1
|
Cabañas Poy MJ, Montoro Ronsano JB, Castillo Salinas F, Martín-Begué N, Clemente Bautista S, Gorgas Torner MQ. Comparative effectiveness of two lipid emulsions in preventing retinopathy of prematurity in preterm infants requiring parenteral nutrition. FARMACIA HOSPITALARIA 2024; 48:159-163. [PMID: 38556369 DOI: 10.1016/j.farma.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVES The main aim was to compare the effects of 2 parenteral lipid emulsions on retinopathy of prematurity (ROP) incidence, severity, and need for treatment. Secondary aim was to compare the effect on weight gain in the first 6 weeks of life. METHODS Single-center, observational, retrospective study analyzing preterm infants with a gestational age (GA) <31 weeks and a birth weight <1251 g born between April 2015 and December 2018. The infants' medical records were reviewed to collect clinical data. Parenteral nutrition (PN) details were obtained from the hospital pharmacy database. RESULTS In total, 180 patients were included: 90 received ClinOleic® and 90 received SMOFlipid®. No significant differences were observed for the incidence of ROP (40% in ClinOleic® group and 41% in SMOFlipid® group, p=.88) or ROP requiring treatment (4% and 10%, respectively, p=.152). Weekly weight gain was similar in the 2 groups. CONCLUSIONS This study showed no difference between the 2 groups regarding ROP, ROP requiring treatment, or weekly weight gain in the first 6 weeks of life.
Collapse
Affiliation(s)
- Mª José Cabañas Poy
- Servicio de Farmacia, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | | | | | - Nieves Martín-Begué
- Unidad de Oftalmología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | |
Collapse
|
2
|
Cabañas Poy MJ, Montoro Ronsano JB, Castillo Salinas F, Martín-Begué N, Clemente Bautista S, Gorgas Torner MQ. Comparative effectiveness of two lipid emulsions in preventing retinopathy of prematurity in preterm infants requiring parenteral nutrition. FARMACIA HOSPITALARIA 2024; 48:T159-T163. [PMID: 38772807 DOI: 10.1016/j.farma.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVES The main aim was to compare the effects of two parenteral lipid emulsions on retinopathy of prematurity (ROP) incidence, severity, and need for treatment. Secondary aim was to compare the effect on weight gain in the first 6 weeks of life. METHODS Single-center, observational, retrospective study analyzing preterm infants with a gestational age < 31 weeks and a birth weight < 1,251 g, born between April 2015 and December 2018. The infants' medical records were reviewed to collect clinical data. Parenteral nutrition details were obtained from the hospital pharmacy database. RESULTS In total, 180 patients were included: 90 received ClinOleic® and 90 received SMOFlipid®. No significant differences were observed for the incidence of ROP (40% in ClinOleic® group and 41% in SMOFlipid® group, p=0.88) or ROP requiring treatment (4% and 10% respectively, p=0.152). Weekly weight gain was similar in the two groups. CONCLUSIONS This study showed no difference between the two groups regarding ROP, ROP requiring treatment or weekly weight gain in the first 6 weeks of life.
Collapse
Affiliation(s)
- M José Cabañas Poy
- Servicio de Farmacia, Hospital Universitari Vall d'Hebron, Barcelona, España.
| | | | | | - Nieves Martín-Begué
- Unidad de Oftalmología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, España
| | | | | |
Collapse
|
3
|
Moltu SJ, Nordvik T, Rossholt ME, Wendel K, Chawla M, Server A, Gunnarsdottir G, Pripp AH, Domellöf M, Bratlie M, Aas M, Hüppi PS, Lapillonne A, Beyer MK, Stiris T, Maximov II, Geier O, Pfeiffer H. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin Nutr 2024; 43:176-186. [PMID: 38061271 DOI: 10.1016/j.clnu.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION www. CLINICALTRIALS gov; ID:NCT03555019.
Collapse
Affiliation(s)
- Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway.
| | - Tone Nordvik
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Madelaine E Rossholt
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristina Wendel
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Maninder Chawla
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Andres Server
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, 90185 Umeå, Sweden
| | - Marianne Bratlie
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Marlen Aas
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Petra S Hüppi
- Department of Woman, Child and Adolescent Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Lapillonne
- Department of Neonatal Intensive Care, APHP Necker-Enfants Malades Hospital, Paris University, 75015 Paris, France
| | - Mona K Beyer
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Stiris
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norwary
| | - Helle Pfeiffer
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Department of Pediatric Neurology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
4
|
Novitskiy N, Chan PHY, Chan M, Lai CM, Leung TY, Leung TF, Bornstein MH, Lam HS, Wong PCM. Deficits in neural encoding of speech in preterm infants. Dev Cogn Neurosci 2023; 61:101259. [PMID: 37257249 DOI: 10.1016/j.dcn.2023.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Preterm children show developmental cognitive and language deficits that can be subtle and sometimes undetectable until later in life. Studies of brain development in children who are born preterm have largely focused on vascular and gross anatomical characteristics rather than pathophysiological processes that may contribute to these developmental deficits. Neural encoding of speech as reflected in EEG recordings is predictive of future language development and could provide insights into those pathophysiological processes. We recorded EEG from 45 preterm (≤ 34 weeks of gestation) and 45 term (≥ 38 weeks) Chinese-learning infants 0-12 months of (corrected) age during natural sleep. Each child listened to three speech stimuli that differed in lexically meaningful pitch (2 native and 1 non-native speech categories). EEG measures associated with synchronization and gross power of the frequency following response (FFR) were examined. ANCOVAs revealed no main effect of stimulus nativeness but main effects of age, consistent with earlier studies. A main effect of prematurity also emerged, with synchronization measures showing stronger group differences than power. By detailing differences in FFR measures related to synchronization and power, this study brings us closer to identifying the pathophysiological pathway to often subtle language problems experienced by preterm children.
Collapse
Affiliation(s)
- Nikolay Novitskiy
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Peggy H Y Chan
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China; Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mavis Chan
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chin Man Lai
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obsterics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Marc H Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, USA; UNICEF, USA; Institute for Fiscal Studies, UK
| | - Hugh S Lam
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Patrick C M Wong
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Gilbreath D, Hagood D, Alatorre-Cruz GC, Andres A, Downs H, Larson-Prior LJ. Effects of Early Nutrition Factors on Baseline Neurodevelopment during the First 6 Months of Life: An EEG Study. Nutrients 2023; 15:1535. [PMID: 36986265 PMCID: PMC10055905 DOI: 10.3390/nu15061535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Throughout infancy, the brain undergoes rapid changes in structure and function that are sensitive to environmental influences, such as diet. Breastfed (BF) infants score higher on cognitive tests throughout infancy and into adolescence than formula fed (FF) infants, and these differences in neurocognitive development are reflected in higher concentrations of white and grey matter as measured by MRI. To further explore the effect diet has on cognitive development, electroencephalography (EEG) is used as a direct measure of neuronal activity and to assess specific frequency bands associated with cognitive processes. Task-free baseline EEGs were collected from infants fed with human milk (BF), dairy-based formula (MF), or soy-based formula (SF) at 2, 3, 4, 5, and 6 months of age to explore differences in frequency bands in both sensor and source space. Significant global differences in sensor space were seen in beta and gamma bands between BF and SF groups at ages 2 and 6 months, and these differences were further observed through volumetric modeling in source space. We conclude that BF infants exhibit earlier brain maturation reflected in greater power spectral density in these frequency bands.
Collapse
Affiliation(s)
- Dylan Gilbreath
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72207, USA
| | - Darcy Hagood
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
| | - Graciela Catalina Alatorre-Cruz
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72207, USA
| | - Aline Andres
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72207, USA
| | - Heather Downs
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
| | - Linda J. Larson-Prior
- Arkansas Children’s Nutrition Center (ACNC), Little Rock, AR 72202, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72207, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72207, USA
| |
Collapse
|
6
|
Dong Z, Jia L, Han W, Wang Y, Sheng M, Ren Y, Weng Y, Li H, Yu W. The protective effect of lncRNA NEAT1/miR-122-5p/Wnt1 axis on hippocampal damage in hepatic ischemic reperfusion young mice. Cell Signal 2023; 107:110668. [PMID: 37004832 DOI: 10.1016/j.cellsig.2023.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Hepatic ischemic reperfusion (HIR) is a common pathophysiological process in many surgical procedures such as liver transplantation (LT) and hepatectomy. And it is also an important factor leading to perioperative distant organ damage. Children undergoing major liver surgery are more susceptible to various pathophysiological processes, including HIR, since their brains are still developing and the physiological functions are still incomplete, which can lead to brain damage and postoperative cognitive impairment, thus seriously affecting the long-term prognosis of the children. However, the present treatments of mitigating HIR-induced hippocampal damage are not proven to be effective. The important role of microRNAs (miRNAs) in the pathophysiological processes of many diseases and in the normal development of the body has been confirmed in several studies. The current study explored the role of miR-122-5p in HIR-induced hippocampal damage progression. HIR-induced hippocampal damage mouse model was induced by clamping the left and middle lobe vessels of the liver of young mice for 1 h, removing the vessel clamps and re-perfusing them for 6 h. The changes in the level of miR-122-5p in the hippocampal tissues were measured, and its influences on the activity as well as apoptotic rate of neuronal cells were investigated. Short interfering RNA modified with 2'-O-methoxy substitution targeting long-stranded non-coding RNA (lncRNA) nuclear enriched transcript 1 (NEAT1) as well as miR-122-5p antagomir were used to further clarify the role played by the corresponding molecules in hippocampal injury in young mice with HIR. The result obtained in our study was that the expression of miR-122-5p in the hippocampal tissue of young mice receiving HIR is reduced. Upregulated expression of miR-122-5p reduces the viability of neuronal cells and promotes the development of apoptosis, thereby aggravating the damage of hippocampal tissue in HIR young mice. Additionally, in the hippocampal tissue of young mice receiving HIR, lncRNA NEAT1 exerts some anti-apoptotic effects by binding to miR-122-5p, promoting the expression of Wnt1 pathway. An essential observation of this study was the binding of lncRNA NEAT1 to miR-122-5p, which upregulates Wnt1 and inhibits HIR-induced hippocampal damage in young mice.
Collapse
|
7
|
Castillo Salinas F, Montaner Ramón A, Castillo Ferrer FJ, Domingo-Carnice A, Cordobilla B, Domingo JC. Erythrocyte Membrane Docosahexaenoic Acid (DHA) and Lipid Profile in Preterm Infants at Birth and Over the First Month of Life: A Comparative Study with Infants at Term. Nutrients 2022; 14:nu14234956. [PMID: 36500985 PMCID: PMC9740272 DOI: 10.3390/nu14234956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
An observational comparative study was designed to assess the fatty acids profile in erythrocyte membrane phospholipids of 30 preterm neonates (<32 weeks gestation) at birth and after 1 month of life versus a convenience sample of 10 infants born at term. The panel of fatty acids included the families and components of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and n-6 and n-3 polyunsaturated fatty acids (PUFAs) as well as enzyme activity indexes and fatty acids ratios. At birth, the comparison of fatty acid families between preterm and term neonates showed a significantly higher content of SFAs and n-6 PUFAs, and a significantly lower content of MUFAs and n-3 PUFAs in the preterm group. After 30 days of life, significantly higher levels of n-6 PUFAs and significantly lower levels of n-3 PUFAs among preterm neonates persisted. At 30 days of birth, n-6 PUFA/n-3 PUFA and arachidonic acid (ARA) ARA/DHA remained significantly elevated, and DHA sufficiency index significantly decreased in the preterm group. The pattern of n-3 PUFA deficiency at birth and sustained for the first month of life would support the need of milk banking fortified with DHA and the use of DHA supplementation in breastfeeding mothers.
Collapse
Affiliation(s)
- Félix Castillo Salinas
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Alicia Montaner Ramón
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Félix-Joel Castillo Ferrer
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Adrià Domingo-Carnice
- Department of Clinical Pharmacology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934021214
| |
Collapse
|
8
|
Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022; 14:nu14071405. [PMID: 35406018 PMCID: PMC9002905 DOI: 10.3390/nu14071405] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
The second and third trimesters of pregnancy are crucial for the anatomical and functional development of the gastrointestinal (GI) tract. If premature birth occurs, the immaturity of the digestive and absorptive processes and of GI motility represent a critical challenge to meet adequate nutritional needs, leading to poor extrauterine growth and to other critical complications. Knowledge of the main developmental stages of the processes involved in the digestion and absorption of proteins, carbohydrates, and lipids, as well as of the maturational phases underlying the development of GI motility, may aid clinicians to optimize the nutritional management of preterm infants. The immaturity of these GI systems and functions may negatively influence the patterns of gut colonization, predisposing to an abnormal microbiome. This, in turn, further contributes to alter the functional, immune, and neural development of the GI tract and, especially in preterm infants, has been associated with an increased risk of severe GI complications, such as necrotizing enterocolitis. Deeper understanding of the physiological colonization patterns in term and preterm infants may support the promotion of these patterns and the avoidance of microbial perturbations associated with the development of several diseases throughout life. This review aims to provide a global overview on the maturational features of the main GI functions and on their implications following preterm birth. We will particularly focus on the developmental differences in intestinal digestion and absorption functionality, motility, gut–brain axis interaction, and microbiomes.
Collapse
|
9
|
M K AK, Pournami F, Prabhakar J, Nandakumar A, Jain N. Iron Status of the Moderate and Late Preterm Infant: A Prospective Cohort Study. J Trop Pediatr 2021; 67:6401040. [PMID: 34664076 DOI: 10.1093/tropej/fmab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Guidelines on micronutrient supplementation in moderate to late preterm infants (MLP) are mostly extrapolated from those for smaller preterms, largely due to lack of systematic studies on physiological status in this special group of infants. Actual practices vary widely. We prospectively studied iron status by measurement of serum ferritin (SF) and haematological indices at 4 months corrected age in infants born between 32 and 36 weeks gestation (MLP), after they received 2 mg/kg/day oral iron from 6 weeks of postnatal age. Proportion of MLP having normal iron status (iron replete), i.e., neither iron deficiency (ID) nor iron excess was measured. ID anaemia, growth and development, risk factors for ID were also analysed. Of the 82 infants studied, 78% babies were late preterm. Seventy-four (90.3%) were iron replete (no deficiency or excess) at 4 months. High variability in SF levels (minimum of 9.8 to maximum of 252.2 μg/l) with median (IQR) of 57.45 μg/l (37.02-98.85) was noted in the entire cohort; and also within those who were iron deficient with median (IQR) of 17.50 μg/l (11.70-18.90). There was no difference in haematological indices of ID infants when compared to those with normal iron status. Inspite of oral iron supplementation with reasonable compliance, 8.5% MLP were iron deficient at 4 months corrected age. The high variability noted in SF levels could justify the need for monitoring iron status in this group of preterm infants. This could quintessentially aid individualization of iron supplementation advice.
Collapse
Affiliation(s)
- Alok Kumar M K
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, India
| | - Femitha Pournami
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, India
| | - Jyothi Prabhakar
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, India
| | - Anand Nandakumar
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, India
| | - Naveen Jain
- Department of Neonatology, Kerala Institute of Medical Sciences, Trivandrum, India
| |
Collapse
|
10
|
Bozzatello P, Blua C, Rocca P, Bellino S. Mental Health in Childhood and Adolescence: The Role of Polyunsaturated Fatty Acids. Biomedicines 2021; 9:850. [PMID: 34440053 PMCID: PMC8389598 DOI: 10.3390/biomedicines9080850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
There is increasing awareness of the importance of polyunsaturated fatty acids (PUFAs) for optimal brain development and function. In recent decades, researchers have confirmed the central role of PUFAs in a variety of patho-physiological processes. These agents modulate the mechanisms of brain cell signalling including the dopaminergic and serotonergic pathways. Therefore, nutritional insufficiencies of PUFAs may have adverse effects on brain development and developmental outcomes. The role of n-3 PUFAs has been studied in several psychiatric disorders in adulthood: schizophrenia, major depression, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, eating disorders, substance use disorder, and borderline personality disorder. In contrast to the great number of studies conducted in adults, there are only limited data on the effects of n-3 PUFA supplementation in children and adolescents who suffer from mental disorders or show a high risk of developing psychiatric disorders. The aim of this review is to provide a complete and updated account of the available evidence of the impact of polyunsaturated fatty acids on developmental psychopathology in children and adolescents and the effect of fatty acid supplementation during developmental milestones, particularly in high-risk populations of children with minimal but detectable signs or symptoms of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Silvio Bellino
- Department of Neuroscience, University of Turin, 10126 Turin, Italy; (P.B.); (C.B.); (P.R.)
| |
Collapse
|
11
|
da Costa Faria NR, Chaves-Filho AB, Alcantara LCJ, de Siqueira IC, Calcagno JI, Miyamoto S, de Filippis AMB, Yoshinaga MY. Plasma lipidome profiling of newborns with antenatal exposure to Zika virus. PLoS Negl Trop Dis 2021; 15:e0009388. [PMID: 33930014 PMCID: PMC8115770 DOI: 10.1371/journal.pntd.0009388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The 2015–2016 Zika virus (ZIKV) outbreak in Brazil was remarkably linked to the incidence of microcephaly and other deleterious clinical manifestations, including eye abnormalities, in newborns. It is known that ZIKV targets the placenta, triggering an inflammatory profile that may cause placental insufficiency. Transplacental lipid transport is delicately regulated during pregnancy and deficiency on the delivery of lipids such as arachidonic and docosahexaenoic acids may lead to deficits in both brain and retina during fetal development. Here, plasma lipidome profiles of ZIKV exposed microcephalic and normocephalic newborns were compared to non-infected controls. Our results reveal major alterations in circulating lipids from both ZIKV exposed newborns with and without microcephaly relative to controls. In newborns with microcephaly, the plasma concentrations of hydroxyoctadecadienoic acid (HODE), primarily as 13-HODE isomer, derived from linoleic acid were higher as compared to normocephalic ZIKV exposed newborns and controls. Total HODE concentrations were also positively associated with levels of other oxidized lipids and several circulating free fatty acids in newborns, indicating a possible plasma lipidome signature of microcephaly. Moreover, higher concentrations of lysophosphatidylcholine in ZIKV exposed normocephalic newborns relative to controls suggest a potential disruption of polyunsaturated fatty acids transport across the blood-brain barrier of fetuses. The latter data is particularly important given the neurocognitive and neurodevelopmental abnormalities observed in follow-up studies involving children with antenatal ZIKV exposure, but normocephalic at birth. Taken together, our data reveal that plasma lipidome alterations associated with antenatal exposure to ZIKV could contribute to identification and monitoring of the wide spectrum of clinical phenotypes at birth and further, during childhood. Antenatal exposure to Zika virus (ZIKV) is linked to a wide range of clinical presentations at birth, from asymptomatic cases to microcephaly, and other neurocognitive and neurodevelopmental abnormalities manifested in the early childhood. Stratification of these clinical phenotypes in newborns with suspected antenatal ZIKV exposure is challenging, but critical to improve early assessment of rehabilitative interventions. In this study, plasma lipidome profiling of 274 lipid species was performed in both normocephalic and microcephalic newborns with antenatal ZIKV exposure and compared to non-infected controls. Multiple lipid species were independent predictors of antenatal ZIKV exposure. More specifically, microcephaly was strongly associated with an oxidized free fatty acid and ZIKV exposed normocephalic newborns exhibited higher plasma concentrations of lysophosphatidylcholine relative to controls. These findings emphasize the need for studies focused on the role of individual lipids in neuropathogenesis of ZIKV and raise the potential of plasma lipidome profiling for early diagnosis of newborns with suspected antenatal ZIKV exposure. To validate the predictive ability of this approach, prospective studies with a larger cohort of newborns are now required.
Collapse
Affiliation(s)
| | | | | | | | - Juan Ignacio Calcagno
- Maternidade Prof. José Maria de Magalhães Netto, State Health Secretary (Salvador), Bahia, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Marcos Yukio Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
13
|
Efficacy of Polyunsaturated Fatty Acids (PUFAs) on Impulsive Behaviours and Aggressiveness in Psychiatric Disorders. Int J Mol Sci 2021; 22:ijms22020620. [PMID: 33435512 PMCID: PMC7826871 DOI: 10.3390/ijms22020620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
It is the focus of increasing interest to investigate the effects of long-chain n-3 and long-chain n-6 polyunsaturated fatty acids (LC n-3 PUFAs; LC n-6 PUFAs) on psychiatric symptoms in a transdiagnostic perspective. There is some evidence that low levels of LC n-3 PUFAs and a higher ratio of LC n-6 to LC n-3 PUFAs in plasma and blood cells are associated with aggressive and impulsive behaviours. Therefore, implementation of LC n-3 PUFAs may produce positive effects on hostility, aggression, and impulsivity in both psychiatric and non-psychiatric samples across different stages of life. A possible mechanism of action of LC n-3 PUFAs in conditions characterized by a high level of impulsivity and aggression is due to the effect of these compounds on the serotonin system and membrane stability. Studies that evaluated the effects of LC n-3 PUFAs on impulsivity and aggressiveness indicated that addition of rather low doses of these agents to antipsychotic treatment might reduce agitation and violent behaviours in psychosis, attention deficit hyperactivity disorder, personality disorders, and impulsive control and conduct disorders. The present review is aimed at examining and discussing available data from recent trials on this topic.
Collapse
|
14
|
Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol 2020; 223:516-524. [PMID: 32184147 DOI: 10.1016/j.ajog.2020.03.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023]
Abstract
Iron is essential for the function of all cells through its roles in oxygen delivery, electron transport, and enzymatic activity. Cells with high metabolic rates require more iron and are at greater risk for dysfunction during iron deficiency. Iron requirements during pregnancy increase dramatically, as the mother's blood volume expands and the fetus grows and develops. Thus, pregnancy is a condition of impending or existing iron deficiency, which may be difficult to diagnose because of limitations to commonly used biomarkers such as hemoglobin and ferritin concentrations. Iron deficiency is associated with adverse pregnancy outcomes, including increased maternal illness, low birthweight, prematurity, and intrauterine growth restriction. The rapidly developing fetal brain is at particular risk of iron deficiency, which can occur because of maternal iron deficiency, hypertension, smoking, or glucose intolerance. Low maternal gestational iron intake is associated with autism, schizophrenia, and abnormal brain structure in the offspring. Newborns with iron deficiency have compromised recognition memory, slower speed of processing, and poorer bonding that persist despite postnatal iron repletion. Preclinical models of fetal iron deficiency confirm that expected iron-dependent processes such as monoamine neurotransmission, neuronal growth and differentiation, myelination, and gene expression are all compromised acutely and long term into adulthood. This review outlines strategies to diagnose and prevent iron deficiency in pregnancy. It describes the neurocognitive and mental health consequences of fetal iron deficiency. It emphasizes that fetal iron is a key nutrient that influences brain development and function across the lifespan.
Collapse
Affiliation(s)
- Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
15
|
Amissah EA, Brown J, Harding JE. Fat supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 2020; 8:CD000341. [PMID: 32842164 PMCID: PMC8236752 DOI: 10.1002/14651858.cd000341.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND As preterm infants do not experience the nutrient accretion and rapid growth phase of the third trimester of pregnancy, they are vulnerable to postnatal nutritional deficits, including of fat. Consequently, they require higher fat intakes compared to their full term counterparts to achieve adequate growth and development. Human milk fat provides the major energy needs of the preterm infant and also contributes to several metabolic and physiological functions. Although human milk has many benefits for this population, its fat content is highly variable and may be inadequate for their optimum growth and development. This is a 2020 update of a Cochrane Review last published in 2000. OBJECTIVES To determine whether supplementation of human milk with fat compared with unsupplemented human milk fed to preterm infants improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 8) in the Cochrane Library and MEDLINE via PubMed on 23 August 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Published and unpublished randomised controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants fed human milk in hospital to supplementation or no supplementation with additional fat. DATA COLLECTION AND ANALYSIS No new randomised controlled trials matching the selection criteria were found but we extracted data from the previously included trial due to changes in review outcomes from when the protocol was first published. Two reviewers independently abstracted data, assessed trial quality, and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. We planned to perform meta-analyses using risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. MAIN RESULTS One randomised trial involving 14 preterm infants was included. There was no evidence of a clear difference between the fat-supplemented and unsupplemented groups in in-hospital rates of growth in weight (MD 0.6 g/kg/day, 95% CI -2.4 to 3.6; 1 RCT, n = 14 infants, very low-quality evidence), length (MD 0.1 cm/week, 95% CI -0.08 to 0.3; 1 RCT, n = 14 infants, very low-quality evidence) and head circumference (MD 0.2 cm/week, 95% CI -0.07 to 0.4; 1 RCT n = 14 infants, very low-quality evidence). There was no clear evidence that fat supplementation increased the risk of feeding intolerance (RR 3.0, 95% CI 0.1 to 64.3; 1 RCT, n = 16 infants, very low-quality evidence). No data were available regarding the effects of fat supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS The one included trial suggests no evidence of an effect of fat supplementation of human milk on short-term growth and feeding intolerance in preterm infants. However, the very low-quality evidence, small sample size, few events, and low precision diminishes our confidence that these results reflect the true effect of fat supplementation of human milk in preterm infants, and no long-term outcomes were reported. Further high-quality research should evaluate the effect on short and long-term growth, neurodevelopmental and cardio-metabolic outcomes in the context of the development of multicomponent fortifiers. Optimal dosage, adverse effects, and delivery practices should also be evaluated.
Collapse
Affiliation(s)
- Emma A Amissah
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Julie Brown
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
McCann S, Perapoch Amadó M, Moore SE. The Role of Iron in Brain Development: A Systematic Review. Nutrients 2020; 12:E2001. [PMID: 32635675 PMCID: PMC7400887 DOI: 10.3390/nu12072001] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/12/2023] Open
Abstract
One-third of children falter in cognitive development by pre-school age. Iron plays an important role in many neurodevelopmental processes, and animal studies suggest that iron sufficiency in pregnancy and infancy is particularly important for neurodevelopment. However, it is not clear whether iron deficiency directly impacts developmental outcomes, and, if so, whether impact differs by timing of exposure or developmental domain. We searched four databases for studies on iron deficiency or iron supplementation in pregnancy, or at 0-6 months, 6-24 months, or 2-4 years of age. All studies included neurodevelopmental assessments in infants or children up to 4 years old. We then qualitatively synthesized the literature. There was no clear relationship between iron status and developmental outcomes across any of the time windows or domains included. We identified a large quantity of low-quality studies, significant heterogeneity in study design and a lack of research focused on pregnancy and early infancy. In summary, despite good mechanistic evidence for the role of iron in brain development, evidence for the impact of iron deficiency or iron supplementation on early development is inconsistent. Further high-quality research is needed, particularly within pregnancy and early infancy, which has previously been neglected.
Collapse
Affiliation(s)
- Samantha McCann
- Department of Women and Children’s Health, King’s College London, London SE1 7EH, UK;
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Marta Perapoch Amadó
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Sophie E. Moore
- Department of Women and Children’s Health, King’s College London, London SE1 7EH, UK;
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, P.O. Box 273, Banjul, The Gambia
| |
Collapse
|
17
|
Darcey VL, Serafine KM. Omega-3 Fatty Acids and Vulnerability to Addiction: Reviewing Preclinical and Clinical Evidence. Curr Pharm Des 2020; 26:2385-2401. [DOI: 10.2174/1381612826666200429094158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Omega-3 (N3) fatty acids are dietary nutrients that are essential for human health. Arguably, one of their most critical contributions to health is their involvement in the structure and function of the nervous system. N3 fatty acids accumulate in neuronal membranes through young adulthood, becoming particularly enriched in a brain region known to be the locus of cognitive control of behavior-the prefrontal cortex (PFC). The PFC undergoes a surge in development during adolescence, coinciding with a life stage when dietary quality and intake of N3 fatty acids tend to be suboptimal. Such low intake may impact neurodevelopment and normative development of cognitive functions suggested to be protective for the risk of subsequent substance and alcohol use disorders (UD). While multiple genetic and environmental factors contribute to risk for and resilience to substance and alcohol use disorders, mounting evidence suggests that dietary patterns early in life may also modulate cognitive and behavioral factors thought to elevate UD risk (e.g., impulsivity and reward sensitivity). This review aims to summarize the literature on dietary N3 fatty acids during childhood and adolescence and risk of executive/ cognitive or behavioral dysfunction, which may contribute to the risk of subsequent UD. We begin with a review of the effects of N3 fatty acids in the brain at the molecular to cellular levels–providing the biochemical mechanisms ostensibly supporting observed beneficial effects. We continue with a review of cognitive, behavioral and neurodevelopmental features thought to predict early substance and alcohol use in humans. This is followed by a review of the preclinical literature, largely demonstrating that dietary manipulation of N3 fatty acids contributes to behavioral changes that impact drug sensitivity. Finally, a review of the available evidence in human literature, suggesting an association between dietary N3 fatty and neurodevelopmental profiles associated with risk of adverse outcomes including UD. We conclude with a brief summary and call to action for additional research to extend the current understanding of the impact of dietary N3 fatty acids and the risk of drug and alcohol UD.
Collapse
Affiliation(s)
- Valerie L. Darcey
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington DC, United States
| | - Katherine M. Serafine
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
18
|
Edlow AG, Guedj F, Sverdlov D, Pennings JLA, Bianchi DW. Significant Effects of Maternal Diet During Pregnancy on the Murine Fetal Brain Transcriptome and Offspring Behavior. Front Neurosci 2019; 13:1335. [PMID: 31920502 PMCID: PMC6928003 DOI: 10.3389/fnins.2019.01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Maternal over- and undernutrition in pregnancy plays a critical role in fetal brain development and function. The effects of different maternal diet compositions on intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study was to investigate the impact of two chowmaternal diets on fetal brain gene expression signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model. METHODS Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of two standard, commercially available chow diets (pellet versus powder). The powdered chow diet was relatively deficient in micronutrients and enriched for carbohydrates and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA was extracted from embryonic day 15.5 forebrains and hybridized to whole genome expression microarrays (N = 5/maternal diet group). Functional analyses of significantly differentially expressed fetal brain genes were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning, locomotor behavior, and motor coordination were assessed in a subset of adults using fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14 powder-exposed). RESULTS Comparing powdered to pelleted chow diets, neither maternal weight trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was associated with 1647 differentially expressed fetal brain genes. Functional analyses identified significant upregulation of canonical pathways and upstream regulators involved in cell cycle regulation, synaptic plasticity, and sensory nervous system development in the fetal brain, and significant downregulation of pathways related to cell and embryo death. Pathways related to DNA damage response, brain immune response, amino acid and fatty acid transport, and dopaminergic signaling were significantly dysregulated. Powdered chow-exposed neonates were significantly longer but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral testing, powdered chow-exposed neonates achieved coordination- and strength-related milestones significantly earlier, but sensory maturation reflexes significantly later. On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity and hippocampal learning deficits. CONCLUSION In wild-type offspring, two diets that differed primarily with respect to micronutrient composition had significant effects on the fetal brain transcriptome, neonatal and adult behavior. These effects did not appear to be mediated by alterations in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content is an important variable to consider for investigators evaluating fetal brain development and offspring behavior.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Deanna Sverdlov
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, United States
| | | | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
19
|
Effects of LC-PUFA supply via complementary food on infant development-a food based intervention (RCT) embedded in a total diet concept. Eur J Clin Nutr 2019; 74:682-690. [PMID: 31383978 DOI: 10.1038/s41430-019-0491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND With the introduction of complementary food, long-chain PUFA (LC-PUFA) supply usually decreases during the second 6 months of life. However, the need for LC-PUFA is still high for infant's rapid development. The aim of this randomized, controlled intervention trial was to examine the effects of an increased n-3 (LC-)PUFA supply using alternative complementary foods on infants' visual and cognitive development. METHODS Mother-child dyads of term infants were recruited in maternity hospitals and randomly assigned to one of three study groups, which all were fed according to the German dietary schedule for infant nutrition. Intervention group IG-R (n = 54) received jars of complementary food with rapeseed oil, IG-F (n = 48) jars with oily fish twice a week and the control group (CG, n = 58) the same jars as IG-R with corn oil instead of rapeseed oil during the intervention period (5th-10th month of age). The outcome measures were latencies of FVEP, Bayley's mental developmental index (MDI), and psychomotor developmental index (PDI). RESULTS At 10 months of age, there were no significant differences in latencies of FVEP, Bayley's MDI, or in PDI index between the intervention and control groups. CONCLUSIONS Fish and rapeseed oil used as (LC-)PUFA sources provided with complementary feeding embedded in a structured infant diet did not affect visual or cognitive development of term infants.
Collapse
|
20
|
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol 2019; 95:42-66. [PMID: 30975474 DOI: 10.1016/j.pediatrneurol.2019.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Prematurity, especially preterm birth (less than 32 weeks' gestation), is common and associated with high rates of both survival and neurodevelopmental disability, especially apparent in cognitive spheres. The neuropathological substrate of this disability is now recognized to be related to a variety of dysmaturational disturbances of the brain. These disturbances follow initial brain injury, particularly cerebral white matter injury, and involve many of the extraordinary array of developmental events active in cerebral white and gray matter structures during the premature period. This review delineates these developmental events and the dysmaturational disturbances that occur in premature infants. The cellular mechanisms involved in the genesis of the dysmaturation are emphasized, with particular focus on the preoligodendrocyte. A central role for the diffusely distributed activated microglia and reactive astrocytes in the dysmaturation is now apparent. As these dysmaturational cellular mechanisms appear to occur over a relatively long time window, interventions to prevent or ameliorate the dysmaturation, that is, neurorestorative interventions, seem possible. Such interventions include pharmacologic agents, especially erythropoietin, and particular attention has also been paid to such nutritional factors as quality and source of milk, breastfeeding, polyunsaturated fatty acids, iron, and zinc. Recent studies also suggest a potent role for interventions directed at various experiential factors in the neonatal period and infancy, i.e., provision of optimal auditory and visual exposures, minimization of pain and stress, and a variety of other means of environmental behavioral enrichment, in enhancing brain development.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron Metabolism and Brain Development in Premature Infants. Front Physiol 2019; 10:463. [PMID: 31105583 PMCID: PMC6494966 DOI: 10.3389/fphys.2019.00463] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is important for a remarkable array of essential functions during brain development, and it needs to be provided in adequate amounts, especially to preterm infants. In this review article, we provide an overview of iron metabolism and homeostasis at the cellular level, as well as its regulation at the mRNA translation level, and we emphasize the importance of iron for brain development in fetal and early life in preterm infants. We also review the risk factors for disrupted iron metabolism that lead to high risk of developing iron deficiency and subsequent adverse effects on neurodevelopment in preterm infants. At the other extreme, iron overload, which is usually caused by excess iron supplementation in iron-replete preterm infants, might negatively impact brain development or even induce brain injury. Maintaining the balance of iron during the fetal and neonatal periods is important, and thus iron status should be monitored routinely and evaluated thoroughly during the neonatal period or before discharge of preterm infants so that iron supplementation can be individualized.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yanan Wu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Neonatology (NICU), Children’s Hospital Affiliated Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Physiology, Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Yu X, Jia L, Yu W, Du H. Dephosphorylation by calcineurin regulates translocation of dynamin-related protein 1 to mitochondria in hepatic ischemia reperfusion induced hippocampus injury in young mice. Brain Res 2019; 1711:68-76. [PMID: 30659828 DOI: 10.1016/j.brainres.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia reperfusion (HIR) has been found to induce brain injury and cognitive dysfunction. Dynamin-related protein 1 (Drp1) mediated mitochondrial fission involves oxidative stress, apoptosis and several neurological diseases. In this study, we investigated whether Drp1 translocation to mitochondria was implicated in HIR induced hippocampus injury in young mice, and further detected the role of calcineurin in the regulation of mitochondrial dynamics. 2-week C57BL/6 mice were chosen to make HIR model. Western blot was used to detect mitochondrial dynamics regulating proteins in whole hippocampal tissues and extracted mitochondria. Transmission electron microscopy was used to observe mitochondrial morphology. TUNEL staining and ELISA (serum S100β/NSE concentrations) were used to evaluate neurons apoptosis and brain injury respectively. Drp1 inhibitor Mdivi-1 and calcineurin inhibitor FK506 were utilized to further confirm the role of Drp1 and calcineurin. Results showed that HIR affected mitochondrial dynamics in a fission-dominant manner with translocation of Drp1 to mitochondria in hippocampus of young mice. HIR induced increased expression of calcineurin and dephosphorylation of Drp1 at Ser637 in hippocampus. Treatment with Mdivi-1 and FK506 upregulated the phosphorylation of Drp1, inhibited Drp1 translocation to mitochondria, and alleviated mitochondrial fragmentation after HIR. What's more, Mdivi-1 and FK506 restrained cytochrome c release and cleaved caspase-3 expression, ameliorated hippocampal neurons apoptosis, and decreased serum S100β/NSE concentrations as well. These data suggest that calcineurin mediated Drp1 dephosphorylation and translocation to mitochondria play a crucial role in HIR induced mitochondrial fragmentation and neurons apoptosis in hippocampus.
Collapse
Affiliation(s)
- Xiangyang Yu
- Tianjin Medical University First Center Clinical College, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China.
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
23
|
Volpe JJ. Iron and zinc: Nutrients with potential for neurorestoration in premature infants with cerebral white matter injury. J Neonatal Perinatal Med 2019; 12:365-368. [PMID: 31744026 PMCID: PMC7029313 DOI: 10.3233/npm-190369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Joseph J. Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Khan NA, Cannavale C, Iwinski S, Liu R, McLoughlin GM, Steinberg LG, Walk AM. Visceral Adiposity and Diet Quality Are Differentially Associated With Cognitive Abilities and Early Academic Skills Among Preschool-Age Children. Front Pediatr 2019; 7:548. [PMID: 32010649 PMCID: PMC6979276 DOI: 10.3389/fped.2019.00548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Visceral adipose tissue (VAT) and diet quality influence cognitive health in preadolescents; however, these relationships remain understudied among preschool-age children. Objectives: Investigate the relationship between VAT, diet quality, academic skills, and cognitive abilities among preschool-age children. Methods: Children between 4 and 5 years (N = 57) were enrolled in a cross-sectional study. Woodcock Johnson Early Cognitive and Academic Development Test (ECAD™) was utilized to assess General Intellectual Ability, Early Academic Skills, and Expressive Language. DXA was used to assess VAT. Diet quality was measured using the Healthy Eating Index-2015 (HEI-2015) based on 7-day food records. Results: Greater VAT was associated with poorer Early Academic Skills (r = -0.28, P = 0.03) whereas a diet pattern that included Fatty Acids, Whole Grains, Saturated Fats, Seafood and Plant Proteins, Total Vegetables, and Dairy was positively associated with General Intellectual Ability (r = 0.26, P = 0.04). Conclusions: Higher VAT is negatively related to Early Academic Skills whereas diet quality was positively and selectively related to intellectual abilities among preschool-age children. These findings indicate that the negative impact of abdominal adiposity on academic skills is evident as early as preschool-age while providing preliminary support for the potentially beneficial role of diet quality on cognitive abilities in early childhood.
Collapse
Affiliation(s)
- Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois, Champaign, IL, United States.,Neuroscience Program, University of Illinois, Champaign, IL, United States.,Division of Nutritional Sciences, University of Illinois, Champaign, IL, United States
| | - Corinne Cannavale
- Neuroscience Program, University of Illinois, Champaign, IL, United States
| | - Samantha Iwinski
- Department of Human Development and Family Studies, University of Illinois, Champaign, IL, United States
| | - Ruyu Liu
- Division of Nutritional Sciences, University of Illinois, Champaign, IL, United States
| | | | - Linda G Steinberg
- Department of Kinesiology and Community Health, University of Illinois, Champaign, IL, United States
| | - Anne M Walk
- Department of Psychology, Eastern Illinois University, Charleston, IL, United States
| |
Collapse
|
25
|
Lenfestey MW, Neu J. Gastrointestinal Development: Implications for Management of Preterm and Term Infants. Gastroenterol Clin North Am 2018; 47:773-791. [PMID: 30337032 DOI: 10.1016/j.gtc.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) system provides digestive, absorptive, neuroendocrine, and immunologic functions to support overall health. If normal development is interrupted, a variety of complications and disease can arise. This article explores normal development of the GI tract and specific clinical challenges pertinent to preterm and term infants. Specific topics include abnormal motility, gastroesophageal reflux, current feeding recommendations for preterm infants, effects of parenteral nutrition, and the relationship between the GI tract and the immune system.
Collapse
Affiliation(s)
- Mary W Lenfestey
- Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610, USA
| | - Josef Neu
- Department of Pediatrics, University of Florida, 6516 Southwest 93rd Avenue, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Amissah EA, Brown J, Harding JE. Fat supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev 2018; 6:CD000341. [PMID: 29924388 PMCID: PMC6513401 DOI: 10.1002/14651858.cd000341.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As preterm infants do not experience the nutrient accretion and rapid growth phase of the third trimester of pregnancy, they are vulnerable to postnatal nutritional deficits, including of fat. Consequently, they require higher fat intakes compared to their full term counterparts to achieve adequate growth and development. Human milk fat provides the major energy needs of the preterm infant and also contributes to several metabolic and physiological functions. Although human milk has many benefits for this population, its fat content is highly variable and may be inadequate for their optimum growth and development. This is a 2018 update of a Cochrane Review last published in 2000. OBJECTIVES To determine whether supplementation of human milk with fat compared with unsupplemented human milk fed to preterm infants improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2018, Issue 1), MEDLINE via PubMed (1966 to 08 February 2018), Embase (1980 to 08 February 2018), and CINAHL (1982 to 08 February 2018). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Published and unpublished randomised controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants fed human milk in hospital to supplementation or no supplementation with additional fat. DATA COLLECTION AND ANALYSIS No new randomised controlled trials matching the selection criteria were found but we extracted data from the previously included trial due to changes in review outcomes from when the protocol was first published. Two reviewers independently abstracted data, assessed trial quality, and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. We planned to perform meta-analyses using risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. MAIN RESULTS One randomised trial involving 14 preterm infants was included. There was no evidence of a clear difference between the fat-supplemented and unsupplemented groups in in-hospital rates of growth in weight (MD 0.6 g/kg/day, 95% CI -2.4 to 3.6; 1 RCT, n = 14 infants, very low-quality evidence), length (MD 0.1 cm/week, 95% CI -0.08 to 0.3; 1 RCT, n = 14 infants, very low-quality evidence) and head circumference (MD 0.2 cm/week, 95% CI -0.07 to 0.4; 1 RCT n = 14 infants, very low-quality evidence). There was no clear evidence that fat supplementation increased the risk of feeding intolerance (RR 3.0, 95% CI 0.1 to 64.3; 1 RCT, n = 16 infants, very low-quality evidence). No data were available regarding the effects of fat supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS The one included trial suggests no evidence of an effect of fat supplementation of human milk on short-term growth and feeding intolerance in preterm infants. However, the very low-quality evidence, small sample size, few events, and low precision diminishes our confidence that these results reflect the true effect of fat supplementation of human milk in preterm infants, and no long-term outcomes were reported. Further high-quality research should evaluate the effect on short and long-term growth, neurodevelopmental and cardio-metabolic outcomes in the context of the development of multicomponent fortifiers. Optimal dosage, adverse effects, and delivery practices should also be evaluated.
Collapse
Affiliation(s)
- Emma A Amissah
- University of AucklandLiggins InstituteAucklandNew Zealand
| | - Julie Brown
- The University of AucklandDepartment of Obstetrics and GynaecologyPark RdGraftonAucklandNew Zealand1142
| | - Jane E Harding
- University of AucklandLiggins InstituteAucklandNew Zealand
| | | |
Collapse
|
27
|
Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, McArdle HJ, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Iron Review. J Nutr 2018; 148:1001S-1067S. [PMID: 29878148 PMCID: PMC6297556 DOI: 10.1093/jn/nxx036] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/27/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health.The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation.
Collapse
Affiliation(s)
| | - Christine M Pfeiffer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
| | - Gary Brittenham
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY
| | - Susan Fairweather-Tait
- Department of Nutrition, Norwich Medical School, Norwich Research Park, University of East Anglia, Norwich NR4 7JT, UK
| | - Richard F Hurrell
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Harry J McArdle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| |
Collapse
|
28
|
Chen C, Husny J, Rabe S. Predicting fishiness off-flavour and identifying compounds of lipid oxidation in dairy powders by SPME-GC/MS and machine learning. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Neurological effects of iron supplementation in infancy: finding the balance between health and harm in iron-replete infants. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 2:144-156. [PMID: 30169236 DOI: 10.1016/s2352-4642(17)30159-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Iron mediates many biochemical processes in neural networks that proliferate during brain development. Insufficient iron causes irreversible neurodevelopmental deficits, and most high-income countries recommend that infants older than 4-6 months receive additional iron via food fortification or supplementation to prevent iron-deficiency anaemia. Now that the prevalence of iron-deficiency anaemia in children has decreased to less than 10% in most developed countries, concerns that the recommended intakes far exceed those required to prevent iron-deficiency anaemia have been raised, and emerging evidence suggests that iron overexposure could be linked to adverse outcomes later in life. In this Viewpoint, we discuss the importance of iron for neurodevelopment, investigate the biochemical markers used to assess iron stores, summarise the disparity in public health policies among high-income countries, and discuss the potential association between iron overexposure and adverse neurological outcomes later in life. We present a case for new studies to establish the optimal amount of iron that both prevents deficiency and reduces the potential risk of long-term negative health outcomes.
Collapse
|
30
|
Abera M, Tesfaye M, Girma T, Hanlon C, Andersen GS, Wells JC, Admassu B, Wibaek R, Friis H, Kæstel P. Relation between body composition at birth and child development at 2 years of age: a prospective cohort study among Ethiopian children. Eur J Clin Nutr 2017; 71:1411-1417. [DOI: 10.1038/ejcn.2017.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/24/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
|
31
|
Simon L, Nusinovici S, Flamant C, Cariou B, Rouger V, Gascoin G, Darmaun D, Rozé JC, Hanf M. Post-term growth and cognitive development at 5 years of age in preterm children: Evidence from a prospective population-based cohort. PLoS One 2017; 12:e0174645. [PMID: 28350831 PMCID: PMC5370142 DOI: 10.1371/journal.pone.0174645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
While the effects of growth from birth to expected term on the subsequent development of preterm children has attracted plentiful attention, less is known about the effects of post-term growth. We aimed to delineate distinct patterns of post-term growth and to determine their association with the cognitive development of preterm children. Data from a prospective population-based cohort of 3,850 surviving infants born at less than 35 weeks of gestational age were used. Growth was assessed as the Body Mass Index (BMI) Z-scores at 3, 9, 18, 24, 36, 48, and 60 months. Cognitive development at five years of age was evaluated by the Global School Adaptation score (GSA). Latent class analysis was implemented to identify distinct growth patterns and logistic regressions based on propensity matching were used to evaluate the relationship between identified growth trajectories and cognitive development. Four patterns of post-term growth were identified: a normal group with a Z-score consistently around zero during childhood (n = 2,469; 64%); a group with an early rapid rise in the BMI Z-score, but only up to 2 years of age (n = 195; 5%); a group with a slow yet steady rise in the BMI Z-score during childhood (n = 510; 13%); and a group with a negative Z-score growth until 3 years of age (n = 676; 18%). The group with a slow yet steady rise in the BMI Z-score was significantly associated with low GSA scores. Our findings indicate heterogeneous post-term growth of preterm children, with potential for association with their cognitive development.
Collapse
Affiliation(s)
- Laure Simon
- Department of Paediatric Medicine, Nantes University Hospital, Nantes, France
| | - Simon Nusinovici
- INSERM CIC 1413, Clinical Investigation Center, Nantes University Hospital, Nantes, France
| | - Cyril Flamant
- Department of Paediatric Medicine, Nantes University Hospital, Nantes, France
| | - Bertrand Cariou
- Department of Endocrinology, l’Institut du Thorax, Nantes University Hospital, Nantes, France
| | - Valérie Rouger
- Réseau “Grandir ensemble”, Nantes University Hospital, Nantes, France
| | - Géraldine Gascoin
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Dominique Darmaun
- National Institute for Agricultural Research, UMR 1280 PHAN, Nantes University, Institut des Maladies de l’Appareil Digestif (IMAD), and CRNH-Ouest, Nantes, France
| | - Jean-Christophe Rozé
- Department of Paediatric Medicine, Nantes University Hospital, Nantes, France
- INSERM CIC 1413, Clinical Investigation Center, Nantes University Hospital, Nantes, France
| | - Matthieu Hanf
- INSERM CIC 1413, Clinical Investigation Center, Nantes University Hospital, Nantes, France
- INSERM UMR 1181 Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Versailles Saint Quentin University, Villejuif, France
- * E-mail:
| |
Collapse
|
32
|
Abstract
Fatty acids are critical nutrient regulators of intracellular signaling and influence key pathways including inflammatory responses, hemostasis as well as central nervous system development and function. Preterm birth interrupts the maternal-fetal transfer of essential fatty acids including docosahexaenoic and arachidonic acids, which occurs during the third trimester. Postnatal deficits of these nutrients accrue in preterm infants during the first week and they remain throughout the first months. Due to the regulatory roles of these fatty acids, such deficits contribute an increased risk of developing prematurity-related morbidities including impaired growth and neurodevelopment. The fatty acid contents of parenteral and enteral nutrition are insufficient to meet current recommendations. This chapter summarizes the regulatory roles of fatty acids, current recommendations and limitations of parenteral and enteral nutrition in meeting these recommendations in preterm infants. Suggested areas for research on the roles of fatty acids in preterm infant health are also provided.
Collapse
|
33
|
Kashou NH, Dar IA, El-Mahdy MA, Pluto C, Smith M, Gulati IK, Lo W, Jadcherla SR. Brain Lesions among Orally Fed and Gastrostomy-Fed Dysphagic Preterm Infants: Can Routine Qualitative or Volumetric Quantitative Magnetic Resonance Imaging Predict Feeding Outcomes? Front Pediatr 2017; 5:73. [PMID: 28443270 PMCID: PMC5385332 DOI: 10.3389/fped.2017.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The usefulness of qualitative or quantitative volumetric magnetic resonance imaging (MRI) in early detection of brain structural changes and prediction of adverse outcomes in neonatal illnesses warrants further investigation. Our aim was to correlate certain brain injuries and the brain volume of feeding-related cortical and subcortical regions with feeding method at discharge among preterm dysphagic infants. MATERIALS AND METHODS Using a retrospective observational study design, we examined MRI data among 43 (22 male; born at 31.5 ± 0.8 week gestation) infants who went home on oral feeding or gastrostomy feeding (G-tube). MRI scans were segmented, and volumes of brainstem, cerebellum, cerebrum, basal ganglia, thalamus, and vermis were quantified, and correlations were made with discharge feeding outcomes. Chi-squared tests were used to evaluate MRI findings vs. feeding outcomes. ANCOVA was performed on the regression model to measure the association of maturity and brain volume between groups. RESULTS Out of 43 infants, 44% were oral-fed and 56% were G-tube fed at hospital discharge (but not at time of the study). There was no relationship between qualitative brain lesions and feeding outcomes. Volumetric analysis revealed that cerebellum was greater (p < 0.05) in G-tube fed infants, whereas cerebrum volume was greater (p < 0.05) in oral-fed infants. Other brain regions did not show volumetric differences between groups. CONCLUSION This study concludes that neither qualitative nor quantitative volumetric MRI findings correlate with feeding outcomes. Understanding the complexity of swallowing and feeding difficulties in infants warrants a comprehensive and in-depth functional neurological assessment.
Collapse
Affiliation(s)
- Nasser H Kashou
- Wright State University, Image Analysis Lab, Dayton, OH, USA
| | - Irfaan A Dar
- Wright State University, Image Analysis Lab, Dayton, OH, USA.,Innovative Research Program in Neonatal and Infant Feeding Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mohamed A El-Mahdy
- Innovative Research Program in Neonatal and Infant Feeding Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Charles Pluto
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ish K Gulati
- Innovative Research Program in Neonatal and Infant Feeding Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Neonatology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Warren Lo
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sudarshan R Jadcherla
- Innovative Research Program in Neonatal and Infant Feeding Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Neonatology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
34
|
Rothenberg SE, Yu X, Liu J, Biasini FJ, Hong C, Jiang X, Nong Y, Cheng Y, Korrick SA. Maternal methylmercury exposure through rice ingestion and offspring neurodevelopment: A prospective cohort study. Int J Hyg Environ Health 2016; 219:832-842. [PMID: 27503636 DOI: 10.1016/j.ijheh.2016.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Dietary methylmercury intake can occur not only through fish ingestion but also through rice ingestion; however, rice does not contain the same beneficial micronutrients as fish. OBJECTIVES In rural China, where rice is a staple food, associations between prenatal methylmercury exposure (assessed using maternal hair mercury) and impacts on offspring neurodevelopment were investigated. METHODS A total of 398 mothers were recruited at parturition at which time a sample of scalp hair was collected. Offspring (n=270, 68%) were assessed at 12 months using the Bayley Scales of Infant Development-II, yielding age-adjusted scores for the Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI). RESULTS Among 270 mothers, 85% ingested rice daily, 41% never or rarely ingested fish/shellfish and 11% ingested fish/shellfish at least twice/weekly. Maternal hair mercury averaged 0.41μg/g (median: 0.39μg/g, range: 0.079-1.7μg/g). In unadjusted models, offspring neurodevelopment (both MDI and PDI) was inversely correlated with hair mercury. Associations were strengthened after adjustment for fish/shellfish ingestion, rice ingestion, total energy intake (kcal), and maternal/offspring characteristics for both the MDI [Beta: -4.9, 95% Confidence Interval (CI): -9.7, -0.12] and the PDI (Beta: -2.7, 95% CI: -8.3, 2.9), although confidence intervals remained wide for the latter. CONCLUSIONS For 12-month old offspring living in rural China, prenatal methylmercury exposure was associated with statistically significant decrements in offspring cognition, but not psychomotor development. Results expose potential new vulnerabilities for communities depending on rice as a staple food.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| | - Xiaodan Yu
- MOE-Shanghai Key Lab of Children's Environmental Health, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Fred J Biasini
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chuan Hong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Xu Jiang
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Yanfen Nong
- Maternal and Child Health Hospital, Daxin, China
| | - Yue Cheng
- Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Susan A Korrick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
35
|
Shatenstein B, Barberger-Gateau P, Mecocci P. Prevention of Age-Related Cognitive Decline: Which Strategies, When, and for Whom? J Alzheimers Dis 2016; 48:35-53. [PMID: 26401926 DOI: 10.3233/jad-150256] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Brain aging is characterized by the progressive and gradual accumulation of detrimental changes in structure and function, which increase risk of age-related cognitive decline and dementia. This devastating chronic condition generates a huge social and economic burden and accounts for 11.2% of years of disability. The increase in lifespan has contributed to the increase in dementia prevalence; however, there is currently no curative treatment for most causes of dementias. This paper reviews evidence-based strategies to build, enhance, and preserve cognition over the lifespan by examining approaches that work best, proposing when in the life course they should be implemented, and in which population group(s). Recent work shows a tendency to decreased age-specific prevalence and incidence of cognitive problems and dementia among people born later in the first half of the 20th century, citing higher educational levels, improvements in lifestyle, and better handling of vascular risk factors. This implies that we can target modifiable environmental, lifestyle, and health risk factors to modify the trajectory of cognitive decline before the onset of irreversible dementia. Because building cognitive reserve and prevention of cognitive decline are of critical importance, interventions are needed at every stage of the life course to foster cognitive stimulation, and enable healthy eating habits and physical activity throughout the lifespan. Preventive interventions to decrease and delay cognitive decline and its consequences in old age will also require collaboration and action on the part of policy-makers at the political and social level.
Collapse
Affiliation(s)
- Bryna Shatenstein
- Département de nutrition, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS Centre-est-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Pascale Barberger-Gateau
- University of Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France.,INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France
| | | |
Collapse
|
36
|
Choudhury V, Amin SB, Agarwal A, Srivastava LM, Soni A, Saluja S. Latent iron deficiency at birth influences auditory neural maturation in late preterm and term infants. Am J Clin Nutr 2015; 102:1030-4. [PMID: 26310540 DOI: 10.3945/ajcn.115.113084] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/03/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In utero latent iron deficiency has been associated with abnormal neurodevelopmental outcomes during childhood. Its concomitant effect on auditory neural maturation has not been well studied in late preterm and term infants. OBJECTIVE The objective was to determine whether in utero iron status is associated with auditory neural maturation in late preterm and term infants. DESIGN This prospective cohort study was performed at Sir Ganga Ram Hospital, New Delhi, India. Infants with a gestational age ≥34 wk were eligible unless they met the exclusion criteria: craniofacial anomalies, chromosomal disorders, hemolytic disease, multiple gestation, third-trimester maternal infection, chorioamnionitis, toxoplasmosis, other infections, rubella, cytomegalovirus infection, and herpes simplex virus infections (TORCH), Apgar score <5 at 5 min, sepsis, cord blood not collected, or auditory evaluation unable to be performed. Sixty consecutive infants with risk factors for iron deficiency, such as small for gestational age and maternal diabetes, and 30 without risk factors for iron deficiency were enrolled. Absolute wave latencies and interpeak latencies, evaluated by auditory brainstem response within 48 h after birth, were measured and compared between infants with latent iron deficiency (serum ferritin ≤75 ng/mL) and infants with normal iron status (serum ferritin >75 ng/mL) at birth. RESULTS Twenty-three infants had latent iron deficiency. Infants with latent iron deficiency had significantly prolonged wave V latencies (7.10 ± 0.68 compared with 6.60 ± 0.66), III-V interpeak latencies (2.37 ± 0.64 compared with 2.07 ± 0.33), and I-V interpeak latencies (5.10 ± 0.57 compared with 4.72 ± 0.56) compared with infants with normal iron status (P < 0.05). This difference remained significant on regression analyses after control for confounders. No difference was noted between latencies I and III and interpeak latencies I-III. CONCLUSION Latent iron deficiency is associated with abnormal auditory neural maturation in infants at ≥34 wk gestational age. This trial was registered at clinicaltrials.gov as NCT02503397.
Collapse
Affiliation(s)
| | - Sanjiv B Amin
- Department of Pediatrics, Division of Neonatology, University of Rochester, Rochester, NY
| | - Asha Agarwal
- Department of Otorhinology and Cochlear Implant Unit, and
| | - L M Srivastava
- Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, India; and
| | | | | |
Collapse
|
37
|
Baack ML, Puumala SE, Messier SE, Pritchett DK, Harris WS. What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels? Prostaglandins Leukot Essent Fatty Acids 2015; 100. [PMID: 26205427 PMCID: PMC4554773 DOI: 10.1016/j.plefa.2015.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) and arachidonic acid (ARA) are increasingly transferred from mother to fetus late in pregnancy. Infants born before this transfer is complete are at risk for deficiency. This study determines the relationship between gestational age (GA) and circulating LCPUFA levels to better understand the unique needs of premature infants born at various GAs. Whole blood was collected within the first 7 days of life from 60 preterm (≤34 weeks GA) and 30 term infants (≥38 weeks GA) and FA levels were analyzed. Since concurrent intravenous lipid emulsion can skew composition data, blood LCPUFA concentrations were also measured. Levels were compared among groups, and linear regression models were used to examine the association between FA composition and GA. Preterm infants had significantly lower DHA and ARA levels than term peers, and whether assessed as concentrations or compositions, both directly correlated with GA (p<0.0001). Moreover, FA comparisons suggest that premature infants have impaired synthesis of LCPUFAs from precursors and may require preformed DHA and ARA. This study confirms that essential FA status is strongly related to GA, and that those babies born the earliest are at the greatest risk of LCPUFA deficiency.
Collapse
Affiliation(s)
- Michelle L Baack
- Sanford Children's Hospital, Sioux Falls, SD, USA; Sanford School of Medicine, Sioux Falls, SD, USA; Sanford Health Research Center, Sioux Falls, SD, USA.
| | - Susan E Puumala
- Sanford School of Medicine, Sioux Falls, SD, USA; Sanford Health Research Center, Sioux Falls, SD, USA
| | - Stephen E Messier
- Sanford Children's Hospital, Sioux Falls, SD, USA; Sanford School of Medicine, Sioux Falls, SD, USA
| | | | - William S Harris
- Sanford School of Medicine, Sioux Falls, SD, USA; Sanford Health Research Center, Sioux Falls, SD, USA; OmegaQuant Analytics, LLC, Sioux Falls, SD, USA
| |
Collapse
|
38
|
Khan NA, Raine LB, Donovan SM, Hillman CH. IV. The cognitive implications of obesity and nutrition in childhood. Monogr Soc Res Child Dev 2015; 79:51-71. [PMID: 25387415 DOI: 10.1111/mono.12130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prevalence of childhood obesity in the United States has tripled since the 1980s and is strongly linked to the early onset of several metabolic diseases. Recent studies indicate that lower cognitive function may be another complication of childhood obesity. This review considers the research to date on the role of obesity and nutrition on childhood cognition and brain health. Although a handful of studies point to a maladaptive relationship between obesity and aspects of cognitive control, remarkably little is known regarding the impact of fat mass on brain development and cognitive function. Further, missing from the literature is the role of nutrition in the obesity-cognition interaction. Nutrition may directly or indirectly influence cognitive performance via several pathways including provision of key substrates for optimal brain health, modulation of gut microbiota, and alterations in systemic energy balance. However, in the absence of malnutrition, the functional benefits of specific nutrient intake on particular cognitive domains are not well characterized. Here, we examine the literature linking childhood obesity and cognition while considering the effects of nutritional intake. Possible mechanisms for these relationships are discussed and suggestions are made for future study topics. Although childhood obesity prevalence rates in some developed countries have recently stabilized, significant disparities remain among groups based on sex and socioeconomic status. Given that the elevated prevalence of pediatric overweight and obesity may persist for the foreseeable future, it is crucial to develop a comprehensive understanding of the influence of obesity and nutrition on cognition and brain health in the pediatric population.
Collapse
|
39
|
Wallin DJ, Tkac I, Stucker S, Ennis KM, Sola-Visner M, Rao R, Georgieff MK. Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice. Pediatr Res 2015; 77:765-71. [PMID: 25734245 PMCID: PMC4439355 DOI: 10.1038/pr.2015.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/12/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Phlebotomy-induced anemia (PIA) is common in preterm infants. The hippocampus undergoes rapid differentiation during late fetal/early neonatal life and relies on adequate oxygen and iron to support oxidative metabolism necessary for development. Anemia shortchanges these two critical substrates, potentially altering hippocampal development and function. METHODS PIA (hematocrit <25%) was induced in neonatal mice pups from postnatal day (P)3 to P14. Neurochemical concentrations in the hippocampus were determined using in vivo (1)H NMR spectroscopy at 9.4T and compared with control animals at P14. Gene expression was assessed using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS PIA decreased brain iron concentration, increased hippocampal lactate and creatine concentrations, and decreased phosphoethanolamine (PE) concentration and the phosphocreatine/creatine ratio. Hippocampal transferrin receptor (Tfrc) gene expression was increased, while the expression of calcium/calmodulin-dependent protein kinase type IIα (CamKIIα) was decreased in PIA mice. CONCLUSION This clinically relevant model of neonatal anemia alters hippocampal energy and phospholipid metabolism and gene expression during a critical developmental period. Low target hematocrits for preterm neonates in the neonatal intensive care unit (NICU) may have potential adverse neural implications.
Collapse
Affiliation(s)
- Diana J. Wallin
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Tkac
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Sara Stucker
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen M. Ennis
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghavendra Rao
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael K. Georgieff
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Corresponding author: Michael K. Georgieff, Mailing address: Division of Neonatology, 2450 Riverside Avenue, 6th Floor East Building; MB-360, Minneapolis, MN 55454, Telephone: 612-626-0644, Fax: 612-624-8176,
| |
Collapse
|
40
|
Steenweg-de Graaff JCJ, Tiemeier H, Basten MGJ, Rijlaarsdam J, Demmelmair H, Koletzko B, Hofman A, Jaddoe VWV, Verhulst FC, Roza SJ. Maternal LC-PUFA status during pregnancy and child problem behavior: the Generation R Study. Pediatr Res 2015; 77:489-97. [PMID: 25521921 DOI: 10.1038/pr.2014.204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/29/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Omega 3 (n-3) and 6 (n-6) long-chain polyunsaturated fatty acids (LC-PUFAs) and the n-3:n-6 ratio are important for brain development. Whether maternal LC-PUFA status during pregnancy affects risk of problem behavior in later childhood is unclear. METHODS Within a population-based cohort, we measured maternal plasma docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) concentrations and n-3:n-6-ratio in mid-pregnancy. Child emotional and behavioral problems at 6 y of age were assessed by parents (child behavior checklist), teachers (teacher report form), and combined parent/teacher report. RESULTS Higher maternal DHA and n-3:n-6 ratio were associated with fewer child emotional problems using parent (odds ratio (OR)DHA = 0.82; 95% confidence interval (CI): 0.70, 0.96; P = 0.02 and OR(n-3:n-6) = 0.83; 95% CI: 0.71, 0.96; P = 0.01; n = 5,307) and combined parent/teacher scores (ORDHA = 0.79; 95% CI: 0.66, 0.95; P = 0.01 and OR(n-3:n-6) = 0.77; 95% CI: 0.65, 0.92; P < 0.01; n = 2,828). Higher AA was associated with more child behavioral problems using teacher (OR = 1.10; 95% CI: 1.00, 1.20; P = 0.04; n = 3,365) and combined parent/teacher scores (OR = 1.12; 95% CI: 1.02, 1.22; P = 0.02; n = 2,827). Maternal EPA was not associated with child problem behavior. CONCLUSION Indications of associations of maternal LC-PUFA status with child emotional and behavioral problems were found. Future research is needed to identify LC-PUFA-sensitive periods of fetal brain development by including multiple assessments of prenatal LC-PUFA status.
Collapse
Affiliation(s)
- Jolien C J Steenweg-de Graaff
- 1] The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands [2] Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Henning Tiemeier
- 1] Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands [2] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands [3] Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maartje G J Basten
- 1] The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands [2] Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Jolien Rijlaarsdam
- 1] The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands [2] Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- 1] The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands [2] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands [3] Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Sabine J Roza
- 1] Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands [2] Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 2015; 29:2207-22. [PMID: 25713056 DOI: 10.1096/fj.14-268342] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.
Collapse
Affiliation(s)
- Rhonda P Patrick
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
42
|
Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014; 99:734S-41S. [PMID: 24500153 DOI: 10.3945/ajcn.113.072595] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal nutrition has little or no effect on many nutrients in human milk; for others, human milk may not be designed as a primary nutritional source for the infant; and for a few, maternal nutrition can lead to substantial variations in human milk quality. Human milk fatty acids are among the nutrients that show extreme sensitivity to maternal nutrition and are implicated in neurological development. Extensive development occurs in the infant brain, with growth from ∼ 350 g at birth to 925 g at 1 y, with this growth including extensive dendritic and axonal arborization. Transfer of n-6 (omega-6) and n-3 (omega-3) fatty acids from the maternal diet into human milk occurs with little interconversion of 18:2n-6 to 20:4n-6 or 18:3n-3 to docosahexaenoic acid (DHA) and little evidence of mammary gland regulation to maintain individual fatty acids constant with varying maternal fatty acid nutrition. DHA has gained attention because of its high concentrations and roles in the brain and retina. Studies addressing DHA intakes by lactating women or human milk amounts of DHA at levels above those typical in the United States and Canada on infant outcomes are inconsistent. However, separating effects of the fatty acid supply in gestation or in the weaning diet from effects on neurodevelopment solely due to human milk fatty acids is complex, particularly when neurodevelopment is assessed after the period of exclusive human milk feeding. Information on infant fatty acid intakes, including milk volume consumed and energy density, will aid in understanding of the human milk fatty acids that best support neurological development.
Collapse
Affiliation(s)
- Sheila M Innis
- Nutrition and Metabolism Research Program, Child and Family Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014; 28:2398-413. [PMID: 24558199 DOI: 10.1096/fj.13-246546] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder.
Collapse
Affiliation(s)
- Rhonda P Patrick
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
44
|
Johnson PJ. Review of macronutrients in parenteral nutrition for neonatal intensive care population. Neonatal Netw 2014; 33:29-34. [PMID: 24413034 DOI: 10.1891/0730-0832.33.1.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parenteral nutrition (PN) has become essential in the management of sick and growing newborn populations in the NICU. In the past few decades, PN has become fundamental in the nutritional management of the very low birth weight infant (<1,500 g).1 Although the components in PN are commonly determined and ordered by the physician or neonatal nurse practitioner provider, the NICU nurse is responsible for confirming the components in the daily PN prior to infusion and is responsible for maintaining the infusion of PN. Nurses should understand the nutritional components of PN as well as the indications, side effects, and infusion limitations of each component. The purpose of this article is to review the macronutrients in PN, including carbohydrates, protein, and fat. A subsequent article will review the micronutrients in PN, including electrolytes, minerals, and vitamins.
Collapse
|
45
|
Mulder KA, King DJ, Innis SM. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS One 2014; 9:e83764. [PMID: 24427279 PMCID: PMC3888379 DOI: 10.1371/journal.pone.0083764] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Background DHA is accumulated in the central nervous system (CNS) before birth and is involved in early developmental processes, such as neurite outgrowth and gene expression. Objective To determine whether fetal DHA insufficiency occurs and constrains CNS development in term gestation infants. Design A risk reduction model using a randomized prospective study of term gestation single birth healthy infants born to women (n = 270) given a placebo or 400 mg/day DHA from 16 wk gestation to delivery. Fetal DHA deficiency sufficient to constrain CNS development was assessed based on increased risk that infants in the placebo group would not achieve neurodevelopment scores in the top quartile of all infants in the study. Results Infants in the placebo group were at increased risk of lower language development assessed as words understood (OR 3.22, CL 1.49–6.94, P = 0.002) and produced (OR 2.61, CL 1.22–5.58, P = 0.01) at 14 mo, and words understood (OR 2.77, CL 1.23–6.28, P = 0.03) and sentences produced (OR 2.60, CL 1.15–5.89, P = 0.02) at 18 mo using the McArthur Communicative Developmental Inventory; receptive (OR 2.23, CL 1.08–4.60, P = 0.02) and expressive language (OR 1.89, CL 0.94–3.83, P = 0.05) at 18 mo using the Bayley Scales of Infant Development III; and visual acuity (OR 2.69, CL 1.10–6.54, P = 0.03) at 2 mo. Trial Registration ClinicalTrials.gov NCT00620672
Collapse
Affiliation(s)
- Kelly A. Mulder
- Nutrition and Metabolism Program, Child and Family Research Institute, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - D. Janette King
- Nutrition and Metabolism Program, Child and Family Research Institute, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheila M. Innis
- Nutrition and Metabolism Program, Child and Family Research Institute, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
46
|
Yu F, Hao S, Zhao Y, Ren Y, Yang J, Sun X, Chen J. Mild maternal iron deficiency anemia induces DPOAE suppression and cochlear hair cell apoptosis by caspase activation in young guinea pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:291-299. [PMID: 24378594 DOI: 10.1016/j.etap.2013.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
Iron deficiency (ID) anemia (IDA) alters auditory neural normal development in the mammalian cochlea. Previous results suggest that mild maternal IDA during pregnancy and lactation altered the hearing and nervous system development of the young offspring, but the mechanisms underlying the association are incompletely understood. The objective of this study was to evaluate the role of apoptosis in the development of sensory hair cells following mild maternal IDA during pregnancy and lactation. We established a maternal anemia model in female guinea pigs by using a mild iron deficient diet. The offspring were weaned on postnatal day (PND) 9 and then was given the iron sufficient diet. Maternal blood samples were collected on gestational day (GD) 21, GD 42, GD 63 and PND 9, serum level of iron (SI) or hemoglobin (Hb) was measured. Blood samples of pups were collected on PND 9 for SI measurement. On PND 24, pups were examined the distortion product otoacoustic emission (DPOAE) task, and then the cochleae were harvested for assessment of apoptosis by immunohistochemistry of cysteine-aspartic acid proteases 3/9 (caspase-3/9) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay, and by double immunofluorescence for the colocalization of TUNEL and caspase-3. Blood samples of pups were collected on PND 24 for SI and Hb measurements. Here we show that mild maternal IDA during pregnancy and lactation resulted in hearing impairment, decreased hair cell number, caspase-3/9 activation and increased apoptotic cell number of young guinea pigs. These results indicate a key role for apoptosis in inhibition of hair cell development, caused by mild maternal IDA during pregnancy and lactation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 92 North 2nd Road, Heping District, Shenyang, China.
| | - Shuai Hao
- Department of Otolaryngology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 92 North 2nd Road, Heping District, Shenyang, China
| | - Yahao Ren
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 92 North 2nd Road, Heping District, Shenyang, China
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 92 North 2nd Road, Heping District, Shenyang, China
| | - Xiance Sun
- Department of Occupational and Environmental of Health, Dalian Medical University, No. 9 Western Section of Lushun South Road, Dalian, Liaoning, China.
| | - Jie Chen
- Department of Occupational and Environmental of Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
47
|
Latent iron deficiency in utero is associated with abnormal auditory neural myelination in ≥ 35 weeks gestational age infants. J Pediatr 2013; 163:1267-71. [PMID: 23932211 DOI: 10.1016/j.jpeds.2013.06.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/22/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine whether cord serum ferritin level is associated with auditory brainstem evoked response interpeak latencies, an index of auditory neural myelination, in infants at ≥ 35 weeks gestational age (GA). STUDY DESIGN This prospective study compared auditory neural myelination in infants with latent iron deficiency (cord serum ferritin, 11-75 ng/mL) and infants with normal iron status (cord serum ferritin, >75 ng/mL) at birth. Our inclusion criteria were infants born at ≥ 35 weeks GA who had cord blood collected soon after birth and had 1 or more of the following risk factors for poor in utero iron status: maternal diabetes mellitus, pregnancy-induced hypertension, and intrauterine growth restriction. Cord serum ferritin level was measured using the chemiluminescence immunoassay method. Auditory brainstem evoked response was measured using 80-dB normal hearing level click stimuli at a rate of 69.9/second within 48 hours after birth to evaluate interpeak latencies, a measure of nerve conduction velocity or myelination. RESULTS Of the 45 infants studied, 12 had latent iron deficiency. On repeated-measures ANCOVA using interpeak latencies I-III, III-V, and I-V as multiple outcomes, infants with latent iron deficiency had significantly prolonged interpeak latencies (P = .01) compared with infants with normal iron status after controlling for confounders. CONCLUSION In utero latent iron deficiency is associated with abnormal auditory neural myelination at birth in infants born at ≥ 35 weeks GA.
Collapse
|
48
|
Iron supplementation in premature infants using the zinc protoporphyrin to heme ratio: short- and long-term outcomes. J Perinatol 2013; 33:712-6. [PMID: 23599120 DOI: 10.1038/jp.2013.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The objective of this study was to determine the effect of incrementally higher doses of iron on the zinc protoporphyrin to heme ratio (ZnPP/H) and serum ferritin, and developmental outcomes in premature infants at risk for iron deficiency. STUDY DESIGN Infants eligible for this prospective, randomized blinded trial were between 27 and 30 completed weeks of gestation, older than 1 week of age and tolerating 100 ml kg(-1) per day of enteral feedings. The control group was treated with 2.2 mg kg(-1) per day of ferrous sulfate and the treatment group was treated with 3 to 12 mg kg(-1) per day based on the ZnPP/H. Infants had follow-up with Bayley exams at 6 and 24 months corrected age. Statistical evaluation included Student's t-tests and Fisher's exact test. RESULT Eighty-one infants were enrolled (40 control, 41 treatment). The average total iron dose for the control group was 2.2 mg kg(-1) per day and for the treatment group was 10.4 mg kg(-1) per day (P<0.05). The ZnPP/H was not different between the two groups. The ferritin at the end of the study was decreased in the control group but remained stable in the treatment group (control initial 202±109 ng ml(-1), final 168±141 ng ml(-1) (P<0.05); treatment initial 187±131 ng ml(-1), final 176±118 ng ml(-1)). At 24 months, infants with psychomotor development index <85 occurred in 25% of the subjects in the control group and in 7% of subjects in the treatment group in a post hoc analysis (odds ratio, 4.2; 95% confidence interval, 0.7 to 43, P=0.07). CONCLUSION The ZnPP/H may not be a reliable marker of iron status when used in a short period of time during iron supplementation. Infants treated with a lower dose of ferrous sulfate had a decreasing serum ferritin and a trend toward increased motor delays at 24 months.
Collapse
|
49
|
van Vliet E, Eixarch E, Illa M, Arbat-Plana A, González-Tendero A, Hogberg HT, Zhao L, Hartung T, Gratacos E. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain. PLoS One 2013; 8:e64545. [PMID: 23724060 PMCID: PMC3664640 DOI: 10.1371/journal.pone.0064545] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022] Open
Abstract
Background Intrauterine Growth Restriction (IUGR) due to placental insufficiency occurs in 5–10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. Methodology/Principal Findings At gestation day 25, IUGR was induced in two New Zealand rabbits by 40–50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. Conclusions IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty acid profiles and oxidative stress mechanisms. Overall findings identified aspargine, ornithine, N-acetylaspartylglutamic acid, N-acetylaspartate and palmitoleic acid as potential metabolite candidates to develop clinical biomarkers for the perinatal diagnosis of IUGR related abnormal neurodevelopment.
Collapse
Affiliation(s)
- Erwin van Vliet
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miriam Illa
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ariadna Arbat-Plana
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna González-Tendero
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Helena T. Hogberg
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health Science, Baltimore, Maryland, United States of America
| | - Liang Zhao
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health Science, Baltimore, Maryland, United States of America
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health Science, Baltimore, Maryland, United States of America
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
50
|
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) are of nutritional interest because they are crucial for normal development of the central nervous system and have potential long-lasting effects that extend beyond the period of dietary insufficiency. Here we review the recent literature and current recommendations regarding LCPUFAs as they pertain to preterm infant nutrition. In particular, findings that relate to fetal accretion, LCPUFA absorption and metabolism, effects on development, and current practices and recommendations have been used to update recommendations for health care providers. The amounts of long-chain polyunsaturated fatty acids (LCPUFAs) used in early studies were chosen to produce the same concentrations as in term breast milk. This might not be a wise approach for preterm infants, however, particularly for very and extremely preterm infants, whose requirements for LCPUFAs and other nutrients exceed what is normally provided in the small volumes that they are able to tolerate. Recent studies have reported outcome data in preterm infants fed milk with a docosahexaenoic acid (DHA) content 2-3 times higher than the current concentration in infant formulas. Overall, these studies show that providing larger amounts of DHA supplements, especially to the smallest infants, is associated with better neurologic outcomes in early life. We emphasize that current nutritional management might not provide sufficient amounts of preformed DHA during the parenteral and enteral nutrition periods and in very preterm/very low birth weight infants until their due date, and that greater amounts than used routinely likely will be needed to compensate for intestinal malabsorption, DHA oxidation, and early deficit. Research should continue to address the gaps in knowledge and further refine adequate intake for each group of preterm infants.
Collapse
|