1
|
Woode RA, Strubberg AM, Liu J, Walker NM, Clarke LL. Increased activity of epithelial Cdc42 Rho GTPase and tight junction permeability in the Cftr knockout intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G545-G557. [PMID: 39104325 DOI: 10.1152/ajpgi.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/β-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/β-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.
Collapse
Affiliation(s)
- Rowena A Woode
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
McDonald CM, Reid EK, Pohl JF, Yuzyuk TK, Padula LM, Vavrina K, Altman K. Cystic fibrosis and fat malabsorption: Pathophysiology of the cystic fibrosis gastrointestinal tract and the impact of highly effective CFTR modulator therapy. Nutr Clin Pract 2024; 39 Suppl 1:S57-S77. [PMID: 38429959 DOI: 10.1002/ncp.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 03/03/2024] Open
Abstract
Cystic fibrosis (CF) is a progressive, genetic, multi-organ disease affecting the respiratory, digestive, endocrine, and reproductive systems. CF can affect any aspect of the gastrointestinal (GI) tract, including the esophagus, stomach, small intestine, colon, pancreas, liver, and gall bladder. GI pathophysiology associated with CF results from CF membrane conductance regulator (CFTR) dysfunction. The majority of people with CF (pwCF) experience exocrine pancreatic insufficiency resulting in malabsorption of nutrients and malnutrition. Additionally, other factors can cause or worsen fat malabsorption, including the potential for short gut syndrome with a history of meconium ileus, hepatobiliary diseases, and disrupted intraluminal factors, such as inadequate bile salts, abnormal pH, intestinal microbiome changes, and small intestinal bacterial overgrowth. Signs and symptoms associated with fat malabsorption, such as abdominal pain, bloating, malodorous flatus, gastroesophageal reflux, nausea, anorexia, steatorrhea, constipation, and distal intestinal obstruction syndrome, are seen in pwCF despite the use of pancreatic enzyme replacement therapy. Given the association of poor nutrition status with lung function decline and increased mortality, aggressive nutrition support is essential in CF care to optimize growth in children and to achieve and maintain a healthy body mass index in adults. The introduction of highly effective CFTR modulator therapy and other advances in CF care have profoundly changed the course of CF management. However, GI symptoms in some pwCF may persist. The use of current knowledge of the pathophysiology of the CF GI tract as well as appropriate, individualized management of GI symptoms continue to be integral components of care for pwCF.
Collapse
Affiliation(s)
| | - Elizabeth K Reid
- Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John F Pohl
- Pediatric Gastroenterology, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Tatiana K Yuzyuk
- Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- ARUP Institute for Clinical & Experimental Pathology, Salt Lake City, Utah, USA
| | - Laura M Padula
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kay Vavrina
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kimberly Altman
- Gunnar Esiason Adult Cystic Fibrosis and Lung Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Young SM, Woode RA, Williams EC, Ericsson AC, Clarke LL. Fecal dysbiosis and inflammation in intestinal-specific Cftr knockout mice on regimens preventing intestinal obstruction. Physiol Genomics 2024; 56:247-264. [PMID: 38073491 PMCID: PMC11283905 DOI: 10.1152/physiolgenomics.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic intestinal inflammation is a poorly understood manifestation of cystic fibrosis (CF), which may be refractory to ion channel CF transmembrane conductance regulator (CFTR) modulator therapy. People with CF exhibit intestinal dysbiosis, which has the potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia, leukocytes, and other tissues. Here, we investigate the contribution of intestinal epithelium-specific loss of Cftr [iCftr knockout (KO)] to dysbiosis and inflammation in mice treated with either of two antiobstructive dietary regimens necessary to maintain CF mouse models [polyethylene glycol (PEG) laxative or a liquid diet (LiqD)]. Feces collected from iCftr KO mice and their wild-type (WT) sex-matched littermates were used to measure fecal calprotectin to evaluate inflammation and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT mice that consumed either PEG or LiqD. PEG iCftr KO mice did not show a change in α diversity versus WT mice but demonstrated a significant difference in microbial composition (β diversity) with included increases in the phylum Proteobacteria, the family Peptostreptococcaceae, four genera of Clostridia including C. innocuum, and the mucolytic genus Akkermansia. Fecal microbiome analysis of LiqD-fed iCftr KO mice showed both decreased α diversity and differences in microbial composition with increases in the Proteobacteria family Enterobacteriaceae, Firmicutes families Clostridiaceae and Peptostreptococcaceae, and enrichment of Clostridium perfringens, C. innocuum, C. difficile, mucolytic Ruminococcus gnavus, and reduction of Akkermansia. It was concluded that epithelium-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of pan Cftr KO mice.NEW & NOTEWORTHY Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CF transmembrane conductance regulator (CFTR) that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR [inducible Cftr knockout (KO)] in mice is sufficient to induce intestinal dysbiosis and inflammation. Experiments were performed on mice consuming two dietary regimens routinely used to prevent obstruction in CF mice.
Collapse
Affiliation(s)
- Sarah M Young
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
| | - Rowena A Woode
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Estela C Williams
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- College of Veterinary Medicine, University of Missouri Metagenomics Center, Columbia, Missouri, United States
| | - Lane L Clarke
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Young SM, Woode RA, Williams E, Ericsson A, Clarke LL. Fecal Dysbiosis and Inflammation in Intestinal-Specific Cftr Knockout Mice on Regimens Preventing Intestinal Obstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550378. [PMID: 37546931 PMCID: PMC10402002 DOI: 10.1101/2023.07.24.550378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Chronic intestinal inflammation is a poorly understood manifestation of Cystic Fibrosis (CF), which may be refractory to ion channel CFTR modulator therapy. People with CF exhibit intestinal dysbiosis which has potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia and in the leukocyte population. Here, we investigate the contribution of intestinal epithelial-specific loss of Cftr (iCftr KO) to dysbiosis and inflammation in mice treated with either of two anti-obstructive dietary regimens necessary to maintain CF mouse models (PEG laxative or a liquid diet, LiqD). Feces collected from iCftr KO mice and their wildtype (WT) sex-matched littermates were used to measure fecal calprotectin and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT samples of mice consuming either PEG or LiqD. PEG iCftr KO mice did not show a change in α-diversity versus WT but demonstrated a significant difference in microbial composition (β-diversity) with increases in phylum Proteobacteria , family Peptostreptococcaceae , four genera of Clostridia including C. innocuum , and mucolytic genus Akkermansia . Fecal microbiome analysis of LiqD iCftr KO mice showed both decreased α-diversity and differences in microbial composition with increases in Proteobacteria family Enterobacteriaceae , Firmicutes families Clostridiaceae and Peptostreptococcaceae , and enrichment of Clostridium perfringens , C. innocuum , C. difficile , mucolytic Ruminococcus gnavus , and reduction of Akkermansia . It was concluded that epithelial-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of global Cftr KO mice. New and noteworthy Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CFTR that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR (iCftr KO) in mice is sufficient to induce intestinal dysbiosis and inflammation. Studies were performed on mice consuming either dietary regimen (PEG laxative or liquid diet) routinely used to prevent obstruction in CF mice.
Collapse
|
5
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
6
|
Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. Int J Mol Sci 2022; 23:ijms23179993. [PMID: 36077390 PMCID: PMC9456459 DOI: 10.3390/ijms23179993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations in the CFTR chloride channel result in intestinal obstructive episodes in cystic fibrosis (CF) patients and in CF animal models. In this study, we explored the possibility of reducing the frequency of obstructive episodes in cftr−/− mice through the oral application of a gut-selective NHE3 inhibitor tenapanor and searched for the underlying mechanisms involved. Sex- and age-matched cftr+/+ and cftr−/− mice were orally gavaged twice daily with 30 mg kg−1 tenapanor or vehicle for a period of 21 days. Body weight and stool water content was assessed daily and gastrointestinal transit time (GTT) once weekly. The mice were sacrificed when an intestinal obstruction was suspected or after 21 days, and stool and tissues were collected for further analysis. Twenty-one day tenapanor application resulted in a significant increase in stool water content and stool alkalinity and a significant decrease in GTT in cftr+/+ and cftr−/− mice. Tenapanor significantly reduced obstructive episodes to 8% compared to 46% in vehicle-treated cftr−/− mice and prevented mucosal inflammation. A decrease in cryptal hyperproliferation, mucus accumulation, and mucosal mast cell number was also observed in tenapanor- compared to vehicle-treated, unobstructed cftr−/− mice. Overall, oral tenapanor application prevented obstructive episodes in CFTR-deficient mice and was safe in cftr+/+ and cftr−/− mice. These results suggest that tenapanor may be a safe and affordable adjunctive therapy in cystic fibrosis patients to alleviate constipation and prevent recurrent DIOS.
Collapse
Affiliation(s)
| | | | | | - Ursula Seidler
- Correspondence: ; Tel.: +49-5115-329-427; Fax: +49-5115-328-428
| |
Collapse
|
7
|
Probiotics Administration in Cystic Fibrosis: What Is the Evidence? Nutrients 2022; 14:nu14153160. [PMID: 35956335 PMCID: PMC9370594 DOI: 10.3390/nu14153160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
In the last 20 years, gut microbiota in patients with cystic fibrosis (CF) has become an object of interest. It was shown that these patients had gut dysbiosis and this could explain not only the intestinal manifestations of the disease but also part of those involving the respiratory tract. The acquisition of previously unknown information about the importance of some bacteria, i.e., those partially or totally disappeared in the gut of CF patients, in the regulation of the activity and function of the gut and the lung was the base to suggest the use of probiotics in CF patients. The main aim of this paper is to discuss the biological basis for probiotic administration to CF patients and which results could be expected. Literature analysis showed that CF intestinal dysbiosis depends on the same genetic mutations that condition the clinical picture of the diseases and is aggravated by a series of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the administration of antacids. All this translates into a significant worsening of the structure and function of organs, including the lung and intestine, already deeply penalized by the genetic alterations of CF. Probiotics can intervene on dysbiosis, reducing the negative effects derived from it. However, the available data cannot be considered sufficient to indicate that these bacteria are essential elements of CF therapy. Further studies that take into account the still unsolved aspects on how to use probiotics are absolutely necessary.
Collapse
|
8
|
Ronan NJ, Einarsson GG, Deane J, Fouhy F, Rea M, Hill C, Shanahan F, Elborn JS, Ross RP, McCarthy M, Murphy DM, Eustace JA, Mm T, Stanton C, Plant BJ. Modulation, microbiota and inflammation in the adult CF gut: A prospective study. J Cyst Fibros 2022; 21:837-843. [PMID: 35764510 DOI: 10.1016/j.jcf.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) has prominent gastrointestinal and pancreatic manifestations. The aim of this study was to determine the effect of Cystic fibrosis transmembrane conductance regulator (CFTR) modulation on, gastrointestinal inflammation, pancreatic function and gut microbiota composition in people with cystic fibrosis (CF) and the G551D-CFTR mutation. METHODS Fourteen adult patients with the G551D-CFTR mutation were assessed clinically at baseline and for up to 1 year after treatment with ivacaftor. The change in gut inflammatory markers (calprotectin and lactoferrin), exocrine pancreatic status and gut microbiota composition and structure were assessed in stool samples. RESULTS There was no significant change in faecal calprotectin nor lactoferrin in patients with treatment while all patients remained severely pancreatic insufficient. There was no significant change in gut microbiota diversity and richness following treatment. CONCLUSION There was no significant change in gut inflammation after partial restoration of CFTR function with ivacaftor, suggesting that excess gut inflammation in CF is multi-factorial in aetiology. In this adult cohort, exocrine pancreatic function was irreversibly lost. Longer term follow-up may reveal more dynamic changes in the gut microbiota and possible restoration of CFTR function.
Collapse
Affiliation(s)
- N J Ronan
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork
| | - G G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - J Deane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - J S Elborn
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - R P Ross
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M McCarthy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - D M Murphy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - J A Eustace
- HRB Clinical research facility, University College Cork
| | - Tunney Mm
- Halo Research Group, Queen's University Belfast, Belfast, UK; School of Pharmacy, Queen's University Belfast, Belfast, UK; HRB Clinical research facility, University College Cork
| | - C Stanton
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - B J Plant
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland.
| |
Collapse
|
9
|
Jaudszus A, Pfeifer E, Lorenz M, Beiersdorf N, Hipler UC, Zagoya C, Mainz JG. Abdominal Symptoms Assessed With the CFAbd-Score are Associated With Intestinal Inflammation in Patients With Cystic Fibrosis. J Pediatr Gastroenterol Nutr 2022; 74:355-360. [PMID: 34789668 DOI: 10.1097/mpg.0000000000003357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES This prospective study evaluated the relationship between fecal markers of intestinal inflammation and cystic fibrosis (CF)-associated abdominal symptoms. These were assessed using the CFAbd-Score, a CF-specific patient-related outcome measure developed and validated, following FDA guidelines. METHODS In feces from patients with CF (n = 41) and healthy volunteers (n = 27), concentrations of fecal calprotectin (FC), M2-pyruvate kinase (M2-PK), interleukins IL-1β, IL-6, IL-8, and neutrophilic elastase (NE) were measured. Abdominal symptoms during the 2 preceding weeks were recorded using the CFAbd-Score. This patient-reported outcome measure (PROM) for assessment of the multi-organic abdominal involvement in CF includes 28 items in five domains. RESULTS Inflammatory parameters FC, IL-1β, M2-PK, and NE in feces, as well as CFAbd-Scores resulted significantly higher in CF patients than in healthy controls (all P < 0.01). Furthermore, significant differences between both groups were found for pain-symptoms, disorders of bowel movement, impaired quality of life, as well as disorders of eating and appetite. With 83% sensitivity and 74% specificity, FC was the most reliable measure for CF-related intestinal inflammation, which, in the CFAbd-Score, was associated to significantly higher rates of abdominal pain, as well as to general quality of life items such as gastrointestinal-related impaired sleep and frustration. CONCLUSION Using the CFAbd-Score as a CF-specific PROM for identification and quantification of abdominal symptoms revealed that abdominal pain and impaired quality of life are associated with intestinal inflammation in CF.
Collapse
Affiliation(s)
- Anke Jaudszus
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
| | - Elena Pfeifer
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
| | - Michael Lorenz
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
| | - Nathalie Beiersdorf
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
| | | | - Carlos Zagoya
- Brandenburg Medical School/Medizinische Hochschule Brandenburg (MHB), University, Pediatric Pulmonology/Cystic Fibrosis, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Jochen G Mainz
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany.,Brandenburg Medical School/Medizinische Hochschule Brandenburg (MHB), University, Pediatric Pulmonology/Cystic Fibrosis, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany
| |
Collapse
|
10
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:jcm11030649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
11
|
Beaufils F, Mas E, Mittaine M, Addra M, Fayon M, Delhaes L, Clouzeau H, Galode F, Lamireau T, Bui S, Enaud R. Increased Fecal Calprotectin Is Associated with Worse Gastrointestinal Symptoms and Quality of Life Scores in Children with Cystic Fibrosis. J Clin Med 2020; 9:jcm9124080. [PMID: 33348735 PMCID: PMC7766355 DOI: 10.3390/jcm9124080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
In cystic fibrosis (CF), cystic fibrosis transmembrane regulator (CFTR) dysfunction leads to digestive disorders that promote intestinal inflammation and dysbiosis enhancing gastrointestinal symptoms. In pancreatic insufficiency CF patients, both intestinal inflammation and dysbiosis, are associated with an increase in the fecal calprotectin (FC) level. However, associations between the FC level, gastrointestinal symptoms, and quality of life (QoL) remain poorly studied. We aimed to assess such associations in pancreatic insufficiency CF children. The FC level was measured in pancreatic insufficiency CF children’s stool samples. Children and their parents completed two questionnaires: The Gastrointestinal Symptoms Scales 3.0-PedsQLTM and the Quality of Life Pediatric Inventory 4.0-PedsQLTM. Lower scores indicated worse symptomatology or QoL. Thirty-seven CF children were included. A FC level above 250 µg/g was associated with worse gastrointestinal symptoms and QoL scores. The FC level was inversely correlated with several gastrointestinal scores assessed by children (i.e., Total, “Heart Burn Reflux”, “Nausea and Vomiting”, and “Gas and Bloating”). Several QoL scores were correlated with gastrointestinal scores. The FC level was weakly associated with clinical parameters. Some gastrointestinal and QoL scores were related to disease severity associated parameters. In CF, the FC level, biomarker previously related to intestinal inflammation and dysbiosis, was associated with worse digestive symptoms and QoL scores.
Collapse
Affiliation(s)
- Fabien Beaufils
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France;
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
- Correspondence: ; Tel.: +33-5-56-79-98-24
| | - Emmanuel Mas
- CHU Toulouse, CRCM Pédiatrique, F-31300 Toulouse, France; (E.M.); (M.M.)
- INSERM, INRA, ENVT, Université de Toulouse, UPS, F-31000 Toulouse, France
- Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, F-31300 Toulouse, France
| | - Marie Mittaine
- CHU Toulouse, CRCM Pédiatrique, F-31300 Toulouse, France; (E.M.); (M.M.)
| | - Martin Addra
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France;
| | - Michael Fayon
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France;
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| | - Laurence Delhaes
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
- CHU Toulouse, CRCM Pédiatrique, F-31300 Toulouse, France; (E.M.); (M.M.)
- CHU Bordeaux, Service de Parasitologie-Mycologie, F-33000 Bordeaux, France
| | - Haude Clouzeau
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| | - François Galode
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| | - Thierry Lamireau
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| | - Stéphanie Bui
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France;
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| | - Raphaël Enaud
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Place Amélie Raba Léon, F-33000 Bordeaux, France; (M.F.); (L.D.); (H.C.); (F.G.); (T.L.); (S.B.); (R.E.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France;
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France
| |
Collapse
|
12
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
13
|
Trandafir LM, Leon MM, Frasinariu O, Baciu G, Dodi G, Cojocaru E. Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. J Clin Med 2019; 8:jcm8071023. [PMID: 31336857 PMCID: PMC6678759 DOI: 10.3390/jcm8071023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Pain is a complex, multidimensional process that negatively affects physical and mental functioning, clinical outcomes, quality of life, and productivity for cystic fibrosis (CF) patients. CF is an inherited multi-system disease that requires a complete approach in order to evaluate, monitor and treat patients. The landscape in CF care has changed significantly, with currently more adult patients than children worldwide. Despite the great advances in supportive care and in our understanding regarding its pathophysiology, there are still numerous aspects of CF pain that are not fully explained. This review aims to provide a critical overview of CF pain research that focuses on pain assessment, prevalence, characteristics, clinical association and the impact of pain in children and adults, along with innovative nanotechnology perspectives for CF management. Specifically, the paper evaluates the pain symptoms associated with CF and examines the relationship between pain symptoms and disease severity. The particularities of gastrointestinal, abdominal, musculoskeletal, pulmonary and chest pain, as well as pain associated with medical procedures are investigated in patients with CF. Disease-related pain is common for patients with CF, suggesting that pain assessment should be a routine part of their clinical care. A summary of the use of nanotechnology in CF and CF-related pain is also given. Further research is clearly needed to better understand the sources of pain and how to improve patients’ quality of life.
Collapse
Affiliation(s)
- Laura M Trandafir
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Magdalena M Leon
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Otilia Frasinariu
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Ginel Baciu
- Pediatric Department, "Dunărea de Jos" University of Galati, 800008 Galati, Romania
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania.
| | - Elena Cojocaru
- Morpho-Functional Sciences Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
14
|
Mari A, Baker FA, Mahamid M, Yacoob A, Sbeit W, Khoury T. Clinical utility of fecal calprotectin: potential applications beyond inflammatory bowel disease for the primary care physician. Ann Gastroenterol 2019; 32:425-430. [PMID: 31474787 PMCID: PMC6686087 DOI: 10.20524/aog.2019.0394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Fecal calprotectin (FC) is an inflammatory marker released mainly from gastrointestinal granulocytes measured in stool samples. FC is noninvasive, economical, simple, and acceptable for patients. Levels of FC have proven reliable for intestinal inflammation, with good clinical sensitivity, and are useful in screening and monitoring inflammatory bowel disease (IBD), as well as in the differential diagnosis between IBD and irritable bowel syndrome (IBS). Given its advantages, FC represents an attractive biomarker that could be utilized in various gastrointestinal (GI) diseases apart from IBD, and is currently being studied extensively by many research groups with significant amounts of data emerging. In this current review we aim to provide an outline of the utility of FC in distinguishing between IBS and IBD, as well as an up-to-date summary of the available clinical experience concerning FC in various common conditions of the GI tract commonly encountered by gastroenterology practitioners, such as IBS, microscopic colitis, acute gastroenteritis, Clostridium difficile infection, colorectal cancer, diverticular disease, coeliac disease, and other GI conditions.
Collapse
Affiliation(s)
- Amir Mari
- Gastroenterology and Endoscopy United, The Nazareth Hospital, EMMS, Nazareth, Israel, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Fadi Abu Baker
- Gastroenterology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mahmud Mahamid
- Gastroenterology and Endoscopy United, The Nazareth Hospital, EMMS, Nazareth, Israel, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Afif Yacoob
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Wisam Sbeit
- Gastroenterology and Hepatology Department, Rambam Healthcare Campus, Haifa, Israel
| | - Tawfik Khoury
- Gastroenterology and Hepatology Department, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
15
|
Enaud R, Hooks KB, Barre A, Barnetche T, Hubert C, Massot M, Bazin T, Clouzeau H, Bui S, Fayon M, Berger P, Lehours P, Bébéar C, Nikolski M, Lamireau T, Delhaes L, Schaeverbeke T. Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn's-Like Microbiota Disturbances. J Clin Med 2019; 8:jcm8050645. [PMID: 31083321 PMCID: PMC6572243 DOI: 10.3390/jcm8050645] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a systemic genetic disease that leads to pulmonary and digestive disorders. In the majority of CF patients, the intestine is the site of chronic inflammation and microbiota disturbances. The link between gut inflammation and microbiota dysbiosis is still poorly understood. The main objective of this study was to assess gut microbiota composition in CF children depending on their intestinal inflammation. We collected fecal samples from 20 children with CF. Fecal calprotectin levels were measured and fecal microbiota was analyzed by 16S rRNA sequencing. We observed intestinal inflammation was associated with microbiota disturbances characterized mainly by increased abundances of Staphylococcus, Streptococcus, and Veillonella dispar, along with decreased abundances of Bacteroides, Bifidobacterium adolescentis, and Faecalibacterium prausnitzii. Those changes exhibited similarities with that of Crohn's disease (CD), as evidenced by the elevated CD Microbial-Dysbiosis index that we applied for the first time in CF. Furthermore, the significant over-representation of Streptococcus in children with intestinal inflammation appears to be specific to CF and raises the issue of gut-lung axis involvement. Taken together, our results provide new arguments to link gut microbiota and intestinal inflammation in CF and suggest the key role of the gut-lung axis in the CF evolution.
Collapse
Affiliation(s)
- Raphaël Enaud
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Katarzyna B Hooks
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Aurélien Barre
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thomas Barnetche
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Christophe Hubert
- INSERM, MRGM, University Bordeaux, U1211, F-33000 Bordeaux, France.
- PGTB, University Bordeaux, F-33000 Bordeaux, France.
| | - Marie Massot
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France.
| | - Thomas Bazin
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Haude Clouzeau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Stéphanie Bui
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Michael Fayon
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Philippe Lehours
- BaRITOn, INSERM, University Bordeaux, UMR1053, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Cécile Bébéar
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Macha Nikolski
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thierry Lamireau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Thierry Schaeverbeke
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
16
|
Maiuri L, Villella VR, Raia V, Kroemer G. The gliadin-CFTR connection: new perspectives for the treatment of celiac disease. Ital J Pediatr 2019; 45:40. [PMID: 30898172 PMCID: PMC6429699 DOI: 10.1186/s13052-019-0627-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
Familial loss-of-function mutations of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) channel protein cause cystic fibrosis (CF), the most frequent inherited life-threatening disease in the Caucasian population. A recent study indicates that the gluten/gliadin-derived peptide (P31–43) can cause CFTR inhibition in intestinal epithelial cells, thus causing a local stress response that contributes to the immunopathology of celiac disease (CD). Accordingly, an increased prevalence of CD has been observed in several cohorts of CF patients. CD is characterized by a permanent intolerance to gluten/gliadin proteins occurring in a proportion of susceptible individuals who bear the human leukocyte antigen (HLA) DQ2/DQ8. In CD, perturbations of the intestinal environment, together with the activation of the innate immune system by P31–43, are essential for rendering other immunodominant gliadin peptide fully antigenic, thus triggering an adaptive immune response with an autoimmune component. P31–43-induced CFTR inhibition elicits the danger signals that ignite the epithelial stress response and perturb epithelial proteostasis. Importantly, potentiators of CFTR channel gating, such as the FDA-approved drug Ivacaftor, prevent P31–43 driven CFTR inhibition and suppress the gliadin-induced stress response in cells from celiac patients, as well as the immunopathology developing in gliadin-sensitive mice. Thus, CFTR potentiators may represent a novel therapeutic option for celiac patients.
Collapse
Affiliation(s)
- Luigi Maiuri
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.,European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria R Villella
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, Naples, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale contrele Cancer, Centre de Recherche des Cordeliers, Paris, France. .,INSERM U1138, Centre de Recherche des Cordeliers, Paris, France. .,Université Paris Descartes, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
17
|
Villella VR, Esposito S, Ferrari E, Monzani R, Tosco A, Rossin F, Castaldo A, Silano M, Marseglia GL, Romani L, Barlev NA, Piacentini M, Raia V, Kroemer G, Maiuri L. Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis. Cell Death Dis 2019; 10:258. [PMID: 30874543 PMCID: PMC6420598 DOI: 10.1038/s41419-019-1500-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Abstract
Under physiological conditions, a finely tuned system of cellular adaptation allows the intestinal mucosa to maintain the gut barrier function while avoiding excessive immune responses to non-self-antigens from dietary origin or from commensal microbes. This homeostatic function is compromised in cystic fibrosis (CF) due to loss-of-function mutations in the CF transmembrane conductance regulator (CFTR). Recently, we reported that mice bearing defective CFTR are abnormally susceptible to a celiac disease-like enteropathy, in thus far that oral challenge with the gluten derivative gliadin elicits an inflammatory response. However, the mechanisms through which CFTR malfunction drives such an exaggerated response to dietary protein remains elusive. Here we demonstrate that the proteostasis regulator/transglutaminase 2 (TGM2) inhibitor cysteamine restores reduced Beclin 1 (BECN1) protein levels in mice bearing cysteamine-rescuable F508del-CFTR mutant, either in homozygosis or in compound heterozygosis with a null allele, but not in knock-out CFTR mice. When cysteamine restored BECN1 expression, autophagy was increased and gliadin-induced inflammation was reduced. The beneficial effects of cysteamine on F508del-CFTR mice were lost when these mice were backcrossed into a Becn1 haploinsufficient/autophagy-deficient background. Conversely, the transfection-enforced expression of BECN1 in human intestinal epithelial Caco-2 cells mitigated the pro-inflammatory cellular stress response elicited by the gliadin-derived P31–43 peptide. In conclusion, our data provide the proof-of-concept that autophagy stimulation may mitigate the intestinal malfunction of CF patients.
Collapse
Affiliation(s)
- Valeria R Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Speranza Esposito
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, 28100, Italy
| | - Romina Monzani
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, 28100, Italy
| | - Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, Naples, 80131, Italy
| | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alice Castaldo
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, Naples, 80131, Italy
| | - Marco Silano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Roma, Italy
| | - Gian Luigi Marseglia
- Dipartimento di Pediatria, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nikolai A Barlev
- Gene Expression Laboratory, Institute of Citology, Saint-Petersburg, Russia
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, Naples, 80131, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale contrele Cancer, Centre de Recherche des Cordeliers, Paris, France. .,INSERM U1138, Centre de Recherche des Cordeliers, Paris, France. .,Université Paris Descartes, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, 28100, Italy
| |
Collapse
|
18
|
Abstract
Lactobacillus rhamnosus GG (LGG) was the first strain belonging to the genus Lactobacillus to be patented in 1989 thanks to its ability to survive and to proliferate at gastric acid pH and in medium containing bile, and to adhere to enterocytes. Furthermore LGG is able to produces both a biofilm that can mechanically protect the mucosa, and different soluble factors beneficial to the gut by enhancing intestinal crypt survival, diminishing apoptosis of the intestinal epithelium, and preserving cytoskeletal integrity. Moreover LGG thanks to its lectin-like protein 1 and 2 inhibits some pathogens such as Salmonella species. Finally LGG is able to promote type 1 immune-responsiveness by reducing the expression of several activation and inflammation markers on monocytes and by increasing the production of interleukin-10, interleukin-12 and tumor necrosis factor-α in macrophages. A large number of research data on Lactobacillus GG is the basis for the use of this probiotic for human health. In this review we have considered predominantly randomized controlled trials, meta-analysis, Cochrane Review, guide lines of Scientific Societies and anyway studies whose results were evaluated by means of relative risk, odds ratio, weighted mean difference 95% confidence interval. The effectiveness of LGG in gastrointestinal infections and diarrhea, antibiotic and Clostridium difficile associated diarrhea, irritable bowel syndrome, inflammatory bowel disease, respiratory tract infections, allergy, cardiovascular diseases, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, cystic fibrosis, cancer, elderly end sport were analyzed.
Collapse
|
19
|
Strubberg AM, Liu J, Walker NM, Stefanski CD, MacLeod RJ, Magness ST, Clarke LL. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine. Cell Mol Gastroenterol Hepatol 2017; 5:253-271. [PMID: 29675451 PMCID: PMC5904038 DOI: 10.1016/j.jcmgh.2017.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) patients and CF mouse models have increased risk for gastrointestinal tumors. CF mice show augmented intestinal proliferation of unknown etiology and an altered intestinal environment. We examined the role of the cystic fibrosis transmembrane conductance regulator (Cftr) in Wnt/β-catenin signaling, stem cell proliferation, and its functional expression in the active intestinal stem cell (ISC) population. Dysregulation of intracellular pH (pHi) in CF ISCs was investigated for facilitation of Wnt/β-catenin signaling. METHODS Crypt epithelia from wild-type (WT) and CF mice were compared ex vivo and in intestinal organoids (enteroids) for proliferation and Wnt/β-catenin signaling by standard assays. Cftr in ISCs was assessed by immunoblot of sorted Sox9 enhanced green fluorescent protein(EGFP) intestinal epithelia and pHi regulation by confocal microfluorimetry of leucine-rich G-protein-coupled receptor 5 ISCs. Plasma membrane association of the Wnt transducer Dishevelled 2 (Dvl2) was assessed by fluorescence imaging of live enteroids from WT and CF mice crossed with Dvl2-EGFP/ACTB-tdTomato,-EGFP)Luo/J (RosamT/mG) mice. RESULTS Relative to WT, CF intestinal crypts showed an ∼30% increase in epithelial and Lgr5+ ISC proliferation and increased Wnt/β-catenin signaling. Cftr was expressed in Sox9EGFPLo ISCs and loss of Cftr induced an alkaline pHi in ISCs. CF crypt-base columnar cells showed a generalized increase in plasma membrane Dvl2-EGFP association as compared with WT. Dvl2-EGFP membrane association was charge- and pH-dependent and increased in WT crypt-base columnar cells by Cftr inhibition. CONCLUSIONS CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.
Collapse
Key Words
- CBC, crypt-base columnar cell
- CCH, carbachol
- CF, cystic fibrosis
- Cftr, cystic fibrosis transmembrane conductance regulator
- Cystic Fibrosis
- DEP, Dishevelled, Egl-10, and Pleckstrin
- Dishevelled
- Dvl, Dishevelled
- EGFP, enhanced green fluorescent protein
- EdU, 5-ethynyl-2’-deoxyuridine
- Fz, Frizzled
- GI, gastrointestinal
- ISC, intestinal stem cell
- Intracellular pH
- KO, knockout
- Lgr5, leucine-rich G-protein–coupled receptor 5
- Neoplasia
- Organoids
- PBS, phosphate-buffered saline
- PDZ, Post synaptic density protein, Drosophila disc large tumor suppressor, and Zonula occludens-1 protein
- PH3, phospho-histone H3
- ROI, region of interest
- WT, wild type
- pHi, intracellular pH
Collapse
Affiliation(s)
- Ashlee M. Strubberg
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nancy M. Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Casey D. Stefanski
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - R. John MacLeod
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott T. Magness
- Department of Medicine, Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lane L. Clarke
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,Correspondence Address correspondence to: Lane L. Clarke, DVM, PhD, 324D Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, Missouri 65211-3300. fax: (573) 884–4232.
| |
Collapse
|
20
|
Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017; 5:609-624. [PMID: 28815024 PMCID: PMC5548342 DOI: 10.1177/2050640616670565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, 72074 Tuebingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
21
|
Garg M, Ooi CY. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr Gastroenterol Rep 2017; 19:6. [PMID: 28155088 DOI: 10.1007/s11894-017-0546-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Intestinal inflammation, dysbiosis, and increased gastrointestinal malignancy risks are well-described in patients with cystic fibrosis (CF). However, there is limited understanding of their pathophysiology. This review aims to discuss these issues and assess potential links between them. RECENT FINDINGS Evidence of links between intestinal inflammation and dysbiosis (an imbalance in intestinal microbial populations) exist. Recent studies have demonstrated reduction in intestinal inflammation with probiotic administration. Both bacterial dysbiosis and gut inflammation contribute to the suboptimal nutritional status seen in children with CF. Short-chain fatty acids may be reduced in the gut lumen as a result of bacterial imbalances and may promote inflammation. Inflammation and bacterial dysbiosis in CF may also contribute to emerging adult complications such as gastrointestinal malignancy. An increase in carcinogenic microbes and reduction in microbes protective against cancer have been found in CF, linking bacterial dysbiosis and cancer. Murine studies suggest the CF gene, cystic fibrosis transmembrane conductance regulator (CFTR) gene, itself may be a tumour suppressor gene. The pathophysiology of interactions among intestinal inflammation, dysbiosis, and malignancy in CF is not clearly understood and requires further research.
Collapse
Affiliation(s)
- Millie Garg
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Chee Y Ooi
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia.
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
22
|
Castellani C, Assael BM. Cystic fibrosis: a clinical view. Cell Mol Life Sci 2017; 74:129-140. [PMID: 27709245 PMCID: PMC11107741 DOI: 10.1007/s00018-016-2393-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder. Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.
Collapse
Affiliation(s)
- Carlo Castellani
- Verona Cystic Fibrosis Centre, Piazzale Stefani 1, 37126, Verona, Italy.
| | - Baroukh M Assael
- Adult Cystic Fibrosis Center, Via Francesco Sforza, 20100, Milano, Italy
| |
Collapse
|
23
|
Liu K, Zhang X, Zhang JT, Tsang LL, Jiang X, Chan HC. Defective CFTR- β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis. Oncotarget 2016; 7:64030-64042. [PMID: 27588407 PMCID: PMC5325423 DOI: 10.18632/oncotarget.11747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
While inflammation with aberrant activation of NF-κB pathway is a hallmark of cystic fibrosis (CF), the molecular mechanisms underlying the link between CFTR defect and activation of NF-κB-mediated pro-inflammatory response remain elusive. Here, we investigated the link between CFTR defect and NF-κB activation in ΔF508cftr-/- mouse intestine and human intestinal epithelial cell lines. Our results show that the NF-κB/COX-2/PGE2 pathway is activated whereas the β-catenin pathway is suppressed in CF mouse intestine and CFTR-knockdown cells. Activation of β-catenin pathway by GSK3 inhibitors suppresses CFTR mutation/knockdown-induced NF-κB/COX-2/PGE2 pathway in ΔF508 mouse intestine and CFTR-knockdown cells. In contrast, suppression of β-catenin signaling induces the nuclear translocation of NF-κB. In addition, CFTR co-localizes and interacts with β-catenin while CFTR mutation disrupts the interaction between NF-κB and β-catenin in mouse intestine. Treatment with proteasome inhibitor MG132 completely reverses the reduced expression of β-catenin in Caco-2 cells. Collectively, these results indicate that CFTR stabilizes β-catenin and prevents its degradation, defect of which results in the activation of NF-κB-mediated inflammatory cascade. The present study has demonstrated a previously unsuspected interaction between CFTR and β-catenin that regulates NF-κB nuclear translocation in mouse intestine. Therefore, our study provides novel insights into the physiological function of CFTR and pathogenesis of CF-related diseases in addition to the NF-κB-mediated intestinal inflammation seen in CF.
Collapse
Affiliation(s)
- Kaisheng Liu
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| | - Jie Ting Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
24
|
Demeyer S, De Boeck K, Witters P, Cosaert K. Beyond pancreatic insufficiency and liver disease in cystic fibrosis. Eur J Pediatr 2016; 175:881-94. [PMID: 27055450 DOI: 10.1007/s00431-016-2719-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Cystic fibrosis is a life shortening hereditary disease, primarily leading to progressive pulmonary infection and exocrine pancreatic dysfunction. Several gastrointestinal complications other than malabsorption can arise during the disease course and with the progressively increasing life span of patients with CF; new and more rare complications are being recognized. We review the literature on gastrointestinal manifestations in CF, excluding the liver and pancreas. CONCLUSION We describe the clinical presentation and treatment of more common conditions like gastroesophageal reflux, small intestinal bacterial overgrowth, intussusception, meconium ileus, distal intestinal obstruction syndrome, and constipation, and we also discuss what is known on celiac disease, appendicitis, fibrosing colonopathy, inflammation and inflammatory bowel disease and gastrointestinal cancer. WHAT IS KNOWN • Gastrointestinal complications arise early in the course of the disease and have a severe impact on the quality of life of the patients. What is New: • This review is a concise summary of the current literature on gastrointestinal complications of cystic fibrosis. • We focused on clinical presentation and diagnostic investigations and provide a comprehensive resume of the current treatment options.
Collapse
Affiliation(s)
- Stephanie Demeyer
- Universitaire Ziekenhuizen Leuven, Leuven, Vlaams-Brabant, Belgium. .,Department of Pediatrics, University Hospital Gasthuisberg, Herestraat 49, Leuven, 3000, Belgium.
| | - Kris De Boeck
- Department of Pediatrics, University Hospital Gasthuisberg, Herestraat 49, Leuven, 3000, Belgium
| | - Peter Witters
- Department of Pediatrics, University Hospital Gasthuisberg, Herestraat 49, Leuven, 3000, Belgium
| | - Katrien Cosaert
- Department of Pharmocology, University Hospital Gasthuisberg, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
25
|
Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion. J Am Soc Nephrol 2016; 28:242-249. [PMID: 27313231 DOI: 10.1681/asn.2016030279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/16/2016] [Indexed: 11/03/2022] Open
Abstract
Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr-/- mice in Ussing chambers and measured transcellular secretion of [14C]oxalate. Intestinal tissue isolated from Cftr-/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr-/- tissue. Compared with wild-type mice, Cftr-/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl--oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr-/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Felix Knauf
- Departments of Internal Medicine, .,Department of Nephrology and Hypertension, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - John F Heneghan
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts; and
| | | | | | | | | | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Marie E Egan
- Pediatrics, and.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts; and
| | - Peter S Aronson
- Departments of Internal Medicine, .,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Morin G, Orlando V, St-Martin Crites K, Patey N, Mailhot G. Vitamin D attenuates inflammation in CFTR knockdown intestinal epithelial cells but has no effect in cells with intact CFTR. Am J Physiol Gastrointest Liver Physiol 2016; 310:G539-49. [PMID: 26893158 DOI: 10.1152/ajpgi.00060.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 01/31/2016] [Indexed: 01/31/2023]
Abstract
The cystic fibrosis (CF) intestine is characterized by chronic inflammation. CF patients are instructed to ingest supplemental vitamin D on a daily basis thereby exposing their intestinal tract to pharmacological amounts of this vitamin. It has been shown that vitamin D exerts intestinal anti-inflammatory properties. We therefore postulate that vitamin D may be beneficial in the management of CF intestinal inflammation by attenuating cellular inflammatory responses. In this study, we investigated the anti-inflammatory effects of the oral form of vitamin D3 (cholecalciferol) and its metabolites, 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, on cytokine-induced inflammatory responses in intestinal epithelial Caco-2/15 cells with intact expression of CF transmembrane conductance regulator (CFTR) and knockdown for CFTR. We show that 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 inhibited p38MAPK phosphorylation and that these effects were not mediated by changes in the expression of MAPK phosphatase-1 (MKP-1). However, 1,25-dihydroxyvitamin D3 exhibited superior anti-inflammatory effects as it furthermore reduced cytokine-induced NF-κB nuclear translocation and interleukin-8 mRNA stability and secretion. Intriguingly, the anti-inflammatory effects of vitamin D metabolites were only observed in CFTR knockdown cells, which may be explained by alterations in its catabolism associated with changes in CYP24A1 expression. These observations were supported in vivo whereby Cftr(-/-) mice fed large amounts of vitamin D3 for 2 mo led to a reduction in the number of eosinophils and apoptotic cells in the duodenal mucosa of females but not males. Altogether, these findings suggest that vitamin D exerts intestinal anti-inflammatory actions under specific circumstances and may thus prove beneficial in CF.
Collapse
Affiliation(s)
- Geneviève Morin
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | - Valérie Orlando
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | | | - Natacha Patey
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | - Geneviève Mailhot
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
27
|
Kleme ML, Sané AT, Garofalo C, Levy E. Targeted CFTR gene disruption with zinc-finger nucleases in human intestinal epithelial cells induces oxidative stress and inflammation. Int J Biochem Cell Biol 2016; 74:84-94. [PMID: 26923293 DOI: 10.1016/j.biocel.2016.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Cystic fibrosis (CF) is a multisystemic pathology caused by mutations of the CF transmembrane conductance regulator (CFTR) gene. OBJECTIVES As the intestine harbors the greatest number of CFTR transcripts after birth and since CFTR plays a role in glutathione transport, we hypothesized that CFTR deletion might produce oxidative stress (OxS) and inflammation in CF intestinal epithelial cell. METHODS CFTR gene was abrogated in Caco-2/15 enterocytes through the zinc-finger nuclease system. Their oxidative and inflammatory characteristics were appreciated under basal conditions and after the treatment with the pro-oxidant iron-ascorbate (Fe/Asc) complex and pro-inflammatory lipopolysaccharide (LPS). RESULTS Intestinal epithelial cells with CFTR knockout spontaneously exhibited an increased lipid peroxidation level, reflected by malondialdehyde overproduction and reduced antioxidant defense characterized by low enzymatic activities of glutathione peroxidase and catalase. CFTR silencing also resulted in elevated protein expression of pro-inflammatory tumor necrosis Factor-α, interleukin-6, cyclooxygenase-2, and the transcription factor nuclear factor-κB. Moreover, exaggerated OxS and inflammation processes occurred in CFTR(-/-) cells in response to the addition of Fe/Asc and LPS, respectively. CONCLUSIONS Intestinal Caco-2/15 cells with CFTR deletion, display innate oxidative and inflammatory features while being more sensitive to pro-oxidant and pro-inflammatory stimuli. These two pathophysiological processes could be implicated in CF-related intestinal disorders.
Collapse
Affiliation(s)
- Marie-Laure Kleme
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| | - Alain Théophile Sané
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada
| | - Carole Garofalo
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada.
| |
Collapse
|
28
|
Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 2016; 310:G70-80. [PMID: 26542396 PMCID: PMC4719062 DOI: 10.1152/ajpgi.00236.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.
Collapse
Affiliation(s)
- Nancy M. Walker
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Jinghua Liu
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Sydney R. Stein
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Casey D. Stefanski
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Ashlee M. Strubberg
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lane L. Clarke
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
29
|
Personalized Medicine in Respiratory Disease: Role of Proteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:115-46. [PMID: 26827604 DOI: 10.1016/bs.apcsb.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Respiratory diseases affect humanity globally, with chronic lung diseases (e.g., asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, among others) and lung cancer causing extensive morbidity and mortality. These conditions are highly heterogeneous and require an early diagnosis. However, initial symptoms are nonspecific, and the clinical diagnosis is made late frequently. Over the last few years, personalized medicine has emerged as a medical care approach that uses novel technology aiming to personalize treatments according to the particular patient's medical needs. This review highlights the contributions of proteomics toward the understanding of personalized medicine in respiratory disease and its potential applications in the clinic.
Collapse
|
30
|
Crites KSM, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:62. [PMID: 26549988 PMCID: PMC4636765 DOI: 10.1186/s12950-015-0107-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Background Hyperinflammation is a hallmark feature of cystic fibrosis (CF) airways. However, inflammation has also been documented systemically and, more recently, in extrapulmonary CF-affected tissues such as the pancreas and intestine. The pathogenesis of CF-related inflammation and more specifically the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in that respect are not entirely understood. We have tested the hypothesis that genetic depletion of CFTR will affect the inflammatory status of human intestinal epithelial cell lines. Methods CFTR expression was genetically depleted from Caco-2/15 and HT-29 cells using short hairpin RNA interference (shRNAi). Inflammatory conditions were induced by the addition of human recombinant tumor necrosis factor (TNF) or Interleukin-1β (IL-1β) for various periods of time. Gene expression, mRNA stability and secreted levels of interleukin (IL)-6, −8 and 10 were assessed. Analysis of pro- and anti-inflammatory signaling pathways including mitogen-activated protein kinases (p38, ERK 1/2 and JNK), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and nuclear factor-kappa B (NF-κB) was also performed. Eosinophils were counted in the jejunal mucosa of Cftr−/− and Cftr+/+ mice. Results CFTR gene and protein knockdown caused a significant increase in basal secretion of IL-8 as well as in IL-1β-induced secretion of IL-6 and −8. Release of the anti-inflammatory cytokine, IL-10, remained unaffected by CFTR depletion. The enhanced secretion of IL-8 stems in part from increased IL8 mRNA levels and greater activation of ERK1/2 MAPK, IκBα and NF-κB in the CFTR knockdown cells. By contrast, phosphorylation levels of p38 and JNK MAPK did not differ between control and knockdown cells. We also found a higher number of infiltrating eosinophils in the jejunal mucosa of Cftr −/− females, but not males, compared to Cftr +/+ mice, thus providing in vivo support to our in vitro findings. Conclusion Collectively, these data underscore the role played by CFTR in regulating the intestinal inflammatory responses. Such findings lend support to the theory that CFTR exerts functions that may go beyond its role as a chloride channel whereby its disruption may prevent cells to optimally respond to exogenous or endogenous challenges. These observations are of particular interest to CF patients who were found to display alterations in their intestinal microbiota, thus predisposing them to pathogens that may elicit exaggerated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Valérie Orlando
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Natacha Patey
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Catherine Cantin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Judith Martel
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Emmanuelle Brochiero
- Research Center, CHUM, 900 Saint-Denis Street, Montreal, Quebec H2X 0A9 Canada ; Department of Medicine, Université de Montreal, 2900, Édouard-Montpetit Blvd, Montreal, Quebec H3T 1J4 Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada ; Department of Nutrition, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1A8 Canada
| |
Collapse
|
31
|
Adriaanse MPM, van der Sande LJTM, van den Neucker AM, Menheere PPCA, Dompeling E, Buurman WA, Vreugdenhil ACE. Evidence for a Cystic Fibrosis Enteropathy. PLoS One 2015; 10:e0138062. [PMID: 26484665 PMCID: PMC4617711 DOI: 10.1371/journal.pone.0138062] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 08/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have suggested the existence of enteropathy in cystic fibrosis (CF), which may contribute to intestinal function impairment, a poor nutritional status and decline in lung function. This study evaluated enterocyte damage and intestinal inflammation in CF and studied its associations with nutritional status, CF-related morbidities such as impaired lung function and diabetes, and medication use. Methods Sixty-eight CF patients and 107 controls were studied. Levels of serum intestinal-fatty acid binding protein (I-FABP), a specific marker for enterocyte damage, were retrospectively determined. The faecal intestinal inflammation marker calprotectin was prospectively studied. Nutritional status, lung function (FEV1), exocrine pancreatic insufficiency (EPI), CF-related diabetes (CFRD) and use of proton pump inhibitors (PPI) were obtained from the medical charts. Results Serum I-FABP levels were elevated in CF patients as compared with controls (p<0.001), and correlated negatively with FEV1 predicted value in children (r-.734, p<0.05). Faecal calprotectin level was elevated in 93% of CF patients, and correlated negatively with FEV1 predicted value in adults (r-.484, p<0.05). No correlation was found between calprotectin levels in faeces and sputum. Faecal calprotectin level was significantly associated with the presence of CFRD, EPI, and PPI use. Conclusion This study demonstrated enterocyte damage and intestinal inflammation in CF patients, and provides evidence for an inverse correlation between enteropathy and lung function. The presented associations of enteropathy with important CF-related morbidities further emphasize the clinical relevance.
Collapse
Affiliation(s)
- Marlou P. M. Adriaanse
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Linda J. T. M. van der Sande
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anita M. van den Neucker
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Paul P. C. A. Menheere
- Department of Immunodiagnostics, Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Wim A. Buurman
- Department of General Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Anita C. E. Vreugdenhil
- Department of Paediatric Gastroenterology & Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
32
|
Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibros 2015; 15:242-50. [PMID: 26330184 DOI: 10.1016/j.jcf.2015.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several microbial studies reported gut microbiota dysbiosis in patients with cystic fibrosis (CF). The functional consequences of this phenomenon are poorly understood. Faecal metaproteomics allows the quantitative analysis of host and microbial proteins to address functional changes resulting from this dysbiosis. METHODS We analysed faecal protein extracts from fifteen patients with CF that have pancreatic insufficiency and from their unaffected siblings by shotgun proteomics. Novel computational and statistical tools were introduced to evaluate changes in taxonomic composition and protein abundance. RESULTS Faecal protein extracts from patients with CF were dominated by host proteins involved in inflammation and mucus formation. Taxonomic analysis of the microbial proteins confirmed the strong reduction of butyrate reducers such as Faecalibacterium prausnitzii and increase of Enterobacteriaceae, Ruminococcus gnavus and Clostridia species. CONCLUSION Faecal metaproteomics provides insights in intestinal dysbiosis, inflammation in patients with CF and can be used to monitor different disease markers in parallel.
Collapse
|
33
|
Abstract
Given the number of inflammatory disorders affecting the gastrointestinal tract directly and indirectly, coupled with the considerable overlap with functional disorders, it is evident that more useful noninvasive diagnostic tests are required to aid with diagnosis. If these tests can also have some utility for individual patient follow-up in terms of disease activity and response to treatment, as well as providing forewarning of disease relapse, it would be extremely useful information for the clinician. One recently described test that may fulfill several of these attributes is based on leakage of a mononuclear cell cytoplasmic protein, calprotectin, along the intestinal tract, which can then be quantified in feces. This has been used to distinguish patients exhibiting symptoms of irritable bowel syndrome from patients with inflammatory bowel disease, with a measure of success greater than with currently used techniques. The present article summarizes the experience with this test used in inflammatory bowel disease, as well as a variety of gastrointestinal disorders.
Collapse
|
34
|
Bodewes FAJA, Verkade HJ, Taminiau JAJM, Borowitz D, Wilschanski M. Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation. J Cyst Fibros 2015; 14:169-77. [PMID: 25677689 DOI: 10.1016/j.jcf.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
With the development of new drugs that directly affect CFTR protein function, clinical trials are being designed or initiated for a growing number of patients with cystic fibrosis. The currently available and accepted clinical endpoints, FEV1 and BMI, have limitations. The aim of this report is to draw attention to the need and the ample possibilities for the development and validation of relevant gastrointestinal clinical endpoints for scientific evaluation of CFTR modulation treatment, particularly in young children and infants. The gastrointestinal tract offers very good opportunities to measure CFTR protein function and systematically evaluate CF related clinical outcomes based on the principal clinical gastrointestinal manifestations of CF: intestinal pH, intestinal transit time, intestinal bile salt malabsorption, intestinal inflammation, exocrine pancreatic function and intestinal fat malabsorption. We present a descriptive analysis of a variety of gastrointestinal outcome measures for clinical relevance, reliability, validity, responsiveness to interventions, feasibility in particular in young children and the availability of reference values.
Collapse
Affiliation(s)
- Frank A J A Bodewes
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands.
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Drucy Borowitz
- Department of Pediatrics, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Women and Children's Hospital of Buffalo, Buffalo, NY, United States
| | - Michael Wilschanski
- Pediatric Gastroenterology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
35
|
Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL. Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J Clin Invest 2015; 125:1056-68. [PMID: 25642775 DOI: 10.1172/jci73193] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/18/2014] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator-mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.
Collapse
|
36
|
Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease--another black box in hepatology. Int J Mol Sci 2014; 15:13529-49. [PMID: 25093717 PMCID: PMC4159809 DOI: 10.3390/ijms150813529] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
Due to improved medical care, life expectancy in patients with cystic fibrosis (CF) has veritably improved over the last decades. Importantly, cystic fibrosis related liver disease (CFLD) has become one of the leading causes of morbidity and mortality in CF patients. However, CFLD might be largely underdiagnosed and diagnostic criteria need to be refined. The underlying pathomechanisms are largely unknown, and treatment strategies with proven efficacy are lacking. This review focuses on current invasive and non-invasive diagnostic standards, the current knowledge on the pathophysiology of CFLD, treatment strategies, and possible future developments.
Collapse
Affiliation(s)
- Katharina Staufer
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Lili Kazemi-Shirazi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
37
|
Rumman N, Sultan M, El-Chammas K, Goh V, Salzman N, Quintero D, Werlin S. Calprotectin in cystic fibrosis. BMC Pediatr 2014; 14:133. [PMID: 24885444 PMCID: PMC4048584 DOI: 10.1186/1471-2431-14-133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is increasing evidence that intestinal inflammation plays a major role in gastrointestinal symptoms in cystic fibrosis (CF). Fecal calprotectin is a marker that is elevated in several gastrointestinal inflammatory diseases, but little is known about its value in CF. We aimed to look for associations of elevated fecal calprotectin among CF patients and whether its level correlates with the clinical manifestations of CF. METHODS A single stool specimen was collected from 62 patients with CF. Fecal calprotectin was measured using the commercially available ELISA kits (PhiCal™ test). Clinical data were collected from patients' records and CF registry. RESULTS There were no significant differences between CF patients with normal and abnormal fecal calprotectin levels. However, patients who were not receiving inhaled antibiotics had higher fecal calprotectin levels than those who were. CONCLUSION Elevated fecal calprotectin may not accurately predict intestinal inflammation in CF. However, the fact that it was elevated in both pancreatic sufficient and insufficient groups supports the concept of "cystic fibrosis enteropathy" regardless of the pancreatic status.
Collapse
Affiliation(s)
- Nisreen Rumman
- Department of Pediatrics, Divisions of Pulmonary and Sleep Medicine, The Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Li L, Somerset S. The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clin Nutr 2014; 33:571-80. [PMID: 24767984 DOI: 10.1016/j.clnu.2014.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/08/2023]
Abstract
Cystic fibrosis (CF) is characterised by many comorbidities related to aberrant mucosa and chronic inflammation in the respiratory and digestive systems. The intestinal mucosa serves as the primary interface between the gut microbiota and endocrine, neural and immune systems. There is emerging evidence that aberrant intestinal mucosa in CF may associate with an altered gut microbiota. Compared to healthy subjects, the overall bacterial abundance and species richness seems to be reduced in CF, accompanied by a trend in suppression of Firmicutes and Bacteroidetes spp. and an augmentation of potentially pathogenic species. There is also some concordance of gut and respiratory microbiotas in CF infants over time. The clinical significance of these observations awaits investigation. The gut microbiota have some potential in CF management by affecting inflammatory and immune responses, and influencing aberrant mucosa. As an important modifiable factor, diet therapies such as probiotics and prebiotics have shown initial promise in improving CF related conditions associated with chronic inflammation. More studies are needed to confirm this, as well as the efficacy of other dietary strategies such as modulating dietary fat and indigestible carbohydrate. Similarly, dietary modification of gut microbiota to optimise nutritional status in CF may be feasible, although more CF-specific studies are warranted.
Collapse
Affiliation(s)
- Li Li
- School of Public Health, Griffith Health Institute, Griffith University, Brisbane, Queensland, Australia.
| | - Shawn Somerset
- School of Allied Health, Australian Catholic University, PO Box 456, Virginia, Brisbane, Queensland 4014, Australia.
| |
Collapse
|
39
|
Munck A. Cystic fibrosis: evidence for gut inflammation. Int J Biochem Cell Biol 2014; 52:180-3. [PMID: 24548777 DOI: 10.1016/j.biocel.2014.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/21/2014] [Accepted: 02/07/2014] [Indexed: 01/12/2023]
Abstract
Cystic fibrosis (CF) gut manifestations are predominantly secondary to cystic fibrosis transmembrane regulator protein (CFTR) dysfunction. The CFTR gene is expressed throughout the intestinal tract. Because the intestine is difficult to assess in humans, there exists a lack of data on the underlying mechanisms of intestinal dysfunction. A more tractable approach involves the use of mouse models of CF, created by gene targeting techniques, to describe the consequences of CFTR dysfunction in the intestinal tissues, including mucus accumulation, disturbed motility, small bowel bacterial overgrowth and inflammation with altered innate immune responses, that are likely to be interrelated. We will focus on the latter. Recently, in people with CF, even in the absence of overt gastrointestinal symptoms, chronic intestinal inflammation and abnormal balance of the microbiota have been evidenced. Because chronic gut inflammation may be a driver for systemic inflammation, the prevention and control of intestinal inflammation represents a promising research strategy.
Collapse
Affiliation(s)
- Anne Munck
- Assistance publique-Hôpitaux de Paris, Hôpital Robert Debré, Paediatric Gastroenterology and Respiratory Department, CF Center, Université Paris 7, 75019 Paris, France.
| |
Collapse
|
40
|
Abstract
OBJECTIVES The aim of this study was to evaluate in patients with cystic fibrosis (CF) the effect of Lactobacillus reuteri (LR) on the rate of respiratory exacerbations and of the infections of both upper respiratory and gastrointestinal tracts. METHODS Prospective randomized, double-blind, placebo-controlled study enrolling 61 patients with CF with mild-to-moderate lung disease at the Regional Center for CF of the Department of Pediatrics, University of Rome "La Sapienza." All of the patients were not hospital inpatients at the time of the enrollment. Inclusion criteria were forced expiratory volume in the first second (FEV1) >70% predicted; no inhaled or systemic steroids, no anti-inflammatory drugs, antileukotrienes, and mast cell membrane stabilizers; and no serious organ involvement. Exclusion criteria were a history of pulmonary exacerbation or upper respiratory infection in the previous 2 months; changes in medications in the last 2 months; a history of hemoptysis in the last 2 months; and colonization with Burkholderia cepacia or mycobacteria. Patients were randomly assigned to receive LR (30 patients) in 5 drops per day (10(10) colony-forming units) or placebo (31 patients) for 6 months. Main outcomes were number of episodes of pulmonary exacerbations and hospital admissions for pulmonary exacerbations, number of gastrointestinal and upper respiratory tract infections. FEV1, fecal calprotectin, and cytokine profile in induced sputum and plasma were assessed at baseline and at the end of the trial. RESULTS Pulmonary exacerbations were significantly reduced in the LR group compared with the placebo group (P<0.01; odds ratio 0.06 [95% confidence interval {CI} 0-0.40]; number needed to treat 3 [95% CI 2-7]). Similarly, the number of upper respiratory tract infections (in our series only otitis) was significantly reduced in the LR group compared with the placebo group (P<0.05; odds ratio 0.14 [95% CI 0-0.96]; number needed to treat 6 [95% CI 3-102]). The 2 groups did not differ statistically in the mean number and duration of hospitalizations for pulmonary exacerbations and gastrointestinal infections. There was no significant statistical difference in the mean delta value of FEV1, fecal calprotectin concentration, and tested cytokines (tumor necrosis factor-α and interleukin-8) between the 2 groups. CONCLUSIONS LR reduces pulmonary exacerbations and upper respiratory tract infections in patients with CF with mild-to-moderate lung disease. LR administration may have a beneficial effect on the disease course of CF.
Collapse
|
41
|
Shah N, Tan HL, Sebire N, Suri R, Leuven K. The role of endoscopy and biopsy in the management of severe gastrointestinal disease in cystic fibrosis patients. Pediatr Pulmonol 2013; 48:1181-9. [PMID: 23825099 DOI: 10.1002/ppul.22697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/22/2012] [Indexed: 12/23/2022]
Abstract
There is increasing evidence to suggest the presence of chronic inflammation in the gastrointestinal (GI) tract of cystic fibrosis (CF) patients. Some CF patients continue to have very severe gastrointestinal symptoms despite conventional CF treatment. In our center, these patients are managed in a CF gastroenterology clinic, jointly with a pediatric gastroenterologist. A number have required GI endoscopy and biopsy. The aim of our study was to characterize these patients and determine whether endoscopy and biopsy changed their management. We reviewed all the patients seen in the CF gastroenterology clinic from 2004 to 2009, who had GI endoscopies performed. The GI symptoms these patients were experiencing included abdominal pain, nausea and vomiting, rectal bleeding, failure to thrive, loose stools, and constipation. Twelve patients had GI endoscopies with mucosal biopsies performed. The median [interquartile range (IQR)] age at referral to the CF gastroenterology clinic was 4 years [0.9-8]. Their body mass index (BMI) was 15.2 [13.7-15.5]. Twenty-five percent were homozygous delta F508. Two patients had previously had meconium ileus as neonates requiring surgical intervention. One other patient had needed abdominal surgery for intussusception. Ninty-two percent were pancreatic insufficient, 25% were chronically infected with Pseudomonas aeruginosa and 17% were on regularly 3 monthly intravenous antibiotics. Of the 10 patients who were able to perform spirometry, FEV1 was 101% [67-125] predicted. Nine of the 12 patients had evidence of mucosal inflammation in their biopsies, including duodenitis with eosinophilic infiltrate, chronic non-specific inactive gastritis, enteropathy with partial villous atrophy, and non-specific colitis. Immunosuppressive and anti-inflammatory therapies were commenced in these nine patients, including prednisolone, azathioprine, methotrexate, ketotifen, mesalazine, and sulfasalazine as well as the use of parenteral nutrition and elemental feeds. All the patients clinically responded to therapy. Five of the patients commenced on anti-inflammatory therapy had repeat biopsies 1-5 years following commencement of treatment and all showed histological improvement of the mucosal inflammation. GI endoscopy with mucosal biopsy has a significant role to play in the management of CF children with severe GI disease. In our study, it influenced the management in the majority of patients with severe GI symptoms. Furthermore, if GI mucosal inflammation is identified on biopsy, management with immunomodulatory agents may be clinically beneficial.
Collapse
Affiliation(s)
- Neil Shah
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital, London, UK
| | | | | | | | | |
Collapse
|
42
|
Abstract
The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| | | |
Collapse
|
43
|
De Lisle RC, Meldi L, Mueller R. Intestinal smooth muscle dysfunction develops postnatally in cystic fibrosis mice. J Pediatr Gastroenterol Nutr 2012; 55:689-94. [PMID: 22699839 PMCID: PMC3504652 DOI: 10.1097/mpg.0b013e3182638bf4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Intestinal dysmotility is one of the effects of cystic fibrosis (CF), but when and how this develops is not well understood. The goal of the present study was to use the Cftr knockout mouse to determine when in development circular smooth muscle of the small intestine becomes dysfunctional. METHODS Wild-type (WT) and CF mice were used at postnatal day 5 (P5) through adult. Pieces of small intestine were used to measure contractile activity of the circular muscle. Bacterial overgrowth was measured by quantitative polymerase chain reaction (PCR) of the bacterial 16S gene. Intestinal gene expression was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Prostaglandin E2 (PGE2) and its metabolites were measured by enzyme immunoassay. RESULTS CF circular muscle response to cholinergic stimulation was similar to WT at P5, became somewhat impaired at P7, and was severely impaired by P14. In the CF intestine, bacterial overgrowth occurred by P4 and was maintained into adulthood. Eicosanoid metabolic gene expression in the CF intestine did not differ from WT shortly after birth. The phospholipase A2 genes, Pla2g4c and Pla2g5 exhibited increased expression in CF mice at P24. Prostaglandin degradative genes, Hpgd and Ptgr1, showed lower expression in CF as compared with WT at P16 and P24, respectively. PGE2 levels were significantly greater in CF mice at most ages from P7 through adulthood. CONCLUSIONS The results clearly demonstrate that lack of CFTR itself does not cause smooth muscle dysfunction, because the circular muscle from P5 CF mice had normal activity and dysfunction developed between P7 and P14.
Collapse
Affiliation(s)
- Robert C De Lisle
- University of Kansas School of Medicine, Anatomy and Cell Biology, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
44
|
Update of faecal markers of inflammation in children with cystic fibrosis. Mediators Inflamm 2012; 2012:948367. [PMID: 22988347 PMCID: PMC3439990 DOI: 10.1155/2012/948367] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/01/2012] [Indexed: 01/01/2023] Open
Abstract
There is evidence of intestinal inflammation in patients with CF. Intestinal inflammation may negatively impact the nutritional status of patient with CF, which adversely affects pulmonary function and survival. This paper provides an up-to-date review of intestinal inflammation in CF and an evaluation of utility of two specific faecal inflammatory markers (S100A12 and calprotectin).
Collapse
|
45
|
del Campo R, Martínez E, del Fresno C, Alenda R, Gómez-Piña V, Fernández-Ruíz I, Siliceo M, Jurado T, Toledano V, Arnalich F, García-Río F, López-Collazo E. Translocated LPS might cause endotoxin tolerance in circulating monocytes of cystic fibrosis patients. PLoS One 2011; 6:e29577. [PMID: 22216320 PMCID: PMC3247277 DOI: 10.1371/journal.pone.0029577] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/30/2011] [Indexed: 12/04/2022] Open
Abstract
Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes.
Collapse
Affiliation(s)
- Rosa del Campo
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eriel Martínez
- EMPIREO Research S.L., Madrid, Spain
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | - Carlos del Fresno
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | - Raquel Alenda
- Department of Inmunology, University Hospital Ramon y Cajal and IRYCIS, Madrid, Spain
| | - Vanesa Gómez-Piña
- EMPIREO Research S.L., Madrid, Spain
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | | | - María Siliceo
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | - Teresa Jurado
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | - Victor Toledano
- Laboratory of Tumor Immunology, IdiPAZ, ‘La Paz’ Hospital, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Abstract
OBJECTIVES The intestinal mucosal barrier protects the body from the large numbers of microbes that inhabit the intestines and the molecules they release. Intestinal barrier function is impaired in humans with cystic fibrosis (CF), including reduced activity of the lipopolysaccharide-detoxifying enzyme intestinal alkaline phosphatase (IAP) and increased permeability. The objective of this study was to determine the suitability of using the CF mouse to investigate intestinal barrier function, and whether interventions that are beneficial for the CF mouse intestinal phenotype (antibiotics or laxative), would improve barrier function. Also tested were the effects of exogenous IAP administration. MATERIALS AND METHODS The Cftr(tm1UNC) mouse was used. IAP expression (encoded by the murine Akp3 gene) was measured by quantitative reverse transcription-polymerase chain reaction and enzyme activity. Intestinal permeability was assessed by measuring rhodamine-dextran plasma levels following gavage. RESULTS CF mice had 40% Akp3 mRNA expression and 30% IAP enzyme activity, as compared with wild-type mice. Oral antibiotics and laxative treatments normalized Akp3 expression and IAP enzyme activity in the CF intestine. CF mice had a 5-fold greater transfer of rhodamine-dextran from gut lumen to blood. Antibiotic and laxative treatments reduced intestinal permeability in CF mice. Administration of exogenous purified IAP to CF mice reduced intestinal permeability to wild-type levels and reduced small intestinal bacterial overgrowth by >80%. CONCLUSIONS The CF mouse intestine has impaired mucosal barrier function, similar to human CF. Interventions that improve other aspects of the CF intestinal phenotype (antibiotics and laxative) also increase IAP activity and decrease intestinal permeability in CF mice. Exogenous IAP improve permeability and strongly reduce bacterial overgrowth in CF mice, suggesting this may be a useful therapy for CF.
Collapse
|
47
|
Tan HL, Shah N, Suri R. Azathioprine in the management of enteropathy in cystic fibrosis. J R Soc Med 2011; 104 Suppl 1:S40-S43. [PMID: 21719892 PMCID: PMC3128164 DOI: 10.1258/jrsm.2011.s11107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Affiliation(s)
- Hui-Leng Tan
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.
| | | | | |
Collapse
|
48
|
Persistent fat malabsorption in cystic fibrosis; lessons from patients and mice. J Cyst Fibros 2011; 10:150-8. [PMID: 21459688 DOI: 10.1016/j.jcf.2011.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/07/2011] [Accepted: 03/08/2011] [Indexed: 12/13/2022]
Abstract
Fat malabsorption in pancreatic insufficient cystic fibrosis (CF) patients is classically treated with pancreatic enzyme replacement therapy (PERT). Despite PERT, intestinal fat absorption remains insufficient in most CF patients. Several factors have been suggested to contribute to the persistent fat malabsorption in CF (CFPFM). We reviewed the current insights concerning the proposed causes of CFPFM and the corresponding intervention studies. Most data are obtained from studies in CF patients and CF mice. Based on the reviewed literature, we conclude that alterations in intestinal pH and intestinal mucosal abnormalities are most likely to contribute to CFPFM. The presently available data indicate that acid suppressive drugs and broad spectrum antibiotics could be helpful in individual CF patients for optimizing fat absorption and/or nutritional status.
Collapse
|
49
|
Abstract
OBJECTIVES Treatment with pancreatic enzymes fails to completely correct malabsorption and gastrointestinal symptoms in patients with cystic fibrosis (CF). The aim of the present study was to examine the small intestine of patients with CF without overt evidence of gastrointestinal disease using capsule endoscopy (CE). METHODS Patients with CF received the agile patency capsule and, depending on the result of that procedure, then underwent standard CE using the PillCam SB capsule (Given Imaging, Yokneam, Israel). A stool specimen was taken on the same day as the CE for determination of the calprotectin level. RESULTS Forty-two patients with CF ages 10 to 36 years were included; 29 had pancreatic insufficiency. One patient failed to excrete the patency capsule after 36 hours and was withdrawn from the study. Pulmonary function was mild to moderate with FEV1 68.5% +/- 16% predicted. Review of the CE videos showed that most of the patients had varying degrees of diffuse areas of inflammatory findings in the small bowel including edema, erythema, mucosal breaks, and frank ulcerations. There were no adverse events. Fecal calprotectin levels were markedly high in patients with pancreatic insufficiency, 258 microg/g (normal <50). CONCLUSIONS Small bowel mucosal pathology may be detected using CE in most of the patients with CF. The high fecal calprotectin levels found are suggestive of mucosal inflammation, which may correlate with the CE findings. Additional study is required to examine the possible relation of these mucosal lesions, which may be part of a newly identified enteropathy associated with CF, with persistent intestinal malabsorption in many of these patients.
Collapse
|
50
|
DiMagno MJ, Lee SH, Owyang C, Zhou SY. Inhibition of acinar apoptosis occurs during acute pancreatitis in the human homologue DeltaF508 cystic fibrosis mouse. Am J Physiol Gastrointest Liver Physiol 2010; 299:G400-12. [PMID: 20522641 PMCID: PMC2928535 DOI: 10.1152/ajpgi.00061.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, we found that the University of North Carolina cystic fibrosis (UNC-CF) mouse had more severe experimental acute pancreatitis (AP) than wild-type (WT) mice characterized by exuberant pancreatic inflammation and impaired acinar apoptosis. Because exon 10 CFTR gene mutations exhibit different phenotypes in tissues such as the mouse lung, we tested the hypothesis that DeltaF508-CF mice also develop severe AP associated with an antiapoptotic acinar phenotype, which requires indirect effects of the extracellular milieu. We used cerulein hyperstimulation models of AP. More severe pancreatitis occurred in cerulein-injected DeltaF508-CF vs. WT mice based on histological severity (P < 0.01) and greater neutrophil sequestration [P < 0.0001; confirmed by myeloperoxidase activity (P < 0.005)]. In dispersed acini cerulein-evoked necrosis was greater in DeltaF508-CF acini compared with WT (P < 0.05) and in WT acini pretreated with CFTR(inh)-172 compared with vehicle (P < 0.05). Cerulein-injected DeltaF508-CF vs. WT mice had less apoptosis based on poly(ADP-ribose) polymerase (PARP) cleavage (P < 0.005), absent DNA laddering, and reduced terminal deoxynucleotidyltransferase biotin-dUTP nick end labeling (TUNEL) staining (P < 0.005). Unexpectedly, caspase-3 activation was greater in DeltaF508-CF vs. WT acini at baseline (P < 0.05) and during AP (P < 0.0001). Downstream, DeltaF508-CF pancreas overexpressed the X-linked inhibitor of apoptosis compared with WT (P < 0.005). In summary, the DeltaF508-CF mutation, similar to the UNC-CF "null" mutation, causes severe AP characterized by an exuberant inflammatory response and impaired acinar apoptosis. Enhanced acinar necrosis in DeltaF508-CF occurs independently of extracellular milieu and correlates with loss of CFTR-Cl conductance. Although both exon 10 models of CF inhibit acinar apoptosis execution, the DeltaF508-CF mouse differs by increasing apoptosis signaling. Impaired transduction of increased apoptosis signaling in DeltaF508-CF acini may be biologically relevant to the pathogenesis of AP associated with CFTR mutations.
Collapse
Affiliation(s)
- Matthew J. DiMagno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sae-Hong Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Shi-yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|