer Center and Research Institute, Spartanburg, SC 29303, USA; Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Allen L Cohn
- Rocky Mountain Cancer Center, Denver, CO 80218, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Donald A Berry
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | - Charles Swanton
- Francis Crick Institute, London, NW1 1AT, UK; UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, WC1E 6DD, UK
| |
Collapse
|
36
|
Doebley AL, Ko M, Liao H, Cruikshank AE, Santos K, Kikawa C, Hiatt JB, Patton RD, De Sarkar N, Collier KA, Hoge ACH, Chen K, Zimmer A, Weber ZT, Adil M, Reichel JB, Polak P, Adalsteinsson VA, Nelson PS, MacPherson D, Parsons HA, Stover DG, Ha G. A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA. Nat Commun 2022; 13:7475. [PMID: 36463275 PMCID: PMC9719521 DOI: 10.1038/s41467-022-35076-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide clinical precision oncology. Here we develop Griffin, a framework for profiling nucleosome protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x coverage whole genome sequencing data. Griffin employs a GC correction procedure tailored to variable cfDNA fragment sizes, which generates a better representation of chromatin accessibility and improves the accuracy of cancer detection and tumor subtype classification. We demonstrate estrogen receptor subtyping from cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in 139 patients with at least 5% detectable circulating tumor DNA with an area under the receive operator characteristic curve (AUC) of 0.89 and validate performance in independent cohorts (AUC = 0.96). In summary, Griffin is a framework for accurate tumor subtyping and can be generalizable to other cancer types for precision oncology applications.
Collapse
Affiliation(s)
- Anna-Lisa Doebley
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Minjeong Ko
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanna Liao
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - A Eden Cruikshank
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Caroline Kikawa
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Joseph B Hiatt
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert D Patton
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Anna C H Hoge
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine Chen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Anat Zimmer
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zachary T Weber
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mohamed Adil
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jonathan B Reichel
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Peter S Nelson
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - David MacPherson
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Daniel G Stover
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gavin Ha
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
37
|
Zhuo Z, Lin L, Miao L, Li M, He J. Advances in liquid biopsy in neuroblastoma. FUNDAMENTAL RESEARCH 2022; 2:903-917. [PMID: 38933377 PMCID: PMC11197818 DOI: 10.1016/j.fmre.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Even with intensive treatment of high-risk neuroblastoma (NB) patients, half of high-risk NB patients still relapse. New therapies targeting the biological characteristics of NB have important clinical value for the personalized treatment of NB. However, the current biological markers for NB are mainly analyzed by tissue biopsy. In recent years, circulating biomarkers of NB based on liquid biopsy have attracted more and more attention. This review summarizes the analytes and methods for liquid biopsy of NB. We focus on the application of liquid biopsy in the diagnosis, prognosis assessment, and monitoring of NB. Finally, we discuss the prospects and challenges of liquid biopsy in NB.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
38
|
Li M, Li Q, Dong H, Zhao S, Ning J, Bai X, Yue X, Xie A. Pilose antler polypeptides enhance chemotherapy effects in triple-negative breast cancer by activating the adaptive immune system. Int J Biol Macromol 2022; 222:2628-2638. [DOI: 10.1016/j.ijbiomac.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
39
|
Schwartzberg LS, Li G, Tolba K, Bourla AB, Schulze K, Gadgil R, Fine A, Lofgren KT, Graf RP, Oxnard GR, Daniel D. Complementary Roles for Tissue- and Blood-Based Comprehensive Genomic Profiling for Detection of Actionable Driver Alterations in Advanced NSCLC. JTO Clin Res Rep 2022; 3:100386. [PMID: 36089920 PMCID: PMC9460153 DOI: 10.1016/j.jtocrr.2022.100386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Whereas tumor biopsy is the reference standard for genomic profiling of advanced NSCLC, there are now multiple assays approved by the Food and Drug Administration for liquid biopsy testing of circulating tumor DNA. Here, we study the incremental value that liquid biopsy comprehensive genomic profiling (CGP) adds to tissue molecular testing. Methods Patients with metastatic NSCLC were enrolled in a prospective diagnostic study to receive circulating tumor DNA CGP; tissue CGP was optional in addition to their standard tissue testing. Focusing on nine genes listed per the National Comprehensive Cancer Network (NCCN) guidelines, liquid CGP was compared with available tissue testing results across three subcohorts: tissue CGP, standard-of-care testing of up to five biomarkers, or no tissue testing. Results A total of 515 patients with advanced nonsquamous NSCLC received liquid CGP. Among 131 with tissue CGP results, NCCN biomarkers were detected in 86 (66%) with tissue CGP and 56 (43%) with liquid CGP (p < 0.001). Adding liquid CGP to tissue CGP detected no additional patients with NCCN biomarkers, whereas tissue CGP detected NCCN biomarkers in 30 patients (23%) missed by liquid CGP. Studying 264 patients receiving tissue testing of up to five genes, 102 (39%) had NCCN biomarkers detected in tissue, with an additional 48 (18%) detected using liquid CGP, including 18 with RET, MET, or ERBB2 drivers not studied in tissue. Conclusions For the detection of patients with advanced nonsquamous NSCLC harboring 9 NCCN biomarkers, liquid CGP increases detection in patients with limited tissue results, but does not increase detection in patients with tissue CGP results available. In contrast, tissue CGP can add meaningfully to liquid CGP for detection of NCCN biomarkers and should be considered as a follow-up when an oncogenic driver is not identified by liquid biopsy.
Collapse
Affiliation(s)
| | - Gerald Li
- Foundation Medicine, Clinical Development, Cambridge, Massachusetts
| | - Khaled Tolba
- Foundation Medicine, Clinical Development, Cambridge, Massachusetts
| | | | - Katja Schulze
- Genentech, Inc., Oncology Biomarker Development & Medical Affairs, South San Francisco, California
| | - Rujuta Gadgil
- Foundation Medicine, Clinical Operations, Cambridge, Massachusetts
| | - Alexander Fine
- Foundation Medicine, Cancer Genomics Research, Cambridge, Massachusetts
| | | | - Ryon P. Graf
- Foundation Medicine, Clinical Development, Cambridge, Massachusetts
| | | | - Davey Daniel
- Tennessee Oncology, Medical Oncology, Chattanooga, Tennessee
- Corresponding author. Address for correspondence: Davey Daniel, MD, Tennessee Oncology, 605 Glenwood Drive, Suite 200, Chattanooga, TN.
| |
Collapse
|
40
|
Barroso-Sousa R, Forman J, Collier K, Weber ZT, Jammihal TR, Kao KZ, Richardson ET, Keenan T, Cohen O, Manos MP, Brennick RC, Ott PA, Hodi FS, Dillon DA, Attaya V, O'Meara T, Lin NU, Van Allen EM, Rodig S, Winer EP, Mittendorf EA, Wu CJ, Wagle N, Stover DG, Shukla SA, Tolaney SM. Multidimensional Molecular Profiling of Metastatic Triple-Negative Breast Cancer and Immune Checkpoint Inhibitor Benefit. JCO Precis Oncol 2022; 6:e2100413. [PMID: 35797509 PMCID: PMC9848556 DOI: 10.1200/po.21.00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE In metastatic triple-negative breast cancer (mTNBC), consistent biomarkers of immune checkpoint inhibitor (ICI) therapy benefit remain elusive. We evaluated the immune, genomic, and transcriptomic landscape of mTNBC in patients treated with ICIs. METHODS We identified 29 patients with mTNBC treated with pembrolizumab or atezolizumab, either alone (n = 9) or in combination with chemotherapy (n = 14) or targeted therapy (n = 6), who had tumor tissue and/or blood available before ICI therapy for whole-exome sequencing. RNA sequencing and CIBERSORTx-inferred immune population analyses were performed (n = 20). Immune cell populations and programmed death-ligand 1 expression were assessed using multiplexed immunofluorescence (n = 18). Clonal trajectories were evaluated via serial tumor/circulating tumor DNA whole-exome sequencing (n = 4). Association of biomarkers with progression-free survival and overall survival (OS) was assessed. RESULTS Progression-free survival and OS were longer in patients with high programmed death-ligand 1 expression and tumor mutational burden. Patients with longer survival also had a higher relative inferred fraction of CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and follicular helper T cells and enrichment of inflammatory gene expression pathways. A mutational signature of defective repair of DNA damage by homologous recombination was enriched in patients with both shorter OS and primary resistance. Exploratory analysis of clonal evolution among four patients treated with programmed cell death protein 1 blockade and a tyrosine kinase inhibitor suggested that clonal stability post-treatment was associated with short time to progression. CONCLUSION This study identified potential biomarkers of response to ICIs among patients with mTNBC: high tumor mutational burden; presence of CD8+, CD4 memory T cells, follicular helper T cells, and M1 macrophages; and inflammatory gene expression pathways. Pretreatment deficiencies in the homologous recombination DNA damage repair pathway and the absence of or minimal clonal evolution post-treatment may be associated with worse outcomes.
Collapse
Affiliation(s)
| | - Juliet Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Tejas R. Jammihal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Katrina Z. Kao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Tanya Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ofir Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ryan C. Brennick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick A. Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tess O'Meara
- Internal Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | | | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Elizabeth A. Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Divison of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | | | - Sachet A. Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| |
Collapse
|
41
|
Igari F, Tanaka H, Giuliano AE. The applications of plasma cell-free DNA in cancer detection: Implications in the management of breast cancer patients. Crit Rev Oncol Hematol 2022; 175:103725. [PMID: 35618229 DOI: 10.1016/j.critrevonc.2022.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Liquid biopsy probes DNA, RNA, and proteins in body fluids for cancer detection and is one of the most rapidly developing areas in oncology. Tumor-derived DNA (circulating tumor DNA, ctDNA) in the context of cell-free DNA (cfDNA) in blood has been the main target for its potential utilities in cancer detection. Liquid biopsy can report tumor burden in real-time without invasive interventions, and would be feasible for screening tumor types that lack standard-of-care screening approaches. Two major approaches to interrogating ctDNA are genetic mutation and DNA methylation profiling. Mutation profiling can identify tumor driver mutations and guide precision therapy. Targeted genomic profiling of DNA methylation has become the main approach for cancer screening in the general population. Here we review the recent technological development and ongoing efforts in clinical applications. For clinical applications, we focus on breast cancer, in which subtype-specific biology demarcates the applications of ctDNA.
Collapse
Affiliation(s)
- Fumie Igari
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Breast Oncology, Juntendo University, Tokyo, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute and Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA.
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute and Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| |
Collapse
|
42
|
Noé J, Bordogna W, Archer V, Smoljanovic V, Hilton M, Woodhouse R, Mocci S, Gadgeel SM. Concordance Between Tissue ALK Detection by Immunohistochemistry and Plasma ALK Detection by Next-Generation Sequencing in the Randomized Phase 3 ALEX Study in Patients With Treatment-Naive Advanced ALK-Positive NSCLC. JTO Clin Res Rep 2022; 3:100341. [PMID: 35756755 PMCID: PMC9218556 DOI: 10.1016/j.jtocrr.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The Blood First Assay Screening Trial revealed the clinical applicability of blood-based next-generation sequencing to identify patients with ALK-positive NSCLC for alectinib treatment. To understand the relationship between tissue-based versus blood-based testing, we retrospectively investigated concordance between VENTANA ALK (D5F3) CDx immunohistochemistry and the FoundationACT (FACT; Foundation Medicine, Inc.) plasma assay, and compared clinical efficacy between phase 3 ALEX study subpopulations. Methods Patients with advanced ALK-positive (by immunohistochemistry) NSCLC were randomized 1:1 to alectinib 600 mg or crizotinib 250 mg, twice daily. Assessable baseline plasma samples were analyzed for ALK positivity by FACT; positive percent agreement with immunohistochemistry was evaluated. Progression-free survival (PFS), duration of response, and objective response rate were compared between intention-to-treat (ITT) and biomarker-evaluable populations, and plasma ALK-positive and plasma ALK-negative subpopulations. Results In the ITT population (303 patients; alectinib, 152; crizotinib, 151), all patients had ALK-positive tumors by immunohistochemistry. In the biomarker-evaluable population (149 patients; alectinib, 76; crizotinib, 73), 105 had plasma ALK-positive and 44 had plasma ALK-negative tumors. Positive percent agreement between immunohistochemistry and FACT was 70.5% (105 of 149; 95% confidence interval: 62.5-77.7). Baseline characteristics were generally balanced, with some exceptions, notably tumor burden. Median PFS in plasma ALK-positive and ALK-negative patients was 22.4 months and not estimable with alectinib and 7.3 months and 12.9 months with crizotinib, respectively; median duration of response was 25.9 months and not estimable with alectinib and 5.6 months and 11.5 months with crizotinib, respectively. Conclusions Reasonable concordance between FACT and immunohistochemistry was observed; both methods are valuable in identifying ALK-positive patients, separately or concurrently. Alectinib was found to have superior PFS in the plasma ALK-positive population, as in the ITT population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shirish M. Gadgeel
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
43
|
Wang X, Hu N, Cui L, Si Y, Yue J, Zheng F, Kang Y, Yuan P. Durable Disease-free Survival in a Patient with Metastatic Triple-negative Breast Cancer Treated with Olaparib Monotherapy. Curr Cancer Drug Targets 2022; 22:530-536. [PMID: 35156571 PMCID: PMC9906627 DOI: 10.2174/1568009622666220214092207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metastatic triple-negative breast cancer (mTNBC) has a poor prognosis and few effective targeted therapy options. Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, has been granted accelerated approval by FDA for patients with deleterious BRCA-mutated human epidermal growth factor receptor 2 (HER2)-negative advanced/metastatic breast cancer. However, there is little data demonstrating that patients with particular forms of germline and/or somatic BRCA1/2, such as large fragment variation, can benefit from PARP inhibitors. CASE PRESENTATION In 2011, a 40-year-old woman was diagnosed with TNBC having pT2N0M0 in the right breast, and a new irregular lesser tubercle in the left breast appeared after approximately 3 years, which was also diagnosed as TNBC. In 2017, computed tomography (CT) showed TNBC metastases to the lung and brain. A next-generation sequencing (NGS) was performed with a lung metastasis sample, and results showed a homologous recombination deficiency (HRD) score of 67, a germline large deletion of exon 2 in BRCA1, a novel somatic BRCA2-STARD13 rearrangement and copy number loss of RAD51. Since September 2017, the patient was treated with olaparib. Till the report date of this case, the patient underwent regular follow-up without disease recurrence. CONCLUSION To our knowledge, this is the first case describing a patient with lung- and brainmetastatic TNBC with combined germline and somatic large rearrangement and a high HRD score who achieved a long-term benefit from olaparib monotherapy. The use of NGS is promising in the treatment of TNBC in clinical practice.
Collapse
Affiliation(s)
- Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Cui
- The Medical Department, 3D Medicines Inc, Shanghai, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangchao Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yikun Kang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;,Address correspondence to this author at the Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli #17, Chaoyang District, Beijing-100021, China; Tel./Fax: +86 13501270834; E-mail:
| |
Collapse
|
44
|
Howard J, Wynne K, Moldenhauer E, Clarke P, Maguire C, Bollard S, Yin X, Brennan L, Mooney L, Fitzsimons S, Halasz M, Aluri ER, Brougham DF, Kolch W, Dwyer RM, Potter S, Kelly P, McCann A. A comparative analysis of extracellular vesicles (EVs) from human and feline plasma. Sci Rep 2022; 12:10851. [PMID: 35761023 PMCID: PMC9237114 DOI: 10.1038/s41598-022-14211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles found in all biological fluids, capable of transporting biological material around the body. Extensive research into the physiological role of EVs has led to the development of the Minimal Information for Studies of Extracellular Vesicles (MISEV) framework in 2018. This framework guides the standardisation of protocols in the EV field. To date, the focus has been on EVs of human origin. As comparative medicine progresses, there has been a drive to study similarities between diseases in humans and animals. To successfully research EVs in felines, we must validate the application of the MISEV guidelines in this group. EVs were isolated from the plasma of healthy humans and felines. EV characterisation was carried out according to the MISEV guidelines. Human and feline plasma showed a similar concentration of EVs, comparable expression of known EV markers and analogous particle to protein ratios. Mass spectrometry analyses showed that the proteomic signature of EVs from humans and felines were similar. Asymmetrical flow field flow fractionation, showed two distinct subpopulations of EVs isolated from human plasma, whereas only one subpopulation was isolated from feline plasma. Metabolomic profiling showed similar profiles for humans and felines. In conclusion, isolation, and characterisation of EVs from humans and felines show that MISEV2018 guidelines may also be applied to felines. Potential comparative medicine studies of EVs may provide a model for studying naturally occurring diseases in both humans and felines.
Collapse
Affiliation(s)
- Jane Howard
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kieran Wynne
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Paul Clarke
- Postnova Analytics UK Ltd, Malvern Hills Science Park, Malvern, WR14 3SZ, Worcestershire, UK
| | - Ciaran Maguire
- Particular Sciences Ltd, Unit 2 Birch House, Rosemount Business Park, Ballycoolin, Dublin 11, Ireland
| | - Stephanie Bollard
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Mooney
- College of Health and Agricultural Sciences, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Sciences, UCD Conway Institute, Belfield, Dublin 4, Ireland
| | - Melinda Halasz
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Rani Aluri
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, H91 V4AY, Ireland
| | - Shirley Potter
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland.,Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Pamela Kelly
- College of Health and Agricultural Sciences, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amanda McCann
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
45
|
Nazha B, Zhuang TZ, Dada HI, Drusbosky LM, Brown JT, Ravindranathan D, Carthon BC, Kucuk O, Goldman J, Master VA, Bilen MA. Blood-Based Next-Generation Sequencing in Adrenocortical Carcinoma. Oncologist 2022; 27:462-468. [PMID: 35462410 PMCID: PMC9177103 DOI: 10.1093/oncolo/oyac061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare and heterogeneous malignancy with poor prognosis. We aimed to evaluate the feasibility of next-generation sequencing (NGS) testing of circulating cell-free tumor DNA (ctDNA) in patients with ACC, to characterize the genomic landscape of alterations, and to identify potential clinically actionable mutations. METHODS Retrospective analysis of genomic data from 120 patients with ACC who had ctDNA testing between 12/2016 and 10/2021 using Guardant360 (Guardant Health, CA) was performed. ctDNA NGS analysis interrogated single nucleotide variants, fusions, indels, and copy number amplifications of up to 83 genes. The frequency of genomic alterations, landscape of co-occurring mutations, and pathogenic/likely pathogenic alterations with potential targeted therapies was identified. The prevalence of alterations identified in ctDNA was compared to those detected in tissue using a publicly available database (cBioPortal). RESULTS The median age of this cohort was 53 years (range 21-81), and 56% of patients were female. Ninety-six patients (80%) had ≥1 somatic alteration detected. TP53 (52%), EGFR (23%), CTNNB1 (18%), MET (18%), and ATM (14%) were found to be the most frequently altered genes in ACC samples. Pathogenic and/or likely pathogenic mutations in therapeutically relevant genes were observed in 56 patients (47%) and included EGFR, BRAF, MET, CDKN2A, CDK4/6, and ATM. The most frequent co-occurring mutations were EGFR + MET (9%), MET + CDK4 (7%), EGFR + CDK4 (7%), and BRAF + MET (7%). The frequencies of mutations detected in ctDNA were similar to those detected in tissue. CONCLUSIONS Utilizing blood-based NGS to characterize genomic alterations in advanced ACC is feasible in over 80% of patients. Almost half of the patients had actionable mutations with approved therapies in other cancers. This approach might inform the development of personalized treatment options or identify clinical trials available for this aggressive malignancy.
Collapse
Affiliation(s)
- Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tony Z Zhuang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jacqueline T Brown
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Deepak Ravindranathan
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley C Carthon
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Goldman
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj A Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
46
|
Fernandez-Uriarte A, Pons-Belda OD, Diamandis EP. Cancer Screening Companies Are Rapidly Proliferating: Are They Ready for Business? Cancer Epidemiol Biomarkers Prev 2022; 31:1146-1150. [PMID: 35642390 DOI: 10.1158/1055-9965.epi-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer screening has been a major research front for decades. The classical circulating biomarkers for cancer (such as PSA, CEA, CA125, AFP, etc.) are neither sensitive nor specific and are not recommended for population screening. Recently, circulating tumor DNA (ctDNA) emerged as a new pan-cancer tumor marker, with much promise for clinical applicability. ctDNA released by tumor cells can be used as a proxy of the tumor burden and molecular composition. It has been hypothesized that if ctDNA is extracted from plasma and analyzed for genetic changes, it may form the basis for a non-invasive cancer detection test. Lately, there has been a proliferation of "for-profit" companies that will soon offer cancer screening services. Here, we comment on Grail, Thrive, Guardant, Delfi, and Freenome. Previously, we identified some fundamental difficulties associated with this new technology. In addition, clinical trials are exclusively case-control studies. The sensitivities/specificities/predictive values of the new screening tests have not been well-defined or, the literature-reported values are rather poor. Despite these deficiencies some of the aforementioned companies are already testing patients. We predict that the premature use of ctDNA as a cancer screening tool may add another disappointment in the long history of this field.
Collapse
Affiliation(s)
| | - Oscar D Pons-Belda
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| |
Collapse
|
47
|
Liao H, Zhang J, Zheng T, Liu X, Zhong J, Shao B, Dong X, Wang X, Du P, King BL, Jia S, Yu J, Li H. Identification of mutation patterns and circulating tumour DNA-derived prognostic markers in advanced breast cancer patients. J Transl Med 2022; 20:211. [PMID: 35562750 PMCID: PMC9101837 DOI: 10.1186/s12967-022-03421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The correlations between circulating tumour DNA (ctDNA)-derived genomic markers and treatment response and survival outcome in Chinese patients with advanced breast cancer (ABC) have not been extensively characterized. METHODS Blood samples from 141 ABC patients who underwent first-line standard treatment in Peking University Cancer Hospital were collected. A next-generation sequencing based liquid biopsy assay (PredicineCARE) was used to detect somatic mutations and copy number variations (CNVs) in ctDNA. A subset of matched blood samples and tumour tissue biopsies were compared to evaluate the concordance. RESULTS Overall, TP53 (44.0%) and PIK3CA (28.4%) were the top two altered genes. Frequent CNVs included amplifications of ERBB2 (24.8%) and FGFR1 (8.5%) and deletions of CDKN2A (3.5%). PIK3CA/TP53 and FGFR1/2/3 variants were associated with drug resistance in hormone receptor-positive (HR +) and human epidermal growth factor receptor 2-positive (HER2 +) patients. The comparison of genomic variants across matched tumour tissue and ctDNA samples revealed a moderate to high concordance that was gene dependent. Triple-negative breast cancer (TNBC) patients harbouring TP53 or PIK3CA alterations had a shorter overall survival than those without corresponding mutations (P = 0.03 and 0.008). A high ctDNA fraction was correlated with a shorter progression-free survival (PFS) (P = 0.005) in TNBC patients. High blood-based tumor mutation burden (bTMB) was associated with a shorter PFS for HER2 + and TNBC patients (P = 0.009 and 0.05). Moreover, disease monitoring revealed several acquired genomic variants such as ESR1 mutations, CDKN2A deletions, and FGFR1 amplifications. CONCLUSIONS This study revealed the molecular profiles of Chinese patients with ABC and the clinical validity of ctDNA-derived markers, including the ctDNA fraction and bTMB, for predicting treatment response, prognosis, and disease progression. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT03792529. Registered January 3rd 2019, https://clinicaltrials.gov/ct2/show/NCT03792529 .
Collapse
Affiliation(s)
- Hao Liao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China
| | - Jiayang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China
| | - Tiantian Zheng
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China
| | - Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China
| | - Xiaoxi Dong
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Xiaohong Wang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Pan Du
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Bonnie L King
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Shidong Jia
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Jianjun Yu
- Huidu Shanghai Medical Sciences Ltd, Shanghai, 201499, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Rd, Beijing, 100142, China.
| |
Collapse
|
48
|
Zhang X, Wang Y, Xiang J, Zhao P, Xun Y, Zhang S, Xu N. Association between plasma somatic copy number variations and response to immunotherapy in patients with programmed death-ligand 1-negative non-small cell lung cancer. J Int Med Res 2022; 50:3000605221093222. [PMID: 35466753 PMCID: PMC9047987 DOI: 10.1177/03000605221093222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To determine how patients with non-small cell lung cancer (NSCLC) with programmed death-ligand 1 (PD-L1)-negative and/or a low tumor mutation burden status benefit from immune checkpoint inhibitors (ICI). Methods We determined the plasma cell-free DNA profiles of 25 patients with PD-L1-negative advanced NSCLC before ICI therapy using low-coverage whole-genome sequencing. Results Elevated cell-free copy number variations (CNVs) were associated with progressive disease, with a cutoff CNV score of 0.10 evaluated with an area under the curve of 0.790 in PD-L1-negative NSCLC. CNV changes were also correlated with poor survival. Progression-free survival and overall survival were both significantly shorter in CNVhigh compared with CNVlow patients. Conclusions Cell-free CNV may be a useful peripheral blood biomarker for predicting the response to ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yina Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Zhao
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Xun
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shirong Zhang
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Lu C, Zhang YC, Chen ZH, Zhou Q, Wu YL. Applications of Circulating Tumor DNA in Immune Checkpoint Inhibition: Emerging Roles and Future Perspectives. Front Oncol 2022; 12:836891. [PMID: 35359372 PMCID: PMC8963952 DOI: 10.3389/fonc.2022.836891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), especially anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) antibodies, have made dramatic progress in the treatment of lung cancer, especially for patients with cancers not driven by oncogenes. However, responses are limited to a subset of patients, and which subset of patients will optimally benefit from ICI remains unknown. With the advantage of being minimally invasive and dynamic, noninvasive biomarkers are promising candidates to predict response, monitor resistance, and track the evolution of lung cancer during ICI treatment. In this review, we focus on the application of circulating tumor DNA (ctDNA) in plasma in immunotherapy. We examine the potential of pre- and on-treatment features of ctDNA as biomarkers, and following multiparameter analysis, we determine the potential clinical value of integrating predictive liquid biomarkers of ICIs to optimize patient management. We further discuss the role of ctDNA in monitoring treatment resistance, as well as challenges in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
50
|
de Bruyn DP, Beasley AB, Verdijk RM, van Poppelen NM, Paridaens D, de Keizer ROB, Naus NC, Gray ES, de Klein A, Brosens E, Kiliç E. Is Tissue Still the Issue? The Promise of Liquid Biopsy in Uveal Melanoma. Biomedicines 2022; 10:biomedicines10020506. [PMID: 35203714 PMCID: PMC8962331 DOI: 10.3390/biomedicines10020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is the second most frequent type of melanoma. Therapeutic options for UM favor minimally invasive techniques such as irradiation for vision preservation. As a consequence, no tumor material is obtained. Without available tissue, molecular analyses for gene expression, mutation or copy number analysis cannot be performed. Thus, proper patient stratification is impossible and patients’ uncertainty about their prognosis rises. Minimally invasive techniques have been studied for prognostication in UM. Blood-based biomarker analysis has become more common in recent years; however, no clinically standardized protocol exists. This review summarizes insights in biomarker analysis, addressing new insights in circulating tumor cells, circulating tumor DNA, extracellular vesicles, proteomics, and metabolomics. Additionally, medical imaging can play a significant role in staging, surveillance, and prognostication of UM and is addressed in this review. We propose that combining multiple minimally invasive modalities using tumor biomarkers should be the way forward and warrant more attention in the coming years.
Collapse
Affiliation(s)
- Daniël P. de Bruyn
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Aaron B. Beasley
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Robert M. Verdijk
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
| | | | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Elin S. Gray
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107030683
| |
Collapse
|